1
|
Zhao G, Wang J, Tian Y, Wang H, Huang X. Nitroreductase DnrA, Utilizing Strategies Secreted in Bacillus sp. Za and SCK6, Enhances the Detoxification of Acifluorfen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15633-15642. [PMID: 38950134 DOI: 10.1021/acs.jafc.4c03397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The residues of acifluorfen present a serious threat to the agricultural environment and sensitive crops. DnrA, a nitroreductase, is an intracellular enzyme that restricts the application of wild-type Bacillus sp. Za in environmental remediation. In this study, two strategies were employed to successfully secrete DnrA in strains SCK6 and Za, and the secretion expression conditions were optimized to achieve rapid degradation of acifluorfen. Under the optimal conditions, the relative activities of the DnrA supernatant from strains SCK6-D and Za-W were 3.06-fold and 3.53-fold higher than that of strain Za, respectively. While all three strains exhibited similar tolerance to different concentrations of acifluorfen, strains SCK6-D and Za-W demonstrated significantly faster degradation efficiency compared to strain Za. Furthermore, the DnrA supernatant from strains SCK6-D and Za-W could effectively reduce the toxicity of acifluorfen on maize and cucumber seedlings. This study provides an effective technical approach for the rapid degradation of acifluorfen.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Juanjuan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Yanning Tian
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Hancheng Wang
- Guizhou Academy of Tobacco Science, Guiyang, Guizhou 550081, PR China
| | - Xing Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
2
|
Wang Q, Guo H, Mao W, Qian X, Liu Y. The Oral Delivery System of Modified GLP-1 by Probiotics for T2DM. Pharmaceutics 2023; 15:pharmaceutics15041202. [PMID: 37111687 PMCID: PMC10143976 DOI: 10.3390/pharmaceutics15041202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The glucagon-like peptide-1 (GLP-1) is a peptide with incretin activity and plays an important role in glycemic control as well as the improvement of insulin resistance in type 2 diabetes mellitus (T2DM). However, the short half-life of the native GLP-1 in circulation poses difficulties for clinical practice. To improve the proteolytic stability and delivery properties of GLP-1, a protease-resistant modified GLP-1 (mGLP-1) was constructed with added arginine to ensure the structural integrity of the released mGLP-1 in vivo. The model probiotic Lactobacillus plantarum WCFS1 was chosen as the oral delivery vehicle with controllable endogenous genetic tools driven for mGLP-1 secretory constitutive expression. The feasibility of our design was explored in db/db mice which showed an improvement in diabetic symptoms related to decreased pancreatic glucagon, elevated pancreatic β-cell proportion, and increased insulin sensitivity. In conclusion, this study provides a novel strategy for the oral delivery of mGLP-1 and further probiotic transformation.
Collapse
Affiliation(s)
- Qing Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haixin Guo
- Shanghai TriApex Biotechnology Co., Ltd., Shanghai 201315, China
| | - Wenwei Mao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiuping Qian
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yangang Liu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Zhang Y, Yang L, Zhang J, Huang K, Sun X, Yang Y, Wang T, Zhang Q, Zou Z, Jin M. Oral or intranasal immunization with recombinant Lactobacillus plantarum displaying head domain of Swine Influenza A virus hemagglutinin protects mice from H1N1 virus. Microb Cell Fact 2022; 21:185. [PMID: 36085207 PMCID: PMC9461438 DOI: 10.1186/s12934-022-01911-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Swine influenza A virus (swIAV) is a major concern for the swine industry owing to its highly contagious nature and acute viral disease. Currently, most commercial swIAV vaccines are traditional inactivated virus vaccines. The Lactobacillus plantarum-based vaccine platform is a promising approach for mucosal vaccine development. Oral and intranasal immunisations have the potential to induce a mucosal immune response, which confers protective immunity. The aim of this study was to evaluate the probiotic potential and adhesion ability of three L. plantarum strains. Furthermore, a recombinant L. plantarum strain expressing the head domain of swIAV antigen HA1 was constructed and evaluated for its ability to prevent swIAV infection. RESULTS The three L. plantarum strains isolated from healthy pig faecal samples maintained the highest survival rate when incubated at pH 3 and at bile salt concentration of 0.3%. They also showed high adherence to intestinal cells. All three L. plantarum strains were monitored in live mice, and no major differences in transit time were observed. Recombinant L. plantarum expressed swIAV HA1 protein (pSIP401-HA1-ZN-3) and conferred effective mucosal, cellular and systemic immune responses in the intestine as well as in the upper respiratory airways of mice. In conclusion, the oral and intranasal administration of L. plantarum strain pSIP401-HA1-ZN-3 in mice induced mucosal immunity and most importantly, provided protection against lethal influenza virus challenge. CONCLUSION In summary, these findings suggest that the engineered L. plantarum strain pSIP401-HA1-ZN-3 can be considered as an alternative approach for developing a novel vaccine during an swine influenza A pandemic.
Collapse
Affiliation(s)
- Yufei Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Li Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiali Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xiaomei Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ying Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ting Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qiang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zhong Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China. .,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
4
|
Mathiesen G, Axelsson L, Eijsink VGH. Heterologous Protein Production in Lactobacillus (plantarum) Using pSIP Vectors. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2406:205-217. [PMID: 35089559 DOI: 10.1007/978-1-0716-1859-2_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While lactobacilli are not generally regarded as efficient cell factories for heterologous proteins, these food-grade Gram-positive bacteria are attractive as expression hosts for medicinal proteins. Furthermore, tools have been developed not only to secrete the protein of interest, but also to anchor the protein to the cell membrane or the cell wall. Research efforts aimed at the production and surface display of complex vaccine proteins have shown that lactobacilli are capable of producing heterologous proteins that are otherwise difficult to produce in soluble form. Many recent studies on expressing a wide variety of proteins in lactobacilli have employed the pSIP vector system, which offers a wide range of possibilities for inducible expression, including various options for secretion and surface anchoring. The modular nature of the pSIP vectors allows for rapid screening of multiple expression strategies. This chapter describes the pSIP vector system and how it can be used to accomplish protein expression in lactobacilli.
Collapse
Affiliation(s)
- Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Lars Axelsson
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| |
Collapse
|
5
|
Wigner P, Bijak M, Saluk-Bijak J. Probiotics in the Prevention of the Calcium Oxalate Urolithiasis. Cells 2022; 11:cells11020284. [PMID: 35053400 PMCID: PMC8773937 DOI: 10.3390/cells11020284] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/18/2022] Open
Abstract
Nephrolithiasis ranks third among urological diseases in terms of prevalence, making up about 15% of cases. The continued increase in the incidence of nephrolithiasis is most probably due to changes in eating habits (high protein, sodium, and sugar diets) and lifestyle (reduced physical activity) in all developed countries. Some 80% of all kidney stones cases are oxalate urolithiasis, which is also characterized by the highest risk of recurrence. Frequent relapses of nephrolithiasis contribute to severe complications and high treatment costs. Unfortunately, there is no known effective way to prevent urolithiasis at present. In cases of diet-related urolithiasis, dietary changes may prevent recurrence. However, in some patients, the condition is unrelated to diet; in such cases, there is evidence to support the use of stone-related medications. Interestingly, a growing body of evidence indicates the potential of the microbiome to reduce the risk of developing renal colic. Previous studies have primarily focused on the use of Oxalobacterformigenes in patients with urolithiasis. Unfortunately, this bacterium is not an ideal probiotic due to its antibiotic sensitivity and low pH. Therefore, subsequent studies sought to find bacteria which are capable of oxalate degradation, focusing on well-known probiotics including Lactobacillus and Bifidobacterium strains, Eubacterium lentum, Enterococcus faecalis, and Escherichia coli.
Collapse
Affiliation(s)
- Paulina Wigner
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland;
- Correspondence:
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland;
| |
Collapse
|
6
|
Chen B, Loo BZL, Cheng YY, Song P, Fan H, Latypov O, Kittelmann S. Genome-wide high-throughput signal peptide screening via plasmid pUC256E improves protease secretion in Lactiplantibacillus plantarum and Pediococcus acidilactici. BMC Genomics 2022; 23:48. [PMID: 35021997 PMCID: PMC8756648 DOI: 10.1186/s12864-022-08292-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/03/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Proteases catalyze the hydrolysis of peptide bonds of proteins, thereby improving dietary protein digestibility, nutrient availability, as well as flavor and texture of fermented food and feed products. The lactobacilli Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) and Pediococcus acidilactici are widely used in food and feed fermentations due to their broad metabolic capabilities and safe use. However, extracellular protease activity in these two species is low. Here, we optimized protease expression and secretion in L. plantarum and P. acidilactici via a genetic engineering strategy. RESULTS To this end, we first developed a versatile and stable plasmid, pUC256E, which can propagate in both L. plantarum and P. acidilactici. We then confirmed expression and secretion of protease PepG1 as a functional enzyme in both strains with the aid of the previously described L. plantarum-derived signal peptide LP_0373. To further increase secretion of PepG1, we carried out a genome-wide experimental screening of signal peptide functionality. A total of 155 predicted signal peptides originating from L. plantarum and 110 predicted signal peptides from P. acidilactici were expressed and screened for extracellular proteolytic activity in the two different strains, respectively. We identified 12 L. plantarum signal peptides and eight P. acidilactici signal peptides that resulted in improved yield of secreted PepG1. No significant correlation was found between signal peptide sequence properties and its performance with PepG1. CONCLUSION The vector developed here provides a powerful tool for rapid experimental screening of signal peptides in both L. plantarum and P. acidilactici. Moreover, the set of novel signal peptides identified was widely distributed across strains of the same species and even across some closely related species. This indicates their potential applicability also for the secretion of other proteins of interest in other L. plantarum or P. acidilactici host strains. Our findings demonstrate that screening a library of homologous signal peptides is an attractive strategy to identify the optimal signal peptide for the target protein, resulting in improved protein export.
Collapse
Affiliation(s)
- Binbin Chen
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Bryan Zong Lin Loo
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Ying Ying Cheng
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
| | - Peng Song
- Wilmar International Limited, Wilmar (Shanghai) Biotechnology Research and Development Center Co. Ltd., Shanghai, China
| | - Huan Fan
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore
- Present Address: Huan Fan, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, People's Republic of China
| | - Oleg Latypov
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore.
| | - Sandra Kittelmann
- Wilmar International Limited, WIL@NUS Corporate Laboratory, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Han D, Yan Q, Liu J, Jiang Z, Yang S. Transcriptomic Analysis of Pediococcus pentosaceus Reveals Carbohydrate Metabolic Dynamics Under Lactic Acid Stress. Front Microbiol 2021; 12:736411. [PMID: 34603267 PMCID: PMC8481956 DOI: 10.3389/fmicb.2021.736411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Stress physiology of lactic acid bacteria (LAB) is crucial to their ecological fitness and applicational implications. As a self-imposed stress, lactic acid is the major final metabolic product of LAB and its accumulation can be detrimental to bacterial cells. However, the relationship between LAB carbohydrate metabolism, the primary energy supplying bioactivities, and lactic acid stress responses is not fully understood. Pediococcus pentosaceus has been recognized as an important cell factory and demonstrated probiotic activities. This study investigated behavior of P. pentosaceus under lactic and acetic acid stresses, particularly with supplementations of metabolizable carbohydrates. Lactic and acetic acid retain similar growth stagnation effect, and both resulted in cell death in P. pentosaceus. All metabolizable carbohydrates improved bacterial survival compared to lactic acid control, while xylooligosaccharides (XOS) exerted the highest viability protective efficacy, 0.82 log CFU/mL higher population survived than other carbohydrates after 30 h of incubation. RNA-seq pipeline showcased the intensive global transcriptional responses of P. pentosaceus to lactic acid, which caused significant regulations (more than 2 Log2 fold) of 16.5% of total mRNA coding genes. Glucose mainly led to gene suppressions (83 genes) while XOS led to gene up-regulations (19 genes) under lactic acid stress. RT-qPCR study found that RNA polymerase-centered transcriptional regulation is the primary regulatory approach in evaluated culture conditions. The synergy between lactic acid stress and carbohydrate metabolism should be attentively contemplated in future studies and applications.
Collapse
Affiliation(s)
- Dong Han
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing, China
| | - Jun Liu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shaoqing Yang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
The "beauty in the beast"-the multiple uses of Priestia megaterium in biotechnology. Appl Microbiol Biotechnol 2021; 105:5719-5737. [PMID: 34263356 PMCID: PMC8390425 DOI: 10.1007/s00253-021-11424-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023]
Abstract
Abstract Over 30 years, the Gram-positive bacterium Priestia megaterium (previously known as Bacillus megaterium) was systematically developed for biotechnological applications ranging from the production of small molecules like vitamin B12, over polymers like polyhydroxybutyrate (PHB) up to the in vivo and in vitro synthesis of multiple proteins and finally whole-cell applications. Here we describe the use of the natural vitamin B12 (cobalamin) producer P. megaterium for the elucidation of the biosynthetic pathway and the subsequent systematic knowledge-based development for production purposes. The formation of PHB, a natural product of P. megaterium and potential petro-plastic substitute, is covered and discussed. Further important biotechnological characteristics of P. megaterium for recombinant protein production including high protein secretion capacity and simple cultivation on value-added carbon sources are outlined. This includes the advanced system with almost 30 commercially available expression vectors for the intracellular and extracellular production of recombinant proteins at the g/L scale. We also revealed a novel P. megaterium transcription-translation system as a complementary and versatile biotechnological tool kit. As an impressive biotechnology application, the formation of various cytochrome P450 is also critically highlighted. Finally, whole cellular applications in plant protection are completing the overall picture of P. megaterium as a versatile giant cell factory. Key points • The use of Priestia megaterium for the biosynthesis of small molecules and recombinant proteins through to whole-cell applications is reviewed. • P. megaterium can act as a promising alternative host in biotechnological production processes.
Collapse
|
9
|
Tran AM, Unban K, Kanpiengjai A, Khanongnuch C, Mathiesen G, Haltrich D, Nguyen TH. Efficient Secretion and Recombinant Production of a Lactobacillal α-amylase in Lactiplantibacillus plantarum WCFS1: Analysis and Comparison of the Secretion Using Different Signal Peptides. Front Microbiol 2021; 12:689413. [PMID: 34194417 PMCID: PMC8236982 DOI: 10.3389/fmicb.2021.689413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022] Open
Abstract
Lactic acid bacteria (LAB) have been used as starter cultures and producers of enzymes, antimicrobial peptides or metabolites that contribute to the flavor, texture and safety of food products. Lactiplantibacillus plantarum, one of the best-studied LAB, is considered as safe and effective cell factory for food applications. In this study, our aim was to use L. plantarum as the producer for high levels of a food-grade lactobacillal α-amylase, which has potential applications in food, fermentation and feed industries. The native form of an α-amylase (AmyL) from L. plantarum S21, an amylolytic LAB isolated from Thai fermented rice noodles, was expressed in L. plantarum WCFS1 using the pSIP expression system. The secretion of the α-amylase was driven by the native signal peptides of the α-amylases from L. plantarum S21 (SP_AmyL) and Lactobacillus amylovorus NRRL B-4549 (SP_AmyA), as well as by three Sec-type signal peptides derived from L. plantarum WCFS1; Lp_2145, Lp_3050, and Lp_0373. Among the tested signal peptides, Lp_2145 appears to be the best signal peptide giving the highest total and extracellular enzymatic activities of α-amylase AmyL from L. plantarum S21, which were 13.1 and 8.1 kU/L of fermentation, respectively. These yields were significantly higher than the expression and secretion in L. plantarum WCFS1 using the native signal peptide SP_AmyL, resulting in 6.2- and 5.4-fold increase in total and extracellular activities of AmyL, respectively. In terms of secretion efficiency, Lp_0373 was observed as the most efficient signal peptide among non-cognate signal peptides for the secretion of AmyL. Real-time reverse-transcriptase quantitative PCR (RT-qPCR) was used to estimate the mRNA levels of α-amylase transcript in each recombinant strain. Relative quantification by RT-qPCR indicated that the strain with the Lp_2145 signal peptide-containing construct had the highest mRNA levels and that the exchange of the signal peptide led to a change in the transcript level of the target gene.
Collapse
Affiliation(s)
- Anh-Minh Tran
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.,Department of Biology, Faculty of Basic Sciences, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Kridsada Unban
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Apinun Kanpiengjai
- Division of Biochemistry and Biochemical Technology, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chartchai Khanongnuch
- Division of Biotechnology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thu-Ha Nguyen
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
10
|
K-Ras Peptide Mimotope Induces Antigen Specific Th1 and B-Cell Immune Responses against G12A-Mutated K-Ras Antigen in Balb/c Mice. Vaccines (Basel) 2021; 9:vaccines9030195. [PMID: 33652552 PMCID: PMC7996567 DOI: 10.3390/vaccines9030195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
KRAS G12A somatic point mutation in adenocarcinomas is categorized clinically as ineligibility criteria for anti-epidermal growth factor receptor (EGFR) monoclonal antibody therapies. In this study, a modified G12A-K-ras epitope (139A) with sequence-specific modifications to improve immunogenicity was developed as a potential vaccine against G12A-mutant KRAS cancers. Additionally, coupling of the 139A epitope with a tetanus toxoid (TTD) universal T-cell epitope to improve antigenicity was also reported. To facilitate convenient oral administration, Lactococcus lactis, which possesses innate immunomodulatory properties, was chosen as a live gastrointestinal delivery vehicle. Recombinant L. lactis strains secreting a G12A mutated K-ras control and 139A with and without TTD fusion were generated for comparative immunogenicity assessment. BALB/c mice were immunized orally, and high survivability of L. lactis passage through the gastrointestinal tract was observed. Elevations in B-cell count with a concomitant titre of antigen-specific IgG and interferon-γ secreting T-cells were observed in the 139A treated mice group. Interestingly, an even higher antigen-specific IgA response and interferon-γ secreting T-cell counts were observed in 139A-TTD mice group upon re-stimulation with the G12A mutated K-ras antigen. Collectively, these results indicated that an antigen-specific immune response was successfully stimulated by 139A-TTD vaccine, and a TTD fusion was successful in further enhancing the immune responses.
Collapse
|
11
|
Shi L, Liu H, Gao S, Weng Y, Zhu L. Enhanced Extracellular Production of IsPETase in Escherichia coli via Engineering of the pelB Signal Peptide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2245-2252. [PMID: 33576230 DOI: 10.1021/acs.jafc.0c07469] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Poly(ethylene terephthalate) (PET) is one of the most commonly used plastics worldwide and its accumulation in the environment is a global problem. PETase from Ideonella sakaiensis 201-F6 was reported to exhibit higher hydrolytic activity and specificity for PET than other enzymes at ambient temperature. Enzymatic degradation of PET using PETase provides an attractive approach for plastic degradation and recycling. In this work, extracellular PETase was achieved by Escherichia coli BL21 using a Sec-dependent translocation signal peptide, pelB, for secretion. Furthermore, engineering of the pelB through random mutagenesis and screening was performed to improve the secretion efficiency of PETase. Evolved pelB enabled higher PETase secretion by up to 1.7-fold. The improved secretion of PETase led to more efficient hydrolysis of the PET model compound, bis (2-hydroxyethyl) terephthalic acid (BHET), PET powder, and PET film. Our study presents the first example of the increasing secretion of PETase by an engineered signal peptide, providing a promising approach to obtain extracellular PETase for efficient enzymatic degradation of PET.
Collapse
Affiliation(s)
- Lixia Shi
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Haifeng Liu
- Institute of Chemistry, University of Graz, Heinrichstrasse 28, Graz 8010, Austria
| | - Songfeng Gao
- University of Chinese Academy of Sciences, Beijing 100049, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yunxuan Weng
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
| | - Leilei Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
12
|
Ben‐David Y, Moraïs S, Bayer EA, Mizrahi I. Rapid adaptation for fibre degradation by changes in plasmid stoichiometry within Lactobacillus plantarum at the synthetic community level. Microb Biotechnol 2020; 13:1748-1764. [PMID: 32639625 PMCID: PMC7533337 DOI: 10.1111/1751-7915.13584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/11/2020] [Accepted: 04/12/2020] [Indexed: 12/19/2022] Open
Abstract
The multi-enzyme cellulosome complex can mediate the valorization of lignocellulosic biomass into soluble sugars that can serve in the production of biofuels and valuable products. A potent bacterial chassis for the production of active cellulosomes displayed on the cell surface is the bacterium Lactobacillus plantarum, a lactic acid bacterium used in many applications. Here, we developed a methodological pipeline to produce improved designer cellulosomes, using a cell-consortium approach, whereby the different components self-assemble on the surface of L. plantarum. The pipeline served as a vehicle to select and optimize the secretion efficiency of potent designer cellulosome enzyme components, to screen for the most efficient enzymatic combinations and to assess attempts to grow the engineered bacterial cells on wheat straw as a sole carbon source. Using this strategy, we were able to improve the secretion efficiency of the selected enzymes and to secrete a fully functional high-molecular-weight scaffoldin component. The adaptive laboratory process served to increase significantly the enzymatic activity of the most efficient cell consortium. Internal plasmid re-arrangement towards a higher enzymatic performance attested for the suitability of the approach, which suggests that this strategy represents an efficient way for microbes to adapt to changing conditions.
Collapse
Affiliation(s)
- Yonit Ben‐David
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovot7610001Israel
| | - Sarah Moraïs
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovot7610001Israel
- Department of Life SciencesNational Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐Sheva8499000Israel
| | - Edward A. Bayer
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovot7610001Israel
| | - Itzhak Mizrahi
- Department of Life SciencesNational Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐Sheva8499000Israel
| |
Collapse
|
13
|
Promchai R, Visessanguan W, Luxananil P. An efficient ABC transporter signal peptide directs heterologous protein secretion in food-grade hosts. World J Microbiol Biotechnol 2020; 36:154. [PMID: 32949270 DOI: 10.1007/s11274-020-02932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/14/2020] [Indexed: 11/24/2022]
Abstract
An efficient expression-secretion system for heterologous protein production in food-grade hosts, Lactobacillus plantarum and Bacillus subtilis, is still required to broaden their applications. The optimal signal peptide compatible with both the desired protein and the target host is important for the system. Here, we constructed new expression-secretion vectors to be used in both bacteria. A natural plasmid originating from food-grade L. plantarum BCC9546 was used as a core vector combined with a strong constitutive promoter, L-ldh promoter, and various signal peptides from several types of L. plantarum proteins: ABC transporter, cell wall-associated and extracellular proteins. A gene encoding 88-kDa amylase isolated from starch-related L. plantarum TBRC470 was used as a gene model to evaluate the systems. By comparing the amounts of secreted amylase from the recombinant strains to that of wild type, all signal peptides gave higher yields of secreted amylase in recombinant B. subtilis. Interestingly, two ABC transporter signal peptides from glutamine and mannose ABC transporters provided noticeably high levels of secreted amylase in recombinant L. plantarum. Moreover, these signal peptides also gave high yields of secreted amylase in recombinant B. subtilis. From the results, the signal peptide of glutamine ABC transporter, which functions in essential amino acid transportation that is a precursor for synthesis of nitrogen-containing compounds and nitrogen homeostasis, has a potential use in development of an efficient expression-secretion system for heterologous protein production in both food-grade hosts.
Collapse
Affiliation(s)
- Ruangurai Promchai
- Microbial Cell Factory Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang, 12120, Pathumthani, Thailand
| | - Wonnop Visessanguan
- Microbial Cell Factory Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang, 12120, Pathumthani, Thailand
| | - Plearnpis Luxananil
- Microbial Cell Factory Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Road, Klong 1, Klong Luang, 12120, Pathumthani, Thailand.
| |
Collapse
|
14
|
Anchoring of heterologous proteins in multiple Lactobacillus species using anchors derived from Lactobacillus plantarum. Sci Rep 2020; 10:9640. [PMID: 32541679 PMCID: PMC7295990 DOI: 10.1038/s41598-020-66531-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Members of the genus Lactobacillus have a long history in food applications and are considered as promising and safe hosts for delivery of medically interesting proteins. We have assessed multiple surface anchors derived from Lactobacillus plantarum for protein surface display in multiple Lactobacillus species, using a Mycobacterium tuberculosis hybrid antigen as test protein. The anchors tested were a lipoprotein anchor and two cell wall anchors, one non-covalent (LysM domain) and one covalent (sortase-based anchoring using the LPXTG motif). Thus, three different expression vectors for surface-anchoring were tested in eight Lactobacillus species. When using the LPXTG and LysM cell wall anchors, surface display, as assessed by flow cytometry and fluorescence microscopy, was observed in all species except Lactobacillus acidophilus. Use of the cell membrane anchor revealed more variation in the apparent degree of surface-exposure among the various lactobacilli. Overproduction of the secreted and anchored antigen impaired bacterial growth rate to extents that varied among the lactobacilli and were dependent on the type of anchor. Overall, these results show that surface anchors derived from L. plantarum are promising candidates for efficient anchoring of medically interesting proteins in other food grade Lactobacillus species.
Collapse
|
15
|
Cell Wall Anchoring of a Bacterial Chitosanase in Lactobacillus plantarum Using a Food-Grade Expression System and Two Versions of an LP TG Anchor. Int J Mol Sci 2020; 21:ijms21113773. [PMID: 32471049 PMCID: PMC7312796 DOI: 10.3390/ijms21113773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 01/16/2023] Open
Abstract
Lactic acid bacteria (LAB) have attracted increasing interest recently as cell factories for the production of proteins as well as a carrier of proteins that are of interest for food and therapeutic applications. In this present study, we exploit a lactobacillal food-grade expression system derived from the pSIP expression vectors using the alr (alanine racemase) gene as the selection marker for the expression and cell-surface display of a chitosanase in Lactobacillus plantarum using two truncated forms of a LP × TG anchor. CsnA, a chitosanase from Bacillus subtilis 168 (ATCC23857), was fused to two different truncated forms (short-S and long-L anchors) of an LP × TG anchor derived from Lp_1229, a key-protein for mannose-specific adhesion in L. plantarum WCFS1. The expression and cell-surface display efficiency driven by the food-grade alr-based system were compared with those obtained from the erm-based pSIP system in terms of enzyme activities and their localisation on L. plantarum cells. The localization of the protein on the bacterial cell surface was confirmed by flow cytometry and immunofluorescence microscopy. The highest enzymatic activity of CsnA-displaying cells was obtained from the strain carrying the alr-based expression plasmid with short cell wall anchor S. However, the attachment of chitosanase on L. plantarum cells via the long anchor L was shown to be more stable compared with the short anchor after several repeated reaction cycles. CsnA displayed on L. plantarum cells is catalytically active and can convert chitosan into chito-oligosaccharides, of which chitobiose and chitotriose are the main products.
Collapse
|
16
|
Ki MR, Pack SP. Fusion tags to enhance heterologous protein expression. Appl Microbiol Biotechnol 2020; 104:2411-2425. [DOI: 10.1007/s00253-020-10402-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
|
17
|
Tseng YH, Hsieh CC, Kuo TY, Liu JR, Hsu TY, Hsieh SC. Construction of a Lactobacillus plantarum Strain Expressing the Capsid Protein of Porcine Circovirus Type 2d (PCV2d) as an Oral Vaccine. Indian J Microbiol 2019; 59:490-499. [PMID: 31762513 DOI: 10.1007/s12088-019-00827-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is a pathogenic virus that causes high rates of porcine death, resulting in severe economic losses to the swine industry. In recent years, the prevalence of PCV2d genotype infection in pigs has increased, but most commercially available vaccines were developed against the PCV2a strain and do not ensure complete protection from PCV2d. Here, we first constructed an expression vector for the antigenic ORF2-encoded capsid protein of PCV2d (pLp3050-His6-tag-capsid). We then utilized Lactobacillus plantarum to express the protein at mucosal sites in orally vaccinated mice. After transducing L. plantarum with pLp3050-His6-tag-capsid, the expressed protein could be found in cell wall and cell-free supernatant fractions by Western blotting. Using flow cytometry, we found that L. plantarum cells with surface-displayed capsid protein increased with time after SppIP induction. Finally, mice that were orally immunized 18 times with capsid-expressing L. plantarum showed increased levels of capsid-specific sIgA and virus neutralizing activity at mucosal sites, suggesting mucosal immunity had been stimulated by the vaccine. Overall, our findings demonstrate the feasibility and utility of a PCV2d-based vaccine, which may be of great value in porcine agriculture.
Collapse
Affiliation(s)
- Yi-Han Tseng
- 1Institute of Food Science and Technology, National Taiwan University, No. 1. Section 4 Roosevelt Road, Taipei, 10617 Taiwan, ROC
| | - Cheng-Chu Hsieh
- 2Biologics Division, Animal Health Research Institute, Council of Agriculture, Executive Yuan, New Taipei City, 25158 Taiwan, ROC
| | - Tsun-Yung Kuo
- 3Department of Biotechnology and Animal Science, National Ilan University, Yilan City, 26047 Taiwan, ROC
| | - Je-Ruei Liu
- 4Institute of Biotechnology, National Taiwan University, No. 1. Section 4 Roosevelt Road, Taipei, 10617 Taiwan, ROC
| | - Ting-Yu Hsu
- 5Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, 10617 Taiwan, ROC
| | - Shu-Chen Hsieh
- 1Institute of Food Science and Technology, National Taiwan University, No. 1. Section 4 Roosevelt Road, Taipei, 10617 Taiwan, ROC
| |
Collapse
|
18
|
Liu Y, Shi C, Li D, Chen X, Li J, Zhang Y, Yuan H, Li Y, Lu F. Engineering a highly efficient expression system to produce BcaPRO protease in Bacillus subtilis by an optimized promoter and signal peptide. Int J Biol Macromol 2019; 138:903-911. [DOI: 10.1016/j.ijbiomac.2019.07.175] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 01/03/2023]
|
19
|
Expression in Lactococcus lactis of a β-1,3-1,4-glucanase gene from Bacillus sp. SJ-10 isolated from fermented fish. Protein Expr Purif 2019; 162:18-23. [DOI: 10.1016/j.pep.2019.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/15/2019] [Accepted: 05/17/2019] [Indexed: 02/07/2023]
|
20
|
Suphatpahirapol C, Nguyen TH, Tansiri Y, Yingchutrakul Y, Roytrakul S, Nitipan S, Wajjwalku W, Haltrich D, Prapong S, Keawsompong S. Expression of a leptospiral leucine-rich repeat protein using a food-grade vector in Lactobacillus plantarum, as a strategy for vaccine delivery. 3 Biotech 2019; 9:324. [PMID: 31406646 DOI: 10.1007/s13205-019-1856-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/01/2019] [Indexed: 01/05/2023] Open
Abstract
In this study, a first food-grade mucosal vaccine against leptospirosis was developed without the use of antibiotic resistance gene. This expression system is based on a food-grade host/vector system of Lactobacillus plantarum and a new vaccine candidate antigen, a leucine-rich repeat (LRR) protein of Leptospira borgpetersenii. The LRR of interest from serovar Sejroe is encoded by two overlapping genes and these genes were fused together by site-directed mutagenesis. The mutant gene thus obtained could be successfully expressed in this system as was shown by western blot analysis and liquid chromatography-mass spectrometry (LC-MS/MS) analysis. In addition, this analysis showed that the mutant LRR protein fused to a homologous signal peptide of L. plantarum could be exported to the cell surface as a result of the native LPXAG motif of the heterologous LRR protein, which presumably is responsible for anchoring the protein to the cell wall of L. plantarum. This new strategy could be an essential tool for further studies of leptospirosis mucosal vaccine delivery.
Collapse
Affiliation(s)
- Chattip Suphatpahirapol
- 1Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, Thailand
- 2Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Thu-Ha Nguyen
- 3Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Yada Tansiri
- 2Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- 4Center for Advanced Studies for Agriculture and Food (CASAF), Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Yodying Yingchutrakul
- 5National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- 1Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, Thailand
- 5National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Supachai Nitipan
- 6Department of Biology, Faculty of Sciences, Thaksin University, Phatthalung Campus, Phatthalung, Thailand
| | - Worawidh Wajjwalku
- 1Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Dietmar Haltrich
- 1Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, Thailand
- 3Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Siriwan Prapong
- 1Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, Thailand
- 2Department of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- 4Center for Advanced Studies for Agriculture and Food (CASAF), Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Suttipun Keawsompong
- 1Interdisciplinary Graduate Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, Thailand
- 4Center for Advanced Studies for Agriculture and Food (CASAF), Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
- 7Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
21
|
Xu Y, Yang L, Li P, Gu Q. Heterologous expression of Class IIb bacteriocin Plantaricin JK in Lactococcus Lactis. Protein Expr Purif 2019; 159:10-16. [DOI: 10.1016/j.pep.2019.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
|
22
|
Ben-David Y, Morais S, Stern J, Mizrahi I, Bayer EA. Cell-surface display of designer cellulosomes by Lactobacillus plantarum. Methods Enzymol 2019; 617:241-263. [PMID: 30784404 DOI: 10.1016/bs.mie.2018.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cell-surface display of designer cellulosomes complexes has attracted increased interest in recent years. These engineered microorganisms can efficiently degrade lignocellulosic biomass that represents an abundant resource for conversion into fermentable sugars, suitable for production of biofuels. The designer cellulosome is an artificial enzymatic complex that mimics the architecture of the natural cellulosome and allows the control of the positions, type, and copy number of the cellulosomal enzymes within the complex. Lactobacillus plantarum is an attractive candidate for metabolic engineering of lignocellulosic biomass to biofuels, as its natural characteristics include high ethanol and acid tolerance and the ability to metabolize hexose sugars. In recent years, successful expression of a variety of designer cellulosomes on the cell surface of this bacterium has been demonstrated using the cell-consortium approach. This strategy minimized genomic interference on each strain upon genetic engineering, thereby maximizing the ability of each strain to grow, express, and secrete each enzyme. In addition, this strategy allows stoichiometric control of the cellulosome elements and facile exchange of the secreted proteins. A detailed procedure for display of designer cellulosomes on the cell surface of L. plantarum is described in this chapter.
Collapse
Affiliation(s)
- Yonit Ben-David
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Morais
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel; Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Johanna Stern
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Itzhak Mizrahi
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
23
|
del Rio B, Redruello B, Fernandez M, Martin MC, Ladero V, Alvarez MA. Lactic Acid Bacteria as a Live Delivery System for the in situ Production of Nanobodies in the Human Gastrointestinal Tract. Front Microbiol 2019. [PMCID: PMC6346216 DOI: 10.3389/fmicb.2018.03179] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
24
|
Hatti-Kaul R, Chen L, Dishisha T, Enshasy HE. Lactic acid bacteria: from starter cultures to producers of chemicals. FEMS Microbiol Lett 2018; 365:5087731. [DOI: 10.1093/femsle/fny213] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/29/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Rajni Hatti-Kaul
- Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Lu Chen
- Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Tarek Dishisha
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Hesham El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81 310 Skudai, Johor, Malaysia
- City of Scientific Research and Technology Applications, New Burg Al Arab, Alexandria, Egypt
| |
Collapse
|
25
|
A comprehensive review of signal peptides: Structure, roles, and applications. Eur J Cell Biol 2018; 97:422-441. [DOI: 10.1016/j.ejcb.2018.06.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 01/06/2023] Open
|
26
|
Freudl R. Signal peptides for recombinant protein secretion in bacterial expression systems. Microb Cell Fact 2018; 17:52. [PMID: 29598818 PMCID: PMC5875014 DOI: 10.1186/s12934-018-0901-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/27/2018] [Indexed: 02/06/2023] Open
Abstract
The secretion of biotechnologically or pharmaceutically relevant recombinant proteins into the culture supernatant of a bacterial expression host greatly facilitates their downstream processing and significantly reduces the production costs. The first step during the secretion of a desired target protein into the growth medium is its transport across the cytoplasmic membrane. In bacteria, two major export pathways, the general secretion or Sec pathway and the twin-arginine translocation or Tat pathway, exist for the transport of proteins across the plasma membrane. The routing into one of these alternative protein export systems requires the fusion of a Sec- or Tat-specific signal peptide to the amino-terminal end of the desired target protein. Since signal peptides, besides being required for the targeting to and membrane translocation by the respective protein translocases, also have additional influences on the biosynthesis, the folding kinetics, and the stability of the respective target proteins, it is not possible so far to predict in advance which signal peptide will perform best in the context of a given target protein and a given bacterial expression host. As outlined in this review, the most promising way to find the optimal signal peptide for a desired protein is to screen the largest possible diversity of signal peptides, either generated by signal peptide variation using large signal peptide libraries or, alternatively, by optimization of a given signal peptide using site-directed or random mutagenesis strategies.
Collapse
Affiliation(s)
- Roland Freudl
- Institut für Bio- und Geowissenschaften 1, Biotechnologie, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
27
|
Bober JR, Beisel CL, Nair NU. Synthetic Biology Approaches to Engineer Probiotics and Members of the Human Microbiota for Biomedical Applications. Annu Rev Biomed Eng 2018. [PMID: 29528686 DOI: 10.1146/annurev-bioeng-062117-121019] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An increasing number of studies have strongly correlated the composition of the human microbiota with many human health conditions and, in several cases, have shown that manipulating the microbiota directly affects health. These insights have generated significant interest in engineering indigenous microbiota community members and nonresident probiotic bacteria as biotic diagnostics and therapeutics that can probe and improve human health. In this review, we discuss recent advances in synthetic biology to engineer commensal and probiotic lactic acid bacteria, bifidobacteria, and Bacteroides for these purposes, and we provide our perspective on the future potential of these technologies.
Collapse
Affiliation(s)
- Josef R Bober
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA;
| | - Chase L Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA;
| | - Nikhil U Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, USA;
| |
Collapse
|
28
|
Production of human recombinant phenylalanine hydroxylase in Lactobacillus plantarum for gastrointestinal delivery. Eur J Pharm Sci 2017; 109:48-55. [DOI: 10.1016/j.ejps.2017.07.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 01/08/2023]
|
29
|
Lactobacillus plantarum producing a Chlamydia trachomatis antigen induces a specific IgA response after mucosal booster immunization. PLoS One 2017; 12:e0176401. [PMID: 28467432 PMCID: PMC5415134 DOI: 10.1371/journal.pone.0176401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/09/2017] [Indexed: 01/23/2023] Open
Abstract
Mucosal immunity is important for the protection against a wide variety of pathogens. Traditional vaccines administered via parenteral routes induce strong systemic immunity, but they often fail to generate mucosal IgA. In contrast, bacteria-based vaccines comprise an appealing strategy for antigen delivery to mucosal sites. Vaginal infection with Chlamydia trachomatis can develop into upper genital tract infections that can lead to infertility. Therefore, the development of an effective vaccine against Chlamydia is a high priority. In the present study, we have explored the use of a common lactic acid bacterium, Lactobacillus plantarum, as a vector for delivery of a C. trachomatis antigen to mucosal sites. The antigen, referred as Hirep2 (H2), was anchored to the surface of L. plantarum cells using an N-terminal lipoprotein anchor. After characterization, the constructed strain was used as an immunogenic agent in mice. We explored a heterologous prime-boost strategy, consisting of subcutaneous priming with soluble H2 antigen co-administered with CAF01 adjuvant, followed by an intranasal boost with H2-displaying L. plantarum. The results show that, when used as a booster, the recombinant L. plantarum strain was able to evoke cellular responses. Most importantly, booster immunization with the Lactobacillus-based vaccine induced generation of antigen-specific IgA in the vaginal cavity.
Collapse
|
30
|
Immunogenic Properties of Lactobacillus plantarum Producing Surface-Displayed Mycobacterium tuberculosis Antigens. Appl Environ Microbiol 2016; 83:AEM.02782-16. [PMID: 27815271 DOI: 10.1128/aem.02782-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/27/2016] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) remains among the most deadly diseases in the world. The only available vaccine against tuberculosis is the bacille Calmette-Guérin (BCG) vaccine, which does not ensure full protection in adults. There is a global urgency for the development of an effective vaccine for preventing disease transmission, and it requires novel approaches. We are exploring the use of lactic acid bacteria (LAB) as a vector for antigen delivery to mucosal sites. Here, we demonstrate the successful expression and surface display of a Mycobacterium tuberculosis fusion antigen (comprising Ag85B and ESAT-6, referred to as AgE6) on Lactobacillus plantarum The AgE6 fusion antigen was targeted to the bacterial surface using two different anchors, a lipoprotein anchor directing the protein to the cell membrane and a covalent cell wall anchor. AgE6-producing L. plantarum strains using each of the two anchors induced antigen-specific proliferative responses in lymphocytes purified from TB-positive donors. Similarly, both strains induced immune responses in mice after nasal or oral immunization. The impact of the anchoring strategies was reflected in dissimilarities in the immune responses generated by the two L. plantarum strains in vivo The present study comprises an initial step toward the development of L. plantarum as a vector for M. tuberculosis antigen delivery. IMPORTANCE This work presents the development of Lactobacillus plantarum as a candidate mucosal vaccine against tuberculosis. Tuberculosis remains one of the top infectious diseases worldwide, and the only available vaccine, bacille Calmette-Guérin (BCG), fails to protect adults and adolescents. Direct antigen delivery to mucosal sites is a promising strategy in tuberculosis vaccine development, and lactic acid bacteria potentially provide easy, safe, and low-cost delivery vehicles for mucosal immunization. We have engineered L. plantarum strains to produce a Mycobacterium tuberculosis fusion antigen and to anchor this antigen to the bacterial cell wall or to the cell membrane. The recombinant strains elicited proliferative antigen-specific T-cell responses in white blood cells from tuberculosis-positive humans and induced specific immune responses after nasal and oral administrations in mice.
Collapse
|
31
|
pMPES: A Modular Peptide Expression System for the Delivery of Antimicrobial Peptides to the Site of Gastrointestinal Infections Using Probiotics. Pharmaceuticals (Basel) 2016; 9:ph9040060. [PMID: 27782051 PMCID: PMC5198035 DOI: 10.3390/ph9040060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/14/2016] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial peptides are a promising alternative to traditional antibiotics, but their utility is limited by high production costs and poor bioavailability profiles. Bacterial production and delivery of antimicrobial peptides (AMPs) directly at the site of infection may offer a path for effective therapeutic application. In this study, we have developed a vector that can be used for the production and secretion of seven antimicrobial peptides from both Escherichia coli MC1061 F' and probiotic E.coli Nissle 1917. The vector pMPES (Modular Peptide Expression System) employs the Microcin V (MccV) secretion system and a powerful synthetic promoter to drive AMP production. Herein, we demonstrate the capacity of pMPES to produce inhibitory levels of MccV, Microcin L (MccL), Microcin N (McnN), Enterocin A (EntA), Enterocin P (EntP), Hiracin JM79 (HirJM79) and Enterocin B (EntB). To our knowledge, this is the first demonstration of such a broadly-applicable secretion system for AMP production. This type of modular expression system could expedite the development of sorely needed antimicrobial technologies.
Collapse
|
32
|
Themsakul S, Suebwongsa N, Mayo B, Panya M, Lulitanond V. Secretion of M2e:HBc fusion protein by Lactobacillus casei using Cwh signal peptide. FEMS Microbiol Lett 2016; 363:fnw209. [PMID: 27609229 PMCID: PMC7108537 DOI: 10.1093/femsle/fnw209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 12/18/2022] Open
Abstract
The ability to serve as a delivery vehicle for various interesting biomolecules makes lactic acid bacteria (LAB) very useful in several applications. In the medical field, recombinant LAB expressing pathogenic antigens at different cellular locations have been used to elicit both mucosal and systemic immune responses. Expression–secretion vectors (ESVs) with a signal peptide (SP) are pivotal for protein expression and secretion. In this study, the genome sequence of Lactobacillus casei ATCC334 was explored for new SPs using bioinformatics tools. Three new SPs of the proteins Cwh, SurA and SP6565 were identified and used to construct an ESV based on our Escherichia coli–L. casei shuttle vector, pRCEID-LC13.9. Functional testing of these constructs with the green fluorescence protein (GFP) gene showed that they could secrete the GFP. The construct with CwhSP showed the highest GFP secretion. Consequently, CwhSP was selected to develop an ESV construct carrying a synthetic gene encoding the extracellular domain of the matrix 2 protein fused with the hepatitis B core antigen (M2e:HBc). This ESV was shown to efficiently express and secrete the M2e:HBc fusion protein. The identified SPs and the developed ESVs can be exploited for expression and secretion of homologous and heterologous proteins in L. casei. The novel Cwh signal peptide selected from the Lactobacillus casei genome by using a bioinformatics approach was successfully used in the expression–secretion vector for heterologous protein secretion.
Collapse
Affiliation(s)
- Sirintra Themsakul
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Namfon Suebwongsa
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Río Linares, s/n, 33300-Villaviciosa, Asturias, Spain
| | - Marutpong Panya
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Viraphong Lulitanond
- Department of Microbiology and Research and Diagnostic Center for Emerging Infectious Diseases, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
33
|
Pechsrichuang P, Songsiriritthigul C, Haltrich D, Roytrakul S, Namvijtr P, Bonaparte N, Yamabhai M. OmpA signal peptide leads to heterogenous secretion of B. subtilis chitosanase enzyme from E. coli expression system. SPRINGERPLUS 2016; 5:1200. [PMID: 27516938 PMCID: PMC4963352 DOI: 10.1186/s40064-016-2893-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 07/21/2016] [Indexed: 01/24/2023]
Abstract
The production of secreted recombinant proteins from E. coli is pivotal to the biotechnological industry because it reduces the cost of downstream processing. Proteins destined for secretion contain an N-terminal signal peptide that is cleaved by secretion machinery in the plasma membrane. The resulting protein is released in an active mature form. In this study, Bacillus subtilis chitosanase (Csn) was used as a model protein to compare the effect of two signal peptides on the secretion of heterologous recombinant protein. The results showed that the E. coli secretion machinery could recognize both native bacillus and E. coli signal peptides. However, only the native bacillus signal peptide could generate the same N-terminal sequence as in the wild type bacteria. When the recombinant Csn constructs contained the E. coli OmpA signal peptide, the secreted enzymes were heterogeneous, comprising a mixed population of secreted enzymes with different N-terminal sequences. Nevertheless, the E. coli OmpA signal peptide was found to be more efficient for high expression and secretion of bacillus Csn. These findings may be used to help engineer other recombinant proteins for secretory production in E. coli.
Collapse
Affiliation(s)
- Phornsiri Pechsrichuang
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology (SUT), 111 University Avenue, Meung District, Nakhon Ratchasima, 30000 Thailand
| | | | - Dietmar Haltrich
- Food Biotechnology Laboratory, BOKU - University of National Resources and Life Sciences, Vienna, Austria
| | - Sittiruk Roytrakul
- Genome Institute, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Peenida Namvijtr
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology (SUT), 111 University Avenue, Meung District, Nakhon Ratchasima, 30000 Thailand
| | - Napolean Bonaparte
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology (SUT), 111 University Avenue, Meung District, Nakhon Ratchasima, 30000 Thailand
| | - Montarop Yamabhai
- Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology (SUT), 111 University Avenue, Meung District, Nakhon Ratchasima, 30000 Thailand
| |
Collapse
|
34
|
Sak-Ubol S, Namvijitr P, Pechsrichuang P, Haltrich D, Nguyen TH, Mathiesen G, Eijsink VGH, Yamabhai M. Secretory production of a beta-mannanase and a chitosanase using a Lactobacillus plantarum expression system. Microb Cell Fact 2016; 15:81. [PMID: 27176608 PMCID: PMC4866359 DOI: 10.1186/s12934-016-0481-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/03/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Heterologous production of hydrolytic enzymes is important for green and white biotechnology since these enzymes serve as efficient biocatalysts for the conversion of a wide variety of raw materials into value-added products. Lactic acid bacteria are interesting cell factories for the expression of hydrolytic enzymes as many of them are generally recognized as safe and require only a simple cultivation process. We are studying a potentially food-grade expression system for secretion of hydrolytic enzymes into the culture medium, since this enables easy harvesting and purification, while allowing direct use of the enzymes in food applications. RESULTS We studied overexpression of a chitosanase (CsnA) and a β-mannanase (ManB), from Bacillus licheniformis and Bacillus subtilis, respectively, in Lactobacillus plantarum, using the pSIP system for inducible expression. The enzymes were over-expressed in three forms: without a signal peptide, with their natural signal peptide and with the well-known OmpA signal peptide from Escherichia coli. The total production levels and secretion efficiencies of CsnA and ManB were highest when using the native signal peptides, and both were reduced considerably when using the OmpA signal. At 20 h after induction with 12.5 ng/mL of inducing peptide in MRS media containing 20 g/L glucose, the yields and secretion efficiencies of the proteins with their native signal peptides were 50 kU/L and 84% for ManB, and 79 kU/L and 56% for CsnA, respectively. In addition, to avoid using antibiotics, the erythromycin resistance gene was replaced on the expression plasmid with the alanine racemase (alr) gene, which led to comparable levels of protein production and secretion efficiency in a suitable, alr-deficient L. plantarum host. CONCLUSIONS ManB and CsnA were efficiently produced and secreted in L. plantarum using pSIP-based expression vectors containing either an erythromycin resistance or the alr gene as selection marker.
Collapse
Affiliation(s)
- Suttipong Sak-Ubol
- />Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- />Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peenida Namvijitr
- />Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Phornsiri Pechsrichuang
- />Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Dietmar Haltrich
- />Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thu-Ha Nguyen
- />Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Geir Mathiesen
- />Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Vincent G. H. Eijsink
- />Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Montarop Yamabhai
- />Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
35
|
Michon C, Langella P, Eijsink VGH, Mathiesen G, Chatel JM. Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications. Microb Cell Fact 2016; 15:70. [PMID: 27142045 PMCID: PMC4855500 DOI: 10.1186/s12934-016-0468-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/21/2016] [Indexed: 01/07/2023] Open
Abstract
Lactic acid bacteria (LAB) are promising vectors of choice to deliver active molecules to mucosal tissues. They are recognized as safe by the World Health Organization and some strains have probiotic properties. The wide range of potential applications of LAB-driven mucosal delivery includes control of inflammatory bowel disease, vaccine delivery, and management of auto-immune diseases. Because of this potential, strategies for the display of proteins at the surface of LAB are gaining interest. To display a protein at the surface of LAB, a signal peptide and an anchor domain are necessary. The recombinant protein can be attached to the membrane layer, using a transmembrane anchor or a lipoprotein-anchor, or to the cell wall, by a covalent link using sortase mediated anchoring via the LPXTG motif, or by non-covalent liaisons employing binding domains such as LysM or WxL. Both the stability and functionality of the displayed proteins will be affected by the kind of anchor used. The most commonly surfaced exposed recombinant proteins produced in LAB are antigens and antibodies and the most commonly used LAB are lactococci and lactobacilli. Although it is not necessarily so that surface-display is the preferred localization in all cases, it has been shown that for certain applications, such as delivery of the human papillomavirus E7 antigen, surface-display elicits better biological responses, compared to cytosolic expression or secretion. Recent developments include the display of peptides and proteins targeting host cell receptors, for the purpose of enhancing the interactions between LAB and host. Surface-display technologies have other potential applications, such as degradation of biomass, which is of importance for some potential industrial applications of LAB.
Collapse
Affiliation(s)
- C. Michon
- />Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - P. Langella
- />Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - V. G. H. Eijsink
- />Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - G. Mathiesen
- />Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - J. M. Chatel
- />Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
36
|
Lin J, Zou Y, Ma C, Liang Y, Ge X, Chen Z, She Q. Construction and characterization of three protein-targeting expression system in Lactobacillus casei. FEMS Microbiol Lett 2016; 363:fnw041. [PMID: 26892019 DOI: 10.1093/femsle/fnw041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2016] [Indexed: 12/28/2022] Open
Abstract
We previously reported that the β-1,4-Mannanase (manB) gene from Bacillus pumilus functions as a good reporter gene in Lactobacillus casei. Two vectors were constructed. One carries the signal peptide of secretion protein Usp45 (SPUsp45) from Lactococcus lactis (pELSH), and the other carries the full-length S-layer protein, SlpA, from L. acidophilus (pELWH). In this work, another vector, pELSPH, was constructed to include the signal peptide of protein SlpA (SPSlpA), and the capacity of all three vectors to drive expression of the manB gene in L. casei was evaluated. The results showed that SPUsp45 is functionally recognized and processed by the L. casei secretion machinery. The SPUsp45-mediated secretion efficiency was ∼87%, and SPSlpA drove the export of secreted ManB with ∼80% efficiency. SPSlpA secretion was highly efficient, and expressed SlpA was anchored to the cell wall by an unknown secretion mechanism. Full-length SlpA drove the cell wall-anchored expression of an SlpA-ManB fusion protein but at a much lower level than that of protein SlpA.
Collapse
Affiliation(s)
- Jinzhong Lin
- State Key Laboratory of Dairy Biotechnology, Technology Center of Bright Dairy and Food Co., Ltd., 1518 Jiangchang Road (W), Shanghai 200436, China
| | - Yexia Zou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengjie Ma
- State Key Laboratory of Dairy Biotechnology, Technology Center of Bright Dairy and Food Co., Ltd., 1518 Jiangchang Road (W), Shanghai 200436, China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangyang Ge
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengjun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qunxin She
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China Department of Biology, University of Copenhagen, Biocenter, Ole Maaloes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
37
|
Kuczkowska K, Mathiesen G, Eijsink VGH, Øynebråten I. Lactobacillus plantarum displaying CCL3 chemokine in fusion with HIV-1 Gag derived antigen causes increased recruitment of T cells. Microb Cell Fact 2015; 14:169. [PMID: 26494531 PMCID: PMC4618854 DOI: 10.1186/s12934-015-0360-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/11/2015] [Indexed: 02/08/2023] Open
Abstract
Background Chemokines are attractive candidates for vaccine adjuvants due to their ability to recruit the immune cells. Lactic acid bacteria (LAB)-based delivery vehicles have potential to be used as a cheap and safe option for vaccination. Chemokine produced on the surface of LAB may potentially enhance the immune response to an antigen and this approach can be considered in development of future mucosal vaccines. Results We have constructed strains of Lactobacillusplantarum displaying a chemokine on their surface. L. plantarum was genetically engineered to express and anchor to the surface a protein called CCL3Gag. CCL3Gag is a fusion protein comprising of truncated HIV-1 Gag antigen and the murine chemokine CCL3, also known as MIP-1α. Various surface anchoring strategies were explored: (1) a lipobox-based covalent membrane anchor, (2) sortase-mediated covalent cell wall anchoring, (3) LysM-based non-covalent cell wall anchoring, and (4) an N-terminal signal peptide-based transmembrane anchor. Protein production and correct localization were confirmed using Western blotting, flow cytometry and immunofluorescence microscopy. Using a chemotaxis assay, we demonstrated that CCL3Gag-producing L. plantarum strains are able to recruit immune cells in vitro. Conclusions The results show the ability of engineered L. plantarum to produce a functional chemotactic protein immobilized on the bacterial surface. We observed that the activity of surface-displayed CCL3Gag differed depending on the type of anchor used. The chemokine which is a part of the bacteria-based vaccine may increase the recruitment of immune cells and, thereby, enhance the reaction of the immune system to the vaccine. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0360-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katarzyna Kuczkowska
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
| | - Geir Mathiesen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
| | - Vincent G H Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
| | - Inger Øynebråten
- Department of Pathology and Centre for Immune Regulation, Oslo University Hospital-Rikshospitalet, and University of Oslo, Oslo, Norway.
| |
Collapse
|
38
|
Jiménez JJ, Diep DB, Borrero J, Gútiez L, Arbulu S, Nes IF, Herranz C, Cintas LM, Hernández PE. Cloning strategies for heterologous expression of the bacteriocin enterocin A by Lactobacillus sakei Lb790, Lb. plantarum NC8 and Lb. casei CECT475. Microb Cell Fact 2015; 14:166. [PMID: 26471395 PMCID: PMC4608264 DOI: 10.1186/s12934-015-0346-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/23/2015] [Indexed: 11/10/2022] Open
Abstract
Background Bacteriocins produced by lactic acid bacteria (LAB) attract considerable interest as natural and nontoxic food preservatives and as therapeutics whereas the bacteriocin-producing LAB are considered potential probiotics for food, human and veterinary applications, and in the animal production field. Within LAB the lactobacilli are increasingly used as starter cultures for food preservation and as probiotics. The lactobacilli are also natural inhabitants of the gastrointestinal (GI) tract and attractive vectors for delivery of therapeutic peptides and proteins, and for production of bioactive peptides. Research efforts for production of bacteriocins in heterologous hosts should be performed if the use of bacteriocins and the LAB bacteriocin-producers is ever to meet the high expectations deposited in these antimicrobial peptides. The recombinant production and functional expression of bacteriocins by lactobacilli would have an additive effect on their probiotic functionality. Results The heterologous production of the bacteriocin enterocin A (EntA) was evaluated in different Lactobacillus spp. after fusion of the versatile Sec-dependent signal peptide (SPusp45) to mature EntA plus the EntA immunity gene (entA + entiA) (fragment UAI), and their cloning into plasmid vectors that permitted their inducible (pSIP409 and pSIP411) or constitutive (pMG36c) production. The amount, antimicrobial activity (AA) and specific antimicrobial activity (SAA) of the EntA produced by Lactobacillus sakei Lb790, Lb. plantarum NC8 and Lb. casei CECT475 transformed with the recombinant plasmids pSIP409UAI, pSIP411UAI and pMGUAI varied depending of the expression vector and the host strain. The Lb. casei CECT475 recombinant strains produced the largest amounts of EntA, with the highest AA and SAA. Supernatants from Lb. casei CECT (pSIP411UAI) showed a 4.9-fold higher production of EntA with a 22.8-fold higher AA and 4.7-fold higher SAA than those from Enterococcus faecium T136, the natural producer of EntA. Moreover, supernatants from Lb. casei CECT475 (pSIP411UAI) showed a 15.7- to 59.2-fold higher AA against Listeria spp. than those from E. faecium T136. Conclusion Lb. casei CECT457 (pSIP411UAI) may be considered a promising recombinant host and cell factory for the production and functional expression of the antilisterial bacteriocin EntA.
Collapse
Affiliation(s)
- Juan J Jiménez
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| | - Dzung B Diep
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
| | - Juan Borrero
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| | - Loreto Gútiez
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| | - Sara Arbulu
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| | - Ingolf F Nes
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432, Ås, Norway.
| | - Carmen Herranz
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| | - Luis M Cintas
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| | - Pablo E Hernández
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain.
| |
Collapse
|
39
|
Rangberg A, Mathiesen G, Amdam G, Diep D. The paratransgenic potential of Lactobacillus kunkeei in the honey bee Apis mellifera. Benef Microbes 2015; 6:513-23. [DOI: 10.3920/bm2014.0115] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The honey bee (Apis mellifera) is a domestic insect of high value to human societies, as a crop pollinator in agriculture and a model animal in scientific research. The honey bee, however, has experienced massive mortality worldwide due to the phenomenon Colony Collapse Disorder (CCD), resulting in alarming prospects for crop failure in Europe and the USA. The reasons for CCD are complex and much debated, but several honey bee pathogens are believed to be involved. Paratransgenesis is a Trojan horse strategy, where endogenous microorganisms are used to express effector molecules that antagonise pathogen development. For use in honey bees, paratransgenesis must rely on a set of criteria that the candidate paratransgenic microorganism must fulfil in order to obtain a successful outcome: (1) the candidate must be genetically modifiable to express effector molecules; (2) the modified organism should have no adverse effects on honey bee health upon reintroduction; and (3) it must survive together with other non-pathogenic bee-associated microorganisms. Lactic acid bacteria (LAB) are common gut bacteria in vertebrates and invertebrates, and some have naturally beneficial properties in their host. In the present work we aimed to find a potential paratransgenic candidate within this bacterial group for use in honey bees. Among isolated LAB associated with bee gut microbiota, we found the fructophilic Lactobacillus kunkeei to be the most predominant species during foraging seasons. Four genetically different strains of L. kunkeei were selected for further assessment. We demonstrated (1) that L. kunkeei is transformable; (2) that the transformed cells had no obvious adverse effect on honey bee survival; and (3) that transformed cells survived well in the gut environment of bees upon reintroduction. Our study demonstrates that L. kunkeei fulfils the three criteria for paratransgenesis and can be a suitable candidate for further research on this strategy in honey bees.
Collapse
Affiliation(s)
- A. Rangberg
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - G. Mathiesen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - G.V. Amdam
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway
- School of Life Sciences, Arizona State University, P.O. Box 874501, 427 East Tyler Mall, Tempe, AZ 85287, USA
| | - D.B. Diep
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432 Ås, Norway
| |
Collapse
|
40
|
Mobergslien A, Vasovic V, Mathiesen G, Fredriksen L, Westby P, Eijsink VGH, Peng Q, Sioud M. Recombinant Lactobacillus plantarum induces immune responses to cancer testis antigen NY-ESO-1 and maturation of dendritic cells. Hum Vaccin Immunother 2015; 11:2664-73. [PMID: 26185907 DOI: 10.1080/21645515.2015.1056952] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Given their safe use in humans and inherent adjuvanticity, Lactic Acid Bacteria may offer several advantages over other mucosal delivery strategies for cancer vaccines. The objective of this study is to evaluate the immune responses in mice after oral immunization with Lactobacillus (L) plantarum WCFS1 expressing a cell-wall anchored tumor antigen NY-ESO-1. And to investigate the immunostimulatory potency of this new candidate vaccine on human dendritic cells (DCs). L. plantarum displaying NY-ESO-1 induced NY-ESO-1 specific antibodies and T-cell responses in mice. By contrast, L. plantarum displaying conserved proteins such as heat shock protein-27 and galectin-1, did not induce immunity, suggesting that immune tolerance to self-proteins cannot be broken by oral administration of L. plantarum. With respect to immunomodulation, immature DCs incubated with wild type or L. plantarum-NY-ESO-1 upregulated the expression of co-stimulatory molecules and secreted a large amount of interleukin (IL)-12, TNF-α, but not IL-4. Moreover, they upregulated the expression of immunosuppressive factors such as IL-10 and indoleamine 2,3-dioxygenase. Although L. plantarum-matured DCs expressed inhibitory molecules, they stimulated allogeneic T cells in-vitro. Collectively, the data indicate that L. plantarum-NY-ESO-1 can evoke antigen-specific immunity upon oral administration and induce DC maturation, raising the potential of its use in cancer immunotherapies.
Collapse
Affiliation(s)
- Anne Mobergslien
- a Department of Cancer Immunology ; Institute for Cancer Research; Oslo University Hospital ; Oslo , Norway
| | - Vlada Vasovic
- b Department of Pathology ; Oslo University Hospital ; Oslo , Norway
| | - Geir Mathiesen
- c Department of Chemistry ; Biotechnology and Food Science; Norwegian University of Life Sciences (NMBU) ; Ås , Norway
| | - Lasse Fredriksen
- c Department of Chemistry ; Biotechnology and Food Science; Norwegian University of Life Sciences (NMBU) ; Ås , Norway
| | - Phuong Westby
- a Department of Cancer Immunology ; Institute for Cancer Research; Oslo University Hospital ; Oslo , Norway
| | - Vincent G H Eijsink
- c Department of Chemistry ; Biotechnology and Food Science; Norwegian University of Life Sciences (NMBU) ; Ås , Norway
| | - Qian Peng
- b Department of Pathology ; Oslo University Hospital ; Oslo , Norway
| | - Mouldy Sioud
- a Department of Cancer Immunology ; Institute for Cancer Research; Oslo University Hospital ; Oslo , Norway
| |
Collapse
|
41
|
Minic R, Gavrovic-Jankulovic M, Petrusic V, Zivkovic I, Eijsink VG, Dimitrijevic L, Mathiesen G. Effects of orally applied Fes p1-displaying L. plantarum WCFS1 on Fes p1 induced allergy in mice. J Biotechnol 2015; 199:23-8. [DOI: 10.1016/j.jbiotec.2015.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/08/2014] [Accepted: 01/14/2015] [Indexed: 12/15/2022]
|
42
|
Mazzoli R, Bosco F, Mizrahi I, Bayer EA, Pessione E. Towards lactic acid bacteria-based biorefineries. Biotechnol Adv 2014; 32:1216-1236. [PMID: 25087936 DOI: 10.1016/j.biotechadv.2014.07.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
Abstract
Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Laboratory of Biochemistry: Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| | - Francesca Bosco
- Department of Applied Science and Technology (DISAT), Politecnico of Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.
| | - Itzhak Mizrahi
- Institute of Animal Science, ARO, Volcani Research Center, P.O. Box 6Â, Bet Dagan 50-250, Israel.
| | - Edward A Bayer
- Department of Biological Chemistry, the Weizmann Institute of Science, Rehovot 76100 Israel.
| | - Enrica Pessione
- Laboratory of Biochemistry: Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| |
Collapse
|
43
|
Sasikumar P, Gomathi S, Anbazhagan K, Baby AE, Sangeetha J, Selvam GS. Genetically engineered Lactobacillus plantarum WCFS1 constitutively secreting heterologous oxalate decarboxylase and degrading oxalate under in vitro. Curr Microbiol 2014; 69:708-15. [PMID: 24989485 DOI: 10.1007/s00284-014-0644-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/16/2014] [Indexed: 11/28/2022]
Abstract
Hyperoxaluria is a major risk factor for urinary stone disease, where calcium oxalate (CaOx) is the most prevalent type of kidney stones. Systemic treatments of CaOx kidney stone patients are limited and comprise drawbacks including recurrence of stone formation and kidney damages. In the present work Lactobacillus plantarum (L. plantarum) was engineered to constitutively secrete oxalate decarboxylase (OxdC) for the degradation of intestinal oxalate. The homologous promoter PldhL and signal peptide Lp_0373 of L. plantarum were used for constructing recombinant vector pLdhl0373OxdC. Results showed that homologous promoter PldhL and signal peptide Lp_0373 facilitated the production, secretion, and functional expression of OxdC protein in L. plantarum. SDS-PAGE analysis revealed that 44 kDa protein OxdC was seen exceptionally in the culture supernatant of recombinant L. plantarum (WCFS1OxdC) harboring the plasmid pLdhl0373OxdC.The culture supernatant of L. plantarum WCFS1OxdC showed OxdC activity of 0.06 U/mg of protein, whereas no enzyme activity was observed in the supernatant of the wild type WCFS1 and the recombinant NC8OxdC strains. The purified recombinant OxdC from the WCFS1OxdC strain showed an activity of 19.1 U/mg protein. The recombinant L. plantarum strain secreted 25 % of OxdC protein in the supernatant. The recombinant strain degraded more than 70 % of soluble oxalate in the culture supernatant. Plasmid segregation analysis revealed that the recombinant strain lost almost 70-89 % of plasmid in 42nd and 84th generation, respectively. In conclusion, recombinant L. plantarum strain containing plasmid pLdhl0373OxdC showed constitutive secretion of bioactive OxdC and also capable of degrading externally available oxalate under in vitro conditions.
Collapse
Affiliation(s)
- Ponnusamy Sasikumar
- Department of Biochemistry, School of Biological Sciences, Centre for Advanced Studies in Organismal and Functional Genomics, Madurai Kamaraj University, Madurai, 625 021, India
| | | | | | | | | | | |
Collapse
|
44
|
Humblot C, Turpin W, Chevalier F, Picq C, Rochette I, Guyot JP. Determination of expression and activity of genes involved in starch metabolism in Lactobacillus plantarum A6 during fermentation of a cereal-based gruel. Int J Food Microbiol 2014; 185:103-11. [PMID: 24950021 DOI: 10.1016/j.ijfoodmicro.2014.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 05/06/2014] [Accepted: 05/10/2014] [Indexed: 10/25/2022]
Abstract
Traditional fermented gruels prepared from cereals are widely used for complementary feeding of young children in Africa and usually have a low energy density. The amylase activity of some lactic acid bacteria (LAB) helps increase the energy content of gruels through partial hydrolysis of starch, thus enabling the incorporation of more starchy material while conserving the desired semi-liquid consistency for young children. Even if this ability is mainly related to the production of alpha-amylase (E.C. 3.2.1.1), in a recent molecular screening, genes coding for enzymes involved in starch metabolism were detected in the efficient amylolytic LAB Lactobacillus plantarum A6: alpha-glucosidase (E.C. 3.2.1.20), neopullulanase (E.C. 3.2.1.135), amylopectin phosphorylase (E.C. 2.4.1.1) and maltose phosphorylase (E.C. 2.4.1.8). The objective of this study was to investigate the expression of these genes in a model of starchy fermented food made from pearl millet (Pennisetum glaucum). Transcriptional and enzymatic analyses were performed during the 18-h fermentation period. Liquefaction was mainly caused by an extracellular alpha amylase encoded by the amyA gene specific to the A6 strain among L. plantarum species and found in both Lactobacillus amylovorus and Lactobacillus manihotivorans. The second most active enzyme was neopullulanase. Other starch metabolizing enzymes were less often detected. The dynamic detection of transcripts of gene during starch fermentation in pearl millet porridge suggests that the set of genes we investigated was not expressed continuously but transiently.
Collapse
Affiliation(s)
- Christèle Humblot
- IRD, UMR Nutripass IRD/Montpellier2/Montpellier1, F-34394 Montpellier, France.
| | - Williams Turpin
- IRD, UMR Nutripass IRD/Montpellier2/Montpellier1, F-34394 Montpellier, France
| | - François Chevalier
- IRD, UMR Nutripass IRD/Montpellier2/Montpellier1, F-34394 Montpellier, France
| | - Christian Picq
- IRD, UMR Nutripass IRD/Montpellier2/Montpellier1, F-34394 Montpellier, France
| | - Isabelle Rochette
- IRD, UMR Nutripass IRD/Montpellier2/Montpellier1, F-34394 Montpellier, France
| | - Jean-Pierre Guyot
- IRD, UMR Nutripass IRD/Montpellier2/Montpellier1, F-34394 Montpellier, France
| |
Collapse
|
45
|
Production of Recombinant β-Galactosidase in Lactobacillus plantarum, Using a pSIP-Based Food-Grade Expression System. ACTA ACUST UNITED AC 2014. [DOI: 10.4028/www.scientific.net/amr.931-932.1518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food-grade expression systems based on using food-grade microorganisms have been developed for the production of recombinant enzymes used in food applications. Lactic acid bacteria (LAB), especially Lactobacilli, have been widely used for various purposes in food and recognized as a promising host of food-grade enzyme production. In this study, the pSIP409 vectors, originally containing the erm gene, were used to replace this selection marker by the alr gene resulting in the production of the pSIP609 expression vector in L. planatarum. This vector could express high amounts of β-galactosidases, showing both high volumetric as well a specific enzymatic activity. Thus, the food-grade recombinant enzyme production in L. planatarum harboring pSIP609 was very fruitful and useful for food industries.
Collapse
|
46
|
Heterologous protein secretion in Lactobacilli with modified pSIP vectors. PLoS One 2014; 9:e91125. [PMID: 24614815 PMCID: PMC3948729 DOI: 10.1371/journal.pone.0091125] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/07/2014] [Indexed: 01/01/2023] Open
Abstract
We describe new variants of the modular pSIP-vectors for inducible gene expression and protein secretion in lactobacilli. The basic functionality of the pSIP system was tested in Lactobacillus strains representing 14 species using pSIP411, which harbors the broad-host-range Lactococcus lactis SH71rep replicon and a β-glucuronidase encoding reporter gene. In 10 species, the inducible gene expression system was functional. Based on these results, three pSIP vectors with different signal peptides were modified by replacing their narrow-host-range L. plantarum 256rep replicon with SH71rep and transformed into strains of five different species of Lactobacillus. All recombinant strains secreted the target protein NucA, albeit with varying production levels and secretion efficiencies. The Lp_3050 derived signal peptide generally resulted in the highest levels of secreted NucA. These modified pSIP vectors are useful tools for engineering a wide variety of Lactobacillus species.
Collapse
|
47
|
Anné J, Vrancken K, Van Mellaert L, Van Impe J, Bernaerts K. Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1750-61. [PMID: 24412306 DOI: 10.1016/j.bbamcr.2013.12.023] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/26/2013] [Accepted: 12/31/2013] [Indexed: 02/07/2023]
Abstract
Proteins secreted by Gram-positive bacteria are released into the culture medium with the obvious benefit that they usually retain their native conformation. This property makes these host cells potentially interesting for the production of recombinant proteins, as one can take full profit of established protocols for the purification of active proteins. Several state-of-the-art strategies to increase the yield of the secreted proteins will be discussed, using Streptomyces lividans as an example and compared with approaches used in some other host cells. It will be shown that approaches such as increasing expression and translation levels, choice of secretion pathway and modulation of proteins thereof, avoiding stress responses by changing expression levels of specific (stress) proteins, can be helpful to boost production yield. In addition, the potential of multi-omics approaches as a tool to understand the genetic background and metabolic fluxes in the host cell and to seek for new targets for strain and protein secretion improvement is discussed. It will be shown that S. lividans, along with other Gram-positive host cells, certainly plays a role as a production host for recombinant proteins in an economically viable way. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Jozef Anné
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Kristof Vrancken
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Lieve Van Mellaert
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Laboratory of Molecular Bacteriology, Herestraat 49, box 1037, B-3000 Leuven, Belgium.
| | - Jan Van Impe
- Chemical and Biochemical Process Technology and Control Section (BioTeC), Department of Chemical Engineering, KU Leuven, Willem de Croylaan 46 box 2423, B-3001 Leuven, Belgium.
| | - Kristel Bernaerts
- Chemical and Biochemical Process Technology and Control Section (BioTeC), Department of Chemical Engineering, KU Leuven, Willem de Croylaan 46 box 2423, B-3001 Leuven, Belgium.
| |
Collapse
|
48
|
From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol Adv 2013; 31:764-88. [DOI: 10.1016/j.biotechadv.2013.03.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/28/2013] [Accepted: 03/31/2013] [Indexed: 11/21/2022]
|
49
|
Secretion of biologically active heterologous oxalate decarboxylase (OxdC) in Lactobacillus plantarum WCFS1 using homologous signal peptides. BIOMED RESEARCH INTERNATIONAL 2013; 2013:280432. [PMID: 23971028 PMCID: PMC3732618 DOI: 10.1155/2013/280432] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/28/2013] [Indexed: 11/25/2022]
Abstract
Current treatment options for patients with hyperoxaluria and calcium oxalate stone diseases are limited and do not always lead to sufficient reduction in urinary oxalate excretion. Oxalate degrading bacteria have been suggested for degrading intestinal oxalate for the prevention of calcium oxalate stone. Here, we reported a recombinant Lactobacillus plantarum WCFS1 (L. plantarum) secreting heterologous oxalate decarboxylase (OxdC) that may provide possible therapeutic approach by degrading intestinal oxalate. The results showed secretion and functional expression of OxdC protein in L. plantarum driven by signal peptides Lp_0373 and Lp_3050. Supernatant of the recombinant strain containing pLp_0373sOxdC and pLp_3050sOxdC showed OxdC activity of 0.05 U/mg and 0.02 U/mg protein, while the purified OxdC from the supernatant showed specific activity of 18.3 U/mg and 17.5 U/mg protein, respectively. The concentration of OxdC protein in the supernatant was 8–12 μg/mL. The recombinant strain showed up to 50% oxalate reduction in medium containing 10 mM oxalate. In conclusion, the recombinant L. plantarum harboring pLp_0373sOxdC and pLp_3050sOxdC can express and secrete functional OxdC and degrade oxalate up to 50% and 30%, respectively.
Collapse
|
50
|
Establishment of a simple Lactobacillus plantarum cell consortium for cellulase-xylanase synergistic interactions. Appl Environ Microbiol 2013; 79:5242-9. [PMID: 23811500 DOI: 10.1128/aem.01211-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus plantarum is an attractive candidate for bioprocessing of lignocellulosic biomass due to its high metabolic variability, including its ability to ferment both pentoses and hexoses, as well as its high acid tolerance, a quality often utilized in industrial processes. This bacterium grows naturally on biomass; however, it lacks the inherent ability to deconstruct lignocellulosic substrates. As a first step toward engineering lignocellulose-converting lactobacilli, we have introduced genes coding for a GH6 cellulase and a GH11 xylanase from a highly active cellulolytic bacterium into L. plantarum. For this purpose, we employed the recently developed pSIP vectors for efficient secretion of heterologous proteins. Both enzymes were secreted by L. plantarum at levels estimated at 0.33 nM and 3.3 nM, for the cellulase and xylanase, respectively, in culture at an optical density at 600 nm (OD600) of 1. Transformed cells demonstrated the ability to degrade individually either cellulose or xylan and wheat straw. When mixed together to form a two-strain cell-based consortium secreting both cellulase and xylanase, they exhibited synergistic activity in the overall release of soluble sugar from wheat straw. This result paves the way toward metabolic harnessing of L. plantarum for novel biorefining applications, such as production of ethanol and polylactic acid directly from plant biomass.
Collapse
|