1
|
López AG, Vasile B, Kolling Y, Ivir M, Gutiérrez F, Alvarez S, Salva S. Can Lacticaseibacillus rhamnosus CRL1505 postbiotic improve emergency myelopoiesis in immunocompromised mice? Microbes Infect 2024; 26:105311. [PMID: 38342337 DOI: 10.1016/j.micinf.2024.105311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 01/03/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
We evaluated whether viable and non-viable Lacticaseibacillus rhamnosus CRL1505 (Lr05V or Lr05NV, respectively) was able to improve emergency myelopoiesis induced by Streptococcus pneumoniae (Sp) infection. Adult Swiss-mice were orally treated with Lr05V or Lr05NV during five consecutive days. The Lr05V and Lr05NV groups and untreated control group received an intraperitoneal dose of cyclophosphamide (Cy-150 mg/kg). Then, the mice were nasally challenged with Sp (107 UFC/mice) on day 3 post-Cy injection. After the pneumococcal challenge, the innate and myelopoietic responses were evaluated. The control group showed a high susceptibility to pneumococcal infection, an impaired innate immune response and a decrease of hematopoietic stem cells (HSCs: Lin-Sca-1+c-Kit+), and myeloid multipotent precursors (MMPs: Gr-1+Ly6G+Ly6C-) in bone marrow (BM). However, lactobacilli treatments were able to significantly increase blood neutrophils and peroxidase-positive cells, while improving cytokine production and phagocytic activity of alveolar macrophages. This, in turn, led to an early Sp lung clearance compared to the control group. Furthermore, Lr05V was more effective than Lr05NV to increase growth factors in BM, which allowed an early HSCs and MMPs recovery with respect to the control group. Both Lr05V and Lr05NV were able to improve BM emergency myelopiesis and protection against respiratory pathogens in mice undergoing chemotherapy.
Collapse
Affiliation(s)
- Andrés Gramajo López
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman, Tucuman, Argentina
| | - Brenda Vasile
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman, Tucuman, Argentina
| | - Yanina Kolling
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman, Tucuman, Argentina
| | - Maximiliano Ivir
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman, Tucuman, Argentina
| | - Florencia Gutiérrez
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman, Tucuman, Argentina
| | - Susana Alvarez
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman, Tucuman, Argentina; Institute of Applied Biochemistry, Tucuman University, Tucuman, Argentina.
| | - Susana Salva
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucuman, Tucuman, Argentina.
| |
Collapse
|
2
|
Gul S, Durante-Mangoni E. Unraveling the Puzzle: Health Benefits of Probiotics-A Comprehensive Review. J Clin Med 2024; 13:1436. [PMID: 38592298 PMCID: PMC10935031 DOI: 10.3390/jcm13051436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
A growing number of probiotic-containing products are on the market, and their use is increasing. Probiotics are thought to support the health of the gut microbiota, which in turn might prevent or delay the onset of gastrointestinal tract disorders. Obesity, type 2 diabetes, autism, osteoporosis, and some immunological illnesses are among the conditions that have been shown to possibly benefit from probiotics. In addition to their ability to favorably affect diseases, probiotics represent a defense system enhancing intestinal, nutritional, and oral health. Depending on the type of microbial strain utilized, probiotics can have variable beneficial properties. Although many microbial species are available, the most widely employed ones are lactic acid bacteria and bifidobacteria. The usefulness of these bacteria is dependent on both their origin and their capacity to promote health. Probiotics represent a valuable clinical tool supporting gastrointestinal health, immune system function, and metabolic balance. When used appropriately, probiotics may provide benefits such as a reduced risk of gastrointestinal disorders, enhanced immunity, and improved metabolic health. Most popular probiotics, their health advantages, and their mode of action are the topic of this narrative review article, aimed to provide the reader with a comprehensive reappraisal of this topic matter.
Collapse
Affiliation(s)
- Sabiha Gul
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via de Crecchio 7, 80138 Napoli, Italy;
| | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via de Crecchio 7, 80138 Napoli, Italy;
- Unit of Infectious & Transplant Medicine, A.O.R.N. Ospedali dei Colli—Ospedale Monaldi, Piazzale Ettore Ruggieri, 80131 Napoli, Italy
| |
Collapse
|
3
|
Huang FC, Huang SC. The Hazards of Probiotics on Gut-Derived Pseudomonas aeruginosa Sepsis in Mice Undergoing Chemotherapy. Biomedicines 2024; 12:253. [PMID: 38397855 PMCID: PMC10886725 DOI: 10.3390/biomedicines12020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 02/25/2024] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a leading cause of nosocomial infections associated with a high mortality rate and represents a serious threat to human health and the increasing frequency of antimicrobial resistance. Cancer patients are more vulnerable to invasive infection due to ulcerative lesions in mucosal surfaces and immune suppression secondary to chemotherapy. In our in vitro study, we observed that probiotics have the potential to yield beneficial effects on intestinal epithelial cells infected with P. aeruginosa. Additionally, probiotics were found to confer advantageous effects on the innate immunity of mice suffering from Salmonella-induced colitis. As a result, we sought to investigate the impact of probiotics on gut-derived P. aeruginosa sepsis induced by chemotherapy. Following chemotherapy, gut-derived P. aeruginosa sepsis was induced in female C57BL/6 mice aged 6-8 weeks, which were raised under specific-pathogen-free (SPF) conditions in an animal center. Prior to the induction of the sepsis model, the mice were administered 1 × 108 colony-forming units (CFU) of the probiotics, namely Lactobacillus rhamnosus GG (LGG) and Bifidobacterium longum (BL) via oral gavage. We observed that LGG or BL amplified the inflammatory mRNA expression in mice undergoing chemotherapy and suffering from gut-derived P. aeruginosa sepsis. This led to a heightened severity of colitis, as indicated by histological examination. Meanwhile, there was a notable decrease in the expression of antimicrobial peptide mRNA along with reduced levels of zonulin and claudin-2 protein staining within mucosal tissue. These alterations facilitated the translocation of bacteria to the liver, spleen, and bloodstream. To our astonishment, the introduction of probiotics exacerbated gut-derived P. aeruginosa sepsis in mice undergoing chemotherapy. Conclusively, we must be prudent when using probiotics in mice receiving chemotherapy complicated with gut-derived P. aeruginosa sepsis.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Shun-Chen Huang
- Department of Anatomic Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
4
|
Nath S, Sarkar M, Maddheshiya A, De D, Paul S, Dey S, Pal K, Roy SK, Ghosh A, Sengupta S, Paine SK, Biswas NK, Basu A, Mukherjee S. Upper respiratory tract microbiome profiles in SARS-CoV-2 Delta and Omicron infected patients exhibit variant specific patterns and robust prediction of disease groups. Microbiol Spectr 2023; 11:e0236823. [PMID: 37905804 PMCID: PMC10715160 DOI: 10.1128/spectrum.02368-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE The role of the upper respiratory tract (URT) microbiome in predicting lung health has been documented in several studies. The dysbiosis in COVID patients has been associated with disease outcomes by modulating the host immune system. However, although it has been known that different SARS-CoV-2 variants manifest distinct transmissibility and mortality rates in human populations, their effect on the composition and diversity of the URT microbiome has not been studied to date. Unlike the older variant (Delta), the newer variant (Omicron) have become more transmissible with lesser mortality and the symptoms have also changed significantly. Hence, in the present study, we have investigated the change in the URT microbiome associated with Delta and Omicron variants and identified variant-specific signatures that will be useful in the assessment of lung health and can be utilized for nasal probiotic therapy in the future.
Collapse
Affiliation(s)
- Shankha Nath
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Mousumi Sarkar
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Debjit De
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Shouvik Paul
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Souradeep Dey
- Department of Community Medicine, College of Medicine and JNM Hospital, Kalyani, West Bengal, India
| | - Kuhu Pal
- Department of Microbiology, College of Medicine and JNM Hospital, Kalyani, West Bengal, India
| | - Suman Kr. Roy
- Department of Community Medicine, College of Medicine and JNM Hospital, Kalyani, West Bengal, India
| | - Ayan Ghosh
- Department of Community Medicine, College of Medicine and JNM Hospital, Kalyani, West Bengal, India
| | - Sharmila Sengupta
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Nidhan K. Biswas
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Analabha Basu
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Souvik Mukherjee
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| |
Collapse
|
5
|
Hu Y, Hong H, Zhou J, Cui Y, Zhang B, Zhao J. Recent advances in enzymatic properties, preparation methods, and functions of glycoside hydrolase from Bifidobacterium: a review. World J Microbiol Biotechnol 2023; 39:344. [PMID: 37843698 DOI: 10.1007/s11274-023-03770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Bifidobacterium is a major probiotic of intestinal gut flora and exerts many physiological activities, and it is widely applied in the fields of food and medicine. As an important part of Bifidobacterium, glycoside hydrolase plays a role in its physiological activity. With the continuous development and improvement of genetic engineering technology, research on this type of enzyme will play a crucial role in promoting the further development of Bifidobacterium in the field of probiotics. In this review, the preparation methods, enzymatic properties, and functions of glycoside hydrolase extracted from Bifidobacterium are described and summarized. The common method for preparing glycoside hydrolase derived from Bifidobacterium is heterologous expression in Escherichia coli BL21. The optimal pH range for these glycoside hydrolase enzymes is between 4.5 and 7.5; the optimal temperature is between 30 and 50 °C, which is close to the optimal growth condition of Bifidobacterium. Based on substrate specificity, these glycoside hydrolase could hydrolyze synthetic substrates and natural oligosaccharides, including a series of pNP artificial substrates, disaccharide, and trisaccharides, while they have little ability to hydrolyze polysaccharide substrates. This review will be expected to provide a basis for the development of Bifidobacterium as a probiotic element.
Collapse
Affiliation(s)
- Yanbo Hu
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Huili Hong
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Jianing Zhou
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Yangyang Cui
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Baochun Zhang
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China
| | - Jun Zhao
- School of Food Sciences and Engineering, Chang Chun University, Changchun, 130024, People's Republic of China.
| |
Collapse
|
6
|
Bu S, Kar W, Tucker RM, Comstock SS. Minimal Influence of Cayenne Pepper on the Human Gastrointestinal Microbiota and Intestinal Inflammation in Healthy Adult Humans-A Pilot Study. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111849. [PMID: 36430985 PMCID: PMC9695709 DOI: 10.3390/life12111849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Diet impacts human gut microbial composition. Phytochemicals in cayenne pepper (CP), such as capsaicin, have anti-inflammatory properties and alter bacterial growth in vitro. However, the evidence that CP impacts the human microbiota and intestinal inflammation in free-living adults is lacking. Thus, the objective of this randomized cross-over study was to determine the influence of CP on human gut microbiota and intestinal inflammation in vivo. A total of 29 participants were randomly allocated to consume two 250 mL servings of tomato juice plus 1.8 g of CP each day or juice only for 5 days before crossing over to the other study arm. Fecal samples were analyzed. CP reduced Oscillibacter and Phascolarctobacterium but enriched Bifidobacterium and Gp6. When stratified by BMI (body mass index), only the increase in Gp6 was observed in all BMI groups during CP treatment. Stool concentrations of lipocalin-2 and calprotectin were similar regardless of CP treatment. However, lipocalin-2 and calprotectin levels were positively correlated in samples taken after CP consumption. Neither lipocalin-2 nor calprotectin levels were related to gut microbial composition. In conclusion, in healthy adult humans under typical living conditions, consumption of CP minimally influenced the gut microbiota and had little impact on intestinal inflammation.
Collapse
|
7
|
Chen J, Chen X, Ho CL. Recent Development of Probiotic Bifidobacteria for Treating Human Diseases. Front Bioeng Biotechnol 2022; 9:770248. [PMID: 35004640 PMCID: PMC8727868 DOI: 10.3389/fbioe.2021.770248] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Bifidobacterium is a non-spore-forming, Gram-positive, anaerobic probiotic actinobacterium and commonly found in the gut of infants and the uterine region of pregnant mothers. Like all probiotics, Bifidobacteria confer health benefits on the host when administered in adequate amounts, showing multifaceted probiotic effects. Examples include B. bifidum, B. breve, and B. longum, common Bifidobacterium strains employed to prevent and treat gastrointestinal disorders, including intestinal infections and cancers. Herein, we review the latest development in probiotic Bifidobacteria research, including studies on the therapeutic impact of Bifidobacterial species on human health and recent efforts in engineering Bifidobacterium. This review article would provide readers with a wholesome understanding of Bifidobacteria and its potentials to improve human health.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Xinyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Chun Loong Ho
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| |
Collapse
|
8
|
Sharma G, Khanna G, Sharma P, Deol PK, Kaur IP. Mechanistic Role of Probiotics in Improving Skin Health. PROBIOTIC RESEARCH IN THERAPEUTICS 2022:27-47. [DOI: 10.1007/978-981-16-5628-6_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Colonized Niche, Evolution and Function Signatures of Bifidobacterium pseudolongum within Bifidobacterial Genus. Foods 2021; 10:foods10102284. [PMID: 34681333 PMCID: PMC8535030 DOI: 10.3390/foods10102284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/07/2023] Open
Abstract
Background: Although genomic features of various bifidobacterial species have received much attention in the past decade, information on Bifidobacterium pseudolongum was limited. In this study, we retrieved 887 publicly available genomes of bifidobacterial species, and tried to elucidate phylogenetic and potential functional roles of B. pseudolongum within the Bifidobacterium genus. Results: The results indicated that B. pseudolongum formed a population structure with multiple monophyletic clades, and had established associations with different types of mammals. The abundance of B. pseudolongum was inversely correlated with that of the harmful gut bacterial taxa. We also found that B. pseudolongum showed a strictly host-adapted lifestyle with a relatively smaller genome size, and higher intra-species genetic diversity in comparison with the other tested bifidobacterial species. For functional aspects, B. pseudolongum showed paucity of specific metabolic functions, and enrichment of specific enzymes degrading complex plant carbohydrates and host glycans. In addition, B. pseudolongum possessed a unique signature of probiotic effector molecules compared with the other tested bifidobacterial species. The investigation on intra-species evolution of B. pseudolongum indicated a clear evolution trajectory in which considerable clade-specific genes, and variation on genomic diversity by clade were observed. Conclusions: These findings provide valuable information for explaining the host adaptability of B. pseudolongum, its evolutionary role, as well as its potential probiotic effects.
Collapse
|
10
|
Mahdi LH, Laftah AR, Yaseen KH, Auda IG, Essa RH. Establishing novel roles of bifidocin LHA, antibacterial, antibiofilm and immunomodulator against Pseudomonas aeruginosa corneal infection model. Int J Biol Macromol 2021; 186:433-444. [PMID: 34171261 DOI: 10.1016/j.ijbiomac.2021.06.124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
Bifidocin LHA, a novel bacteriocin, was extracted from bee honey B. adolescentis and purified. Bifidocin LHA was characterized as a protein in nature, without lipid or carbohydrate moieties, the molecular weight was 16,000 Da protein, heat-stable and active at a wide range of pH values, bactericidal effect, detergent, and solvents did not affect bifidocin activity and can be classified as type II bacteriocin. In vitro, the antibacterial activity of purified bifidocin LHA was significantly higher than crude bifidocin LHA (P < 0.05) against Pseudomonas aeruginosa (P. aeruginosa). The antibiofilm activity of bifidocin LHA was significantly higher than the antibiofilm activity of Amikacin (P < 0.05). In vivo, bifidocin LHA demonstrates a significant decreased in the number of P. aeruginosa in the eye, while complete clearance of P. aeruginosa comparing with the control (P < 0.05) when treating with Bifidobacterium adolescentis and bifidocin LHA together. Bifidobacterium adolescentis and bifidocin LHA treatment together induced substantial elevation of IL10 and IL-12 concentrations (P < 0.01) that helped to prevent damage caused by the inflammatory response. Succeeded to eradicate P. aeruginosa infection improved by histological patterns of the eye tissues. This study indicated Bifidobacterium adolescentis and bifidocin LHA consider as crucial strategies for the practical treatment of eye infection in the future.
Collapse
Affiliation(s)
- Likaa H Mahdi
- Department of Biology, College of Science, Mustansiriya University, Iraq.
| | - Ali R Laftah
- Department of Biology, College of Science, Mustansiriya University, Iraq
| | - Kadhim H Yaseen
- Department of Biology, College of Science, Mustansiriya University, Iraq
| | | | - Rajwa H Essa
- Department of Biology, College of Science, Mustansiriya University, Iraq
| |
Collapse
|
11
|
Abstract
Objectives: Expound upon priorities for basic/translational science identified in a recent paper by a group of experts assigned by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Data Sources: Original paper, search of the literature. Study Selection: By several members of the original task force with specific expertise in basic/translational science. Data Extraction: None. Data Synthesis: None. Conclusions: In the first of a series of follow-up reports to the original paper, several members of the original task force with specific expertise provided a more in-depth analysis of the five identified priorities directly related to basic/translational science. This analysis expounds on what is known about the question and what was identified as priorities for ongoing research. It is hoped that this analysis will aid the development of future research initiatives.
Collapse
|
12
|
Gramajo Lopez A, Gutiérrez F, Saavedra L, Hebert EM, Alvarez S, Salva S. Improvement of Myelopoiesis in Cyclophosphamide-Immunosuppressed Mice by Oral Administration of Viable or Non-Viable Lactobacillus Strains. Front Immunol 2021; 12:647049. [PMID: 33912172 PMCID: PMC8072128 DOI: 10.3389/fimmu.2021.647049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/22/2021] [Indexed: 01/24/2023] Open
Abstract
Myelosuppression is the major dose-limiting toxicity of cancer chemotherapy. There have been many attempts to find new strategies that reduce myelosuppression. The dietary supplementation with lactic acid bacteria (LAB) improved respiratory innate immune response and the resistance against respiratory pathogens in immunosupressed hosts. Although LAB viability is an important factor in achieving optimal protective effects, non-viable LAB are capable of stimulating immunity. In this work, we studied the ability of oral preventive administration of viable and non-viable Lactobacillus rhamnosus CRL1505 or L. plantarum CRL1506 (Lr05, Lr05NV, Lp06V or Lp06NV, respectively) to minimize myelosuppressive and immunosuppressive effects derived from chemotherapy. Cyclophosphamide (Cy) impaired steady-state myelopoiesis in lactobacilli-treated and untreated control mice. Lr05V, Lr05NV and Lp06V treatments were the most effective to induce the early recovery of bone marrow (BM) tissue architecture, leukocytes, myeloid, pool mitotic and post-mitotic, peroxidase positive, and Gr-1Low/High cells in BM. We selected the CRL1505 strain for being the one capable of maintaining its myelopoiesis-enhancing properties in its non-viable form. Although the CRL1505 treatments do not modify the Cy ability to induce apoptosis, both increased the incorporation of BrdU in BM cells. Consequently, Lr05NV and Lr05V treatments were able to promote early recovery of LSK cells (Lin-Sca-1+c-Kit+ cells), multipotent progenitors (Lin-Sca-1+c-Kit+CD34+ cells), and myeloid cells (Gr-1+Ly6G+Ly6C- cells) with respect to the untreated Cy control. In addition, these treatments were able to increase the frequency of IL17A-producing innate lymphoid cells in the intestinal lamina propria (IL-17A+RORγt+CD4-NKp46+ cells) after Cy injection. These results were correlated with an increase in the IL-17A serum levels, a GM-CSF high expression and a CXCL12 lower expression in BM. Therefore, both Lr05V and Lr05NV treatments are able to activate beneficially the IL-17A/GM-CSF axis and accelerate the recovery of Cy-induced immunosuppression by increasing BM myeloid precursors. We demonstrated for the first time the beneficial effect of CRL1505 strain on myelopoiesis affected by a chemotherapeutic drug. Furthermore, Lr05NV could be a good and safe resource for reducing chemotherapy-induced leukopenia. The results are a starting point for future research and open up broad prospects for future applications of the immunobiotics.
Collapse
Affiliation(s)
- Andrés Gramajo Lopez
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Florencia Gutiérrez
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Lucila Saavedra
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Elvira Maria Hebert
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Susana Alvarez
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina.,Institute of Applied Biochemistry, Tucumán University, San Miguel de Tucumán, Argentina
| | - Susana Salva
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), San Miguel de Tucumán, Argentina
| |
Collapse
|
13
|
Postoperative Complications Are Associated with Long-Term Changes in the Gut Microbiota Following Colorectal Cancer Surgery. Life (Basel) 2021; 11:life11030246. [PMID: 33809741 PMCID: PMC8002283 DOI: 10.3390/life11030246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/17/2022] Open
Abstract
Changes in the gut microbiome have already been associated with postoperative complications in major abdominal surgery. However, it is still unclear whether these changes are transient or a long-lasting effect. Therefore, the aim of this prospective clinical pilot study was to examine long-term changes in the gut microbiota and to correlate these changes with the clinical course of the patient. Methods: In total, stool samples of 62 newly diagnosed colorectal cancer patients undergoing primary tumor resection were analyzed by 16S-rDNA next-generation sequencing. Stool samples were collected preoperatively in order to determine the gut microbiome at baseline as well as at 6, 12, and 24 months thereafter to observe longitudinal changes. Postoperatively, the study patients were separated into two groups-patients who suffered from postoperative complications (n = 30) and those without complication (n = 32). Patients with postoperative complications showed a significantly stronger reduction in the alpha diversity starting 6 months after operation, which does not resolve, even after 24 months. The structure of the microbiome was also significantly altered from baseline at six-month follow-up in patients with complications (p = 0.006). This was associated with a long-lasting decrease of a large number of species in the gut microbiota indicating an impact in the commensal microbiota and a long-lasting increase of Fusobacterium ulcerans. The microbial composition of the gut microbiome shows significant changes in patients with postoperative complications up to 24 months after surgery.
Collapse
|
14
|
Huang FC, Lu YT, Liao YH. Beneficial effect of probiotics on Pseudomonas aeruginosa-infected intestinal epithelial cells through inflammatory IL-8 and antimicrobial peptide human beta-defensin-2 modulation. Innate Immun 2020; 26:592-600. [PMID: 32988256 DOI: 10.1177/1753425920959410] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human pathogen Pseudomonas aeruginosa can rapidly induce fatal sepsis, even in previously healthy infants or children treated with appropriate antibiotics. To reduce antibiotic overuse, exploring novel complementary therapies, such as probiotics that reportedly protect patients against P. aeruginosa infection, would be particularly beneficial. However, the major mechanism underlying the clinical effects is not completely understood. We thus aimed to investigate how probiotics affect IL-8 and human beta-defensin 2 (hBD-2) in P. aeruginosa-infected intestinal epithelial cells (IECs). We infected SW480 IECs with wild type PAO1 P. aeruginosa following probiotic treatment with Lactobacillus rhamnosus GG or Bifidobacterium longum spp. infantis S12, and analysed the mRNA expression and secreted protein of IL-8 and hBD-2, Akt signalling and NOD1 receptor protein expression. We observed that probiotics enhanced hBD-2 expression but suppressed IL-8 responses when administered before infection. They also enhanced P. aeruginosa-induced membranous NOD1 protein expression and Akt activation. The siRNA-mediated Akt or NOD1 knockdown counteracted P. aeruginosa-induced IL-8 or hBD-2 expression, indicating regulatory effects of these probiotics. In conclusion, these data suggest that probiotics exert reciprocal regulation of inflammation and antimicrobial peptides in P. aeruginosa-infected IECs and provide supporting evidence for applying probiotics to reduce antibiotic overuse.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Paediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Ting Lu
- Department of Paediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu-Hsuan Liao
- Department of Paediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Deutschman CS, Hellman J, Roca RF, De Backer D, Coopersmith CM. The surviving sepsis campaign: basic/translational science research priorities. Intensive Care Med Exp 2020; 8:31. [PMID: 32676795 PMCID: PMC7365694 DOI: 10.1186/s40635-020-00312-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objectives Expound upon priorities for basic/translational science identified in a recent paper by a group of experts assigned by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Data sources Original paper, search of the literature. Study selection This study is selected by several members of the original task force with specific expertise in basic/translational science. Data extraction and data synthesis are not available. Conclusions In the first of a series of follow-up reports to the original paper, several members of the original task force with specific expertise provided a more in-depth analysis of the five identified priorities directly related to basic/translational science. This analysis expounds on what is known about the question and what was identified as priorities for ongoing research. It is hoped that this analysis will aid the development of future research initiatives.
Collapse
Affiliation(s)
- Clifford S Deutschman
- Department of Pediatrics, Hofstra/Northwell School of Medicine and the Feinstein Institute for Medical Research/Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA. .,Department of Molecular Medicine, Hofstra/Northwell School of Medicine and the Feinstein Institute for Medical Research/Elmezzi Graduate School of Molecular Medicine, Manhasset, NY, USA.
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA
| | - Ricard Ferrer Roca
- Intensive Care Department, Vall d'Hebron University Hospital, Barcelona, Spain.,Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Daniel De Backer
- Chirec Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | - Craig M Coopersmith
- Department of Surgery and Emory Critical Care Center, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
16
|
Pettigrew MM, Gent JF, Kong Y, Halpin AL, Pineles L, Harris AD, Johnson JK. Gastrointestinal Microbiota Disruption and Risk of Colonization With Carbapenem-resistant Pseudomonas aeruginosa in Intensive Care Unit Patients. Clin Infect Dis 2020; 69:604-613. [PMID: 30383203 DOI: 10.1093/cid/ciy936] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Carbapenem-resistant Pseudomonas aeruginosa (CRPA) colonizes the gastrointestinal tract of intensive care unit (ICU) patients, and CRPA colonization puts patients at increased risk of CRPA infection. Prior studies have not examined relationships between the microbiota, medications, and CRPA colonization acquisition. METHODS Data and perirectal swabs were obtained from a cohort of ICU patients at the University of Maryland Medical Center. Patients (N = 109) were classified into 3 groups by CRPA colonization-acquisition status and antimicrobial exposure. We conducted 16S ribosomal RNA gene sequencing of an ICU admission swab and ≥1 additional swab and evaluated associations between patient characteristics, medications, the gastrointestinal microbiota, and CRPA colonization acquisition. RESULTS ICU patients had low levels of diversity and high relative abundances of pathobionts. Piperacillin-tazobactam was prescribed more frequently to patients with CRPA colonization acquisition than those without. Piperacillin-tazobactam was associated with low abundance of potentially protective taxa (eg, Lactobacillus and Clostridiales) and increased risk of Enterococcus domination (odds ratio [OR], 5.50; 95% confidence interval [CI], 2.03-14.92). Opioids were associated with dysbiosis in patients who did not receive antibiotics; potentially protective Blautia and Lactobacillus were higher in patients who did not receive opioids. Several correlated taxa, identified at ICU admission, were associated with lower risk of CRPA colonization acquisition (OR, 0.58; 95% CI, .38-.87). CONCLUSIONS Antibiotics differed in their impact on the microbiota, with piperacillin-tazobactam being particularly damaging. Certain bacterial taxa (eg, Clostridiales) were negatively associated with CRPA colonization acquisition. These taxa may be markers of risk for CRPA colonization acquisition and/or serve a protective role.
Collapse
Affiliation(s)
- Melinda M Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
| | - Janneane F Gent
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut
| | - Yong Kong
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut.,Department of Molecular Biophysics and Biochemistry, W. M. Keck Foundation Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, Connecticut
| | - Alison Laufer Halpin
- Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Lisa Pineles
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - Anthony D Harris
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore
| | - J Kristie Johnson
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore.,Department of Pathology, University of Maryland School of Medicine, Baltimore
| |
Collapse
|
17
|
Metabolic output defines Escherichia coli as a health-promoting microbe against intestinal Pseudomonas aeruginosa. Sci Rep 2019; 9:14463. [PMID: 31595010 PMCID: PMC6783455 DOI: 10.1038/s41598-019-51058-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota acts as a barrier against intestinal pathogens, but species-specific protection of the host from infection remains relatively unexplored. Although lactobacilli and bifidobacteria produce beneficial lactic and short-chain fatty acids in the mammalian gut, the significance of intestinal Escherichia coli producing these acids is debatable. Taking a Koch’s postulates approach in reverse, we define Escherichia coli as health-promoting for naturally colonizing the gut of healthy mice and protecting them against intestinal colonization and concomitant mortality by Pseudomonas aeruginosa. Reintroduction of faecal bacteria and E. coli in antibiotic-treated mice establishes a high titre of E. coli in the host intestine and increases defence against P. aeruginosa colonization and mortality. Strikingly, high sugar concentration favours E. coli fermentation to lactic and acetic acid and inhibits P. aeruginosa growth and virulence in aerobic cultures and in a model of aerobic metabolism in flies, while dietary vegetable fats - not carbohydrates or proteins - favour E. coli fermentation and protect the host in the anaerobic mouse gut. Thus E. coli metabolic output is an important indicator of resistance to infection. Our work may also suggest that the lack of antimicrobial bacterial metabolites in mammalian lungs and wounds allows P. aeruginosa to be a formidable microbe at these sites.
Collapse
|
18
|
Wong CB, Odamaki T, Xiao JZ. Beneficial effects of Bifidobacterium longum subsp. longum BB536 on human health: Modulation of gut microbiome as the principal action. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
19
|
Qi X, Qu H, Yang D, Zhou L, He YW, Yu Y, Qu J, Liu J. Lower respiratory tract microbial composition was diversified in Pseudomonas aeruginosa ventilator-associated pneumonia patients. Respir Res 2018; 19:139. [PMID: 30049266 PMCID: PMC6062970 DOI: 10.1186/s12931-018-0847-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/18/2018] [Indexed: 02/08/2023] Open
Abstract
Background Probiotics could prevent Pseudomonas aeruginosa colonization in lower respiratory tract (LRT) and reduced P. aeruginosa ventilator-associated pneumonia (VAP) rate. Recent studies also suggested that probiotics could improve lung inflammation in mice infected with P. aeruginosa. It seems that microbiota regulation may be a potential therapy for P. aeruginosa VAP patients. However, we know less about the LRT microbial composition and its correlation with prognosis in P. aeruginosa VAP patients. This study aimed to characterize LRT microbiota in P. aeruginosa VAP patients and explore the relationship between microbiota and patient prognosis. Methods Deep endotracheal secretions were sampled from subjects via intubation. Communities were identified by 16S ribosomal RNA gene sequencing. The relationship between microbiota and the prognosis of P. aeruginosa VAP patients were evaluated. Clinical pulmonary infection score and the survival of intensive care unit were both the indicators of patient prognosis. Results In this study, the LRT microbial composition of P. aeruginosa VAP patients was significantly different from non-infected intubation patients, and showed significant individual differences, forming two clusters. According to the predominant phylum of each cluster, these two clusters were named Pro cluster and Fir-Bac cluster respectively. Patients from Pro cluster were dominated by Proteobacteria (adj.P < 0.001), while those from Fir-Bac cluster were dominated by Firmicutes, and Bacteroidetes (both adj.P < 0.001). These two varied clusters (Pro and Fir-Bac cluster) were associated with the patients’ primary disease (χ2-test, P < 0.0001). The primary disease of the Pro cluster mainly included gastrointestinal disease (63%), and the Fir-Bac cluster was predominantly respiratory disease (89%). During the two-week dynamic observation period, despite the use of antibiotics, the dominant genera and Shannon diversity of the LRT microbiota did not change significantly in patients with P. aeruginosa VAP. In prognostic analysis, we found a significant negative correlation between Lactobacillus and clinical pulmonary infection score on the day of diagnosis (P = 0.014); but we found no significant difference of microbial composition between survivors and non-survivors. Conclusions LRT microbial composition was diversified among P. aeruginosa VAP patients, forming two clusters which were associated with the primary diseases of the patients. Electronic supplementary material The online version of this article (10.1186/s12931-018-0847-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoling Qi
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dandan Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lian Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuetian Yu
- Department of Critical Care Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieming Qu
- Department of Pulmonary & Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jialin Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Guo P, Zhang SW, Zhang J, Dong JT, Wu JD, Tang ST, Yang JT, Zhang WJ, Wu F. Effects of imipenem combined with low-dose cyclophosphamide on the intestinal barrier in septic rats. Exp Ther Med 2018; 16:1919-1927. [PMID: 30186419 PMCID: PMC6122399 DOI: 10.3892/etm.2018.6373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
Abstract
Anti-infection therapy combined with immunotherapy is one of the important research approaches for treating sepsis. However, the combination of anti-infection and immunotherapy therapeutic agents may have an adverse effect on intestinal barrier function. In the present study, it was hypothesized that imipenem combined with low-dose cyclophosphamide (CTX) could improve the sepsis survival rate compared with imipenem treatment alone. In addition, the alterations in the intestinal barrier were investigated and the possible mechanisms of altering intestinal barrier function in septic rats treated with imipenem combined with low-dose CTX or imipenem alone were explored. To investigate the effect of imipenem combined with low-dose CTX on the intestinal barrier, the markers of histopathology, intestinal permeability, intestinal epithelial apoptosis, cytokines interleukin (IL)-6, IL-10 and tumor necrosis factor (TNF)-α, and tight junction proteins zonula occludens (ZO)-1, occludin and claudin-2, were quantitatively and qualitatively evaluated. The results indicated that imipenem combined with low-dose CTX significantly improved the survival rate of rats compared with imipenem alone (P<0.05). However, no significantly difference between the treatment with imipenem combined with low-dose CTX and imipenem treatment alone was indicated with regard to histopathology, intestinal permeability, intestinal epithelial apoptosis and the expression of claudin-2, ZO-1 and TNF-α. However, imipenem combined with low-dose CTX significantly reduced IL-6 and IL-10 expression and significantly increased occludin expression compared with imipenem alone (P<0.05). It was concluded that imipenem combined with low-dose CTX could improve the survival rate of rats with sepsis compared with rats treated with imipenem alone. The present findings suggest that imipenem combined with low-dose CTX may cause damage to the intestinal barrier function and the mechanism may be associated with a reduction in IL-10 expression.
Collapse
Affiliation(s)
- Peng Guo
- Department of Critical Care Medicine, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832000, P.R. China
| | - Shun-Wen Zhang
- First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Jie Zhang
- Department of Emergency, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832000, P.R. China
| | - Jiang-Tao Dong
- Department of Neurosurgery, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832000, P.R. China
| | - Jiang-Dong Wu
- Department of Pathophysiology, Shihezi University School of Medicine/Key Laboratory of Xinjiang Endemic and Ethnic Diseases/Collaborative Innovation Center of High Incidence of Zoonotic Communicable Disease Prevention in The Western Region, Shihezi, Xinjiang 832000, P.R. China
| | - Su-Tu Tang
- Department of Critical Care Medicine, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832000, P.R. China
| | - Jun-Ting Yang
- Department of Pathophysiology, Shihezi University School of Medicine/Key Laboratory of Xinjiang Endemic and Ethnic Diseases/Collaborative Innovation Center of High Incidence of Zoonotic Communicable Disease Prevention in The Western Region, Shihezi, Xinjiang 832000, P.R. China
| | - Wan-Jiang Zhang
- Department of Pathophysiology, Shihezi University School of Medicine/Key Laboratory of Xinjiang Endemic and Ethnic Diseases/Collaborative Innovation Center of High Incidence of Zoonotic Communicable Disease Prevention in The Western Region, Shihezi, Xinjiang 832000, P.R. China
| | - Fang Wu
- Department of Pathophysiology, Shihezi University School of Medicine/Key Laboratory of Xinjiang Endemic and Ethnic Diseases/Collaborative Innovation Center of High Incidence of Zoonotic Communicable Disease Prevention in The Western Region, Shihezi, Xinjiang 832000, P.R. China
| |
Collapse
|
21
|
Zuo T, Zhao R, Lu S, Zhang N, Zhang Q, Xue C. Novel dietary polysaccharide SIP promotes intestinal secretory immunoglobulin A secretion in mice under chemotherapy. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
22
|
Salva S, Alvarez S. The Role of Microbiota and Immunobiotics in Granulopoiesis of Immunocompromised Hosts. Front Immunol 2017; 8:507. [PMID: 28533775 PMCID: PMC5421150 DOI: 10.3389/fimmu.2017.00507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 04/12/2017] [Indexed: 02/02/2023] Open
Abstract
The number of granulocytes is maintained by a regulated balance between granulopoiesis in the bone marrow and clearance and destruction in peripheral tissues. Granulopoiesis plays a fundamental role in the innate immune response. Therefore, factors affecting the normal granulopoiesis lead to alterations in innate defenses and reduce the resistance against infections. In this study, we give a description on recent advances regarding the molecular and cellular events that regulate steady-state and emergency granulopoiesis, which are crucial processes for the generation of protective innate immune responses. Particular attention will be given to emergency granulopoiesis alterations in immunosuppression states caused by malnutrition and chemotherapy. The role of microbiota in maintaining a steady-state granulopoiesis and the immunological mechanisms involved are also discussed. Moreover, we describe the findings of our laboratory demonstrating that the dietary supplementation with immunobiotics is an interesting alternative to improve steady-state and emergency granulopoiesis, the respiratory innate immune response, and the resistance against respiratory pathogens in immunocompromised hosts.
Collapse
Affiliation(s)
- Susana Salva
- Immunobiotechnology Laboratory, CERELA-CONICET, Tucuman, Argentina
| | - Susana Alvarez
- Immunobiotechnology Laboratory, CERELA-CONICET, Tucuman, Argentina.,Applied Biochemistry Institute, Universidad Nacional de Tucumán, Tucuman, Argentina
| |
Collapse
|
23
|
Nishida S, Ishii M, Nishiyama Y, Abe S, Ono Y, Sekimizu K. Lactobacillus paraplantarum 11-1 Isolated from Rice Bran Pickles Activated Innate Immunity and Improved Survival in a Silkworm Bacterial Infection Model. Front Microbiol 2017; 8:436. [PMID: 28373863 PMCID: PMC5357627 DOI: 10.3389/fmicb.2017.00436] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/02/2017] [Indexed: 11/13/2022] Open
Abstract
Lactic acid bacteria (LAB) have high immune system-stimulating activity and are considered beneficial for human health as probiotics in the gut. The innate immune system is highly conserved between mammals and insects. Microbe-associated molecular patterns (e.g., peptidoglycan and β-glucan) induce cytokine maturation, which, in silkworm larvae, leads to muscle contraction. The purpose of this study is to find a novel probiotic by using silkworm muscle contraction assay. In the present study, we isolated LAB derived from rice bran pickles. We selected highly active LAB to activate the innate immune system of the silkworm, which was assayed based on silkworm muscle contraction. Of various LAB, L. paraplantarum 11-1 strongly stimulated innate immunity in the silkworm, leading to stronger silkworm contraction than a dairy-based LAB. Silkworms fed a diet containing L. paraplantarum 11-1 exhibited tolerance against the pathogenicity of Pseudomonas aeruginosa. These findings suggest that L. paraplantarum 11-1 could be a useful probiotic for activating innate immunity.
Collapse
Affiliation(s)
- Satoshi Nishida
- Genome Pharmaceuticals Institute Co. Ltd.Tokyo, Japan; Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of TokyoTokyo, Japan; Department of Microbiology and Immunology, Teikyo University School of MedicineTokyo, Japan
| | - Masaki Ishii
- Genome Pharmaceuticals Institute Co. Ltd. Tokyo, Japan
| | - Yayoi Nishiyama
- Teikyo University Institute of Medical Mycology Tokyo, Japan
| | - Shigeru Abe
- Teikyo University Institute of Medical Mycology Tokyo, Japan
| | - Yasuo Ono
- Department of Microbiology and Immunology, Teikyo University School of Medicine Tokyo, Japan
| | - Kazuhisa Sekimizu
- Genome Pharmaceuticals Institute Co. Ltd.Tokyo, Japan; Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of TokyoTokyo, Japan; Teikyo University Institute of Medical MycologyTokyo, Japan
| |
Collapse
|
24
|
Argenta A, Satish L, Gallo P, Liu F, Kathju S. Local Application of Probiotic Bacteria Prophylaxes against Sepsis and Death Resulting from Burn Wound Infection. PLoS One 2016; 11:e0165294. [PMID: 27780258 PMCID: PMC5079594 DOI: 10.1371/journal.pone.0165294] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 10/05/2016] [Indexed: 12/22/2022] Open
Abstract
Objective To determine if local prophylactic application of probiotic bacteria to burn wounds will prevent death in a mouse model of burn wound sepsis. Background Infection remains the most common complication after burn injury and can result in sepsis and death, despite the use of topical and systemic antibiotics. Pseudomonas aeruginosa is a frequently implicated pathogen. Local application of probiotics directly to burn wounds is an attractive novel intervention that avoids the pitfalls of standard antibiotic therapies. Methods A burn-sepsis model was established using a sub-eschar injection of bioluminescent P. aeruginosa; infection was tracked using a charge-coupled camera. Full-thickness burn injuries were placed on the dorsums of adult mice; the injured sites were then treated with vehicle (burn wound control), probiotics (Lactobacillus plantarum only), pathogenic bacteria (Pseudomonas aeruginosa only), or probiotics plus pathogen (Lactobacillus plus Pseudomonas). Animals were monitored until death/moribundity or for one week, then sacrificed. Harvested tissues were subjected to imaging and molecular assays. Results Control and probiotic-only animals showed no mortality (100% survival) at one week. Pseudomonas-only animals showed > 90% mortality within 40 hours of infection. In contrast, animals treated with probiotics plus Pseudomonas showed less than 10% mortality. Use of bioluminescent Pseudomonas bacteria demonstrated that probiotic therapy inhibited septicemic accumulation of the pathogen in remote organs. In addition, probiotic therapy successfully suppressed the infection-dependent induction of TNF-α and interleukins 6 and 10 in the liver. Conclusions Local probiotic therapy shows great potential as a valuable adjunct in the management of complicated burn injury.
Collapse
Affiliation(s)
- Anne Argenta
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| | - Latha Satish
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States of America
| | - Phillip Gallo
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| | - Fang Liu
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
| | - Sandeep Kathju
- Department of Plastic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
25
|
Khailova L, Baird CH, Rush AA, Barnes C, Wischmeyer PE. Lactobacillus rhamnosus GG treatment improves intestinal permeability and modulates inflammatory response and homeostasis of spleen and colon in experimental model of Pseudomonas aeruginosa pneumonia. Clin Nutr 2016; 36:1549-1557. [PMID: 27745813 DOI: 10.1016/j.clnu.2016.09.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/21/2016] [Accepted: 09/25/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Recent clinical trials and in vivo models demonstrate probiotic administration can reduce occurrence and improve outcome of pneumonia and sepsis, both major clinical challenges worldwide. Potential probiotic benefits include maintenance of gut epithelial barrier homeostasis and prevention of downstream organ dysfunction due to systemic inflammation. However, mechanism(s) of probiotic-mediated protection against pneumonia remain poorly understood. This study evaluated potential mechanistic targets in the maintenance of gut barrier homeostasis following Lactobacillus rhamnosus GG (LGG) treatment in a mouse model of pneumonia. METHODS Studies were performed in 6-8 week old FVB/N mice treated (o.g.) with or without LGG (109 CFU/ml) and intratracheally injected with Pseudomonas aeruginosa or saline. At 4, 12, and 24 h post-bacterial treatment spleen and colonic tissue were collected for analysis. RESULTS Pneumonia significantly increased intestinal permeability and gut claudin-2. LGG significantly attenuated increased gut permeability and claudin-2 following pneumonia back to sham control levels. As mucin expression is key to gut barrier homeostasis we demonstrate that LGG can enhance goblet cell expression and mucin barrier formation versus control pneumonia animals. Further as Muc2 is a key gut mucin, we show LGG corrected deficient Muc2 expression post-pneumonia. Apoptosis increased in both colon and spleen post-pneumonia, and this increase was significantly attenuated by LGG. Concomitantly, LGG corrected pneumonia-mediated loss of cell proliferation in colon and significantly enhanced cell proliferation in spleen. Finally, LGG significantly reduced pro-inflammatory cytokine gene expression in colon and spleen post-pneumonia. CONCLUSIONS These data demonstrate LGG can maintain intestinal barrier homeostasis by enhancing gut mucin expression/barrier formation, reducing apoptosis, and improving cell proliferation. This was accompanied by reduced pro-inflammatory cytokine expression in the gut and in a downstream organ (spleen). These may serve as potential mechanistic targets to explain LGG's protection against pneumonia in the clinical and in vivo setting.
Collapse
Affiliation(s)
- Ludmila Khailova
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Christine H Baird
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Aubri A Rush
- Valparaiso University, Valparaiso, IN, 46383, USA
| | | | - Paul E Wischmeyer
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
26
|
Nishida S, Ono Y, Sekimizu K. Lactic acid bacteria activating innate immunity improve survival in bacterial infection model of silkworm. Drug Discov Ther 2016; 10:49-56. [PMID: 26971556 DOI: 10.5582/ddt.2016.01022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lactic acid bacteria (LAB) have been thought to be helpful for human heath in the gut as probiotics. It recently was noted that activity of LAB stimulating immune systems is important. Innate immune systems are conserved in mammals and insects. Silkworm has innate immunity in response to microbes. Microbe-associated molecular pattern (ex. peptidoglycan and β-glucan) induces a muscle contraction of silkworm larva. In this study, we established an efficient method to isolate lactic acid bacteria derived from natural products. We selected a highly active LAB to activate the innate immunity in silkworm by using the silkworm muscle contraction assay, as well. The assay revealed that Lactococcus lactis 11/19-B1 was highly active on the stimulation of the innate immunity in silkworm. L. lactis 11/19-B1 solely fermented milk with casamino acid and glucose. This strain would be a starter strain to make yogurt. Compared to commercially available yogurt LAB, L. lactis 11/19-B1 has higher activity on silkworm contraction. Silkworm normally ingested an artificial diet mixed with L. lactis 11/19-B1 or a yogurt fermented with L. lactis 11/19-B1. Interestingly, silkworms that ingested the LAB showed tolerance against the pathogenicity of Pseudomonas aeruginosa. These data suggest that Lactococcus lactis 11/19-B1 would be expected to be useful for making yogurt and probiotics to activate innate immunity.
Collapse
|
27
|
Van Beek AA, Hoogerland JA, Belzer C, De Vos P, De Vos WM, Savelkoul HFJ, Leenen PJM. Interaction of mouse splenocytes and macrophages with bacterial strains in vitro: the effect of age in the immune response. Benef Microbes 2015; 7:275-87. [PMID: 26689225 DOI: 10.3920/bm2015.0094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Probiotics influence the immune system, both at the local and systemic level. Recent findings suggest the relation between microbiota and the immune system alters with age. Our objective was to address direct effects of six bacterial strains on immune cells from young and aged mice: Lactobacillus plantarum WCFS1, Lactobacillus casei BL23, Lactococcus lactis MG1363, Bifidobacterium breve ATCC15700, Bifidobacterium infantis ATCC15697, and Akkermansia muciniphila ATCC BAA-835. We used splenocytes and naïve or interferon-γ-stimulated bone marrow-derived macrophages (BMDM) as responder populations. All tested bacterial strains induced phenotypic and cytokine responses in splenocytes and BMDM. Based on magnitude of the cellular inflammatory response and cytokine profiles, two subgroups of bacteria were identified, i.e. L. plantarum and L. casei versus B. breve, B. infantis, and A. muciniphila. The latter group of bacteria induced high levels of cytokines produced under inflammatory conditions, including tumour necrosis factor (TNF), interleukin (IL)-6 and IL-10. Responses to L. lactis showed features of both subgroups. In addition, we compared responses by splenocytes and BMDM derived from young mice to those of aged mice, and found that splenocytes and BMDM derived from aged mice had an increased IL-10 production and dysregulated IL-6 and TNF production compared to young immune cells. Overall, our study shows differential inflammatory responses to distinct bacterial strains, and profound age-dependent effects. These findings, moreover, support the view that immune environment importantly influences bacterial immune effects.
Collapse
Affiliation(s)
- A A Van Beek
- 1 Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands.,2 Cell Biology and Immunology Group, Wageningen University, De Elst 1, 6709 PG Wageningen, the Netherlands.,3 Department of Immunology, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - J A Hoogerland
- 1 Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands.,2 Cell Biology and Immunology Group, Wageningen University, De Elst 1, 6709 PG Wageningen, the Netherlands.,3 Department of Immunology, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| | - C Belzer
- 4 Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| | - P De Vos
- 1 Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands.,5 University of Groningen, Pathology and Medical Biology, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - W M De Vos
- 4 Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, the Netherlands
| | - H F J Savelkoul
- 2 Cell Biology and Immunology Group, Wageningen University, De Elst 1, 6709 PG Wageningen, the Netherlands
| | - P J M Leenen
- 3 Department of Immunology, Erasmus University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands
| |
Collapse
|
28
|
Zuo T, Cao L, Sun X, Li X, Wu J, Lu S, Xue C, Tang Q. Dietary squid ink polysaccharide could enhance SIgA secretion in chemotherapeutic mice. Food Funct 2015; 5:3189-96. [PMID: 25308407 DOI: 10.1039/c4fo00569d] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Secretory immunoglobulin A (SIgA) is a non-inflammatory antibody that shields internal body surfaces, such as in the intestine to neutralize pathogens in the lumen of the intestine. As chemotherapy seriously damages the mucosal immune system, we herein demonstrated that polysaccharide from the squid ink of Ommastrephes bartrami (OBP) activated intestinal SIgA secretion to prevent chemotherapeutic injury. Using a mouse model of chemotherapy induced intestinal injury by intraperitoneal injection of 50 mg kg(-1) cyclophosphamide, our results showed an enhanced SIgA concentration in intestinal mucosa by OBP administration and the higher production of SIgA relied on the greater expression of IgA, J chain and pIgR. Furthermore, the higher expressions of IL-6, IL-10 and TNF-α increased by OBP treatment contributed to enhanced IgA and J chain synthesis in IgA(+) plasma cells, and pIgR expression in epithelial cells. It also triggered a prompt immunoglobulin secretory pathway confirmed by enhanced UPR (unfolded protein response) effectors XBP-1s and Bip expression. Our results have important implications for the mucosal immunity enhancement effects of OBP as a functional food component for chemotherapeutic patients.
Collapse
Affiliation(s)
- Tao Zuo
- College of Food Science and Engineering, Ocean University of China, Yushan Road 5th, Qingdao, Shandong Province, P.R. China266003
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zuo T, Cao L, Li X, Zhang Q, Xue C, Tang Q. The squid ink polysaccharides protect tight junctions and adherens junctions from chemotherapeutic injury in the small intestinal epithelium of mice. Nutr Cancer 2015; 67:364-71. [PMID: 25587665 DOI: 10.1080/01635581.2015.989369] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gastrointestinal mucositis and infection by chemotherapy treatment are associated with alterations in the functioning of the intestinal barrier, due to the potential damage induced by anticancer drugs on the epithelial tight junctions and adheren junction. We aimed to study the protective effect of dietary polysaccharides on chemotherapy-induced injury in the epithelial cells. In the current study, using mice that were intraperitoneally injected with 50 mg/kg cyclophosphamide for 2 days, we reveal that polysaccharides from the ink of Ommastrephes bartrami (OBP) enhanced the mRNA and protein expression levels of Occludin, zonulae occluden (ZO)-1, and E-cadherin. Immunohistochemistry staining of ZO-1 and E-cadherin confirmed the increase in the mRNA and protein levels. OBP also remarkably enhanced the mRNA expression of other tight junction proteins, ZO-2, ZO-3, claudin-2, and cingulin. Our results may have important implications in host defense, especially the immunopotentiation function of OBP on the cyclophosphamide-induced epithelial cell injury, as well as intestinal disorders involving inflammation and infection.
Collapse
Affiliation(s)
- Tao Zuo
- a College of Food Science and Engineering , Ocean University of China , Qingdao , China
| | | | | | | | | | | |
Collapse
|
30
|
Zuo T, Li X, Chang Y, Duan G, Yu L, Zheng R, Xue C, Tang Q. Dietary fucoidan of Acaudina molpadioides and its enzymatically degraded fragments could prevent intestinal mucositis induced by chemotherapy in mice. Food Funct 2015; 6:415-22. [DOI: 10.1039/c4fo00567h] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mucositis is a common problem that results from cancer chemotherapy and is a cause of significant morbidity and occasional mortality.
Collapse
Affiliation(s)
- Tao Zuo
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Xuemin Li
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Yaoguang Chang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Gaofei Duan
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Long Yu
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Rong Zheng
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Changhu Xue
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Qingjuan Tang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| |
Collapse
|
31
|
Tang Q, Zuo T, Lu S, Wu J, Wang J, Zheng R, Chen S, Xue C. Dietary squid ink polysaccharides ameliorated the intestinal microflora dysfunction in mice undergoing chemotherapy. Food Funct 2014; 5:2529-35. [PMID: 25131333 DOI: 10.1039/c4fo00408f] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gastrointestinal mucositis and infection by chemotherapy treatment are associated with alteration of intestinal microflora and bacterial translocation due to the potential damage induced by anti-cancer drugs on the intestinal barrier and microbiota homeostasis. This study aimed to investigate the protective effect of dietary polysaccharides on chemotherapy induced intestinal microflora dysfunction. In the current contribution, with a mouse model intraperitoneally injected with 50 mg kg(-1) of cyclophosphamide (Cy) for 2 days, we revealed that polysaccharides from the ink of Ommastrephes bartrami (OBP) altered the intestinal microflora composition. OBP retarded the excessive growth of intestinal bacteria induced by cyclophosphamide, based on 16S rRNA gene (16S rDNA) quantification. The clone libraries of intestinal bacteria 16S rDNA were used to decipher the difference in bacterial community structures in different groups of mice. Followed by RFLP evaluation and OTU abundance analysis, they imply that OBP changed the intestinal microflora composition, in which the quantity of probiotic Bifidobacterium got up-regulated but Bacteroidetes decreased in mice undergoing chemotherapy. Our results may have important implications for OBP as a functional food component or nutrient against chemotherapy induced intestinal injury and potential pathogenic intestinal disorders involving inflammation and infection.
Collapse
Affiliation(s)
- Qingjuan Tang
- College of Food Science and Engineering, Ocean University of China, Yushan Road 5th, Qingdao, Shandong province, P.R. China266003.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lactobacillus rhamnosus GG improves outcome in experimental pseudomonas aeruginosa pneumonia: potential role of regulatory T cells. Shock 2014; 40:496-503. [PMID: 24240593 DOI: 10.1097/shk.0000000000000066] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Recent clinical trials show Lactobacillus rhamnosus GG (LGG) administration in critical illness has the potential to reduce nosocomial infections and improve clinical outcome. However, the mechanism(s) of LGG-mediated benefit following illness and injury remain elusive. OBJECTIVE The aim of this study was to determine the effect of LGG treatment on survival and lung injury in a mouse model of Pseudomonas aeruginosa-induced pneumonia. As increased T regulatory (Treg) cell numbers have been shown to improve outcome in experimental pneumonia, we examined the potential role of Treg cells in probiotic-mediated benefit. METHODS FVB/N mice were subjected to intratracheal injection of either P. aeruginosa or saline and received LGG or vehicle immediately before procedure. T regulatory cell responses in the lung were evaluated by polymerase chain reaction, Western blotting, and flow cytometry. RESULTS Mice treated with LGG had significantly improved 7-day survival (P < 0.01) compared with saline-treated control pneumonia mice (55% LGG vs. 14% control). The survival advantage was associated with reduced bacterial counts in bronchoalveolar lavage and with decreased markers of the systemic inflammatory response and improved lung pathology in the probiotic group. Probiotic treatment influenced immune response in the lungs of mice with pneumonia as demonstrated by increased levels of Treg cell marker Foxp3. CONCLUSIONS These data demonstrate that early administration of LGG improves outcome following P. aeruginosa-induced pneumonia. An effect of LGG on Treg cells may play a role in this protection.
Collapse
|
33
|
Oral Administration of Heat-KilledLactobacillus plantarumStrain b240 Protected Mice againstSalmonella entericaSerovar Typhimurium. Biosci Biotechnol Biochem 2014; 74:1338-42. [DOI: 10.1271/bbb.90871] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Khailova L, Petrie B, Baird CH, Dominguez Rieg JA, Wischmeyer PE. Lactobacillus rhamnosus GG and Bifidobacterium longum attenuate lung injury and inflammatory response in experimental sepsis. PLoS One 2014; 9:e97861. [PMID: 24830455 PMCID: PMC4022641 DOI: 10.1371/journal.pone.0097861] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 04/25/2014] [Indexed: 12/17/2022] Open
Abstract
Introduction Probiotic use to prevent nosocomial gastrointestinal and potentially respiratory tract infections in critical care has shown great promise in recent clinical trials of adult and pediatric patients. Despite well-documented benefits of probiotic use in intestinal disorders, the potential for probiotic treatment to reduce lung injury following infection and shock has not been well explored. Objective Evaluate if Lactobacillus rhamnosus GG (LGG) or Bifidobacterium longum (BL) treatment in a weanling mouse model of cecal ligation and puncture (CLP) peritonitis will protect against lung injury. Methods 3 week-old FVB/N mice were orally gavaged with 200 µl of either LGG, BL or sterile water (vehicle) immediately prior to CLP. Mice were euthanized at 24 h. Lung injury was evaluated via histology and lung neutrophil infiltration was evaluated by myeloperoxidase (MPO) staining. mRNA levels of IL-6, TNF-α, MyD88, TLR-4, TLR-2, NFΚB (p50/p105) and Cox-2 in the lung analyzed via real-time PCR. TNF-α and IL-6 in lung was analyzed via ELISA. Results LGG and BL treatment significantly improved lung injury following experimental infection and sepsis and lung neutrophil infiltration was significantly lower than in untreated septic mice. Lung mRNA and protein levels of IL-6 and TNF-α and gene expression of Cox-2 were also significantly reduced in mice receiving LGG or BL treatment. Gene expression of TLR-2, MyD88 and NFΚB (p50/p105) was significantly increased in septic mice compared to shams and decreased in the lung of mice receiving LGG or BL while TLR-4 levels remained unchanged. Conclusions Treatment with LGG and BL can reduce lung injury following experimental infection and sepsis and is associated with reduced lung inflammatory cell infiltrate and decreased markers of lung inflammatory response. Probiotic therapy may be a promising intervention to improve clinical lung injury following systemic infection and sepsis.
Collapse
Affiliation(s)
- Ludmila Khailova
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Benjamin Petrie
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Christine H. Baird
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jessica A. Dominguez Rieg
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Paul E. Wischmeyer
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
35
|
Joshi S, Kaur A, Sharma P, Harjai K, Capalash N. Lactonase-expressing Lactobacillus plantarum NC8 attenuates the virulence factors of multiple drug resistant Pseudomonas aeruginosa in co-culturing environment. World J Microbiol Biotechnol 2014; 30:2241-9. [PMID: 24671300 DOI: 10.1007/s11274-014-1645-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/20/2014] [Indexed: 12/26/2022]
Abstract
Pseudomonas aeruginosa possesses an arcade of both cell-associated and extracellular cytotoxic virulence factors which are regulated by a multi-component quorum sensing system. Many research studies report success of lactonase in combating the pathogenicity of P. aeruginosa but delivery of lactonase remains a challenge. The present study aims at developing a delivery vehicle for lactonase. Lactobacillus plantarum NC8 was used as host for aiiA (Bacillus thuringiensis 4A3 lactonase gene) using pSIP409 expression vector. pSIP409: aiiA construct was stably maintained in L. plantarum NC8. Co-culturing of multi-drug resistant (MDR) clinical isolates of P. aeruginosa and PAO1 with recombinant L. plantarum NC8 led to significant reduction (p < 0.001) in extracellular virulence factors like pyocyanin, protease, elastase and rhamnolipids in P. aeruginosa and also showed significant reduction in adhesion of P. aeruginosa strains to uroepithelial cells in vitro. This study shows the heterologous expression of AiiA lactonase in L. plantarum NC8. Co-culturing of lactonase expressing L. plantarum NC8 with MDR P. aeruginosa strains led to attenuation of their virulence significantly. These results underscore the potential application of recombinant L. plantarum NC8 with anti-quorum sensing properties to control infections caused by multidrug resistant P. aeruginosa.
Collapse
Affiliation(s)
- Sudha Joshi
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India,
| | | | | | | | | |
Collapse
|
36
|
Bioengineered 2′-fucosyllactose and 3-fucosyllactose inhibit the adhesion of Pseudomonas aeruginosa and enteric pathogens to human intestinal and respiratory cell lines. Nutr Res 2013; 33:831-8. [DOI: 10.1016/j.nutres.2013.07.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/06/2013] [Accepted: 07/08/2013] [Indexed: 11/23/2022]
|
37
|
Khailova L, Frank DN, Dominguez JA, Wischmeyer PE. Probiotic administration reduces mortality and improves intestinal epithelial homeostasis in experimental sepsis. Anesthesiology 2013; 119:166-77. [PMID: 23571641 DOI: 10.1097/aln.0b013e318291c2fc] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Recent clinical trials indicate that probiotic administration in critical illness has potential to reduce nosocomial infections and improve clinical outcome. However, the mechanism(s) of probiotic-mediated protection against infection and sepsis remain elusive. The authors evaluated the effects of Lactobacillus rhamnosus GG (LGG) and Bifidobacterium longum (BL) on mortality, bacterial translocation, intestinal epithelial homeostasis, and inflammatory response in experimental model of septic peritonitis. METHODS Cecal ligation and puncture (n=14 per group) or sham laparotomy (n=8 per group) were performed on 3-week-old FVB/N weanling mice treated concomitantly with LGG, BL, or vehicle (orally gavaged). At 24 h, blood and colonic tissue were collected. In survival studies, mice were given probiotics every 24 h for 7 days (LGG, n=14; BL, n=10; or vehicle, n=13; shams, n=3 per group). RESULTS Probiotics significantly improved mortality after sepsis (92 vs. 57% mortality for LGG and 92 vs. 50% mortality for BL; P=0.003). Bacteremia was markedly reduced in septic mice treated with either probiotic compared with vehicle treatment (4.39±0.56 vs. 1.07±1.54; P=0.0001 for LGG; vs. 2.70±1.89; P=0.016 for BL; data are expressed as mean±SD). Sepsis in untreated mice increased colonic apoptosis and reduced colonic proliferation. Probiotics significantly reduced markers of colonic apoptosis and returned colonic proliferation to sham levels. Probiotics led to significant reductions in systemic and colonic inflammatory cytokine expression versus septic animals. Our data suggest that involvement of the protein kinase B pathway (via AKT) and down-regulation of Toll-like receptor 2/Toll-like receptor 4 via MyD88 in the colon may play mechanistic roles in the observed probiotic benefits. CONCLUSIONS Our data demonstrate that probiotic administration at initiation of sepsis can improve survival in pediatric experimental sepsis. The mechanism of this protection involves prevention of systemic bacteremia, perhaps via improved intestinal epithelial homeostasis, and attenuation of the local and systemic inflammatory responses.
Collapse
Affiliation(s)
- Ludmila Khailova
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | | | |
Collapse
|
38
|
Yang J, Liu KX, Qu JM, Wang XD. The changes induced by cyclophosphamide in intestinal barrier and microflora in mice. Eur J Pharmacol 2013; 714:120-4. [DOI: 10.1016/j.ejphar.2013.06.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/30/2013] [Accepted: 06/08/2013] [Indexed: 12/11/2022]
|
39
|
Sugasawa Y, Saga T, Kimura S, Ishii Y, Yamaguchi K, Tateda K. Use of culture-independent analysis to reveal alteration of intestinal microflora by heat-killed Lactobacillus pentosus in a mouse model of endogenous sepsis. J Infect Chemother 2013; 19:673-6. [PMID: 23277389 DOI: 10.1007/s10156-012-0541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/16/2012] [Indexed: 11/24/2022]
Abstract
In this study we evaluated alteration of intestinal microflora by terminal-restriction fragment length polymorphism (T-RFLP) analysis and quantitative PCR (qPCR) for specific microbes. The effects of orally administered heat-killed Lactobacillus pentosus strain b240 (HK-b240) in immunosuppressed mice with endogenous Pseudomonas aeruginosa sepsis was estimated. By T-RFLP analysis, 5 dominant operational taxonomic units (OTUs) including Bacteroides spp. (OTU460) and Lactobacillus spp. (OTU657) were consistently observed, irrespective of treatment, at all time points. A significantly higher population of segmented filamentous bacteria (SFB) was observed by qPCR after 3 weeks of HK-b240 administration; thereafter, the difference was not sustained during immunosuppression and progression of sepsis. Although not significant, Lactobacillus spp. accounted for a larger population in the HK-b240-treated group. In conclusion, this study demonstrated successful application of culture-independent assays for evaluating biological agents by detecting changes in microflora even if the protection was not sufficient to result in significant survival change.
Collapse
Affiliation(s)
- Yasuyuki Sugasawa
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, 5-21-16 Omori-nishi, Ota-ku, Tokyo, 143-8540, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Akatsu H, Iwabuchi N, Xiao JZ, Matsuyama Z, Kurihara R, Okuda K, Yamamoto T, Maruyama M. Clinical effects of probiotic Bifidobacterium longum BB536 on immune function and intestinal microbiota in elderly patients receiving enteral tube feeding. JPEN J Parenter Enteral Nutr 2012. [PMID: 23192454 DOI: 10.1177/0148607112467819] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Immune system function declines with age. We evaluated the effects of supplementation with the probiotic Bifidobacterium longum BB536 on immune function and intestinal microbiota in the elderly. MATERIALS AND METHODS In a double-blind study, 45 elderly patients fed by enteral tube feeding (mean [SD] age 81.7 [8.7] years) were given BB536 (n = 23) or a placebo powder (n = 22) for 12 weeks and were observed for an additional 4 weeks posttreatment. At week 4, all patients received an influenza vaccination (A/H1N1, A/H3N2, and B). Clinical data were assessed, including body temperature, bowel movements, fecal microbiota, and immunological biomarkers in blood. RESULTS BB536 intake significantly increased cell numbers of bifidobacteria in fecal microbiota. There was a tendency toward an increase (P = .085 at week 4 and P = .070 at week 16) of serum IgA in the BB536 group compared with the placebo group. BB536 intake did not significantly affect hemagglutination inhibition (HI) titers in response to the influenza vaccine. Natural killer (NK) cell activity decreased significantly in the placebo group during the intervention but not in the BB536 group. Among those subjects with low NK cell activity (<55%, n = 10 for each group), a significant intergroup difference (P < .05) was observed in the changed values from baseline of NK cell activity at weeks 8 and 12. CONCLUSIONS These results shed new light on the potential of long-term ingestion of BB536 in increasing the cell number of bifidobacteria in intestinal microbiota and modulating immune function in the elderly.
Collapse
Affiliation(s)
- Hiroyasu Akatsu
- Choju Medical Institute, Fukushimura Hospital, Toyohashi, Aichi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Xu M, Wang B, Fu Y, Chen Y, Yang F, Lu H, Chen Y, Xu J, Li L. Changes of fecal Bifidobacterium species in adult patients with hepatitis B virus-induced chronic liver disease. MICROBIAL ECOLOGY 2012; 63:304-313. [PMID: 21814872 DOI: 10.1007/s00248-011-9925-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 07/21/2011] [Indexed: 05/31/2023]
Abstract
The beneficial effects of Bifidobacteria on health have been widely accepted. Patients with chronic liver disease have varying degrees of intestinal microflora imbalance with a decrease of total Bifidobacterial counts. Since different properties have been attributed to different Bifidobacterium species and there is no information available for the detailed changes in the genus Bifidobacterium in patients with chronic liver disease heretofore, it is meaningful to investigate the structure of this bacterium at the species level in these patients. The aim of this study was to characterize the composition of intestinal Bifidobacterium in patients with hepatitis B virus-induced chronic liver disease. Nested-PCR-based denaturing gradient gel electrophoresis (PCR-DGGE), clone library, and real-time quantitative PCR were performed on the fecal samples of 16 patients with chronic hepatitis B (CHB patients), 16 patients with hepatitis B virus-related cirrhosis (HBV cirrhotics), and 15 healthy subjects (Controls). Though there was no significant difference in the diversity among the three groups (P = 0.196), Bifidobacterium dentium seems to be specifically enhanced in patients as the PCR-DGGE profiles showed, which was further validated by clone library and real-time quantitative PCR. In contrast to the B. dentium, Bifidobacterium catenulatum/Bifidobacterium pseudocatenulatum were detected less frequently in the predominant profile and by quantitative PCR in HBV cirrhotics than in the controls, and the level of this species was also significantly different between these two groups (P = 0.023). Although having no quantitative difference among the three groups, Bifidobacterium longum was less commonly detected in HBV cirrhotics than in CHB patients and Controls by quantitative PCR (P = 0.011). Thus, the composition of intestinal Bifidobacterium was deeply altered in CHB and HBV cirrhotic patients with a shift from beneficial species to opportunistic pathogens. The results provide further insights into the dysbiosis of the intestinal microbiota in patients with hepatitis B virus-induced chronic liver disease and might potentially serve as guidance for the probiotics interventions of these diseases.
Collapse
Affiliation(s)
- Min Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The oral cavity of the hospitalized or bedridden elderly is often a reservoir for opportunistic pathogens associated with respiratory diseases. Commensal flora and the host interact in a balanced fashion and oral infections are considered to appear following an imbalance in the oral resident microbiota, leading to the emergence of potentially pathogenic bacteria. The definition of the process involved in colonization by opportunistic respiratory pathogens needs to elucidate the factors responsible for the transition of the microbiota from commensal to pathogenic flora. The regulatory factors influencing the oral ecosystem can be divided into three major categories: the host defense system, commensal bacteria, and external pathogens. In this article, we review the profile of these categories including the intricate cellular interaction between immune factors and commensal bacteria and the disturbance in homeostasis in the oral cavity of hospitalized or bedridden elderly, which facilitates oral colonization by opportunistic respiratory pathogens.
Collapse
Affiliation(s)
- Akio Tada
- Department of Oral Health, National Institute of Public Health, Wako, Saitama, Japan.
| | | |
Collapse
|
43
|
Oral probiotics: Lactobacillus sporogenes for prevention of necrotizing enterocolitis in very low-birth weight infants: a randomized, controlled trial. Eur J Clin Nutr 2011; 65:434-9. [PMID: 21245887 DOI: 10.1038/ejcn.2010.278] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND/OBJECTIVE The identification of probiotic species involved in gut homeostasis and their potential therapeutic benefits have led to an interest in their use for preventing necrotizing enterocolitis (NEC). Although bifidobacterium and lactobacilli sp. have been used to reduce the incidence of NEC in clinical trials. Lactobacillus sporogenes has not been used in the prevention of NEC in very low-birth weight infants yet. The objective of this study was to evaluate the efficacy of orally administered L sporogenes in reducing the incidence and severity of NEC in very low-birth weight (VLBW) infants. SUBJECTS/METHODS A prospective, blinded, randomized controlled trial was conducted in preterm infants with a gestational age of <33 weeks or birth weight of <1500 g. VLBW infants who survived to start enteral feeding were randomized into two groups The infants in the study group were given L. sporogenes with a dose of 350,000,000 c.f.u. added to breast milk or formula, once a day, starting with the first feed until discharged. The infants in the control group were fed without L. sporogenes supplementation. The primary outcome measurement was death or NEC (Bell's stage ≥2). RESULTS A total of 221 infants were studied: 110 in the study group and 111 in the control group. There was no significant difference in the incidence of death or NEC between the groups. Feeding intolerance was significantly lower in the probiotics group than in the control group (44.5% (n: 49) vs 63.1% (n: 70), respectively; P=0.006). CONCLUSIONS L. sporogenes supplementation at the dose of 350,000,000 c.f.u/day is not effective in reducing the incidence of death or NEC in VLBW infants, however, it could improve the feeding tolerance.
Collapse
|
44
|
Delétoile A, Passet V, Aires J, Chambaud I, Butel MJ, Smokvina T, Brisse S. Species delineation and clonal diversity in four Bifidobacterium species as revealed by multilocus sequencing. Res Microbiol 2010; 161:82-90. [PMID: 20060895 DOI: 10.1016/j.resmic.2009.12.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/16/2009] [Accepted: 12/22/2009] [Indexed: 11/18/2022]
Abstract
The genus Bifidobacterium comprises several species that are important contributors to the gut microbiome, with some strains having beneficial health effects. Understanding the evolutionary emergence of advantageous biological properties requires knowledge of the genetic diversity and clonal structure of species. We sequenced seven housekeeping genes in 119 Bifidobacterium strains of Bifidobacterium animalis, Bifidobacterium bifidum, Bifidobacterium breve and Bifidobacterium longum. Phylogenetic analysis of concatenated sequences delineated sequence clusters that correspond to previously named taxa, and suggested that B. longum subsp. infantis is a nascent lineage emerging from within B. longum subsp. longum. Clear traces of recombination among distant bifidobacterial species indicate leaky species borders and warn against the practice of single gene-based identification. Multilocus sequence typing achieved precise strain genotyping, with discrimination indices above 99% in B. bifidum, B. breve and B. longum, providing a powerful tool for strain traceability, colonization dynamics and ecological studies. Frequent homologous recombination accelerates clonal diversification and may facilitate the transfer of biological properties among bifidobacterial strains.
Collapse
Affiliation(s)
- Alexis Delétoile
- Institut Pasteur, Genotyping of Pathogens and Public Health (PF8), 28 rue du Dr Roux, F-75724 Paris Cedex, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Abe F, Muto M, Yaeshima T, Iwatsuki K, Aihara H, Ohashi Y, Fujisawa T. Safety evaluation of probiotic bifidobacteria by analysis of mucin degradation activity and translocation ability. Anaerobe 2009; 16:131-6. [PMID: 19638311 DOI: 10.1016/j.anaerobe.2009.07.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 07/17/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
Although probiotic-containing nutrient formulas for infants and toddlers have become very popular, some adverse effects related to translocation of probiotic strains have been reported. We assessed the safety of probiotic bifidobacteria that have been used in clinical investigations and proven to have beneficial effects, by analyzing mucin degradation activity and translocation ability. Mucin degradation activities of three probiotic bifidobacteria strains; Bifidobacterium longum BB536, Bifidobacterium breve M-16V and Bifidobacterium infantis M-63, were evaluated by three in vitro tests comprising growth in liquid medium, SDS-PAGE analysis of degraded mucin residues, and degradation assay in Petri dish. All test strains and control type strains failed to grow in the liquid medium containing mucin as the only carbon source, although good growth was obtained from fecal sample. In the SDS-PAGE analyses of mucin residues and observation of mucinolytic zone in agar plate, the three test strains also showed no mucin degradation activity as the type strains, although fecal sample yielded positive results. In another study, a high dose of B. longum BB536 was administered orally to conventional mice to examine the translocation ability. No translocation into blood, liver, spleen, kidney and mesenteric lymph nodes was observed and no disturbance of epithelial cells and mucosal layer in the ileum, cecum and colon was detected, indicating that the test strain had no translocation ability and induced no damage to intestinal surface. These results resolve the concern about bacterial translocation when using bifidobacteria strains as probiotics, which have been tested in various clinical trials, supporting the continuous use of these probiotic strains without anxiety.
Collapse
Affiliation(s)
- Fumiaki Abe
- Food Science & Technology Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome Higashihara, Zama-City, Kanagawa Prefecture 228-8583, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Abe F, Yaeshima T, Iwatsuki K. Safety Evaluation of Two Probiotic Bifidobacterial Strains, Bifidobacterium breve M-16V and Bifidobacterium infantis M-63, by Oral Toxicity Tests Using Rats. Biosci Microflora 2009. [DOI: 10.12938/bifidus.28.7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Fumiaki Abe
- Food Science & Technology Institute, Morinaga Milk Industry Co., Ltd
| | - Tomoko Yaeshima
- Food Science & Technology Institute, Morinaga Milk Industry Co., Ltd
| | - Keiji Iwatsuki
- Food Science & Technology Institute, Morinaga Milk Industry Co., Ltd
| |
Collapse
|
47
|
Probiotic bacteria influence the composition and function of the intestinal microbiota. Interdiscip Perspect Infect Dis 2008; 2008:175285. [PMID: 19277099 PMCID: PMC2648622 DOI: 10.1155/2008/175285] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 09/29/2008] [Indexed: 02/08/2023] Open
Abstract
Probiotics have a range of proposed health benefits for the consumer, which may include modulating the levels of beneficial elements in the microbiota. Recent investigations using molecular approaches have revealed a human intestinal microbiota comprising over 1000 phylotypes. Mechanisms whereby probiotics impact on the intestinal microbiota include competition for substrates, direct antagonism by inhibitory substances, competitive exclusion, and potentially host-mediated effects such as improved barrier function and altered immune response. We now have the microbial inventories and genetic blueprints to begin tackling intestinal microbial ecology at an unprecedented level of detail, aided by the understanding that dietary components may be utilized differentially by individual phylotypes. Controlled intervention studies in humans, utilizing latest molecular technologies, are required to consolidate evidence for bacterial species that impact on the microbiota. Mechanistic insights should be provided by metabolomics and other analytical techniques for small molecules. Rigorous characterization of interactions between the diet, microbiota, and probiotic bacteria will provide new opportunities for modulating the microbiota towards improving human health.
Collapse
|
48
|
Lin HC, Hsu CH, Chen HL, Chung MY, Hsu JF, Lien RI, Tsao LY, Chen CH, Su BH. Oral probiotics prevent necrotizing enterocolitis in very low birth weight preterm infants: a multicenter, randomized, controlled trial. Pediatrics 2008; 122:693-700. [PMID: 18829790 DOI: 10.1542/peds.2007-3007] [Citation(s) in RCA: 321] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The goal was to investigate the efficacy of orally administered probiotics in preventing necrotizing enterocolitis for very low birth weight preterm infants. METHODS A prospective, blinded, randomized, multicenter controlled trial was conducted at 7 NICUs in Taiwan, to evaluate the beneficial effects of probiotics in necrotizing enterocolitis among very low birth weight infants (birth weight: <1500 g). Very low birth weight infants who survived to start enteral feeding were eligible and were assigned randomly to 2 groups after parental informed consent was obtained. Infants in the study group were given Bifidobacterium bifidum and Lactobacillus acidophilus, added to breast milk or mixed feeding (breast milk and formula), twice daily for 6 weeks. Infants in the control group were fed with breast milk or mixed feeding. The clinicians caring for the infants were blinded to the group assignment. The primary outcome measurement was death or necrotizing enterocolitis (Bell's stage >or=2). RESULTS Four hundred thirty-four infants were enrolled, 217 in the study group and 217 in the control group. The incidence of death or necrotizing enterocolitis (stage >or=2) was significantly lower in the study group (4 of 217 infants vs 20 of 217 infants). The incidence of necrotizing enterocolitis (stage >or=2) was lower in the study group, compared with the control group (4 of 217 infants vs 14 of 217 infants). No adverse effect, such as sepsis, flatulence, or diarrhea, was noted. CONCLUSION Probiotics, in the form of Bifidobacterium and Lactobacillus, fed enterally to very low birth weight preterm infants for 6 weeks reduced the incidence of death or necrotizing enterocolitis.
Collapse
Affiliation(s)
- Hung-Chih Lin
- Department of Pediatrics and School of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|