1
|
Anees M, Qayyum A, Jamil M, Rehman FU, Abid M, Malik MS, Yunas M, Ullah K. Role of halotolerant and chitinolytic bacteria in phytoremediation of saline soil using spinach plant. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:653-661. [PMID: 32064897 DOI: 10.1080/15226514.2019.1707160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Novel technologies are required for rapid reclamation of saline soils. The halotrophic and chitinolytic bacterial strains were used for phytoremediation of saline soils using spinach plants (Spinacia oleracea L.). The previously isolated chitinolytic bacteria showed high antifungal potential against Fusarium oxysporum, and Alternaria spp. The halotolerant bacterial strains were previously isolated showing a salt tolerance of up to 20% in culture media. Specially designed microcosms were used here to investigate the reclamation of saline soil by bacteria. The soil salinity was reduced by both types of bacteria (from 6.5 to 2 dS/m). A decline in Na contents from 22-24 to 9-12 meq/L and in sodium adsorption ratio from 10-11 to 7-8 was also observed in saline soils. The Ca/Mg contents increased from 24 to 30-33 meq/L. The bioassays were performed to evaluate the effect of the bacteria on the phytoremediation. The shoot, root weights (both fresh (1.927 g, 0.244 g) and dry (0.387 g, 0.104 g)) increased by bacterial inoculation as compared to control in saline soils. The Na/K ratio decreased in plant tissues. Here we report the increased efficacy of phytoremediation by combined inoculation of chitinolytic and halotolerant bacterial strains in soil which has never been reported before.
Collapse
Affiliation(s)
- Muhammad Anees
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Arshad Qayyum
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Jamil
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Pakistan
| | - Fayyaz Ur Rehman
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Abid
- Department of Plant Pathology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Saqib Malik
- Department of Microbiology, Kohat University of Science and Technology, Kohat, Pakistan
| | | | - Kalim Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat, Pakistan
| |
Collapse
|
2
|
Rostami A, Hinc K, Goshadrou F, Shali A, Bayat M, Hassanzadeh M, Amanlou M, Eslahi N, Ahmadian G. Display of B. pumilus chitinase on the surface of B. subtilis spore as a potential biopesticide. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 140:17-23. [PMID: 28755689 DOI: 10.1016/j.pestbp.2017.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/09/2017] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Chitinases can inhibit the growth of many fungal diseases which are a great threat for global agricultural production. Biological control of pathogens like fungi, is believed to be one of the best ways to eliminate the adverse effects of plant pathogens. To this end, we expressed and displayed a chitinase from Bacillus pumilus (ChiS) on the surface of Bacillus subtilis spores, as a biocontrol agent. RESULT ChiS enzyme from B. pumilus was expressed on the spores of B. subtilis using CotG as a carrier protein. Immunofluorescence microscopy confirmed the expression of ChiS on the surface of the spores. Enzyme activity assay showed that the surface displayed ChiS was active and was also able to inhibit the growth of Rhizoctonia solani and Trichoderma harzianum fungi. Western blot analysis also indicated that CotG-ChiS is partially processed after display. Molecular dynamics simulation showed that the stability of the heterologous protein was decreased after fusion. CONCLUSION ChiS was successfully displayed on the surface of Bacillus spores by fusion to the CotG, one of the main spore coat proteins. In-vitro experiments showed that the displayed enzyme was effective in growth inhibition of R. solani and T. harzianum fungi.
Collapse
Affiliation(s)
- Amin Rostami
- Department of Industrial and Environmental Biotechnology, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran; Department of Physiology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Krzysztof Hinc
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, UG-MUG, Gdansk, Poland
| | - Fatemeh Goshadrou
- Department of Physiology, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Shali
- Department of Industrial and Environmental Biotechnology, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahdieh Bayat
- Department of Industrial and Environmental Biotechnology, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Malihe Hassanzadeh
- Department of Medicinal Chemistry, Drug Design and Development Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Drug Design and Development Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Eslahi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
3
|
Patel HK, Ferrante P, Xianfa M, Javvadi SG, Subramoni S, Scortichini M, Venturi V. Identification of Loci of Pseudomonas syringae pv. actinidiae Involved in Lipolytic Activity and Their Role in Colonization of Kiwifruit Leaves. PHYTOPATHOLOGY 2017; 107:645-653. [PMID: 28112597 DOI: 10.1094/phyto-10-16-0360-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bacterial canker disease caused by Pseudomonas syringae pv. actinidiae, an emerging pathogen of kiwifruit plants, has recently brought about major economic losses worldwide. Genetic studies on virulence functions of P. syringae pv. actinidiae have not yet been reported and there is little experimental data regarding bacterial genes involved in pathogenesis. In this study, we performed a genetic screen in order to identify transposon mutants altered in the lipolytic activity because it is known that mechanisms of regulation, production, and secretion of enzymes often play crucial roles in virulence of plant pathogens. We aimed to identify the set of secretion and global regulatory loci that control lipolytic activity and also play important roles in in planta fitness. Our screen for altered lipolytic activity phenotype identified a total of 58 Tn5 transposon mutants. Mapping all these Tn5 mutants revealed that the transposons were inserted in genes that play roles in cell division, chemotaxis, metabolism, movement, recombination, regulation, signal transduction, and transport as well as a few unknown functions. Several of these identified P. syringae pv. actinidiae Tn5 mutants, notably the functions affected in phosphomannomutase AlgC, lipid A biosynthesis acyltransferase, glutamate-cysteine ligase, and the type IV pilus protein PilI, were also found affected in in planta survival and/or growth in kiwifruit plants. The results of the genetic screen and identification of novel loci involved in in planta fitness of P. syringae pv. actinidiae are presented and discussed.
Collapse
Affiliation(s)
- Hitendra Kumar Patel
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Patrizia Ferrante
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Meng Xianfa
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Sree Gowrinadh Javvadi
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Sujatha Subramoni
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Marco Scortichini
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Vittorio Venturi
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| |
Collapse
|
4
|
Shali A, Rigi G, Pornour M, Ahmadian G. Expression and Secretion of Cyan Fluorescent Protein (CFP) in B. subtilis using the Chitinase Promoter from Bacillus pumilus SG2. IRANIAN BIOMEDICAL JOURNAL 2017; 21:240-8. [PMID: 28088132 PMCID: PMC5459939 DOI: 10.18869/acadpub.ibj.21.4.240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Improved cyan fluorescent protein (ICFP) is a monochromic, green fluorescent protein (GFP) derivative produced by Aequorea macrodactyla in a process similar to GFP. This protein has strong absorption spectra at wavelengths 426-446 nm. ICFP can be used in cell, organelle or intracellular protein labeling, investigating the protein-protein interactions as well as assessing the promoter activities. Methods: In our previous study, the promoters of two chitinases (ChiS and ChiL) from Bacillus pumilus SG2 were assessed in B. subtilis and their regulatory elements were characterized. In the present study, icfp was cloned downstream of several truncated promoters obtained in the former study, and ICFP expression was evaluated in B. subtilis. Results: Extracellular expression and secretion of ICFP were analyzed under the control of different truncated versions of ChiSL promoters grown on different media. Results from SDS-PAGE and fluorimetric analyses showed that there were different expression rates of CFP; however, the UPChi-ICFP3 construct exhibited a higher level of expression and secretion in the culture medium. Conclusion: Our presented results revealed that inserting this truncated form of Chi promoter upstream of the ICFP, as a reporter gene, in B. subtilis led to an approximately ten fold increase in ICFP expression.
Collapse
Affiliation(s)
- Abbas Shali
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB) , P.O. Box 14155-6343 , Tehran, Iran
| | - Garshasb Rigi
- Department of Biology, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Khuzestan, Iran
| | - Majid Pornour
- Medical Laser Research Center, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB) , P.O. Box 14155-6343 , Tehran, Iran
| |
Collapse
|
5
|
Rishad KS, Rebello S, Shabanamol PS, Jisha MS. Biocontrol potential of Halotolerant bacterial chitinase from high yielding novel Bacillus Pumilus MCB-7 autochthonous to mangrove ecosystem. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 137:36-41. [PMID: 28364802 DOI: 10.1016/j.pestbp.2016.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 06/07/2023]
Abstract
The multifaceted role of chitinase in medicine, agriculture, environmental remediation and various other industries greatly demands the isolation of high yielding chitinase producing microorganisms with improved properties. The current study aimed to investigate the isolation, characterization and biocontrol prospective of chitinase producing bacterial strains autochthonous to the extreme conditions of mangrove ecosystems. Among the 51 bacterial isolates screened, Bacillus pumilus MCB-7 with highest chitinase production potential was identified and confirmed by 16S rDNA typing. Chitinase enzyme of MCB-7 was purified; the chitin degradation was evaluated by SEM and LC-MS. Unlike previously reported B.pumilus isolates, MCB-7 exhibited highest chitinase activity of 3.36U/mL, active even at high salt concentrations and temperature up to 60°C. The crude as well as purified enzyme showed significant antimycotic activity against agricultural pathogens such as Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus, Ceratorhiza hydrophila and Fusarium oxysporum. The enzyme also exhibited biopesticidal role against larvae of Scirpophaga incertulas (Walker). [Lep.: Pyralidae], a serious agricultural pest of rice. The high chitinolytic and antimycotic potential of MCB-7 increases the prospects of the isolate as an excellent biocontrol agent. To the best of our knowledge, this is the first report of high chitinase yielding Bacillus pumilus strain from mangrove ecosystem with a biocontrol role against phytopathogenic fungi and insect larval pests.
Collapse
Affiliation(s)
- K S Rishad
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | | | - P S Shabanamol
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - M S Jisha
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India.
| |
Collapse
|
6
|
Devescovi G, Kojic M, Covaceuszach S, Cámara M, Williams P, Bertani I, Subramoni S, Venturi V. Negative Regulation of Violacein Biosynthesis in Chromobacterium violaceum. Front Microbiol 2017; 8:349. [PMID: 28326068 PMCID: PMC5339254 DOI: 10.3389/fmicb.2017.00349] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/20/2017] [Indexed: 11/25/2022] Open
Abstract
In Chromobacteium violaceum, the purple pigment violacein is under positive regulation by the N-acylhomoserine lactone CviI/R quorum sensing system and negative regulation by an uncharacterized putative repressor. In this study we report that the biosynthesis of violacein is negatively controlled by a novel repressor protein, VioS. The violacein operon is regulated negatively by VioS and positively by the CviI/R system in both C. violaceum and in a heterologous Escherichia coli genetic background. VioS does not regulate the CviI/R system and apart from violacein, VioS, and quorum sensing regulate other phenotypes antagonistically. Quorum sensing regulated phenotypes in C. violaceum are therefore further regulated providing an additional level of control.
Collapse
Affiliation(s)
- Giulia Devescovi
- International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| | - Milan Kojic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade Belgrade, Serbia
| | - Sonia Covaceuszach
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, U.O.S di Trieste Trieste, Italy
| | - Miguel Cámara
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham Nottingham, UK
| | - Paul Williams
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham Nottingham, UK
| | - Iris Bertani
- International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| | - Sujatha Subramoni
- International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology Trieste, Italy
| |
Collapse
|
7
|
Muroi F, Tachibana Y, Soulenthone P, Yamamoto K, Mizuno T, Sakurai T, Kobayashi Y, Kasuya KI. Characterization of a poly(butylene adipate- co -terephthalate) hydrolase from the aerobic mesophilic bacterium Bacillus pumilus. Polym Degrad Stab 2017. [DOI: 10.1016/j.polymdegradstab.2017.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Yang S, Fu X, Yan Q, Guo Y, Liu Z, Jiang Z. Cloning, expression, purification and application of a novel chitinase from a thermophilic marine bacterium Paenibacillus barengoltzii. Food Chem 2016; 192:1041-8. [DOI: 10.1016/j.foodchem.2015.07.092] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/23/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022]
|
9
|
Morabbi Heravi K, Rigi G, Rezaei Arjomand M, Rostami A, Ahmadian G. An Alternative Bacterial Expression System Using Bacillus pumilus SG2 Chitinase Promoter. IRANIAN JOURNAL OF BIOTECHNOLOGY 2015; 13:17-24. [PMID: 28959305 DOI: 10.15171/ijb.1175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Chitin is an abundant natural polysaccharide found in fungi, algae, and exoskeleton of insects. Several bacterial species are capable of utilizing chitin as their carbon source. These bacteria produce chitinases for degradation of chitin into N-acetyl-D-glucosamine. So far, regulation of the chitinase encoding genes has been studied in different bacterial species. Among Bacillus species, B. pumilus strain SG2 encodes two chitinases, ChiS and ChiL. The promoter region of chiSL genes (P chiS ) is mainly regulated by the general carbon catabolite repression (CCR) system in B. subtilis due to the presence of a catabolite responsive element (cre). OBJECTIVES Use of P chiS in constructing an inducible expression system in B. subtilis was investigated. MATERIALS AND METHODS In the first step, complete and shortened versions of P chiS were inserted upstream of the lacZ on a pBS72/pUC18 shuttle plasmid. The β-galactosidase activity of B. subtilis carrying one of the relevant plasmids was measured in the presence of different carbon sources. RESULTS An expression system based on the chitinase promoter of B. pumilus SG2 was established. Modification of P chiS and the culture medium resulted in production of β-galactosidase in B. subtilis up to 1,800 Miller unit (MU) activity. CONCLUSIONS The chitinase promoter developed in this study, has potential to be used in an expression vector that could be induced by chitin. In addition, compared to the other inducers like IPTG and lactose, chitin is definitely cheaper and more available as an inducer.
Collapse
Affiliation(s)
- Kambiz Morabbi Heravi
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Garshasb Rigi
- Department of Biology, Faculty of Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Maryam Rezaei Arjomand
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Amin Rostami
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
10
|
Purification and characterization of antifungal chitinase from Bacillus safensis MBCU6 and its application for production of chito-oligosaccharides. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Characterization of cis-acting elements residing in the chitinase promoter of Bacillus pumilus SG2. World J Microbiol Biotechnol 2013; 30:1491-9. [PMID: 24293243 DOI: 10.1007/s11274-013-1569-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 11/27/2013] [Indexed: 10/26/2022]
Abstract
Bacillus pumilus SG2 is a chitinolytic bacterium that produces two chitinases, namely ChiS and ChiL. The chiS and chiL genes are consecutively expressed under a common promoter. Regulation of the chiS and chiL genes is under the control of carbon catabolite repression (CCR) in B. pumilus. This study aimed to investigate the cis-acting elements of the chitinase promoter. For this purpose, we transferred the chiS gene along with its specific promoter to Bacillus subtilis as a host. Primer extension analysis revealed two transcription start sites located 287 and 65 bp upstream of the chiS start codon. The distal promoter was highly compatible with the consensus sequence of the σ(A)-type promoters in B. subtilis, whereas the proximal promoter sequence showed less similarity to the σ(A)-type consensus sequence. A catabolite responsive element (cre), which is required for CCR in Bacillus species, was found to be 136 to 123 bp upstream of the chiS start codon. Interestingly, this cre site was located upstream of the -35 of the proximal promoter and downstream of the distal promoter. Deletion of this cre site sequence rendered the chiS expression constitutive.
Collapse
|
12
|
Surface Display of Bacterial Metallothioneins and a Chitin Binding Domain on Escherichia coli Increase Cadmium Adsorption and Cell Immobilization. Appl Biochem Biotechnol 2012; 167:462-73. [DOI: 10.1007/s12010-012-9684-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 04/10/2012] [Indexed: 11/25/2022]
|
13
|
Fasehee H, Westers H, Bolhuis A, Antelmann H, Hecker M, Quax WJ, Mirlohi AF, van Dijl JM, Ahmadian G. Functional analysis of the sortase YhcS in Bacillus subtilis. Proteomics 2011; 11:3905-13. [PMID: 21800427 DOI: 10.1002/pmic.201100174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/30/2011] [Accepted: 07/11/2011] [Indexed: 02/01/2023]
Abstract
Sortases of Gram-positive bacteria catalyze the covalent C-terminal anchoring of proteins to the cell wall. Bacillus subtilis, a well-known host organism for protein production, contains two putative sortases named YhcS and YwpE. The present studies were aimed at investigating the possible sortase function of these proteins in B. subtilis. Proteomics analyses revealed that sortase-mutant cells released elevated levels of the putative sortase substrate YfkN into the culture medium upon phosphate starvation. The results indicate that YfkN required sortase activity of YhcS for retention in the cell wall. To analyze sortase function in more detail, we focused attention on the potential sortase substrate YhcR, which is co-expressed with the sortase YhcS. Our results showed that the sortase recognition and cell-wall-anchoring motif of YhcR is functional when fused to the Bacillus pumilus chitinase ChiS, a readily detectable reporter protein that is normally secreted. The ChiS fusion protein is displayed at the cell wall surface when YhcS is co-expressed. In the absence of YhcS, or when no cell-wall-anchoring motif is fused to ChiS, the ChiS accumulates predominately in the culture medium. Taken together, these novel findings show that B. subtilis has a functional sortase for anchoring proteins to the cell wall.
Collapse
Affiliation(s)
- Hamidreza Fasehee
- Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Characterization of a novel chitinase from a moderately halophilic bacterium, Virgibacillus marismortui strain M3-23. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0324-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
15
|
Timmery S, Hu X, Mahillon J. Characterization of Bacilli isolated from the confined environments of the Antarctic Concordia station and the International Space Station. ASTROBIOLOGY 2011; 11:323-34. [PMID: 21563959 DOI: 10.1089/ast.2010.0573] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bacillus and related genera comprise opportunist and pathogen species that can threaten the health of a crew in confined stations required for long-term missions. In this study, 43 Bacilli from confined environments, that is, the Antarctic Concordia station and the International Space Station, were characterized in terms of virulence and plasmid exchange potentials. No specific virulence feature, such as the production of toxins or unusual antibiotic resistance, was detected. Most of the strains exhibited small or large plasmids, or both, some of which were related to the replicons of the Bacillus anthracis pXO1 and pXO2 virulence elements. One conjugative element, the capacity to mobilize and retromobilize small plasmids, was detected in a Bacillus cereus sensu lato isolate. Six out of 25 tested strains acquired foreign DNA by conjugation. Extremophilic bacteria were identified and exhibited the ability to grow at high pH and salt concentrations or at low temperatures. Finally, the clonal dispersion of an opportunist isolate was demonstrated in the Concordia station. Taken together, these results suggest that the virulence potential of the Bacillus isolates in confined environments tends to be low but genetic transfers could contribute to its capacity to spread.
Collapse
Affiliation(s)
- Sophie Timmery
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
16
|
Ghasemi S, Ahmadian G, Sadeghi M, Zeigler DR, Rahimian H, Ghandili S, Naghibzadeh N, Dehestani A. First report of a bifunctional chitinase/lysozyme produced by Bacillus pumilus SG2. Enzyme Microb Technol 2011; 48:225-31. [DOI: 10.1016/j.enzmictec.2010.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 11/03/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
|
17
|
Characterization of a cryptic plasmid pPZZ84 from Bacillus pumilus. Plasmid 2010; 64:200-3. [DOI: 10.1016/j.plasmid.2010.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 06/09/2010] [Accepted: 06/10/2010] [Indexed: 11/18/2022]
|
18
|
Purification and partial characterization of a 36-kDa chitinase from Bacillus thuringiensis subsp. colmeri, and its biocontrol potential. Enzyme Microb Technol 2010. [DOI: 10.1016/j.enzmictec.2009.10.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Purification and characterization of two extracellular endochitinases from Massilia timonae. Carbohydr Res 2010; 345:402-7. [DOI: 10.1016/j.carres.2009.11.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Revised: 11/08/2009] [Accepted: 11/10/2009] [Indexed: 10/20/2022]
|
20
|
Ghasemi S, Ahmadian G, Jelodar NB, Rahimian H, Ghandili S, Dehestani A, Shariati P. Antifungal chitinases from Bacillus pumilus SG2: preliminary report. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0318-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Chitinolytic and antifungal activity of a Bacillus pumilus chitinase expressed in Arabidopsis. Biotechnol Lett 2009; 32:539-46. [DOI: 10.1007/s10529-009-0192-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 12/08/2009] [Accepted: 12/09/2009] [Indexed: 11/26/2022]
|
22
|
A. Mostafa S, S. Mahmoud M, K. Mohamed Z, R. Enan M. Cloning and molecular characterization of chitinase from Bacillus licheniformis MS-3. J GEN APPL MICROBIOL 2009; 55:241-6. [DOI: 10.2323/jgam.55.241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|