1
|
Abstract
Oral microbial dysbiosis contributes to the development of oral squamous cell carcinoma (OSCC). Numerous studies have focused on variations in the oral bacterial microbiota of patients with OSCC. However, similar studies on fungal microbiota, another integral component of the oral microbiota, are scarce. Moreover, there is an evidence gap regarding the role that microecosystems play in different niches of the oral cavity at different stages of oral carcinogenesis. Here, we catalogued the microbial communities in the human oral cavity by profiling saliva, gingival plaque, and mucosal samples at different stages of oral carcinogenesis. We analyzed the oral bacteriome and mycobiome along the health-premalignancy-carcinoma sequence. Some species, including Prevotella intermedia, Porphyromonas endodontalis, Acremonium exuviarum, and Aspergillus fumigatus, were enriched, whereas others, such as Streptococcus salivarius subsp. salivarius, Scapharca broughtonii, Mortierella echinula, and Morchella septimelata, were depleted in OSCC. These findings suggest that an array of signature species, including bacteria and fungi, are closely associated with oral carcinogenesis. OSCC-associated diversity differences, species distinction, and functional alterations were most remarkable in mucosal samples, not in gingival plaque or saliva samples, suggesting an urgent need to define oral carcinogenesis-associated microbial dysbiosis based on the spatial microbiome. IMPORTANCE Abundant oral microorganisms constitute a complex microecosystem within the oral environment of the host, which plays a critical role in the adjustment of various physiological and pathological states of the oral cavity. In this study, we demonstrated that variations in the "core microbiome" may be used to predict carcinogenesis. In addition, sample data collected from multiple oral sites along the health-premalignancy-carcinoma sequence increase our understanding of the microecosystems of different oral niches and their specific changes during oral carcinogenesis. This work provides insight into the roles of bacteria and fungi in OSCC and may contribute to the development of early diagnostic assays and novel treatments.
Collapse
|
2
|
Vaali K, Tuomela M, Mannerström M, Heinonen T, Tuuminen T. Toxic Indoor Air Is a Potential Risk of Causing Immuno Suppression and Morbidity—A Pilot Study. J Fungi (Basel) 2022; 8:jof8020104. [PMID: 35205859 PMCID: PMC8877819 DOI: 10.3390/jof8020104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 02/01/2023] Open
Abstract
We aimed to establish an etiology-based connection between the symptoms experienced by the occupants of a workplace and the presence in the building of toxic dampness microbiota. The occupants (5/6) underwent a medical examination and urine samples (2/6) were analyzed by LC-MS/MS for mycotoxins at two time-points. The magnitude of inhaled water was estimated. Building-derived bacteria and fungi were identified and assessed for toxicity. Separate cytotoxicity tests using human THP-1 macrophages were performed from the office’s indoor air water condensates. Office-derived indoor water samples (n = 4/4) were toxic to human THP-1 macrophages. Penicillium, Acremonium sensu lato, Aspergillus ochraceus group and Aspergillus section Aspergillus grew from the building material samples. These colonies were toxic in boar sperm tests (n = 11/32); four were toxic to BHK-21 cells. Mycophenolic acid, which is a potential immunosuppressant, was detected in the initial and follow-up urine samples of (2/2) office workers who did not take immunosuppressive drugs. Their urinary mycotoxin profiles differed from household and unrelated controls. Our study suggests that the presence of mycotoxins in indoor air is linked to the morbidity of the occupants. The cytotoxicity test of the indoor air condensate is a promising tool for risk assessment in moisture-damaged buildings.
Collapse
Affiliation(s)
- Kirsi Vaali
- SelexLab Oy, Kalevankatu 17 A, 00100 Helsinki, Finland
- Correspondence: ; Tel.: +358-50-550-1131
| | - Marja Tuomela
- Co-op Bionautit, Viikinkaari 9, 00790 Helsinki, Finland;
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Marika Mannerström
- The Finnish Centre for Alternative Methods, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33014 Tampere, Finland; (M.M.); (T.H.)
| | - Tuula Heinonen
- The Finnish Centre for Alternative Methods, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33014 Tampere, Finland; (M.M.); (T.H.)
| | - Tamara Tuuminen
- Medical Center Kruunuhaka Oy, Kaisaniemenkatu 8B a, 00100 Helsinki, Finland;
| |
Collapse
|
3
|
The Toxicity of Wiped Dust and Airborne Microbes in Individual Classrooms Increase the Risk of Teachers' Work-Related Symptoms: A Cross-Sectional Study. Pathogens 2021; 10:pathogens10111360. [PMID: 34832514 PMCID: PMC8624243 DOI: 10.3390/pathogens10111360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
Background: The causes and pathophysiological mechanisms of building-related symptoms (BRS) remain open. Objective: We aimed to investigate the association between teachers’ individual work-related symptoms and intrinsic in vitro toxicity in classrooms. This is a further analysis of a previously published dataset. Methods: Teachers from 15 Finnish schools in Helsinki responded to the symptom survey. The boar sperm motility inhibition assay, a sensitive indicator of mitochondrial dysfunction, was used to measure the toxicity of wiped dust and cultured microbial fallout samples collected from the teachers’ classrooms. Results: 231 teachers whose classroom toxicity data had been collected responded to the questionnaire. Logistic regression analysis adjusted for age, gender, smoking, and atopy showed that classroom dust intrinsic toxicity was statistically significantly associated with the following 12 symptoms reported by teachers (adjusted ORs in parentheses): nose stuffiness (4.1), runny nose (6.9), hoarseness (6.4), globus sensation (9.0), throat mucus (7.6), throat itching (4.4), shortness of breath (12.2), dry cough (4.7), wet eyes (12.7), hypersensitivity to sound (7.9), difficulty falling asleep (7.6), and increased need for sleep (7.7). Toxicity of cultured microbes was found to be associated with nine symptoms (adjusted ORs in parentheses): headache (2.3), nose stuffiness (2.2), nose dryness (2.2), mouth dryness (2.8), hoarseness (2.2), sore throat (2.8), throat mucus (2.3), eye discharge (10.2), and increased need for sleep (3.5). Conclusions: The toxicity of classroom dust and airborne microbes in boar sperm motility inhibition assay significantly increased teachers’ risk of work-related respiratory and ocular symptoms. Potential pathophysiological mechanisms of BRS are discussed.
Collapse
|
4
|
Andersson (AMA, Salo J, Mikkola R, Marik T, Kredics L, Kurnitski J, Salonen H. Melinacidin-Producing Acrostalagmus luteoalbus, a Major Constituent of Mixed Mycobiota Contaminating Insulation Material in an Outdoor Wall. Pathogens 2021; 10:pathogens10070843. [PMID: 34357993 PMCID: PMC8308789 DOI: 10.3390/pathogens10070843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Occupants may complain about indoor air quality in closed spaces where the officially approved standard methods for indoor air quality risk assessment fail to reveal the cause of the problem. This study describes a rare genus not previously detected in Finnish buildings, Acrostalagmus, and its species A. luteoalbus as the major constituents of the mixed microbiota in the wet cork liner from an outdoor wall. Representatives of the genus were also present in the settled dust in offices where occupants suffered from symptoms related to the indoor air. One strain, POB8, was identified as A. luteoalbus by ITS sequencing. The strain produced the immunosuppressive and cytotoxic melinacidins II, III, and IV, as evidenced by mass spectrometry analysis. In addition, the classical toxigenic species indicating water damage, mycoparasitic Trichoderma, Aspergillus section Versicolores, Aspergillus section Circumdati, Aspergillus section Nigri, and Chaetomium spp., were detected in the wet outdoor wall and settled dust from the problematic rooms. The offices exhibited no visible signs of microbial growth, and the airborne load of microbial conidia was too low to explain the reported symptoms. In conclusion, we suggest the possible migration of microbial bioactive metabolites from the wet outdoor wall into indoor spaces as a plausible explanation for the reported complaints.
Collapse
Affiliation(s)
- (Aino) Maria A. Andersson
- Department of Civil Engineering, Aalto University, P.O. Box 12100, FI-00076 Aalto, Finland; (J.S.); (R.M.); (J.K.); (H.S.)
- Correspondence: ; Tel.: +358-405508934
| | - Johanna Salo
- Department of Civil Engineering, Aalto University, P.O. Box 12100, FI-00076 Aalto, Finland; (J.S.); (R.M.); (J.K.); (H.S.)
| | - Raimo Mikkola
- Department of Civil Engineering, Aalto University, P.O. Box 12100, FI-00076 Aalto, Finland; (J.S.); (R.M.); (J.K.); (H.S.)
| | - Tamás Marik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (T.M.); (L.K.)
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; (T.M.); (L.K.)
| | - Jarek Kurnitski
- Department of Civil Engineering, Aalto University, P.O. Box 12100, FI-00076 Aalto, Finland; (J.S.); (R.M.); (J.K.); (H.S.)
- Department of Civil Engineering and Architecture, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Heidi Salonen
- Department of Civil Engineering, Aalto University, P.O. Box 12100, FI-00076 Aalto, Finland; (J.S.); (R.M.); (J.K.); (H.S.)
- International Laboratory for Air Quality and Health, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia
| |
Collapse
|
5
|
Bioreactivity, Guttation and Agents Influencing Surface Tension of Water Emitted by Actively Growing Indoor Mould Isolates. Microorganisms 2020; 8:microorganisms8121940. [PMID: 33297485 PMCID: PMC7762365 DOI: 10.3390/microorganisms8121940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
The secretion of metabolites in guttation droplets by indoor moulds is not well documented. This study demonstrates the guttation of metabolites by actively growing common indoor moulds. Old and fresh biomasses of indoor isolates of Aspergillus versicolor, Chaetomium globosum, Penicillium expansum, Trichoderma atroviride, T. trixiae, Rhizopus sp. and Stachybotrys sp. were compared. Metabolic activity indicated by viability staining and guttation of liquid droplets detected in young (<3 weeks old) biomass were absent in old (>6 months old) cultures consisting of dehydrated hyphae and dormant conidia. Fresh (<3 weeks old) biomasses were toxic more than 10 times towards mammalian cell lines (PK-15 and MNA) compared to the old dormant, dry biomasses, when calculated per biomass wet weight and per conidial particle. Surfactant activity was emitted in exudates from fresh biomass of T. atroviride, Rhizopus sp. and Stachybotrys sp. Surfactant activity was also provoked by fresh conidia from T. atroviride and Stachybotrys sp. strains. Water repealing substances were emitted by cultures of P. expansum, T. atroviride and C. globosum strains. The metabolic state of the indoor fungal growth may influence emission of liquid soluble bioreactive metabolites into the indoor air.
Collapse
|
6
|
Detection of Chaetomium globosum, Ch. cochliodes and Ch. rectangulare during the Diversity Tracking of Mycotoxin-Producing Chaetomium-Like Isolates Obtained in Buildings in Finland. Toxins (Basel) 2020; 12:toxins12070443. [PMID: 32650391 PMCID: PMC7405012 DOI: 10.3390/toxins12070443] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 01/26/2023] Open
Abstract
The diversity of Chaetomium-like isolates in buildings in Finland is poorly documented. This paper describes a set of methods for rapid diversity tracking of 42 indoor Chaetomium-like isolates. These isolates were categorized based on their fluorescence emission, ascomatal hair morphology, responses in three bioassays and resistance/sensitivity to the wetting agent Genapol X-080. Thirty-nine toxigenic isolates were identified [Ch. globosum (n = 35), Ch. cochliodes (n = 2) and Ch. rectangulare (n = 2)]. These isolates were identified down to the species level by tef1α gene sequencing. The major toxic substances in the ethanol extracts of the Ch. globosum and Ch. cochliodes strains were chaetoglobosin, chaetoviridin A and C, chaetomugilin D and chaetomin, identified based on HPLC-UV and mass spectrometry data (MS and MS/MS). Ethanol extracts from pure Ch. globosum cultures exhibited a toxicological profile in the boar sperm motility inhibition assay (BSMI), sperm membrane integrity damage assay (SMID) and inhibition of cell proliferation (ICP) assay, similar to that exhibited by pure chaetoglobosin A. Overall, differences in fluorescence, morphology, toxicity profile, mycotoxin production and sensitivity to chemicals were consistent with those in tef1α sequencing results for species identification. The results indicate the presence of Ch. cochliodes and Ch. rectangulare in Finnish buildings, representing a new finding.
Collapse
|
7
|
Hatvani L, Homa M, Chenthamara K, Cai F, Kocsubé S, Atanasova L, Mlinaric-Missoni E, Manikandan P, Revathi R, Dóczi I, Bogáts G, Narendran V, Büchner R, Vágvölgyi C, Druzhinina IS, Kredics L. Agricultural systems as potential sources of emerging human mycoses caused by Trichoderma: a successful, common phylotype of Trichoderma longibrachiatum in the frontline. FEMS Microbiol Lett 2020; 366:5670621. [PMID: 31816013 DOI: 10.1093/femsle/fnz246] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/06/2019] [Indexed: 01/18/2023] Open
Abstract
Trichoderma species are abundant in different agricultural habitats, but some representatives of this genus, mainly clade Longibrachiatum members are also emerging as causative agents of various human diseases with even fatal outcome. Strains of these species frequently show resistance to commonly used azole antifungals. Based on previous data it is hypothesized that Trichoderma isolates identified in human infections derive from environmental-including agricultural-origins. We examined Trichoderma longibrachiatum Rifai and Trichoderma bissettii Sandoval-Denis & Guarro strains recovered from four novel cases of human mycoses, along with isolates from previous case reports and different agricultural habitats, using multilocus phylogenetic analysis, BIOLOG Phenotype Microarrays and Etest. Strains attributed to T. bissettii were more abundant in both clinical and agricultural specimens compared to T. longibrachiatum. The majority of the isolates of both taxa could tolerate >256, >32 and >32 μg/ml fluconazole, itraconazole and posaconazole, respectively. None of the obtained results revealed characteristic differences between strains of clinical and agricultural origin, nor between the two taxa, supporting that agricultural environments may be significant sources of infections caused by these emerging human fungal pathogens. Furthermore, based on our findings we propose the re-classification of T. bissettii as T. longibrachiatum f. sp. bissettii.
Collapse
Affiliation(s)
- Lóránt Hatvani
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., Szeged, 6726, Hungary.,MTA-SZTE "Lendület" Mycobiome Research Group, Közép fasor 52., Szeged, 6726, Hungary
| | - Mónika Homa
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., Szeged, 6726, Hungary.,MTA-SZTE "Lendület" Fungal Pathogenicity Mechanisms Research Group, Közép fasor 52., Szeged, 6726, Hungary
| | - Komal Chenthamara
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), Gumpendorferstrasse 1a/E166-5., TU Wien, Vienna, 1060, Austria
| | - Feng Cai
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), Gumpendorferstrasse 1a/E166-5., TU Wien, Vienna, 1060, Austria.,Fungal Genomics Group, Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Weigang No. 1., Nanjing, 210095, China
| | - Sándor Kocsubé
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., Szeged, 6726, Hungary
| | - Lea Atanasova
- Department of Food Sciences and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Muthgasse 18., Vienna, 1190, Austria
| | - Emilija Mlinaric-Missoni
- Croatian National Institute of Public Health, Rockefellerova 2., Zagreb, 10000, Croatia (retired)
| | - Palanisamy Manikandan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Academic City, Majmaah, 11952, Saudi Arabia.,Greenlink Analytical and Research Laboratory India Private Ltd, Tex Park Road, Coimbatore, Tamil Nadu, 641 014, India
| | - Rajaraman Revathi
- Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Avinashi Road, Coimbatore, Tamil Nadu, 641 014, India
| | - Ilona Dóczi
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Semmelweis u. 6., Szeged, 6725, Hungary
| | - Gábor Bogáts
- Second Department of Internal Medicine and Cardiology Center, Faculty of Medicine, University of Szeged, Semmelweis u. 8., Szeged, 6725, Hungary
| | - Venkatapathy Narendran
- Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Avinashi Road, Coimbatore, Tamil Nadu, 641 014, India
| | - Rita Büchner
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., Szeged, 6726, Hungary.,Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., Szeged, 6726, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., Szeged, 6726, Hungary
| | - Irina S Druzhinina
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), Gumpendorferstrasse 1a/E166-5., TU Wien, Vienna, 1060, Austria.,Fungal Genomics Group, Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Weigang No. 1., Nanjing, 210095, China
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., Szeged, 6726, Hungary
| |
Collapse
|
8
|
Screening Mold Colonies by Using Two Toxicity Assays Revealed Indoor Strains of Aspergillus calidoustus Producing Ophiobolins G and K. Toxins (Basel) 2019; 11:toxins11120683. [PMID: 31766362 PMCID: PMC6949950 DOI: 10.3390/toxins11120683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 01/27/2023] Open
Abstract
The occurrence and toxin production of the opportunistic pathogen Aspergillus calidoustus in Finnish buildings is not well documented in the literature. We tracked and identified four A. calidoustus colonies cultivated from indoor settled dusts and revealed the biological activities of crude biomass extracts. The toxic substances were identified as 6-epi-ophiobolin K, ophiobolin K, and ophiobolin G by high-performance liquid chromatography–mass spectrometry (HPLC-MS) based on chromatographic and mass spectrometry data (MS and MS/MS) on the crude extract of A. calidoustus strain MH34. A total of 29 fungal colonies collected from settled dust in an office room reported for indoor-air-related illnesses were screened for toxins that inhibited boar sperm motility in the BSMI (boar sperm motility inhibiting) assay and cell proliferation in the ICP (inhibition of cell proliferation) assays with PK-15 cells. Out of the 27 colonies tested as toxic, 12 colonies exhibiting conidiophores representative of the genera Chaetomium, Penicillium, and Paecilomyces were excluded from the study, while 13 colonies exhibited Aspergillus-like conidiophores. Biomass suspensions of these colonies were divided into two categories: Category 1 colonies (n = 4), toxic in the BSMI assay and the ICP assays, emitted blue fluorescence and grew at 37 °C; Category 2 colonies (n = 9), only toxic in the ICP assay, emitted orange fluorescence and exhibited limited or no growth at 37 °C. Colonies in Category 1 were pure-cultured, and the strains were named as MH4, MH21, MH34, MH36. Strain MH34 was identified as A. calidoustus by the internal transcribed spacer (ITS) sequences. Ethanol-soluble dry substances extracted from the biomass of the pure cultures exhibited a toxicological profile in the BSMI assay, SMID (sperm membrane integrity damage) assay, and ICP assay similar to that exhibited by pure ophiobolin A. Overall, the viable conidia of A. calidoustus in indoor settled dusts deserve attention when potentially hazardous mold species are monitored.
Collapse
|
9
|
Salo MJ, Marik T, Mikkola R, Andersson MA, Kredics L, Salonen H, Kurnitski J. Penicillium expansum strain isolated from indoor building material was able to grow on gypsum board and emitted guttation droplets containing chaetoglobosins and communesins A, B and D. J Appl Microbiol 2019; 127:1135-1147. [PMID: 31271686 PMCID: PMC6852191 DOI: 10.1111/jam.14369] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 12/18/2022]
Abstract
Aims Emission of toxic metabolites in guttation droplets of common indoor fungi is not well documented. The aims of this study were (i) to compare mycotoxins in biomass and guttation droplets from indoor fungi from a building following health complaints among occupants, (ii) to identify the most toxic strain and to test if mycotoxins in guttation liquids migrated trough air and (iii) to test if toxigenic Penicillium expansum strains grew on gypsum board. Methods and Results Biomass suspensions and guttation droplets from individual fungal colonies representing Aspergillus, Chaetomium, Penicillium, Stachybotrys and Paecilomyces were screened toxic to mammalian cells. The most toxic strain, RcP61 (CBS 145620), was identified as Pen. expansum Link by sequence analysis of the ITS region and a calmodulin gene fragment, and confirmed by the Westerdijk Institute based on ITS and beta‐tubulin sequences. The strain was isolated from a cork liner, was able to grow on gypsum board and to produce toxic substances in biomass extracts and guttation droplets inhibiting proliferation of somatic cells (PK‐15, MNA, FL) in up to 20 000‐fold dilutions. Toxic compounds in biomass extracts and/or guttation droplets were determined by HPLC and LC‐MS. Strain RcP61 produced communesins A, B and D, and chaetoglobosins in guttation droplets (the liquid emitted from them) and biomass extracts. The toxins of the guttation droplets migrated c. 1 cm through air and condensed on a cool surface. Conclusions The mycotoxin‐containing guttation liquids emitted by Pen. expansum grown on laboratory medium exhibited airborne migration and were >100 times more toxic in bioassays than guttation droplets produced by indoor isolates of the genera Aspergillus, Chaetomium, Stachybotrys and Paecilomyces. Significance and Impact of the Study Toxic exudates produced by Pen. expansum containing communesins A, B and D, and chaetoglobosins were transferable by air. This may represent a novel mechanism of mycotoxin dispersal in indoor environment.
Collapse
Affiliation(s)
- M J Salo
- Department of Civil Engineering, Aalto University, Aalto, Finland
| | - T Marik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - R Mikkola
- Department of Civil Engineering, Aalto University, Aalto, Finland
| | - M A Andersson
- Department of Civil Engineering, Aalto University, Aalto, Finland
| | - L Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - H Salonen
- Department of Civil Engineering, Aalto University, Aalto, Finland
| | - J Kurnitski
- Department of Civil Engineering, Aalto University, Aalto, Finland.,Department of Civil Engineering and Architecture, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
10
|
Marik T, Tyagi C, Balázs D, Urbán P, Szepesi Á, Bakacsy L, Endre G, Rakk D, Szekeres A, Andersson MA, Salonen H, Druzhinina IS, Vágvölgyi C, Kredics L. Structural Diversity and Bioactivities of Peptaibol Compounds From the Longibrachiatum Clade of the Filamentous Fungal Genus Trichoderma. Front Microbiol 2019; 10:1434. [PMID: 31293557 PMCID: PMC6606783 DOI: 10.3389/fmicb.2019.01434] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/06/2019] [Indexed: 01/18/2023] Open
Abstract
This study examined the structural diversity and bioactivity of peptaibol compounds produced by species from the phylogenetically separated Longibrachiatum Clade of the filamentous fungal genus Trichoderma, which contains several biotechnologically, agriculturally and clinically important species. HPLC-ESI-MS investigations of crude extracts from 17 species of the Longibrachiatum Clade (T. aethiopicum, T. andinense, T. capillare, T. citrinoviride, T. effusum, T. flagellatum, T. ghanense, T. konilangbra, T. longibrachiatum, T. novae-zelandiae, T. pinnatum, T. parareesei, T. pseudokoningii, T. reesei, T. saturnisporum, T. sinensis, and T. orientale) revealed several new and recurrent 20-residue peptaibols related to trichobrachins, paracelsins, suzukacillins, saturnisporins, trichoaureocins, trichocellins, longibrachins, hyporientalins, trichokonins, trilongins, metanicins, trichosporins, gliodeliquescins, alamethicins and hypophellins, as well as eight 19-residue sequences from a new subfamily of peptaibols named brevicelsins. Non-ribosomal peptide synthetase genes were mined from the available genome sequences of the Longibrachiatum Clade. Their annotation and product prediction were performed in silico and revealed full agreement in 11 out of 20 positions regarding the amino acids predicted based on the signature sequences and the detected amino acids incorporated. Molecular dynamics simulations were performed for structural characterization of four selected peptaibol sequences: paracelsins B, H and their 19-residue counterparts brevicelsins I and IV. Loss of position R6 in brevicelsins resulted in smaller helical structures with higher atomic fluctuation for every residue than the structures formed by paracelsins. We observed the formation of highly bent, almost hairpin-like, helical structures throughout the trajectory, along with linear conformation. Bioactivity tests were performed on the purified peptaibol extract of T. reesei on clinically and phytopathologically important filamentous fungi, mammalian cells, and Arabidopsis thaliana seedlings. Porcine kidney cells and boar spermatozoa proved to be sensitive to the purified peptaibol extract. Peptaibol concentrations ≥0.3 mg ml-1 deterred the growth of A. thaliana. However, negative effects to plants were not detected at concentrations below 0.1 mg ml-1, which could still inhibit plant pathogenic filamentous fungi, suggesting that those peptaibols reported here may have applications for plant protection.
Collapse
Affiliation(s)
- Tamás Marik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Chetna Tyagi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Dóra Balázs
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Péter Urbán
- Department of General and Environmental Microbiology, Faculty of Sciences, and Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Ágnes Szepesi
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Bakacsy
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Endre
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Dávid Rakk
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | | | - Heidi Salonen
- Department of Civil Engineering, Aalto University, Espoo, Finland
| | - Irina S. Druzhinina
- Research Area Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
- Jiangsu Provincial Key Laboratory of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
11
|
Tischner Z, Kredics L, Marik T, Vörös K, Kriszt B, Péter B, Magyar D. Environmental characteristics and taxonomy of microscopic fungi isolated from washing machines. Fungal Biol 2019; 123:650-659. [PMID: 31416584 DOI: 10.1016/j.funbio.2019.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022]
Abstract
Washing machines (WMs) are convenient places for fungal colonization. This study is focused on fungal diversity of WMs, and investigates relationships between habits of WM users and colonising species. Housekeeping conditions and habits were assessed in Hungary with a questionnaire. Several fungal species were identified by microscopy and sequence analysis of diagnostic loci. Based on the results, 32 % of the sampled WMs were highly polluted with various species of fungi. Forty six percent of them were colonised also by opportunistically human pathogenic species. In total, 32 yeast and 39 filamentous fungal strains were isolated. Growth tests were conducted with five selected taxa (Cutaneotrichosporon dermatis, Cystobasidium slooffiae, Meyerozyma guilliermondii, Candida parapsilosis and the Fusarium oxysporum species complex (FOSC)) to ascertain their tolerance ranges. None of the examined isolates were able to grow >50 °C, 4.10 < pH < 10.88. FOSC could grow at high salinity. More species were detected in WMs operated in rooms without heating systems (p = 0.0025). The number of species was higher in WMs located in the kitchen than the ones kept in bathroom or in other rooms (p = 0.0205). WMs may serve as a reservoir of pathogenic fungi, the presence of which may depend on the usage of these devices.
Collapse
Affiliation(s)
- Zsófia Tischner
- Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary; Department of Air Hygiene and Aerobiology, National Public Health Institute, Budapest, Hungary.
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Tamás Marik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Krisztina Vörös
- Semmelweis University, School of Ph.D. Studies, Budapest, Hungary
| | - Balázs Kriszt
- Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - Balázs Péter
- Department of Air Hygiene and Aerobiology, National Public Health Institute, Budapest, Hungary
| | - Donát Magyar
- Department of Air Hygiene and Aerobiology, National Public Health Institute, Budapest, Hungary
| |
Collapse
|
12
|
Castagnoli E, Salo J, Toivonen MS, Marik T, Mikkola R, Kredics L, Vicente-Carrillo A, Nagy S, Andersson MT, Andersson MA, Kurnitski J, Salonen H. An Evaluation of Boar Spermatozoa as a Biosensor for the Detection of Sublethal and Lethal Toxicity. Toxins (Basel) 2018; 10:toxins10110463. [PMID: 30413106 PMCID: PMC6265928 DOI: 10.3390/toxins10110463] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/20/2018] [Accepted: 11/05/2018] [Indexed: 01/09/2023] Open
Abstract
A novel, objective, and rapid computed motility inhibition (CMI) assay was developed to identify and assess sublethal injury in toxin-exposed boar spermatozoa and compared with a subjective visual motility inhibition (VMI) assay. The CMI values were calculated from digital micrographic videos using a custom MATLAB® script by contrasting the motility index values of each experiment with those of the background and control experiments. Following a comparison of the CMI and VMI assays results, it was determined that their agreement depended on the shape of the dose-response curve. Toxins that exhibited a steep slope were indicative of good agreement between the assays. Those depicted by a gentle decline in the slope of the dose-response curve, the CMI assay were shown to be two times more sensitive than the VMI assay. The CMI assay was highly sensitive to the inhibition of mitochondrial function and glucose transport activity by sublethal doses of toxins and to disruption of cellular cation homeostasis by carrier ionophoric toxins, when compared to the cytotoxicity and lethal toxicity assays (i.e., that evaluated the inhibition of cell proliferation in somatic cell lines (FL, PK-15, and MNA cells)) and disruption to spermatozoa membrane integrity. The CMI assay recognized subtle sublethal toxicity changes in metabolism, manifested as a decrease in boar spermatozoa motility. Thus, it was feasible to effectively compare the objectively-measured numerical values for motility inhibition using the CMI assay against those reflecting lethal damage in the spermatozoa cells and somatic cell lines using a cytotoxicity assay.
Collapse
Affiliation(s)
- Emmanuelle Castagnoli
- Department of Civil Engineering, Aalto University, Rakentajanaukio 4, 02150 Espoo, Finland.
| | - Johanna Salo
- Department of Civil Engineering, Aalto University, Rakentajanaukio 4, 02150 Espoo, Finland.
| | - Matti S Toivonen
- Department of Applied Physics, Aalto University, Puumiehenkuja 2, 02150 Espoo, Finland.
| | - Tamás Marik
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary.
| | - Raimo Mikkola
- Department of Civil Engineering, Aalto University, Rakentajanaukio 4, 02150 Espoo, Finland.
| | - László Kredics
- Faculty of Science and Informatics, Department of Microbiology, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary.
| | | | - Szabolcs Nagy
- Georgikon Faculty, Department of Animal Sciences, University of Pannonia, Deak F. u. 16, H-8360 Keszthely, Hungary.
| | | | - Maria A Andersson
- Department of Civil Engineering, Aalto University, Rakentajanaukio 4, 02150 Espoo, Finland.
| | - Jarek Kurnitski
- Department of Civil Engineering, Aalto University, Rakentajanaukio 4, 02150 Espoo, Finland.
- Department of Civil Engineering and Architecture, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia.
| | - Heidi Salonen
- Department of Civil Engineering, Aalto University, Rakentajanaukio 4, 02150 Espoo, Finland.
| |
Collapse
|
13
|
Acremotins A-D, peptaibiotics produced by the soil-derived fungus Acremonium persicinum SC0105. J Antibiot (Tokyo) 2018; 71:927-938. [PMID: 30089870 DOI: 10.1038/s41429-018-0086-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/10/2018] [Accepted: 07/23/2018] [Indexed: 11/08/2022]
Abstract
Four new peptaibiotics, acremotins A-D (1-4) featuring three α,α-dialkylated amino acid-imino acid motifs and an unreduced C-terminal residue, along with the known peptaibiotic XR586 (5) were isolated from the solid cultures of the soil-derived fungus Acremonium persicinum SC0105. Their primary structures were characterized by detailed analysis of the HRESIMS/MS fragmentation pattern combined with comprehensive interpretation of the 1D and 2D NMR spectroscopic data. The absolute configurations of amino acid residues were determined by the advanced Marfey's method. Sequence alignment result shows that 1-4 are closely related to zervamicin IIB and emerimicin IIA, thus belong to peptaibiotic subfamily-3 (SF3). The three-dimensional (3D) structure of 4 was established by theoretical conformational analysis using the ab initio density functional theory (DFT) method, which, together with the CD spectrum, indicated an amphiphilic and helical structure for 4. 1-5 actively inhibited the growth of gram-positive bacterial pathogens, and amongst them 4 was the most potent compound showing MIC of 12.5 and 6.25 µg/ml against S. aureu and MRSA strains, respectively. 1-5 were also cytotoxic against three human cancer cell lines with IC50 ranging from 1.2 to 21.6 μM.
Collapse
|
14
|
Vornanen-Winqvist C, Salonen H, Järvi K, Andersson MA, Mikkola R, Marik T, Kredics L, Kurnitski J. Effects of Ventilation Improvement on Measured and Perceived Indoor Air Quality in a School Building with a Hybrid Ventilation System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1414. [PMID: 29976864 PMCID: PMC6068750 DOI: 10.3390/ijerph15071414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/03/2018] [Indexed: 11/24/2022]
Abstract
Ventilation system design and operation may significantly affect indoor air quality (IAQ). The aims of this case study were to investigate the functionality of a supply air fan-assisted hybrid ventilation system in a newly built school building with reported IAQ problems and to determine the effects of ventilation improvement on measured and perceived IAQ. The ventilation system function was researched simultaneously with IAQ measurements, with an analysis of total volatile organic compounds (TVOC), single volatile organic compounds (VOCs), and indoor mycobiota, and with questionnaires about perceived IAQ. At the baseline, an operational error of the ventilation system was found, which prevented the air from coming into the classrooms, except for short periods of high carbon dioxide (CO₂) concentrations. After the ventilation operation was improved, a significant change in indoor mycobiota was found; the dominant, opportunistic human pathogenic species Trichoderma citrinoviride found in settled dust in the classroom before the improvement was no longer detected. In addition, the concentrations of CO₂, TVOC, and some single VOCs, especially toluene and decamethylcyclopentasiloxane, decreased. The analysis of the questionnaire results indicated that the perceptions of unpleasant odors and stuffy air decreased, although a statistically significant improvement in perceived IAQ was not observed. The results provided evidence that the properly controlled hybrid ventilation system operating in mechanical supply mode provided adequate ventilation and was effective in decreasing the concentrations of some indoor-generated pollutants. With simple ventilation adjustments, microbiological exposure from building structures might be prevented.
Collapse
Affiliation(s)
| | - Heidi Salonen
- Department of Civil Engineering, Aalto University, Rakentajanaukio 4, 02150 Espoo, Finland.
| | - Kati Järvi
- Department of Civil Engineering, Aalto University, Rakentajanaukio 4, 02150 Espoo, Finland.
| | - Maria A Andersson
- Department of Civil Engineering, Aalto University, Rakentajanaukio 4, 02150 Espoo, Finland.
| | - Raimo Mikkola
- Department of Civil Engineering, Aalto University, Rakentajanaukio 4, 02150 Espoo, Finland.
| | - Tamás Marik
- Department of Microbiology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - László Kredics
- Department of Microbiology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Jarek Kurnitski
- Department of Civil Engineering, Aalto University, Rakentajanaukio 4, 02150 Espoo, Finland.
- Department of Civil Engineering and Architecture, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia.
| |
Collapse
|
15
|
Ventilation Positive Pressure Intervention Effect on Indoor Air Quality in a School Building with Moisture Problems. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020230. [PMID: 29385772 PMCID: PMC5858299 DOI: 10.3390/ijerph15020230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 12/14/2022]
Abstract
This case study investigates the effects of ventilation intervention on measured and perceived indoor air quality (IAQ) in a repaired school where occupants reported IAQ problems. Occupants’ symptoms were suspected to be related to the impurities leaked indoors through the building envelope. The study’s aim was to determine whether a positive pressure of 5–7 Pa prevents the infiltration of harmful chemical and microbiological agents from structures, thus decreasing symptoms and discomfort. Ventilation intervention was conducted in a building section comprising 12 classrooms and was completed with IAQ measurements and occupants’ questionnaires. After intervention, the concentration of total volatile organic compounds (TVOC) and fine particulate matter (PM2.5) decreased, and occupants’ negative perceptions became more moderate compared to those for other parts of the building. The indoor mycobiota differed in species composition from the outdoor mycobiota, and changed remarkably with the intervention, indicating that some species may have emanated from an indoor source before the intervention.
Collapse
|
16
|
Sica VP, Rees ER, Raja HA, Rivera-Chávez J, Burdette JE, Pearce CJ, Oberlies NH. In situ mass spectrometry monitoring of fungal cultures led to the identification of four peptaibols with a rare threonine residue. PHYTOCHEMISTRY 2017; 143:45-53. [PMID: 28772192 PMCID: PMC5603414 DOI: 10.1016/j.phytochem.2017.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 05/03/2023]
Abstract
Peptaibols are an intriguing class of fungal metabolites due both to their wide range of reported bioactivities and to the structural variability that can be generated by the exchange of variable amino acid building blocks. In an effort to streamline the discovery of structurally diverse peptaibols, a mass spectrometry surface sampling technique was applied to screen the chemistry of fungal cultures in situ. Four previously undescribed peptaibols, all containing a rare threonine residue, were identified from a fungal culture (MSX53554), which was identified as Nectriopsis Maire (Bionectriaceae, Hypocreales, Ascomycota). These compounds not only increased the known threonine-containing peptaibols by nearly 20%, but also, the threonine residue was situated in a unique place compared to the other reported threonine-containing peptaibols. After the initial in situ detection and characterization, a large-scale solid fermentation culture was grown. The four peptaibols were isolated and characterized by mass spectrometry. In addition, one of the peptaibols was fully characterized by NMR and amino acid analysis using Marfey's reagent and exhibited moderate in vitro anticancer activity.
Collapse
Affiliation(s)
- Vincent P Sica
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| | - Evan R Rees
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| | - José Rivera-Chávez
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, United States
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Cedric J Pearce
- Mycosynthetix, Inc., 505 Meadowlands Dr., Suite103, Hillsborough, NC 27278, United States
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, United States.
| |
Collapse
|
17
|
Salin JT, Salkinoja-Salonen M, Salin PJ, Nelo K, Holma T, Ohtonen P, Syrjälä H. Building-related symptoms are linked to the in vitro toxicity of indoor dust and airborne microbial propagules in schools: A cross-sectional study. ENVIRONMENTAL RESEARCH 2017; 154:234-239. [PMID: 28107741 DOI: 10.1016/j.envres.2017.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Indoor microbial toxicity is suspected to cause some building-related symptoms, but supporting epidemiological data are lacking. OBJECTIVE We examined whether the in vitro toxicity of indoor samples from school buildings was associated with work-related health symptoms (building-related symptoms, BRS). METHODS Administrators of the Helsinki City Real Estate Department selected 15 schools for the study, and a questionnaire on symptoms connected to work was sent to the teachers in the selected schools for voluntary completion. The cellular toxicity of classroom samples was determined by testing substances extracted from wiped indoor dust and by testing microbial biomass that was cultured on fallout plates. Boar sperm cells were used as indicator cells, and motility loss was the indicator for toxic effects. The effects were expressed as the half maximal effective concentration (EC50) at which >50% of the exposed boar sperm cells were immobile compared to vehicle control. RESULTS Completed symptom questionnaires were received from 232 teachers [median age, 43 years; 190 (82.3%) women] with a median time of 6 years working at their school. Samples from their classrooms were available and were assessed for cellular toxicity. The Poisson regression model showed that the impact of extracts of surface-wiped school classroom dust on teacher work-related BRS was 2.8-fold (95% CI: 1.6-4.9) higher in classrooms with a toxic threshold EC50 of 6µgml-1 versus classrooms with insignificant EC50 values (EC50 >50µgml-1); P<0.001. The number of symptoms that were alleviated during vacation was higher in school classrooms with high sperm toxicity compared to less toxic sites; the RR was 1.9 (95% CI: 1.1-3.3, P=0.03) for wiped dust extracts. CONCLUSIONS Teachers working in classrooms where the samples showed high sperm toxicity had more BRS. The boar sperm cell motility inhibition assay appears promising as a tool for demonstrating the presence of indoor substances associated with BRS.
Collapse
Affiliation(s)
- J T Salin
- Department of Infection Control, Oulu University Hospital, Finland
| | - M Salkinoja-Salonen
- Department of Food and Environmental Sciences, FI 00014 University of Helsinki, Finland; Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - P J Salin
- Oulu University Hospital, Inspector Sec Oy Laboratories, Oulu, Finland; Department of Food and Environmental Sciences, FI 00014 University of Helsinki, Finland
| | - K Nelo
- Oulu University Hospital, Inspector Sec Oy Laboratories, Oulu, Finland
| | - T Holma
- Department of Otorhinolaryngology and Head and Neck Surgery, Oulu University Hospital, Finland; PEDEGO Research Unit, University of Oulu, Finland; Medical Research Center Oulu, Finland
| | - P Ohtonen
- Division of Operative Care and Medical Research Center, Finland
| | - H Syrjälä
- Department of Infection Control, Oulu University Hospital, Finland.
| |
Collapse
|
18
|
de Castro Jorge Silva A, Remirão MH, Lucas CG, Domingues WB, Silveira T, Paschoal JD, Jornada DS, Corcine CD, Junior ASV, Prado WA, Campos VF, Seixas FK, Guterres SS, Pohlmann AR, Collares T. Effects of chitosan-coated lipid-core nanocapsules on bovine sperm cells. Toxicol In Vitro 2017; 40:214-222. [DOI: 10.1016/j.tiv.2017.01.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/21/2017] [Accepted: 01/23/2017] [Indexed: 01/04/2023]
|
19
|
Fernandes Silva E, Varela AS, Cardoso TF, Stefanello FM, Kalb AC, Martínez PE, Corcini CD. Reproductive toxicology of 2,4 dinitrophenol in boar sperm. Toxicol In Vitro 2016; 35:31-5. [DOI: 10.1016/j.tiv.2016.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/15/2016] [Accepted: 05/06/2016] [Indexed: 11/26/2022]
|
20
|
Biosynthesis and Molecular Genetics of Peptaibiotics—Fungal Peptides Containing Alpha, Alpha-Dialkyl Amino Acids. Fungal Biol 2015. [DOI: 10.1007/978-1-4939-2531-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Bencsik O, Papp T, Berta M, Zana A, Forgó P, Dombi G, Andersson MA, Salkinoja-Salonen M, Vágvölgyi C, Szekeres A. Ophiobolin A from Bipolaris oryzae perturbs motility and membrane integrities of porcine sperm and induces cell death on mammalian somatic cell lines. Toxins (Basel) 2014; 6:2857-71. [PMID: 25251540 PMCID: PMC4179164 DOI: 10.3390/toxins6092857] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 12/21/2022] Open
Abstract
Bipolaris oryzae is a phytopathogenic fungus causing a brown spot disease in rice, and produces substance that strongly perturbs motility and membrane integrities of boar spermatozoa. The substance was isolated from the liquid culture of the fungal strain using extraction and a multi-step semi-preparative HPLC procedures. Based on the results of mass spectrometric and 2D NMR techniques, the bioactive molecule was identified as ophiobolin A, a previously described sesterterpene-type compound. The purified ophiobolin A exhibited strong motility inhibition and viability reduction on boar spermatozoa. Furthermore, it damaged the sperm mitochondria significantly at sublethal concentration by the dissipation of transmembrane potential in the mitochondrial inner membrane, while the plasma membrane permeability barrier remained intact. The study demonstrated that the cytotoxicity of ophiobolin A toward somatic cell lines is higher by 1–2 orders of magnitude compared to other mitochondriotoxic mycotoxins, and towards sperm cells unique by replacing the progressive motility by shivering tail beating at low exposure concentration.
Collapse
Affiliation(s)
- Ottó Bencsik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged H-6726, Hungary.
| | - Tamás Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged H-6726, Hungary.
| | - Máté Berta
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged H-6726, Hungary.
| | - Annamária Zana
- Institute of Pharmaceutical Analysis, University of Szeged, Somogyi u. 4, Szeged H-6720, Hungary.
| | - Péter Forgó
- Institute of Pharmaceutical Analysis, University of Szeged, Somogyi u. 4, Szeged H-6720, Hungary.
| | - György Dombi
- Institute of Pharmaceutical Analysis, University of Szeged, Somogyi u. 4, Szeged H-6720, Hungary.
| | - Maria A Andersson
- Department of Food and Environmental Sciences, Viikinkaari 9, University of Helsinki, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland.
| | - Mirja Salkinoja-Salonen
- Department of Food and Environmental Sciences, Viikinkaari 9, University of Helsinki, Agnes Sjöbergin katu 2, Helsinki FI-00014, Finland.
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged H-6726, Hungary.
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, Szeged H-6726, Hungary.
| |
Collapse
|
22
|
Dubey MK, Jensen DF, Karlsson M. An ATP-binding cassette pleiotropic drug transporter protein is required for xenobiotic tolerance and antagonism in the fungal biocontrol agent Clonostachys rosea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:725-732. [PMID: 24654977 DOI: 10.1094/mpmi-12-13-0365-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
ATP-binding cassette (ABC) transporters mediate active efflux of natural and synthetic toxicants and are considered to be important for drug tolerance in microorganisms. In biological control agents (BCA), ABC transporters can play important roles in antagonism by providing protection against toxins derived from the fungal prey and by mediating the secretion of endogenous toxins. In the present study, we generated deletion and complementation strains of the ABC transporter abcG5 in the fungal BCA Clonostachys rosea to study its role in xenobiotic tolerance and antagonism. Gene expression analysis shows induced expression of abcG5 in the presence of the Fusarium mycotoxin zearalenone (ZEA), secreted metabolites of F. graminearum, and different classes of fungicides. Phenotypic analysis of abcG5 deletion and complementation strains showed that the deletion strains were more sensitive towards F. graminearum culture filtrates, ZEA, and iprodione- and mefenoxam-based fungicides, thus suggesting the involvement of abcG5 in cell protection. The ΔabcG5 strains displayed reduced antagonism towards F. graminearum in a plate confrontation assay. Furthermore, the ΔabcG5 strains failed to protect barley seedlings from F. graminearium foot rot disease. These data show that the abcG5 ABC transporter is important for xenobiotic tolerance and biocontrol traits in C. rosea.
Collapse
|
23
|
Kredics L, Szekeres A, Czifra D, Vágvölgyi C, Leitgeb B. Recent results in alamethicin research. Chem Biodivers 2013; 10:744-71. [PMID: 23681724 DOI: 10.1002/cbdv.201200390] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Indexed: 12/20/2022]
Affiliation(s)
- László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged.
| | | | | | | | | |
Collapse
|
24
|
Mikkola R, Andersson MA, Kredics L, Grigoriev PA, Sundell N, Salkinoja-Salonen MS. 20-Residue and 11-residue peptaibols from the fungusTrichoderma longibrachiatumare synergistic in forming Na+/K+-permeable channels and adverse action towards mammalian cells. FEBS J 2012; 279:4172-90. [DOI: 10.1111/febs.12010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 09/06/2012] [Accepted: 09/12/2012] [Indexed: 01/19/2023]
Affiliation(s)
- Raimo Mikkola
- Department of Food and Environmental Science; University of Helsinki; Finland
| | - Maria A. Andersson
- Department of Food and Environmental Science; University of Helsinki; Finland
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics; University of Szeged; Hungary
| | | | - Nina Sundell
- Department of Food and Environmental Science; University of Helsinki; Finland
| | | |
Collapse
|
25
|
The Fusarium mycotoxins enniatins and beauvericin cause mitochondrial dysfunction by affecting the mitochondrial volume regulation, oxidative phosphorylation and ion homeostasis. Toxicology 2010; 276:49-57. [DOI: 10.1016/j.tox.2010.07.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 06/30/2010] [Accepted: 07/01/2010] [Indexed: 01/22/2023]
|
26
|
Boar spermatozoa as a biosensor for detecting toxic substances in indoor dust and aerosols. Toxicol In Vitro 2010; 24:2041-52. [PMID: 20732404 DOI: 10.1016/j.tiv.2010.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 07/25/2010] [Accepted: 08/16/2010] [Indexed: 11/21/2022]
Abstract
The presence, quantity and origins of potentially toxic airborne substances were searched in moisture damaged indoor environments, where building related ill health symptoms were suspected and reference sites with no health complaints. Boar spermatozoa were used as the toxicity sensor. Indoor aerosols and dusts were collected from kindergartens, schools, offices and residences (n=25) by electrostatic filtering, vacuuming, wiping from elevated surfaces and from the interior of personal computers. Toxicity was measured from the ethanol or methanol extracts of the dusts and aerosols. EC(50) was expressed as the lowest concentration of the airborne substance that inhibited motility of >50% of the exposed sperm cells compared to vehicle control, within 30 min, 1 day or 3-4 days of exposure. Remarkably toxic aerosols (EC(50) <or=6 μg ml(-1)) were found from 11 sites, all of these were sites with known or suspected for building related ill health. Toxic microbial cultures were obtained from subsamples of the toxic aerosols/dusts. From these cereulide, amylosin, valinomycin and a novel indoor toxin, stephacidin B were identified and toxicities measured. Airborn dispersal of valinomycin from Streptomyces griseus cultures was evaluated using a flow-through chamber. Significant amounts of valinomycin (LC-MS assay) and toxicity (boar sperm motility assay) were carried by air and were after 14 days mainly recovered from the interior surfaces of the flow chamber.
Collapse
|