1
|
Gemeda BA, Wieland B, Alemayehu G, Knight-Jones TJD, Wodajo HD, Tefera M, Kumbe A, Olani A, Abera S, Amenu K. Antimicrobial Resistance of Escherichia coli Isolates from Livestock and the Environment in Extensive Smallholder Livestock Production Systems in Ethiopia. Antibiotics (Basel) 2023; 12:antibiotics12050941. [PMID: 37237844 DOI: 10.3390/antibiotics12050941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The objective of this study was to characterize the distribution of antimicrobial resistance (AMR) of Escherichia coli (E. coli) isolated from livestock feces and soil in smallholder livestock systems. A cross-sectional study was carried out sampling 77 randomly selected households in four districts representing two agroecologies and production systems. E. coli was isolated and the susceptibility to 15 antimicrobials was assessed. Of 462 E. coli isolates tested, resistance to at least one antimicrobial was detected in 52% (43.7-60.8) of isolates from cattle fecal samples, 34% (95% CI, 26.2-41.8) from sheep samples, 58% (95% CI, 47.9-68.2) from goat samples and 53% (95% CI, 43.2-62.4) from soil samples. AMR patterns for E. coli from livestock and soil showed some similarities, with the highest prevalence of resistance detected against streptomycin (33%), followed by amoxycillin/clavulanate (23%) and tetracycline (8%). The odds of detecting E. coli resistance to ≥2 antimicrobials in livestock fecal samples were nearly three times (Odd Ratio-OR: 2.9; 95% CI, 1.72-5.17; p = 0.000) higher in lowland pastoral than in highland mixed crop-livestock production systems. These findings provide insights into the status of resistance in livestock and soil, and associated risk factors in low-resource settings in Ethiopia.
Collapse
Affiliation(s)
- Biruk Alemu Gemeda
- Animal and Human Health Research Program, International Livestock Research Institute (ILRI), Addis Ababa P.O. Box 5689, Ethiopia
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 1176, Ethiopia
| | - Barbara Wieland
- Institute of Virology and Immunology, 3147 Mittelhaeusern, Switzerland
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Gezahegn Alemayehu
- Animal and Human Health Research Program, International Livestock Research Institute (ILRI), Addis Ababa P.O. Box 5689, Ethiopia
| | - Theodore J D Knight-Jones
- Animal and Human Health Research Program, International Livestock Research Institute (ILRI), Addis Ababa P.O. Box 5689, Ethiopia
| | - Hiwot Desta Wodajo
- Animal and Human Health Research Program, International Livestock Research Institute (ILRI), Addis Ababa P.O. Box 5689, Ethiopia
| | - Misgana Tefera
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 1176, Ethiopia
| | - Adem Kumbe
- Oromia Agricultural Research Institute, Yabello Pastoral and Dryland Agriculture Research Center, Yabello P.O. Box 85, Ethiopia
| | - Abebe Olani
- Animal Health Institute (AHI), Sebeta P.O. Box 04, Ethiopia
| | - Shubisa Abera
- Animal Health Institute (AHI), Sebeta P.O. Box 04, Ethiopia
| | - Kebede Amenu
- Animal and Human Health Research Program, International Livestock Research Institute (ILRI), Addis Ababa P.O. Box 5689, Ethiopia
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 1176, Ethiopia
| |
Collapse
|
2
|
Nada HG, El-Tahan AS, El-Didamony G, Askora A. Detection of multidrug-resistant Shiga toxin-producing Escherichia coli in some food products and cattle faeces in Al-Sharkia, Egypt: one health menace. BMC Microbiol 2023; 23:127. [PMID: 37173663 PMCID: PMC10176883 DOI: 10.1186/s12866-023-02873-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen, that is transmitted from a variety of animals, especially cattle to humans via contaminated food, water, feaces or contact with infected environment or animals. The ability of STEC strains to cause gastrointestinal complications in human is due to the production of Shiga toxins (sxt). However, the transmission of multidrug-resistance STEC strains are linked with a severity of disease outcomes and horizontal spread of resistance genes in other pathogens. The result of this has emerged as a significant threat to public health, animal health, food safety, and the environment. Therefore, the purpose of this study is to investigate the antibiogram profile of enteric E. coli O157 isolated from food products and cattle faeces samples in Zagazig City, Al-Sharkia, Egypt, and to reveal the presence of Shiga toxin genes stx1 and stx2 as virulence factors in multidrug-resistant isolates. In addition to this, the partial 16S rRNA sequencing was used for the identification and genetic recoding of the obtained STEC isolates. RESULTS There was a total of sixty-five samples collected from different geographical regions at Zagazig City, Al-Sharkia-Egypt, which were divided into: 15 chicken meat (C), 10 luncheon (L), 10 hamburgers (H), and 30 cattle faeces (CF). From the sixty-five samples, only 10 samples (one from H, and 9 from CF) were identified as suspicious E. coli O157 with colourless colonies on sorbitol MacConkey agar media with Cefixime- Telurite supplement at the last step of most probable number (MPN) technique. Eight isolates (all from CF) were identified as multidrug-resistant (MDR) as they showed resistance to three antibiotics with multiple antibiotic resistance (MAR) index ≥ 0.23, which were assessed by standard Kirby-Bauer disc diffusion method. These eight isolates demonstrated complete resistance (100%) against amoxicillin/clavulanic acid, and high frequencies of resistance (90%, 70%, 60%,60%, and 40%) against cefoxitin, polymixin, erythromycin, ceftazidime, and piperacillin, respectively. Those eight MDR E. coli O157 underwent serological assay to confirm their serotype. Only two isolates (CF8, and CF13), both from CF, were showed strong agglutination with antisera O157 and H7, as well as resistance against 8 out of 13 of the used antibiotics with the highest MAR index (0.62). The presence of virulence genes Shiga toxins (stx1 and stx2) was assessed by PCR technique. CF8 was confirmed for carrying stx2, while CF13 was carrying both genes stx1, and stx2. Both isolates were identified by partial molecular 16S rRNA sequencing and have an accession number (Acc. No.) of LC666912, and LC666913 on gene bank. Phylogenetic analysis showed that CF8, and CF13 were highly homologous (98%) to E. coli H7 strain, and (100%) to E. coli DH7, respectively. CONCLUSION The results of this study provides evidence for the occurrence of E. coli O157:H7 that carries Shiga toxins stx1 and/or stx2, with a high frequency of resistance to antibiotics commonly used in human and veterinary medicine, in Zagazig City, Al-Sharkia, Egypt. This has a high extent of public health risk posed by animal reservoirs and food products with respect to easy transmission causing outbreaks and transfer resistance genes to other pathogens in animal, human, and plants. Therefore, environmental, animal husbandry, and food product surveillance, as well as, clinical infection control, must be strengthened to avoid the extra spread of MDR pathogens, especially MDR STEC strains.
Collapse
Affiliation(s)
- Hanady G Nada
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt.
| | - Amera Saeed El-Tahan
- Microbiology and Chemistry Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Gamal El-Didamony
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed Askora
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
3
|
Use of Electric Discharge for Simultaneous Control of Weeds and Houseflies Emerging from Soil. INSECTS 2020; 11:insects11120861. [PMID: 33287266 PMCID: PMC7761702 DOI: 10.3390/insects11120861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022]
Abstract
An electrostatic apparatus was developed to control weeds and houseflies emerging from ground soil in a greenhouse simultaneously. Identical iron plates were placed in parallel at a defined interval and fixed in an iron frame. Two sets of fixed iron plates were used, one for weed control and one for fly control. For weed control, all of the iron plates were negatively charged, and negative charges accumulated on the plates were released to weed shoots through arc discharge. Houseflies were introduced into the space between the negatively charged and grounded plates, then subjected to arc discharge from the charged plates. Both plant shoots and adult houseflies are electrically conductive; thus, they were killed by discharge-exposure in the electric field between the charged iron plate and the ground soil, and between the charged and grounded plates, respectively. In practical use, these two devices were assembled as a two-level apparatus for simultaneous control of both targets. Several apparatuses were linked together, which increased the total electricity charge on the plates and produced a stronger discharge force sufficient to kill all targets. Thus, this study provides an electrostatics-based pest-control method for pesticide-independent greenhouse farming.
Collapse
|
4
|
Shiga Toxin (Verotoxin)-producing
Escherichia coli and Foodborne Disease:
A Review. Food Saf (Tokyo) 2017; 5:35-53. [PMID: 32231928 DOI: 10.14252/foodsafetyfscj.2016029] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/31/2017] [Indexed: 12/22/2022] Open
Abstract
Shiga toxin (verotoxin)-producing Escherichia coli (STEC) is an important cause of foodborne disease. Since outcomes of the infections with STEC have a broad range of manifestation from asymptomatic infection or mild intestinal discomfort, to bloody diarrhea, hemolytic uremic syndrome (HUS), end-stage renal disease (ESRD), and death, the disease is a serious burden in public health and classified as a notifiable infectious disease in many countries. Cattle and other ruminants are considered to be the major reservoirs of STEC though isolation of STEC from other animals have been reported. Hence, the source of contamination extends to a wide range of foods, not only beef products but also fresh produce, water, and environment contaminated by excretes from the animals, mainly cattle. A low- infectious dose of STEC makes the disease relatively contagious, and causes outbreaks with unknown contamination sources and, therefore, as a preventive measure against STEC infection, it is important to obtain characteristics of prevailing STEC isolates in the region through robust surveillance. Analysis of the isolates by pulsed-field gel electrophoresis (PFGE) and multiple-locus variable-number tandem repeat analysis (MLVA) could help finding unrecognized foodborne outbreaks due to consumption of respective contaminated sources. However, though the results of molecular analysis of the isolates could indicate linkage of sporadic cases of STEC infection, it is hardly concluded that the cases are related via contaminated food source if it were not for epidemiological information. Therefore, it is essential to combine the results of strain analysis and epidemiological investigation rapidly to detect rapidly foodborne outbreaks caused by bacteria. This article reviews STEC infection as foodborne disease and further discusses key characteristics of STEC including pathogenesis, clinical manifestation, prevention and control of STEC infection. We also present the recent situation of the disease in Japan based on the surveillance of STEC infection.
Collapse
|
5
|
Contamination of Fresh Produce by Microbial Indicators on Farms and in Packing Facilities: Elucidation of Environmental Routes. Appl Environ Microbiol 2017; 83:AEM.02984-16. [PMID: 28363965 DOI: 10.1128/aem.02984-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/28/2017] [Indexed: 12/29/2022] Open
Abstract
To improve food safety on farms, it is critical to quantify the impact of environmental microbial contamination sources on fresh produce. However, studies are hampered by difficulties achieving study designs with powered sample sizes to elucidate relationships between environmental and produce contamination. Our goal was to quantify, in the agricultural production environment, the relationship between microbial contamination on hands, soil, and water and contamination on fresh produce. In 11 farms and packing facilities in northern Mexico, we applied a matched study design: composite samples (n = 636, equivalent to 11,046 units) of produce rinses were matched to water, soil, and worker hand rinses during two growing seasons. Microbial indicators (coliforms, Escherichia coli, Enterococcus spp., and somatic coliphage) were quantified from composite samples. Statistical measures of association and correlations were calculated through Spearman's correlation, linear regression, and logistic regression models. The concentrations of all microbial indicators were positively correlated between produce and hands (ρ range, 0.41 to 0.75; P < 0.01). When E. coli was present on hands, the handled produce was nine times more likely to contain E. coli (P < 0.05). Similarly, when coliphage was present on hands, the handled produce was eight times more likely to contain coliphage (P < 0.05). There were relatively low concentrations of indicators in soil and water samples, and a few sporadic significant associations were observed between contamination of soil and water and contamination of produce. This methodology provides a foundation for future field studies, and results highlight the need for interventions surrounding farmworker hygiene and sanitation to reduce microbial contamination of farmworkers' hands.IMPORTANCE This study of the relationships between microbes on produce and in the farm environment can be used to support the design of targeted interventions to prevent or reduce microbial contamination of fresh produce with associated reductions in foodborne illness.
Collapse
|
6
|
Effect of the lemon essential oils on the safety and sensory quality of salted sardines ( Sardina pilchardus Walbaum 1792). Food Control 2017. [DOI: 10.1016/j.foodcont.2016.10.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Liu C, Hofstra N, Franz E. Impacts of Climate and Management Variables on the Contamination of Preharvest Leafy Greens with Escherichia coli. J Food Prot 2016; 79:17-29. [PMID: 26735025 DOI: 10.4315/0362-028x.jfp-15-255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The observed seasonality of foodborne disease suggests that climatic conditions play a role and that changes in the climate may affect the presence of pathogens. However, it is hard to determine whether this effect is direct or whether it works indirectly through other factors, such as farm management. This study aimed to identify the climate and management variables that are associated with the contamination (presence and concentration) of leafy green vegetables with E. coli. This study used data about E. coli contamination from 562 leafy green vegetables (lettuce and spinach) samples taken between 2011 and 2013 from 23 open-field farms in Belgium, Brazil, Egypt, Norway, and Spain. Mixed-effect logistic and linear regression models were used to study the statistical relationship between the dependent and independent variables. Climate variables and agricultural management practices together had a systematic influence on E. coli presence and concentration. The variables important for E. coli presence included the minimum temperature of the sampling day (odds ratio = 1.47), region, and application of inorganic fertilizer. The variables important for concentration (R(2) = 0.75) were the maximum temperature during the 3 days before sampling and the region. Temperature had a stronger influence (had a significant parameter estimate and the highest R(2)) than did management practices on E. coli presence and concentration. Region was a variable that masked many management variables, including rainwater, surface water, manure, inorganic fertilizer, and spray irrigation. Climate variables had a positive relationship with E. coli presence and concentration. Temperature, irrigation water type, fertilizer type, and irrigation method should be systematically considered in future studies of fresh produce safety.
Collapse
Affiliation(s)
- Cheng Liu
- Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, 6700AA Wageningen, The Netherlands.
| | - Nynke Hofstra
- Environmental Systems Analysis Group, Wageningen University, P.O. Box 47, 6700AA Wageningen, The Netherlands
| | - Eelco Franz
- National Institute for Public Health and the Environment (RIVM), Centre Infectious Disease Control, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
8
|
Naganandhini S, Kennedy ZJ, Uyttendaele M, Balachandar D. Persistence of Pathogenic and Non-Pathogenic Escherichia coli Strains in Various Tropical Agricultural Soils of India. PLoS One 2015; 10:e0130038. [PMID: 26101887 PMCID: PMC4477969 DOI: 10.1371/journal.pone.0130038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/15/2015] [Indexed: 11/20/2022] Open
Abstract
The persistence of Shiga-like toxin producing E. coli (STEC) strains in the agricultural soil creates serious threat to human health through fresh vegetables growing on them. However, the survival of STEC strains in Indian tropical soils is not yet understood thoroughly. Additionally how the survival of STEC strain in soil diverges with non-pathogenic and genetically modified E. coli strains is also not yet assessed. Hence in the present study, the survival pattern of STEC strain (O157-TNAU) was compared with non-pathogenic (MTCC433) and genetically modified (DH5α) strains on different tropical agricultural soils and on a vegetable growing medium, cocopeat under controlled condition. The survival pattern clearly discriminated DH5α from MTCC433 and O157-TNAU, which had shorter life (40 days) than those compared (60 days). Similarly, among the soils assessed, the red laterite and tropical latosol supported longer survival of O157-TNAU and MTCC433 as compared to wetland and black cotton soils. In cocopeat, O157 recorded significantly longer survival than other two strains. The survival data were successfully analyzed using Double-Weibull model and the modeling parameters were correlated with soil physico-chemical and biological properties using principal component analysis (PCA). The PCA of all the three strains revealed that pH, microbial biomass carbon, dehydrogenase activity and available N and P contents of the soil decided the survival of E. coli strains in those soils and cocopeat. The present research work suggests that the survival of O157 differs in tropical Indian soils due to varied physico-chemical and biological properties and the survival is much shorter than those reported in temperate soils. As the survival pattern of non-pathogenic strain, MTCC433 is similar to O157-TNAU in tropical soils, the former can be used as safe model organism for open field studies.
Collapse
Affiliation(s)
- S Naganandhini
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Z John Kennedy
- Post Harvest Technology Centre, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - M Uyttendaele
- Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - D Balachandar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| |
Collapse
|
9
|
Hellberg RS, Chu E. Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: A review. Crit Rev Microbiol 2015; 42:548-72. [PMID: 25612827 DOI: 10.3109/1040841x.2014.972335] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
According to the Intergovernmental Panel on Climate Change (IPCC), warming of the climate system is unequivocal. Over the coming century, warming trends such as increased duration and frequency of heat waves and hot extremes are expected in some areas, as well as increased intensity of some storm systems. Climate-induced trends will impact the persistence and dispersal of foodborne pathogens in myriad ways, especially for environmentally ubiquitous and/or zoonotic microorganisms. Animal hosts of foodborne pathogens are also expected to be impacted by climate change through the introduction of increased physiological stress and, in some cases, altered geographic ranges and seasonality. This review article examines the effects of climatic factors, such as temperature, rainfall, drought and wind, on the environmental dispersal and persistence of bacterial foodborne pathogens, namely, Bacillus cereus, Brucella, Campylobacter, Clostridium, Escherichia coli, Listeria monocytogenes, Salmonella, Staphylococcus aureus, Vibrio and Yersinia enterocolitica. These relationships are then used to predict how future climatic changes will impact the activity of these microorganisms in the outdoor environment and associated food safety issues. The development of predictive models that quantify these complex relationships will also be discussed, as well as the potential impacts of climate change on transmission of foodborne disease from animal hosts.
Collapse
Affiliation(s)
- Rosalee S Hellberg
- a Food Science and Nutrition Program, Schmid College of Science and Technology, Chapman University , Orange , CA , USA
| | - Eric Chu
- a Food Science and Nutrition Program, Schmid College of Science and Technology, Chapman University , Orange , CA , USA
| |
Collapse
|
10
|
Bucci A, Allocca V, Naclerio G, Capobianco G, Divino F, Fiorillo F, Celico F. Winter survival of microbial contaminants in soil: an in situ verification. J Environ Sci (China) 2015; 27:131-138. [PMID: 25597671 DOI: 10.1016/j.jes.2014.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/25/2014] [Accepted: 07/07/2014] [Indexed: 06/04/2023]
Abstract
The aim of the research was to evaluate, at site scale, the influence of freezing and freeze/thaw cycles on the survival of faecal coliforms and faecal enterococci in soil, in a climate change perspective. Before the winter period and during grazing, viable cells of faecal coliforms and faecal enterococci were detected only in the first 10 cm below ground, while, after the winter period and before the new seasonal grazing, a lower number of viable cells of both faecal indicators was detected only in some of the investigated soil profiles, and within the first 5 cm. Taking into consideration the results of specific investigations, we hypothesise that the non-uniform spatial distribution of grass roots within the studied soil can play an important role in influencing this phenomenon, while several abiotic factors do not play any significant role. Taking into account the local trend in the increase of air temperature, a different distribution of microbial pollution over time is expected in spring waters, in future climate scenarios. The progressive increase in air temperature will cause a progressive decrease in freeze/thaw cycles at higher altitudes, minimising cold shocks on microbial cells, and causing spring water pollution also during winter.
Collapse
Affiliation(s)
- Antonio Bucci
- University of Molise, Department of Biosciences and Territory, Pesche (IS) 86090, Italy.
| | - Vincenzo Allocca
- University "Federico II", Department of Earth Sciences, Napoli 80134, Italy
| | - Gino Naclerio
- University of Molise, Department of Biosciences and Territory, Pesche (IS) 86090, Italy
| | - Giovanni Capobianco
- University of Molise, Department of Biosciences and Territory, Pesche (IS) 86090, Italy
| | - Fabio Divino
- University of Molise, Department of Biosciences and Territory, Pesche (IS) 86090, Italy
| | - Francesco Fiorillo
- University of Sannio, Department of Geological and Environmental Studies, Benevento 82100, Italy
| | - Fulvio Celico
- University of Parma, Department of Physics and Earth Sciences "Macedonio Melloni", Parma 43124, Italy
| |
Collapse
|
11
|
Jung Y, Jang H, Matthews KR. Effect of the food production chain from farm practices to vegetable processing on outbreak incidence. Microb Biotechnol 2014; 7:517-27. [PMID: 25251466 PMCID: PMC4265071 DOI: 10.1111/1751-7915.12178] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 11/26/2022] Open
Abstract
The popularity in the consumption of fresh and fresh-cut vegetables continues to increase globally. Fresh vegetables are an integral part of a healthy diet, providing vitamins, minerals, antioxidants and other health-promoting compounds. The diversity of fresh vegetables and packaging formats (spring mix in clamshell container, bagged heads of lettuce) support increased consumption. Unfortunately, vegetable production and processing practices are not sufficient to ensure complete microbial safety. This review highlights a few specific areas that require greater attention and research. Selected outbreaks are presented to emphasize the need for science-based 'best practices'. Laboratory and field studies have focused on inactivation of pathogens associated with manure in liquid, slurry or solid forms. As production practices change, other forms and types of soil amendments are being used more prevalently. Information regarding the microbial safety of fish emulsion and pellet form of manure is limited. The topic of global climate change is controversial, but the potential effect on agriculture cannot be ignored. Changes in temperature, precipitation, humidity and wind can impact crops and the microorganisms that are associated with production environments. Climate change could potentially enhance the ability of pathogens to survive and persist in soil, water and crops, increasing human health risks. Limited research has focused on the prevalence and behaviour of viruses in pre and post-harvest environments and on vegetable commodities. Globally, viruses are a major cause of foodborne illnesses, but are seldom tested for in soil, soil amendments, manure and crops. Greater attention must also be given to the improvement in the microbial quality of seeds used in sprout production. Human pathogens associated with seeds can result in contamination of sprouts intended for human consumption, even when all appropriate 'best practices' are used by sprout growers.
Collapse
Affiliation(s)
- Yangjin Jung
- Department of Food Science, Rutgers, The State University of New JerseyNew Brunswick, NJ, 08901, USA
| | - Hyein Jang
- Department of Food Science, Rutgers, The State University of New JerseyNew Brunswick, NJ, 08901, USA
| | - Karl R Matthews
- Department of Food Science, Rutgers, The State University of New JerseyNew Brunswick, NJ, 08901, USA
| |
Collapse
|
12
|
Al-Nabulsi AA, Osaili TM, Obaidat HM, Shaker RR, Awaisheh SS, Holley RA. Inactivation of stressed Escherichia coli O157:H7 cells on the surfaces of rocket salad leaves by chlorine and peroxyacetic acid. J Food Prot 2014; 77:32-9. [PMID: 24405996 DOI: 10.4315/0362-028x.jfp-13-019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Because Escherichia coli O157:H7 has been frequently associated with many foodborne outbreaks caused by consumption of leafy greens (lettuce, spinach, and celery), this study investigated the ability of deionized water, chlorine, and peroxyacetic acid to detach or inactivate stressed and unstressed cells of E. coli O157:H7 contaminating the surfaces of rocket salad leaves. E. coli O157:H7 cells stressed by acid, cold, starvation, or NaCl exposure, as well as unstressed cells, were inoculated on the surfaces of rocket salad leaves at 4°C. The effectiveness of two sanitizers (200 ppm of chlorine and 80 ppm of peroxyacetic acid) and deionized water for decontaminating the leaves treated with stressed and unstressed E. coli O157:H7 were evaluated during storage at 10 or 25°C for 0.5, 1, 3, and 7 days. It was found that washing with 80 ppm of peroxyacetic acid was more effective and reduced unstressed and stressed cells of E. coli O157:H7 by about 1 log CFU per leaf on the leaves. There was no apparent difference in the ability of stressed and unstressed cells to survive surface disinfection with the tested agents. Treatments to reduce viable E. coli O157:H7 cells on rocket leaves stored at 25°C were more effective than when used on those stored at 10°C. Washing with peroxyacetic acid or chlorine solution did not ensure the safety of rocket leaves, but such treatments could reduce the likelihood of water-mediated transfer of E. coli O157:H7 during washing and subsequent processing.
Collapse
Affiliation(s)
- Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Tareq M Osaili
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Heba M Obaidat
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Reyad R Shaker
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Saddam S Awaisheh
- Department of Nutrition and Food Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Richard A Holley
- Department of Food Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| |
Collapse
|
13
|
Zhang T, Wang H, Wu L, Lou J, Wu J, Brookes PC, Xu J. Survival of Escherichia coli O157:H7 in soils from Jiangsu Province, China. PLoS One 2013; 8:e81178. [PMID: 24312534 PMCID: PMC3846838 DOI: 10.1371/journal.pone.0081178] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/09/2013] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli O157:H7 (E. coli O157:H7) is recognized as a hazardous microorganism in the environment and for public health. The E. coli O157:H7 survival dynamics were investigated in 12 representative soils from Jiangsu Province, where the largest E. coli O157:H7 infection in China occurred. It was observed that E. coli O157:H7 declined rapidly in acidic soils (pH, 4.57 – 5.14) but slowly in neutral soils (pH, 6.51 – 7.39). The survival dynamics were well described by the Weibull model, with the calculated td value (survival time of the culturable E. coli O157:H7 needed to reach the detection limit of 100 CFU g−1) from 4.57 days in an acidic soil (pH, 4.57) to 34.34 days in a neutral soil (pH, 6.77). Stepwise multiple regression analysis indicated that soil pH and soil organic carbon favored E. coli O157:H7 survival, while a high initial ratio of Gram-negative bacteria phospholipid fatty acids (PLFAs) to Gram-positive bacteria PLFAs, and high content of exchangeable potassium inhibited E. coli O157:H7 survival. Principal component analysis clearly showed that the survival profiles in soils with high pH were different from those with low pH.
Collapse
Affiliation(s)
- Taoxiang Zhang
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, China
| | - Haizhen Wang
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, China
- * E-mail: (HW); (JX)
| | - Laosheng Wu
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, China
| | - Jun Lou
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, China
| | - Jianjun Wu
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, China
| | - Philip C. Brookes
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, China
| | - Jianming Xu
- College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, China
- * E-mail: (HW); (JX)
| |
Collapse
|
14
|
Ongeng D, Geeraerd AH, Springael D, Ryckeboer J, Muyanja C, Mauriello G. Fate ofEscherichia coliO157:H7 andSalmonella entericain the manure-amended soil-plant ecosystem of fresh vegetable crops: A review. Crit Rev Microbiol 2013; 41:273-94. [DOI: 10.3109/1040841x.2013.829415] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Harris LJ, Berry ED, Blessington T, Erickson M, Jay-Russell M, Jiang X, Killinger K, Michel FC, Millner P, Schneider K, Sharma M, Suslow TV, Wang L, Worobo RW. A framework for developing research protocols for evaluation of microbial hazards and controls during production that pertain to the application of untreated soil amendments of animal origin on land used to grow produce that may be consumed raw. J Food Prot 2013; 76:1062-84. [PMID: 23726206 DOI: 10.4315/0362-028x.jfp-13-007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Application of manure or soil amendments of animal origin (untreated soil amendments; UTSAs) to agricultural land has been a long-standing practice to maintain or improve soil quality through addition of organic matter, nitrogen, and phosphorus. Much smaller quantities of these types of UTSAs are applied to land used for food crops than to land used for animal grain and forage. UTSAs can harbor zoonotic enteric pathogens that may survive for extended periods after application. Additional studies are needed to enhance our understanding of preharvest microbial food safety hazards and control measures pertaining to the application of UTSAs especially for land used to grow produce that may be consumed raw. This document is intended to provide an approach to study design and a framework for defining the scope and type of data required. This document also provides a tool for evaluating the strength of existing data and thus can aid the produce industry and regulatory authorities in identifying additional research needs. Ultimately, this framework provides a means by which researchers can increase consistency among and between studies and facilitates direct comparison of hazards and efficacy of controls applied to different regions, conditions, and practices.
Collapse
Affiliation(s)
- Linda J Harris
- Western Center for Food Safety, University of California, One Shields Avenue, Davis, California 95616, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Liu C, Hofstra N, Franz E. Impacts of climate change on the microbial safety of pre-harvest leafy green vegetables as indicated by Escherichia coli O157 and Salmonella spp. Int J Food Microbiol 2013; 163:119-28. [PMID: 23558195 DOI: 10.1016/j.ijfoodmicro.2013.02.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 02/21/2013] [Accepted: 02/26/2013] [Indexed: 12/01/2022]
Abstract
The likelihood of leafy green vegetable (LGV) contamination and the associated pathogen growth and survival are strongly related to climatic conditions. Particularly temperature increase and precipitation pattern changes have a close relationship not only with the fate and transport of enteric bacteria, but also with their growth and survival. Using all relevant literature, this study reviews and synthesises major impacts of climate change (temperature increases and precipitation pattern changes) on contamination sources (manure, soil, surface water, sewage and wildlife) and pathways of foodborne pathogens (focussing on Escherichia coli O157 and Salmonella spp.) on pre-harvested LGVs. Whether climate change increases their prevalence depends not only on the resulting local balance of the positive and negative impacts but also on the selected regional climate change scenarios. However, the contamination risks are likely to increase. This review shows the need for quantitative modelling approaches with scenario analyses and additional laboratory experiments. This study gives an extensive overview of the impacts of climate change on the contamination of pre-harvested LGVs and shows that climate change should not be ignored in food safety management and research.
Collapse
Affiliation(s)
- Cheng Liu
- Environmental Systems Analysis Group, Wageningen University, P. O. Box 47, 6700AA Wageningen, The Netherlands.
| | | | | |
Collapse
|
17
|
Jay-Russell MT, Madigan JE, Bengson Y, Madigan S, Hake AF, Foley JE, Byrne BA. Salmonella Oranienburg isolated from horses, wild turkeys and an edible home garden fertilized with raw horse manure. Zoonoses Public Health 2013; 61:64-71. [PMID: 23425126 DOI: 10.1111/zph.12043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Indexed: 11/30/2022]
Abstract
In July 2010, a horse from a rural farm (Farm A) in coastal Northern California was diagnosed with Salmonella Oranienburg infection following referral to a veterinary hospital for colic surgery. Environmental sampling to identify potential sources and persistence of Salmonella on the farm was conducted from August 2010 to March 2011. Salmonella was cultured using standard enrichment and selective plating. Pure colonies were confirmed by biochemical analysis, serotyped and compared by pulsed-field gel electrophoresis (PFGE) analysis. A total of 204 clinical and environmental samples at Farm A were analysed, and Salmonella spp. was isolated from six of eight (75%) horses, an asymptomatic pet dog, two of seven (28.6%) water samples from horse troughs, nine of 20 (45%) manure storage pile composites, 16 of 71 (22.5%) wild turkey faeces and four of 39 (10.3%) soil samples from the family's edible home garden. Well water and garden vegetable samples and horse faecal samples from a neighbouring ranch were negative. S. Oranienburg with a PFGE pattern indistinguishable from the horse clinical strain was found in all positive sample types on Farm A. The investigation illustrates the potential for widespread dissemination of Salmonella in a farm environment following equine infections. We speculate that a recent surge in the wild turkey population on the property could have introduced S. Oranienburg into the herd, although we cannot rule out the possibility wild turkeys were exposed on the farm or to other potential sources of Salmonella. Findings from the investigation indicated that raw horse manure applied as fertilizer was the most likely source of garden soil contamination. Viable S. Oranienburg persisted in garden soil for an estimated 210 days, which exceeds the 120-day standard between application and harvest currently required by the National Organic Program. The study underscores the need to educate the public about potential food safety hazards associated with using raw animal manure to fertilize edible home gardens.
Collapse
Affiliation(s)
- M T Jay-Russell
- School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Park S, Szonyi B, Gautam R, Nightingale K, Anciso J, Ivanek R. Risk factors for microbial contamination in fruits and vegetables at the preharvest level: a systematic review. J Food Prot 2012; 75:2055-81. [PMID: 23127717 DOI: 10.4315/0362-028x.jfp-12-160] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The objective of this study was to perform a systematic review of risk factors for contamination of fruits and vegetables with Listeria monocytogenes, Salmonella, and Escherichia coli O157:H7 at the preharvest level. Relevant studies were identified by searching six electronic databases: MEDLINE, EMBASE, CAB Abstracts, AGRIS, AGRICOLA, and FSTA, using the following thesaurus terms: L. monocytogenes, Salmonella, E. coli O157 AND fruit, vegetable. All search terms were exploded to find all related subheadings. To be eligible, studies had to be prospective controlled trials or observational studies at the preharvest level and had to show clear and sufficient information on the process in which the produce was contaminated. Of the 3,463 citations identified, 68 studies fulfilled the eligibility criteria. Most of these studies were on leafy greens and tomatoes. Six studies assessed produce contamination with respect to animal host-related risk factors, and 20 studies assessed contamination with respect to pathogen characteristics. Sixty-two studies assessed the association between produce contamination and factors related to produce, water, and soil, as well as local ecological conditions of the production location. While evaluations of many risk factors for preharvest-level produce contamination have been reported, the quality assessment of the reviewed studies confirmed the existence of solid evidence for only some of them, including growing produce on clay-type soil, the application of contaminated or non-pH-stabilized manure, and the use of spray irrigation with contaminated water, with a particular risk of contamination on the lower leaf surface. In conclusion, synthesis of the reviewed studies suggests that reducing microbial contamination of irrigation water and soil are the most effective targets for the prevention and control of produce contamination. Furthermore, this review provides an inventory of the evaluated risk factors, including those requiring more research.
Collapse
Affiliation(s)
- Sangshin Park
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Avery LM, Booth P, Campbell C, Tompkins D, Hough RL. Prevalence and survival of potential pathogens in source-segregated green waste compost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 431:128-138. [PMID: 22677624 DOI: 10.1016/j.scitotenv.2012.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 06/01/2023]
Abstract
Composting of source-separated green waste (SSGW) is essential to meet the EU Landfill Directive target and agricultural land is considered a significant market for the resulting composts. A critical review of the literature was performed to evaluate the potential for pathogens to enter the composting process via SSGW feedstocks and the likelihood of their survival of the composting process and subsequent application to land. This is discussed in the context of application of other organic wastes to land. It was concluded that zoonoses such as verotoxigenic Escherichia coli and Salmonella spp. are unlikely to survive and effective composting process, whereas spore forming organisms are more resistant to composting but are also ubiquitous in the environment. Adherence to existing guidelines, such as those for farm yard manures, is likely to provide a rational degree of health protection for humans and livestock.
Collapse
Affiliation(s)
- Lisa M Avery
- The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| | | | | | | | | |
Collapse
|
20
|
Kawano K, Ono H, Iwashita O, Kurogi M, Haga T, Maeda K, Goto Y. stx genotype and molecular epidemiological analyses of Shiga toxin-producing Escherichia coli O157:H7/H- in human and cattle isolates. Eur J Clin Microbiol Infect Dis 2011; 31:119-27. [PMID: 21573816 DOI: 10.1007/s10096-011-1283-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 04/18/2011] [Indexed: 11/28/2022]
Abstract
The relationship between human diseases caused by infection with Shiga toxin (Stx)-producing Escherichia coli (STEC) O157 strains and O157 strains isolated from cattle was investigated in an area where stockbreeding is prolific. For this purpose, the stx genotypes, the molecular epidemiological characteristics of 268 STEC O157 strains including 211 human-origin strains and 57 cattle-origin strains, and clinical manifestations of 210 STEC-infected people were analyzed. Of 211 human-origin strains, 92 strains (44%) were of the stx1/stx2 genotype, and 74 strains (35%) were of the stx2c genotype. Most of the people infected with stx2c genotype strains presented no symptoms or mild symptoms such as slight diarrhea, except for 3 patients with bloody diarrhea. Of the 57 cattle-origin strains, 27 strains (47%) were of the stx2c genotype and 17 strains (30%) were of the stx1/stx2 genotype. Pulsed-field gel electrophoresis (PFGE) and insertion sequence (IS) analysis demonstrated that 11 isolates (41%) of the 27 cattle isolates of the stx2c genotype had high homology (>95% identity) with human isolates. These results suggest that some genetic patterns of the stx2c genotype strains might be preserved in cattle or their surrounding environment for several years, and during these periods, they might have opportunities to infect people through various routes. Because of the mild virulence of the stx2c genotype strains, they seemed to be transmitted asymptomatically from cattle to humans and then spread from person to person. It may be a public health concern. Further, they occasionally cause severe symptoms in humans; therefore, caution is warranted for infections by stx2c genotype O157 strains, in addition to stx2-possessing genotype O157 strains.
Collapse
Affiliation(s)
- K Kawano
- Miyazaki Prefectural Institute for Public Health and Environment, Gakuen Kibanadai Nishi 2-3-2, Miyazaki 889-2155, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Ferens WA, Hovde CJ. Escherichia coli O157:H7: animal reservoir and sources of human infection. Foodborne Pathog Dis 2010; 8:465-87. [PMID: 21117940 DOI: 10.1089/fpd.2010.0673] [Citation(s) in RCA: 361] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
This review surveys the literature on carriage and transmission of enterohemorrhagic Escherichia coli (EHEC) O157:H7 in the context of virulence factors and sampling/culture technique. EHEC of the O157:H7 serotype are worldwide zoonotic pathogens responsible for the majority of severe cases of human EHEC disease. EHEC O157:H7 strains are carried primarily by healthy cattle and other ruminants, but most of the bovine strains are not transmitted to people, and do not exhibit virulence factors associated with human disease. Prevalence of EHEC O157:H7 is probably underestimated. Carriage of EHEC O157:H7 by individual animals is typically short-lived, but pen and farm prevalence of specific isolates may extend for months or years and some carriers, designated as supershedders, may harbor high intestinal numbers of the pathogen for extended periods. The prevalence of EHEC O157:H7 in cattle peaks in the summer and is higher in postweaned calves and heifers than in younger and older animals. Virulent strains of EHEC O157:H7 are rarely harbored by pigs or chickens, but are found in turkeys. The bacteria rarely occur in wildlife with the exception of deer and are only sporadically carried by domestic animals and synanthropic rodents and birds. EHEC O157:H7 occur in amphibian, fish, and invertebrate carriers, and can colonize plant surfaces and tissues via attachment mechanisms different from those mediating intestinal attachment. Strains of EHEC O157:H7 exhibit high genetic variability but typically a small number of genetic types predominate in groups of cattle and a farm environment. Transmission to people occurs primarily via ingestion of inadequately processed contaminated food or water and less frequently through contact with manure, animals, or infected people.
Collapse
Affiliation(s)
- Witold A Ferens
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844-3052, USA.
| | | |
Collapse
|
22
|
Taormina PJ, Beuchat LR, Erickson MC, Ma L, Zhang G, Doyle MP. Transfer of Escherichia coli O157:H7 to iceberg lettuce via simulated field coring. J Food Prot 2009; 72:465-72. [PMID: 19343932 DOI: 10.4315/0362-028x-72.3.465] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The field-core (cut and core) harvesting technique used for iceberg lettuce was evaluated as a potential means of cross-contamination with Escherichia coli O157:H7. Chlorinated water treatment was evaluated for its efficacy in removing or inactivating the pathogen on the blade portion of the field coring device and on cored lettuce. Field coring devices inoculated by immersing blades in soil containing E. coli O157:H7 at 3.74 or 6.57 log CFU/g contained 3.13 and 4.97 log CFU per blade, respectively. Treatment of inoculated field coring device blades by immersing in chlorinated water (200 microg/ml total chlorine) for 10 s resulted in a reduction of 1.56 log CFU per blade, which was 1.42 log CFU per blade greater than that achieved using water, but insufficient to eliminate the pathogen on blades. Field coring devices inoculated by contacting soil containing E. coli O157:H7 at 2.72 and 1.67 log CFU/g, then repeatedly used to cut and core 10 lettuce heads, transferred the pathogen to 10 and 5 consecutively processed heads, respectively. Lettuce cores remained positive for the pathogen after spraying with 100 microg/ml free chlorine for 120 s at 2.81 kg/cm2 (40 lb/in2), regardless of the inoculum level. The number of E. coli O157:H7 recovered from inoculated lettuce cores treated for 10 s with chlorine was significantly (P < or = 0.05) different from the number recovered from tissues treated with water. Dipping contaminated field coring devices in chlorinated water may not be effective in killing the pathogen and controlling cross-contamination from head to head. Spraying contaminated lettuce with chlorinated or untreated water reduces but does not eliminate E. coli O157:H7.
Collapse
Affiliation(s)
- Peter J Taormina
- Center for Food Safety, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797, USA
| | | | | | | | | | | |
Collapse
|
23
|
Fremaux B, Prigent-Combaret C, Vernozy-Rozand C. Long-term survival of Shiga toxin-producing Escherichia coli in cattle effluents and environment: An updated review. Vet Microbiol 2008; 132:1-18. [DOI: 10.1016/j.vetmic.2008.05.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 05/14/2008] [Accepted: 05/20/2008] [Indexed: 01/01/2023]
|
24
|
Fremaux B, Prigent-Combaret C, Delignette-Muller ML, Mallen B, Dothal M, Gleizal A, Vernozy-Rozand C. Persistence of Shiga toxin-producing Escherichia coli O26 in various manure-amended soil types. J Appl Microbiol 2008; 104:296-304. [PMID: 17850320 DOI: 10.1111/j.1365-2672.2007.03532.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To evaluate the behaviour of Shiga toxin-producing Escherichia coli (STEC) O26 strains inoculated in manure-amended soils under in vitro conditions. METHODS AND RESULTS Four green fluorescent protein (GFP)-labelled STEC O26 strains were inoculated in duplicate (at 10(6) CFU g(-1)) in three different manure-amended soil types, including two loam soils (A and B) and one clay loam soil (C), and two incubation temperatures (4 and 20 degrees C) were tested. STEC counts and soil physical parameters were periodically monitored. STEC O26 cells were able to persist during extended periods in soil even in the presence of low moisture levels, i.e. less than 0 x 08 g H2O g(-1) dry soil. At 4 and 20 degrees C, STEC could be detected in soil A for 288 and 196 days, respectively, and in soils B and C for at least 365 days postinoculation at both temperatures. The ambient temperature (i.e. 20 degrees C) was significantly associated with the highest STEC count decline in all soils tested. CONCLUSIONS The temperature and soil properties appear to be contributory factors affecting the long-term survival of STEC O26 in manure-amended soils. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides useful information regarding the ecology of STEC O26 in manure-amended soils and may have implications for land and waste management.
Collapse
Affiliation(s)
- B Fremaux
- Unité de Microbiologie Alimentaire et Prévisionnelle, Université de Lyon - Ecole Nationale Vétérinaire de Lyon 69280, Marcy l'étoile, France.
| | | | | | | | | | | | | |
Collapse
|
25
|
Whipps JM, Hand P, Pink DA, Bending GD. Chapter 7 Human Pathogens and the Phyllosphere. ADVANCES IN APPLIED MICROBIOLOGY 2008; 64:183-221. [DOI: 10.1016/s0065-2164(08)00407-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Cooley M, Carychao D, Crawford-Miksza L, Jay MT, Myers C, Rose C, Keys C, Farrar J, Mandrell RE. Incidence and tracking of Escherichia coli O157:H7 in a major produce production region in California. PLoS One 2007; 2:e1159. [PMID: 18174909 PMCID: PMC2174234 DOI: 10.1371/journal.pone.0001159] [Citation(s) in RCA: 232] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 10/13/2007] [Indexed: 11/18/2022] Open
Abstract
Fresh vegetables have become associated with outbreaks caused by Escherichia coli O157:H7 (EcO157). Between 1995-2006, 22 produce outbreaks were documented in the United States, with nearly half traced to lettuce or spinach grown in California. Outbreaks between 2002 and 2006 induced investigations of possible sources of pre-harvest contamination on implicated farms in the Salinas and San Juan valleys of California, and a survey of the Salinas watershed. EcO157 was isolated at least once from 15 of 22 different watershed sites over a 19 month period. The incidence of EcO157 increased significantly when heavy rain caused an increased flow rate in the rivers. Approximately 1000 EcO157 isolates obtained from cultures of>100 individual samples were typed using Multi-Locus Variable-number-tandem-repeat Analysis (MLVA) to assist in identifying potential fate and transport of EcO157 in this region. A subset of these environmental isolates were typed by Pulse Field Gel Electrophoresis (PFGE) in order to make comparisons with human clinical isolates associated with outbreak and sporadic illness. Recurrence of identical and closely related EcO157 strains from specific locations in the Salinas and San Juan valleys suggests that transport of the pathogen is usually restricted. In a preliminary study, EcO157 was detected in water at multiple locations in a low-flow creek only within 135 meters of a point source. However, possible transport up to 32 km was detected during periods of higher water flow associated with flooding. During the 2006 baby spinach outbreak investigation, transport was also detected where water was unlikely to be involved. These results indicate that contamination of the environment is a dynamic process involving multiple sources and methods of transport. Intensive studies of the sources, incidence, fate and transport of EcO157 near produce production are required to determine the mechanisms of pre-harvest contamination and potential risks for human illness.
Collapse
Affiliation(s)
- Michael Cooley
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Diana Carychao
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| | - Leta Crawford-Miksza
- California Department of Health Services, Food and Drug Laboratory Branch, Richmond, California, United States of America
| | - Michele T. Jay
- California Department of Health Services, Food and Drug Laboratory Branch, Richmond, California, United States of America
| | - Carol Myers
- California Department of Health Services, Food and Drug Branch, California, United States of America
| | - Christopher Rose
- Central Coast Regional Water Quality Control Board, California Environmental Protection Agency, San Louis Obispo, California, United States of America
| | - Christine Keys
- Food and Drug Administration/Center for Food Safety and Applied Nutrition (CFSAN)/Office of Plant and Dairy Foods (OPDF)/DMS, College Park, Maryland, United States of America
| | - Jeff Farrar
- California Department of Health Services, Food and Drug Branch, California, United States of America
| | - Robert E. Mandrell
- Produce Safety and Microbiology Research Unit, United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, United States of America
| |
Collapse
|
27
|
Berry ED, Woodbury BL, Nienaber JA, Eigenberg RA, Thurston JA, Wells JE. Incidence and persistence of zoonotic bacterial and protozoan pathogens in a beef cattle feedlot runoff control vegetative treatment system. JOURNAL OF ENVIRONMENTAL QUALITY 2007; 36:1873-1882. [PMID: 17965390 DOI: 10.2134/jeq2007.0100] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Determining the survival of zoonotic pathogens in livestock manure and runoff is critical for understanding the environmental and public health risks associated with these wastes. The occurrence and persistence of the bacterial pathogens Escherichia coli O157:H7 and Campylobacter spp. in a passive beef cattle feedlot runoff control-vegetative treatment system were examined over a 26-mo period. Incidence of the protozoans Cryptosporidium spp. and Giardia spp. was also assessed. The control system utilizes a shallow basin to collect liquid runoff and accumulate eroded solids from the pen surfaces; when an adequate liquid volume is attained, the liquid is discharged from the basin onto a 4.5-ha vegetative treatment area (VTA) of bromegrass which is harvested as hay. Basin discharge transported E. coli O157, Campylobacter spp., and generic E. coli into the VTA soil, but without additional discharge from the basin, the pathogen prevalences decreased over time. Similarly, the VTA soil concentrations of generic E. coli initially decreased rapidly, but lower residual populations persisted. Isolation of Cryptosporidium oocysts and Giardia cysts from VTA samples was infrequent, indicating differences in sedimentation and/or transport in comparison to bacteria. Isolation of generic E. coli from freshly cut hay from VTA regions that received basin discharge (12 of 30 vs. 1 of 30 control samples) provided evidence for the risk of contamination; however, neither E. coli O157 or Campylobacter spp. were recovered from the hay following baling. This work indicates that the runoff control system is effective for reducing environmental risk by containing and removing pathogens from feedlot runoff.
Collapse
Affiliation(s)
- Elaine D Berry
- U.S. Meat Animal Research Center, PO Box 166, Spur 18D, Clay Center, NE 68933-0166, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Gonçalves V, Marin J. Fate of non O157 Shiga toxigenic Escherichia coli in composted cattle manure. ARQ BRAS MED VET ZOO 2007. [DOI: 10.1590/s0102-09352007000400001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To determine the fate of Shiga toxigenic Escherichia coli (STEC) non-O 157 in composted manure from naturally colonized cattle, fresh manure was obtained from three cows carrying non-O157 STEC strains possessing the stx2 gene. Two composting systems were used: a 0.6m deep cave opened in the soil and an one meter high solid manure heap in a pyramidal architecture. Every day, for the 10 first days, and every five days for a month, one manure sample from three different points in both systems was collected and cultured to determine the presence of E. coli and the presence of the stx 2 gene in the cells. The temperature was verified at each sampling. STEC non-O157 E. coli cells survived for 8, 25 and 30 days at 42, 40 and 38ºC, respectively, in the deep cave and 4, 4 and 7 days at 65, 58 and 52ºC, respectively, in the heap, during the composting manure. Temperature and indigenous microorganisms appear to contribute to pathogen disappearance in the composting system. It is concluded that both composting systems were efficient to eliminate STEC cells. Land application of composted manure should minimize environmental risk associated with the dissemination of the pathogen.
Collapse
|