1
|
Global Transcriptional Response of Escherichia coli Exposed In Situ to Different Low-Dose Ionizing Radiation Sources. mSystems 2023; 8:e0071822. [PMID: 36779725 PMCID: PMC10134817 DOI: 10.1128/msystems.00718-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Characterization of biological and chemical responses to ionizing radiation by various organisms is essential for potential applications in bioremediation, alternative modes of detecting nuclear material, and national security. Escherichia coli DH10β is an optimal system to study the microbial response to low-dose ionizing radiation at the transcriptional level because it is a well-characterized model bacterium and its responses to other environmental stressors, including those to higher radiation doses, have been elucidated in prior studies. In this study, RNA sequencing with downstream transcriptomic analysis (RNA-seq) was employed to characterize the global transcriptional response of stationary-phase E. coli subjected to 239Pu, 3H (tritium), and 55Fe, at an approximate absorbed dose rate of 10 mGy day-1 for 1 day and 15 days. Differential expression analysis identified significant changes in gene expression of E. coli for both short- and long-term exposures. Radionuclide source exposure induced differential expression in E. coli of genes involved in biosynthesis pathways of nuclear envelope components, amino acids, and siderophores, transport systems such as ABC transporters and type II secretion proteins, and initiation of stress response and regulatory systems of temperature stress, the RpoS regulon, and oxidative stress. These findings provide a basic understanding of the relationship between low-dose exposure and biological effect of a model bacterium that is critical for applications in alternative nuclear material detection and bioremediation. IMPORTANCE Escherichia coli strain DH10β, a well-characterized model bacterium, was subjected to short-term (1-day) and long-term (15-day) exposures to three different in situ radiation sources comprised of radionuclides relevant to nuclear activities to induce a measurable and identifiable genetic response. We found E. coli had both common and unique responses to the three exposures studied, suggesting both dose rate- and radionuclide-specific effects. This study is the first to provide insights into the transcriptional response of a microorganism in short- and long-term exposure to continuous low-dose ionizing radiation with multiple in situ radionuclide sources and the first to examine microbial transcriptional response in stationary phase. Moreover, this work provides a basis for the development of biosensors and informing more robust dose-response relationships to support ecological risk assessment.
Collapse
|
2
|
Selim N, Maghrawy HH, Fathy R, Gamal M, Abd El Kareem H, Bowman K, Brehney M, Kyazze G, Keshavarz T, Gomaa O. Modification of bacterial cell membrane to accelerate decolorization of textile wastewater effluent using microbial fuel cells: role of gamma radiation. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1743480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nabila Selim
- Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Heba Hamed Maghrawy
- Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Reham Fathy
- Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Marwa Gamal
- Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Hussein Abd El Kareem
- Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Kyle Bowman
- School of Life Sciences, University of Westminster, London, UK
| | - Mark Brehney
- School of Life Sciences, University of Westminster, London, UK
| | - Godfrey Kyazze
- School of Life Sciences, University of Westminster, London, UK
| | | | - Ola Gomaa
- Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
3
|
|
4
|
Soghomonyan D, Margaryan A, Trchounian K, Ohanyan K, Badalyan H, Trchounian A. The Effects of Low Doses of Gamma-Radiation on Growth and Membrane Activity of Pseudomonas aeruginosa GRP3 and Escherichia coli M17. Cell Biochem Biophys 2017; 76:209-217. [PMID: 29039057 DOI: 10.1007/s12013-017-0831-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/09/2017] [Indexed: 11/26/2022]
Abstract
Microorganisms are part of the natural environments and reflect the effects of different physical factors of surrounding environment, such as gamma (γ) radiation. This work was devoted to the study of the influence of low doses of γ radiation with the intensity of 2.56 μW (m2 s)-1 (absorbed doses were 3.8 mGy for the radiation of 15 min and 7.2 mGy-for 30 min) on Escherichia coli M-17 and Pseudomonas aeruginosa GRP3 wild type cells. The changes of bacterial, growth, survival, morphology, and membrane activity had been studied after γ irradiation. Verified microbiological (specific growth rate, lag phase duration, colony-forming units (CFU) number, and light microscopy digital image analysis), biochemical (ATPase activity of bacterial membrane vesicles), and biophysical (H+ fluxes throughout cytoplasmic membrane of bacteria) methods were used for assessment of radiation implications on bacteria. It was shown that growth specific rate, lag phase duration and CFU number of these bacteria were lowered after irradiation, and average cell surface area was decreased too. Moreover ion fluxes of bacteria were changed: for P. aeruginosa they were decreased and for E. coli-increased. The N,N'-dicyclohexylcarbodiimide (DCCD) sensitive fluxes were also changed which were indicative for the membrane-associated F0F1-ATPase enzyme. ATPase activity of irradiated membrane vesicles was decreased for P. aeruginosa and stimulated for E. coli. Furthermore, DCCD sensitive ATPase activity was also changed. The results obtained suggest that these bacteria especially, P. aeruginosa are sensitive to γ radiation and might be used for developing new monitoring methods for estimating environmental changes after γ irradiation.
Collapse
Affiliation(s)
- D Soghomonyan
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1A. Manoogian, 0025, Yerevan, Armenia
| | - A Margaryan
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1A. Manoogian, 0025, Yerevan, Armenia
| | - K Trchounian
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1A. Manoogian, 0025, Yerevan, Armenia
| | - K Ohanyan
- Department of Nuclear Physics, Yerevan State University, 1A. Manoogian, 0025, Yerevan, Armenia
| | - H Badalyan
- Department of General Physics and Astrophysics, Yerevan State University, 1A. Manoogian, 0025, Yerevan, Armenia
| | - A Trchounian
- Research Institute of Biology, Biology Faculty, Yerevan State University, 1A. Manoogian, 0025, Yerevan, Armenia.
- Department of Biochemistry Microbiology and Biotechnology, Yerevan State University, 1A. Manoogian, 0025, Yerevan, Armenia.
| |
Collapse
|
5
|
Resistance of Feather-Associated Bacteria to Intermediate Levels of Ionizing Radiation near Chernobyl. Sci Rep 2016; 6:22969. [PMID: 26976674 PMCID: PMC4792135 DOI: 10.1038/srep22969] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/22/2016] [Indexed: 11/22/2022] Open
Abstract
Ionizing radiation has been shown to produce negative effects on organisms, although little is known about its ecological and evolutionary effects. As a study model, we isolated bacteria associated with feathers from barn swallows Hirundo rustica from three study areas around Chernobyl differing in background ionizing radiation levels and one control study site in Denmark. Each bacterial community was exposed to four different γ radiation doses ranging from 0.46 to 3.96 kGy to test whether chronic exposure to radiation had selected for resistant bacterial strains. Experimental radiation duration had an increasingly overall negative effect on the survival of all bacterial communities. After exposure to γ radiation, bacteria isolated from the site with intermediate background radiation levels survived better and produced more colonies than the bacterial communities from other study sites with higher or lower background radiation levels. Long-term effects of radiation in natural populations might be an important selective pressure on traits of bacteria that facilitate survival in certain environments. Our findings indicate the importance of further studies to understand the proximate mechanisms acting to buffer the negative effects of ionizing radiation in natural populations.
Collapse
|
6
|
Sommers C, Rajkowski KT, Scullen OJ, Cassidy J, Fratamico P, Sheen S. Inactivation of Shiga Toxin-Producing Escherichia coli in lean ground beef by gamma irradiation. Food Microbiol 2015; 49:231-4. [DOI: 10.1016/j.fm.2015.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/23/2015] [Accepted: 02/21/2015] [Indexed: 10/23/2022]
|
7
|
Vanhoecke BWA, De Ryck TRG, De boel K, Wiles S, Boterberg T, Van de Wiele T, Swift S. Low-dose irradiation affects the functional behavior of oral microbiota in the context of mucositis. Exp Biol Med (Maywood) 2015. [PMID: 26202372 DOI: 10.1177/1535370215595467] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The role of host-microbe interactions in the pathobiology of oral mucositis is still unclear; therefore, this study aimed to unravel the effect of irradiation on behavioral characteristics of oral microbial species in the context of mucositis. Using various experimental in vitro setups, the effects of irradiation on growth and biofilm formation of two Candida spp., Streptococcus salivarius and Klebsiella oxytoca in different culture conditions were evaluated. Irradiation did not affect growth of planktonic cells, but reduced the number of K. oxytoca cells in newly formed biofilms cultured in static conditions. Biofilm formation of K. oxytoca and Candida glabrata was affected by irradiation and depended on the culturing conditions. In the presence of mucins, these effects were lost, indicating the protective nature of mucins. Furthermore, the Galleria melonella model was used to study effects on microbial virulence. Irradiated K. oxytoca microbes were more virulent in G. melonella larvae compared to the nonirradiated ones. Our data indicate that low-dose irradiation can have an impact on functional characteristics of microbial species. Screening for pathogens like K. oxytoca in the context of mucosits could be useful to allow early detection and immediate intervention.
Collapse
Affiliation(s)
- Barbara W A Vanhoecke
- Laboratory of Microbial Ecology and Technology, Department of Biochemical and Microbial Technology, Ghent University, 9000 Ghent, Belgium
| | - Tine R G De Ryck
- Laboratory of Experimental Cancer Research, Department of Radiation oncology and Experimental Cancer Research, Ghent University, 9000 Ghent, Belgium
| | - Kevin De boel
- Laboratory of Microbial Ecology and Technology, Department of Biochemical and Microbial Technology, Ghent University, 9000 Ghent, Belgium Laboratory of Experimental Cancer Research, Department of Radiation oncology and Experimental Cancer Research, Ghent University, 9000 Ghent, Belgium
| | - Siouxsie Wiles
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1010, New Zealand
| | - Tom Boterberg
- Laboratory of Experimental Cancer Research, Department of Radiation oncology and Experimental Cancer Research, Ghent University, 9000 Ghent, Belgium
| | - Tom Van de Wiele
- Laboratory of Microbial Ecology and Technology, Department of Biochemical and Microbial Technology, Ghent University, 9000 Ghent, Belgium
| | - Simon Swift
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
8
|
Kozeko L, Talalaiev O, Neimash V, Povarchuk V. A protective role of HSP90 chaperone in gamma-irradiated Arabidopsis thaliana seeds. LIFE SCIENCES IN SPACE RESEARCH 2015; 6:51-58. [PMID: 26256628 DOI: 10.1016/j.lssr.2015.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/26/2015] [Accepted: 07/05/2015] [Indexed: 06/04/2023]
Abstract
The heat shock protein 90 (HSP90) is required for the maturation and conformational regulation of many regulatory proteins affecting morphogenetic pathways and stress tolerance. The purpose of this work is to disclose a role of HSP90 in radioresistance of seeds. Arabidopsis thaliana (Ler) seeds were exposed to γ-ray irradiation with doses of 0.1-1 kGy using (60)Co source to obtain a viable but polymorphic material. A comet assay of the seeds showed a dose-dependent increase in DNA damage. Phenotypic consequences of irradiation included growth stimulation at doses of 0.1-0.25 kGy and negative growth effects at doses from 0.5 kGy and beyond, along with increasing heterogeneity of seedling growth rate and phenotype. The frequencies of abnormal phenotypes were highly correlated with the degree of DNA damage in seeds. Treatment of seeds with geldanamycin (GDA), an inhibitor of HSP90, stimulated the seedling growth at all radiation doses and, at the same time, enhanced the growth rate and morphological diversity. It was also found that HSP70 induction by γ-rays was increased following GDA treatment (shown at 1 kGy). We suppose that the GDA-induced HSP70 can be involved in elimination of detrimental radiation effects that ultimately results in growth stimulation. On the other hand, the increase in phenotypic variation, when HSP90 function was impaired, confirms the supposition that the chaperone may control the concealment of cryptic genetic alterations and the developmental stability. In general, these results demonstrate that HSP90 may interface the stress response and phenotypic expression of genetic alterations induced by irradiation.
Collapse
Affiliation(s)
- Liudmyla Kozeko
- Department of Cell Biology and Anatomy, Institute of Botany, NAS of Ukraine, Tereshchenkivska str. 2, 01601 Kyiv, Ukraine.
| | - Oleksandr Talalaiev
- Department of Cell Biology and Anatomy, Institute of Botany, NAS of Ukraine, Tereshchenkivska str. 2, 01601 Kyiv, Ukraine.
| | - Volodymyr Neimash
- Laboratory of radiation technology, Institute of Physics, NAS of Ukraine, Nauky av. 46, 03028, Kyiv, Ukraine.
| | - Vasyl Povarchuk
- Laboratory of radiation technology, Institute of Physics, NAS of Ukraine, Nauky av. 46, 03028, Kyiv, Ukraine.
| |
Collapse
|
9
|
Takihara H, Ogihara J, Yoshida T, Okuda S, Nakajima M, Iwabuchi N, Sunairi M. Enhanced translocation and growth of Rhodococcus erythropolis PR4 in the alkane phase of aqueous-alkane two phase cultures were mediated by GroEL2 overexpression. Microbes Environ 2014; 29:346-52. [PMID: 25311591 PMCID: PMC4262357 DOI: 10.1264/jsme2.me13158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We previously reported that R. erythropolis PR4 translocated from the aqueous to the alkane phase, and then grew in two phase cultures to which long-chain alkanes had been added. This was considered to be beneficial for bioremediation. In the present study, we investigated the proteins involved in the translocation of R. erythropolis PR4. The results of our proteogenomic analysis suggested that GroEL2 was upregulated more in cells that translocated inside of the pristane (C19) phase than in those located at the aqueous-alkane interface attached to the n-dodecane (C12) surface. PR4 (pK4-EL2-1) and PR4 (pK4-ΔEL2-1) strains were constructed to confirm the effects of the upregulation of GroEL2 in translocated cells. The expression of GroEL2 in PR4 (pK4-EL2-1) was 15.5-fold higher than that in PR4 (pK4-ΔEL2-1) in two phase cultures containing C12. The growth and cell surface lipophilicity of PR4 were enhanced by the introduction of pK4-EL2-1. These results suggested that the plasmid overexpression of groEL2 in PR4 (pK4-EL2-1) led to changes in cell localization, enhanced growth, and increased cell surface lipophilicity. Thus, we concluded that the overexpression of GroEL2 may play an important role in increasing the organic solvent tolerance of R. erythropolis PR4 in aqueous-alkane two phase cultures.
Collapse
Affiliation(s)
- Hayato Takihara
- Laboratory of Molecular Microbiology, Department of Applied Biological Science, College of Bioresource Sciences, Nihon University
| | | | | | | | | | | | | |
Collapse
|
10
|
Gustafson JE, Muthaiyan A, Dupre JM, Ricke SC. WITHDRAWN: Staphylococcus aureus and understanding the factors that impact enterotoxin production in foods: A review. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Trudeau K, Vu KD, Déziel É, Shareck F, Lacroix M. Effect of γ-irradiation on gene expression of heat shock proteins in the foodborne pathogen Escherichia coli O157:H7. Int J Radiat Biol 2014; 90:268-73. [PMID: 24168176 DOI: 10.3109/09553002.2014.859766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The expression levels of seven genes (clpB, dnaK, groES, grpE, htpG, htpX and ibpB) encoding heat shock proteins (HSP) in Escherichia coli O157:H7 (E. coli) gamma irradiated was investigated. Timing impact of post-irradiated RNA extraction on the expression levels of these seven genes was also studied at a dose damaging the bacterial cells (0.4 kGy). METHODS Bacterial samples were γ-irradiated at 0.4 kGy and at a lethal dose of 1.3 kGy. RNA was extracted at 0 min post irradiation for both irradiation doses and at 15, 30, 60, 90 or 120 min post-irradiation at the dose damaging the cells. Quantification of the gene expression was performed using quantitative real-time polymerase chain reaction (q-RT-PCR). RESULTS The expression of genes encoding HSP was a very dynamic process evolving rapidly when E. coli cells were irradiated at 0.4 kGy. Notably, groES, grpE and ibpB were more up- regulated at 1.3 kGy than those at 0.4 kGy. CONCLUSIONS For the seven genes studied there were more damaged proteins during irradiation at the lethal dose and this dose causes increased expression in HSP which contributes to damage reparation. Expression patterns of genes encoding HSP in E. coli treated by γ-irradiation are different from those treated by heat shock.
Collapse
Affiliation(s)
- Karine Trudeau
- Research Laboratory in Sciences Applied to Food, Canadian Irradiation Center, INRS-Institut Armand-Frappier , Laval, Quebec
| | | | | | | | | |
Collapse
|
12
|
Tracz DM, McCorrister SJ, Westmacott GR, Corbett CR. Effect of gamma radiation on the identification of bacterial pathogens by MALDI-TOF MS. J Microbiol Methods 2013. [DOI: 10.1016/j.mimet.2012.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Capillary electrophoresis separation of protein composition of γ-irradiated food pathogens Listeria monocytogenes and Staphylococcus aureus. PLoS One 2012; 7:e32488. [PMID: 22427846 PMCID: PMC3299667 DOI: 10.1371/journal.pone.0032488] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 01/31/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A capillary electrophoresis method using UV detection was developed to analyse protein composition of the lysates of two foodborne pathogens, Listeria monocytogenes and Staphylococcus aureus which were previously treated at different irradiation doses. METHODOLOGY AND PRINCIPAL FINDINGS Bacterial samples were γ-irradiated at different doses to produce damage cells, to kill cells and to provoke viable but non culturable cells (VBNC) in order to evaluate the respective expression of stress proteins. In Listeria monocytogenes, two proteins (MW of 70.2 and 85.4 kDa) were significantly changed (P ≤ 0.05) at different doses of irradiation. In Staphyloccocus aureus, one protein (50 S ribosomal protein) with the MW of 16.3 kDa was significantly decreased at a low dose of irradiation treatment and the other protein (transcriptional regulator CtsR) with the MW of 17.7 kDa was increased significantly (P ≤ 0.05) at all doses of irradiation treatment compared to control. CONCLUSION Expression of two proteins from the acyltransferase family in Listeria monocytogenes was statistically changed during irradiation treatment (P ≤ 0.05). In Staphylococcus aureus, expression of the 50 S ribosomal protein decreased and the transcriptional regulator CtsR espression increased significantly (P ≤ 0.05) following irradiation treatment. These expressed proteins do not belong to the well-known heat shock proteins family of Listeria monocytogenes and Staphylococcus aureus. The research further confirmed that capillary electrophoresis is a useful method to separate and analyse proteins expression which may be related to the resistance or sensitivity of food pathogens to γ-irradiation.
Collapse
|
14
|
Grynberg P, Passos-Silva DG, Mourão MDM, Hirata Jr R, Macedo AM, Machado CR, Bartholomeu DC, Franco GR. Trypanosoma cruzi gene expression in response to gamma radiation. PLoS One 2012; 7:e29596. [PMID: 22247781 PMCID: PMC3256153 DOI: 10.1371/journal.pone.0029596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 11/30/2011] [Indexed: 01/19/2023] Open
Abstract
Trypanosoma cruzi is an organism highly resistant to ionizing radiation. Following a dose of 500 Gy of gamma radiation, the fragmented genomic DNA is gradually reconstructed and the pattern of chromosomal bands is restored in less than 48 hours. Cell growth arrests after irradiation but, while DNA is completely fragmented, RNA maintains its integrity. In this work we compared the transcriptional profiles of irradiated and non-irradiated epimastigotes at different time points after irradiation using microarray. In total, 273 genes were differentially expressed; from these, 160 were up-regulated and 113 down-regulated. We found that genes with predicted functions are the most prevalent in the down-regulated gene category. Translation and protein metabolic processes, as well as generation of precursor of metabolites and energy pathways were affected. In contrast, the up-regulated category was mainly composed of obsolete sequences (which included some genes of the kinetoplast DNA), genes coding for hypothetical proteins, and Retrotransposon Hot Spot genes. Finally, the tyrosyl-DNA phosphodiesterase 1, a gene involved in double-strand DNA break repair process, was up-regulated. Our study demonstrated the peculiar response to ionizing radiation, raising questions about how this organism changes its gene expression to manage such a harmful stress.
Collapse
Affiliation(s)
- Priscila Grynberg
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danielle Gomes Passos-Silva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marina de Moraes Mourão
- Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Roberto Hirata Jr
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Andrea Mara Macedo
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Renato Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Glória Regina Franco
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
15
|
Milillo SR, Martin E, Muthaiyan A, Ricke SC. Immediate reduction of Salmonella enterica serotype typhimurium viability via membrane destabilization following exposure to multiple-hurdle treatments with heated, acidified organic acid salt solutions. Appl Environ Microbiol 2011; 77:3765-72. [PMID: 21478311 PMCID: PMC3127599 DOI: 10.1128/aem.02839-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 03/29/2011] [Indexed: 01/06/2023] Open
Abstract
The antimicrobial activity of organic acids in combination with nonchemical treatments was evaluated for inactivation of Salmonella enterica serotype Typhimurium within 1 min. It was observed that the effectiveness of the multiple-hurdle treatments was temperature (P ≤ 0.05) and pH (P ≤ 0.05) dependent and corresponded to the degree of organic acid lipophilicity (sodium acetate being least effective and sodium propionate being the most effective). This led to the hypothesis that the loss in viability was due at least in part to cell membrane disruption. Evaluation of osmotic response, potassium ion leakage, and transmission electron micrographs confirmed treatment effects on the cell membrane. Interestingly, all treatments, even those with no effect on viability, such as with sodium acetate, resulted in measurable cellular stress. Microarray experiments explored the specific response of S. Typhimurium to sodium acetate and sodium propionate, the most similar of the tested treatments in terms of pK(a) and ionic strength, and found little difference in the changes in gene expression following exposure to either, despite their very different effects on viability. Taken together, the results reported support our hypothesis that treatment with heated, acidified, organic acid salt solutions for 1 min causes loss of S. Typhimurium viability at least in part by membrane damage and that the degree of effectiveness can be correlated with lipophilicity of the organic acid. Overall, the data presented here indicate that a combined thermal, acidified sodium propionate treatment can provide an effective antimicrobial treatment against Salmonella.
Collapse
Affiliation(s)
- S R Milillo
- 2435 N. Hatch Ave., Food Science Department, University of Arkansas, Fayetteville, AR 72704, USA.
| | | | | | | |
Collapse
|
16
|
Ben Abdallah F, Ellafi A, Lagha R, Bakhrouf A, Namane A, Rousselle JC, Lenormand P, Kallel H. Identification of outer membrane proteins of Vibrio parahaemolyticus and Vibrio alginolyticus altered in response to γ-irradiation or long-term starvation. Res Microbiol 2010; 161:869-75. [PMID: 21035543 DOI: 10.1016/j.resmic.2010.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/30/2010] [Indexed: 11/26/2022]
Abstract
Vibrio parahaemolyticus and Vibrio alginolyticus were subjected to γ-irradiation (0.5 kGy) or starvation by incubation for 8 months in seawater to study modifications in their outer membrane protein patterns. After treatment, outer membrane protein profiles of starved or γ-irradiated bacteria were found to be altered when analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Altered proteins were identified by mass spectrometry (MS and MS/MS) and analyses revealed that OmpU can be considered a starvation stress-induced protein. In addition, expression of OtnA, OmpW, OmpA and peptidoglycan-associated lipoprotein decreased to non-detectable levels in starved cells. Furthermore, MltA-interacting protein MipA appeared under γ-irradiation or starvation conditions. Thus, it can be considered to be a γ-irradiation, long-term starvation stress protein in some vibrios.
Collapse
Affiliation(s)
- Fethi Ben Abdallah
- Laboratoire d'Analyse, Traitement et Valorisation des Polluants de l'Environnement et des Produits, Faculté de Pharmacie, Rue Avicenne, Monastir 5000, Tunisia.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Czirják GA, Møller AP, Mousseau TA, Heeb P. Microorganisms associated with feathers of barn swallows in radioactively contaminated areas around chernobyl. MICROBIAL ECOLOGY 2010; 60:373-380. [PMID: 20640571 DOI: 10.1007/s00248-010-9716-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 06/23/2010] [Indexed: 05/27/2023]
Abstract
The Chernobyl catastrophe provides a rare opportunity to study the ecological and evolutionary consequences of low-level, environmental radiation on living organisms. Despite some recent studies about negative effects of environmental radiation on macroorganisms, there is little knowledge about the effect of radioactive contamination on diversity and abundance of microorganisms. We examined abundance patterns of total cultivable bacteria and fungi and the abundance of feather-degrading bacterial subset present on feathers of barn swallows (Hirundo rustica), a colonial migratory passerine, around Chernobyl in relation to levels of ground level environmental radiation. After controlling for confounding variables, total cultivable bacterial loads were negatively correlated with environmental radioactivity, whereas abundance of fungi and feather-degrading bacteria was not significantly related to contamination levels. Abundance of both total and feather-degrading bacteria increased with barn swallow colony size, showing a potential cost of sociality. Males had lower abundance of feather-degrading bacteria than females. Our results show the detrimental effects of low-level environmental radiation on total cultivable bacterial assemblage on feathers, while the abundance of other microorganism groups living on barn swallow feathers, such as feather-degrading bacteria, are shaped by other factors like host sociality or host sex. These data lead us to conclude that the ecological effects of Chernobyl may be more general than previously assumed and may have long-term implications for host-microbe interactions and overall ecosystem functioning.
Collapse
Affiliation(s)
- Gábor Arpád Czirják
- Laboratoire Evolution et Diversité Biologique, UMR 5174 Centre National de la Recherche Scientifique, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse, France.
| | | | | | | |
Collapse
|
18
|
Ben Abdallah F, Bakhrouf A, Ayed A, Kallel H. Alterations of outer membrane proteins and virulence genes expression in gamma-irradiated Vibrio parahaemolyticus and Vibrio alginolyticus. Foodborne Pathog Dis 2010; 6:1171-6. [PMID: 19735197 DOI: 10.1089/fpd.2009.0331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Gamma-irradiation technology sterilizes microorganisms and thereby prevents decay and improves the safety and shelf stability of food products. In this study we treated the foodborne pathogens Vibrio parahaemolyticus and Vibrio alginolyticus with gamma-irradiation (0.5 kGy) to evaluate their adaptative response. Outer membrane protein patterns of irradiated bacteria were found altered when analyzed by sodium dodecyl sulphate polyacrylamide gel electrophoresis. These modifications were manifested by the appearance and/or disappearance of bands as well as in the expression level of certain proteins. In addition, we searched for the presence of eight Vibrio cholerae virulence genes, toxR, toxS, toxRS, ctxA, zot, ace, toxT, and virulence pathogenicity island (VPI), in the genome of investigated strains. The expression of toxR, toxS, VPI, and ace genes in gamma-irradiated bacteria, studied by reverse transcriptase polymerase chain reaction, was altered. These variations were manifested by an increase and/or a decrease in the expression level of tested virulence genes.
Collapse
Affiliation(s)
- Fethi Ben Abdallah
- Laboratoire d'Analyse, Traitement et Valorisation des Polluants de l'Environnement et des Produits, Faculté de Pharmacie, Monastir, Tunisia.
| | | | | | | |
Collapse
|