1
|
Yang S, Yin Y, Zhang W, Li H, Wang X, Chen R. Advances in understanding bioaerosol release characteristics and potential hazards during aerobic composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171796. [PMID: 38513848 DOI: 10.1016/j.scitotenv.2024.171796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/06/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Bioaerosol emissions and their associated risks are attracting increasing attention. Bioaerosols are generated during the pretreatment, fermentation, and screening of mature compost when processing various types of solid waste at composting plants (e.g., municipal sludge and animal manure). In this review, we summarize research into bioaerosols at different types of composting plants by focusing on the methods used for sampling bioaerosols, stages when emissions potentially occur, major components of bioaerosols, survival and diffusion factors, and possible control strategies. The six-stage Andersen impactor is the main method used for sampling bioaerosols in composting plants. In addition, different composting management methods mainly affect bioaerosol emissions from composting plants. Studies of the components of bioaerosols produced by composting plants mainly focused on bacteria and fungi, whereas few considered others such as endotoxin. The survival and diffusion of bioaerosols are influenced by seasonal effects due to changes in environmental factors, such as temperature and relative humidity. Finally, three potential strategies have been proposed for controlling bioaerosols in composting plants. Improved policies are required for regulating bioaerosol emissions, as well as bioaerosol concentration diffusion models and measures to protect human health.
Collapse
Affiliation(s)
- Sai Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Yanan Yin
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
| | - Wenrong Zhang
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Haichao Li
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 750 07 Uppsala, Sweden
| | - Xiaochang Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| |
Collapse
|
2
|
One-tube nested MGB Probe Real-time PCR assay for detection of Echinococcus multilocularis infection in plasma cell free DNA. Acta Trop 2022; 232:106518. [PMID: 35605672 DOI: 10.1016/j.actatropica.2022.106518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The main objective of this study was to develop a One-tube nested MGB probe real-time PCR Assay for detecting Echinococcus multilocularis infection in human plasma cell free DNA (cfDNA). METHODS cfDNA was extracted from 10 E.m.-infected patients using a NucleoSnap DNA Plasma Kit and characterized by genomic sequencing. We designed nested PCR primers and MGB probe for Echinococcus multilocularis detection. The specificity, sensitivity and reproducibility of this assay were analyzed, and its validity was confirmed in 13 early stage clinical samples. RESULTS Several Echinococcus multilocularis-specific sequences were detected in the cfDNA of E.m.-infected patients, and CBLO020001206.1 was selected as the candidate sequence. We designed the primers and probe for the one tube nested real-time PCR. No cross-reactions with E.g. were observed. The detection limit was as low as 1 copy for Echinococcus multilocularis. The coefficients of variation were lower than 5% in intra- and inter-assays. 11 out of 13 patients were positive with nested MGB Probe PCR Assay and 3 patients were positive without outer primer in early stage Alveolar Echinococcosis pateints. CONCLUSION The one-tube nested MGB probe real-time PCR assay is a simple, rapid, and cost-effective method for detection of Echinococcus multilocularis infection in patients' Plasma DNA.
Collapse
|
3
|
Zhao L, Li G, Wang J, Zhao M, Wang L, Feng Z, Ma X. Development and evaluation of a panel of multiplex one-tube nested real time PCR assay for simultaneous detection of 14 respiratory viruses in five reactions. J Med Virol 2020; 92:3073-3080. [PMID: 31981228 PMCID: PMC7228275 DOI: 10.1002/jmv.25686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/20/2020] [Indexed: 11/10/2022]
Abstract
Multiplex real-time quantitative polymerase chain reaction (mRT-qPCR) assay is commonly used to detect respiratory viruses, however, the sensitivity is limited for most reports. A panel of locked nucleic acid based multiplex closed one-tube nested real-time PCR (mOTNRT-PCR) assay consisting of five separate internally controlled RT-qPCR assays was developed for detection of 14 respiratory viruses. The sensitivity and reproducibility of mOTNRT-PCR panel were evaluated using plasmid standards and the specificity was evaluated using clinical samples. The clinical performance of mOTNRT-PCR panel was further evaluated with 468 samples collected from patients with an acute respiratory infection and compared with individual real-time PCR (RT-qPCR) assay. The analytical sensitivities of mOTNRT-PCR panel ranged from 2 to 20 copies/reaction, and no cross-reaction with common respiratory viruses was observed. The coefficients of variation of intra-assay and inter-assay were between 0.35% and 8.29%. Totally 35 clinical samples detected by mOTNRT-PCR assay panel were missed by RT-qPCR and confirmed true positive by sequencing of nested PCR products. The mOTNRT-PCR assay panel provides a more sensitive and high-throughput method for the detection of 14 respiratory viruses.
Collapse
Affiliation(s)
- Li Zhao
- Department of Blood TransfusionChildren's Hospital of Hebei ProvinceShijiazhuangHebeiChina
| | - Gui‐xia Li
- Institute of Pediatric ResearchChildren's Hospital of Hebei ProvinceShijiazhuangHebeiChina
| | - Ji Wang
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingChina
| | - Meng‐chuan Zhao
- Institute of Pediatric ResearchChildren's Hospital of Hebei ProvinceShijiazhuangHebeiChina
| | - Le Wang
- Institute of Pediatric ResearchChildren's Hospital of Hebei ProvinceShijiazhuangHebeiChina
| | - Zhi‐shan Feng
- Department of Laboratory MedicineHebei General HospitalShijiazhuangHebeiChina
| | - Xue‐jun Ma
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingChina
| |
Collapse
|
4
|
Wijaya YOS, Purevsuren J, Harahap NIF, Niba ETE, Bouike Y, Nurputra DK, Rochmah MA, Thursina C, Hapsara S, Yamaguchi S, Nishio H, Shinohara M. Assessment of Spinal Muscular Atrophy Carrier Status by Determining SMN1 Copy Number Using Dried Blood Spots. Int J Neonatal Screen 2020; 6:43. [PMID: 33073034 PMCID: PMC7423012 DOI: 10.3390/ijns6020043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/27/2020] [Indexed: 01/16/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a common neuromuscular disease with autosomal recessive inheritance. The disease gene, SMN1, is homozygously deleted in 95% of SMA patients. Although SMA has been an incurable disease, treatment in infancy with newly developed drugs has dramatically improved the disease severity. Thus, there is a strong rationale for newborn and carrier screening for SMA, although implementing SMA carrier screening in the general population is controversial. We previously developed a simple, accurate newborn SMA screening system to detect homozygous SMN1 deletions using dried blood spots (DBS) on filter paper. Here, we modified our previous system to detect the heterozygous deletions of SMN1, which indicates SMA carrier status. The system involves a calibrator-normalized relative quantification method using quantitative nested PCR technology. Our system clearly separated the DBS samples with one SMN1 copy (carrier status with a heterozygous deletion of SMN1) from the DBS samples with two SMN1 copies (non-carrier status with no deletion of SMN1). We also analyzed DBS samples from SMA families, confirmed SMA in the affected children, and determined the carrier status of their parents based on the SMN1 copy number. In conclusion, our system will provide essential information for risk assessment and genetic counseling, at least for SMA families.
Collapse
Affiliation(s)
- Yogik Onky Silvana Wijaya
- Department of Community Medicine and Social Healthcare Science, Division of Epidemiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.O.S.W.); (E.T.E.N.); (M.S.)
| | - Jamiyan Purevsuren
- Medical Genetics Laboratory, National Center for Maternal and Child Health, Khuvisgalchdyn Street, Bayangol District, Ulaanbaatar 16060, Mongolia;
| | - Nur Imma Fatimah Harahap
- Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Universitas Gadjah Mada, Radiopoetro Building 5th floor, Jl. Farmako, Sekip Utara, Yogyakarta 55281, Indonesia;
| | - Emma Tabe Eko Niba
- Department of Community Medicine and Social Healthcare Science, Division of Epidemiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.O.S.W.); (E.T.E.N.); (M.S.)
| | - Yoshihiro Bouike
- Faculty of Nutrition, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan;
| | - Dian Kesumapramudya Nurputra
- Department of Pediatrics, Faculty of Medicine, Universitas Gadjah Mada, Jl. Kesehatan No.1, Sekip, Yogyakarta 55281, Indonesia; (D.K.N.); (S.H.)
| | - Mawaddah Ar Rochmah
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada, Jl. Kesehatan No.1, Sekip, Yogyakarta 55281, Indonesia; (M.A.R.); (C.T.)
| | - Cempaka Thursina
- Department of Neurology, Faculty of Medicine, Universitas Gadjah Mada, Jl. Kesehatan No.1, Sekip, Yogyakarta 55281, Indonesia; (M.A.R.); (C.T.)
| | - Sunartini Hapsara
- Department of Pediatrics, Faculty of Medicine, Universitas Gadjah Mada, Jl. Kesehatan No.1, Sekip, Yogyakarta 55281, Indonesia; (D.K.N.); (S.H.)
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University School of Medicine, 89-1 Enya, Izumo, Shimane 693-8501, Japan;
| | - Hisahide Nishio
- Department of Community Medicine and Social Healthcare Science, Division of Epidemiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.O.S.W.); (E.T.E.N.); (M.S.)
- Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan
| | - Masakazu Shinohara
- Department of Community Medicine and Social Healthcare Science, Division of Epidemiology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; (Y.O.S.W.); (E.T.E.N.); (M.S.)
| |
Collapse
|
5
|
Baurès E, Blanchard O, Mercier F, Surget E, le Cann P, Rivier A, Gangneux JP, Florentin A. Indoor air quality in two French hospitals: Measurement of chemical and microbiological contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:168-179. [PMID: 29894876 DOI: 10.1016/j.scitotenv.2018.06.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 05/06/2023]
Abstract
In addition to being influenced by the environment, the indoor air pollution in hospitals may be associated with specific compounds emitted from various products used, health care activities and building materials. This study has enabled assessment of the chemical and microbiological concentrations of indoor air in two French hospitals. Based on an integrated approach, the methodology defined aims to measure concentrations of a wide range of chemical compounds (>50 volatile and semi-volatile organic compounds), particle concentrations (PM10 and PM2.5), microorganisms (fungi, bacteria and viruses) and ambient parameters (temperature, relative humidity, pressure and carbon dioxide). Chemical and microbiological air concentrations were measured during two campaigns (winter and summer) and across seven rooms (for spatial variability). The results have shown that indoor air contains a complex mixture of chemical, physical and microbiological compounds. Concentrations in the same order of magnitude were found in both hospitals. Compared to dwelling indoor air, our study shows low, at least equivalent, contamination for non-hospital specific parameters (aldehydes, limonene, phthalates, aromatic hydrocarbons), which is related to ventilation efficiency. Chemical compounds retrieved at the highest concentration and frequencies are due to healthcare activities, for example alcohol - most commonly ethanol - and hand rubbing (median concentration: ethanol 245.7 μg/m3 and isopropanol 13.6 μg/m3); toluene and staining in parasitology (highest median concentration in Nancy laboratory: 2.1 μg/m3)).
Collapse
Affiliation(s)
- Estelle Baurès
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Avenue du Professeur Léon Bernard, F 35000 Rennes, France.
| | - Olivier Blanchard
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Avenue du Professeur Léon Bernard, F 35000 Rennes, France
| | - Fabien Mercier
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Avenue du Professeur Léon Bernard, F 35000 Rennes, France
| | - Emilie Surget
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Avenue du Professeur Léon Bernard, F 35000 Rennes, France
| | - Pierre le Cann
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Avenue du Professeur Léon Bernard, F 35000 Rennes, France
| | - Alexandre Rivier
- Service d'Hygiène et d'Analyses Environnementales, Centre Hospitalier Régional Universitaire de Nancy, Rue du Morvan, 54500 Vandoeuvre-les Nancy, France
| | - Jean-Pierre Gangneux
- Centre Hospitalier Régional Universitaire de Rennes, 2 Rue Henri le Guilloux, 35000 Rennes, France; Univ Rennes, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Avenue du professeur Léon Bernard, F 35000 Rennes, France
| | - Arnaud Florentin
- Service d'Hygiène et d'Analyses Environnementales, Centre Hospitalier Régional Universitaire de Nancy, Rue du Morvan, 54500 Vandoeuvre-les Nancy, France; Département d'Hygiène, des Risques Environnementaux et Associés aux Soins - Faculté de Médecine, Université de Lorraine, 9 Avenue de la Forêt de Haye, BP 20199, 54505 Vandoeuvre-les Nancy cedex, France
| |
Collapse
|
6
|
Shimasaki N, Nojima Y, Okaue A, Takahashi H, Kageyama T, Hamamoto I, Shinohara K. A Novel Method of Safely Measuring Influenza Virus Aerosol Using Antigen-Capture Enzyme-Linked Immunosorbent Assay for the Performance Evaluation of Protective Clothing Materials. Biocontrol Sci 2017; 21:81-9. [PMID: 27350426 DOI: 10.4265/bio.21.81] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Currently, threats caused by pathogens are serious public health problems worldwide. Protective clothing is essential when one is treating infected patients or dealing with unknown pathogens. Therefore, it is necessary to evaluate the performance of protective clothing against pathogens. In Japan, some methods for evaluating the performance of protective clothing have been established in the Japanese Industrial Standards (JIS). However, a test method against virus aerosols has not been established. Because there is a risk of infection from a live virus during the test, it is necessary to devise a safe method for the virus-aerosol-based test. Here, we propose a new method of safely measuring virus aerosols for the performance evaluation of protective clothing materials. To ensure safety, an inactivated virus was used. As a model virus, the influenza virus was selected owing to the proper small diameter of the virus particles. To quantitatively measure the particle-amount of the inactivated influenza virus, we developed an antigen-capture enzyme-linked immunosorbent assay (ELISA) targeting the M1 protein. Furthermore, we evaluated two materials using our method. Significant differences in the protection performance against the virus aerosol were observed between different sample materials, thereby confirming the applicability of our new method for performance evaluation.
Collapse
|
7
|
Mitchell AB, Mourad B, Tovey E, Buddle L, Peters M, Morgan L, Oliver BG. Spirometry filters can be used to detect exhaled respiratory viruses. J Breath Res 2016; 10:046002. [PMID: 27669334 DOI: 10.1088/1752-7155/10/4/046002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Respiratory viruses are very common in the community and contribute to the burden of illness for patients with chronic respiratory diseases, including acute exacerbations. Traditional sampling methods are invasive and problematic to repeat. Accordingly, we explored whether respiratory viruses could be isolated from disposable spirometry filters and whether detection of viruses in this context represented presence in the upper or lower respiratory tract. Discovery (n = 53) and validation (n = 49) cohorts were recruited from a hospital outpatient department during two different time periods. Spirometry mouthpiece filters were collected from all participants. Respiratory secretions were sampled from the upper and lower respiratory tract by nasal washing (NW), sputum, and bronchoalveolar lavage (BAL). All samples were examined using RT-PCR to identify a panel of respiratory viruses (rhinovirus, respiratory syncytial virus, influenza A, influenza B, parainfluenza virus 1, 2 & 3, and human metapneumovirus). Rhinovirus was quantified using qPCR. Paired filter-NW samples (n = 29), filter-sputum samples (n = 24), filter-BAL samples (n = 39) and filter-NW-BAL samples (n = 10) provided a range of comparisons. At least one virus was detected in any sample in 85% of participants in the discovery cohort versus 45% in the validation cohort. Overall, 72% of viruses identified in the paired comparator method matched those detected in spirometry filters. There was a high correlation between viruses identified in spirometry filters compared with viruses identified in both the upper and lower respiratory tract using traditional sampling methods. Our results suggest that examination of spirometry filters may be a novel and inexpensive sampling method for the presence of respiratory viruses in exhaled breath.
Collapse
Affiliation(s)
- Alicia B Mitchell
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, NSW 2006, Australia. Department of Respiratory Medicine, Concord Repatriation General Hospital, Concord, NSW 2139, Australia. Molecular Biosciences, School of Life Sciences, University of Technology Sydney, NSW 2007, Australia. Author to whom any correspondence should be addressed. University of Technology Sydney, Building 4, 15 Broadway, Ultimo, NSW 2007, Australia
| | | | | | | | | | | | | |
Collapse
|
8
|
Chaturvedi P, Rodriguez SD, Vlassiouk I, Hansen IA, Smirnov SN. Simple and Versatile Detection of Viruses Using Anodized Alumina Membranes. ACS Sens 2016; 1:488-492. [PMID: 28529972 DOI: 10.1021/acssensors.6b00003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A simple sensor for viral particles based on ionic conductivity through anodized alumina membranes was demonstrated using MS2 bacteriophage as an example. A facile two-point measuring scheme is geared toward realization using a computer's sound card input/output capabilities suitable for a fast and inexpensive point of care testing. The lowest detection concentration down to ~7 pfu/mL and a large dynamic range up to ~2000 pfu/mL were obtained due to physical optimization that included proper length and diameter for the pores, removing the oxide layer at the electrode, as well as the chemical optimization of covalent binding of antibodies to the pore's walls.
Collapse
Affiliation(s)
| | | | - Ivan Vlassiouk
- Oak Ridge National Laboratory, Oak
Ridge, Tennessee 37831, United States
| | | | | |
Collapse
|
9
|
Davidson I, Raibshtein I, Altori A, Elkin N. Infectious laryngotracheitis virus (ILTV) vaccine intake evaluation by detection of virus amplification in feather pulps of vaccinated chickens. Vaccine 2016; 34:1630-1633. [PMID: 26784685 DOI: 10.1016/j.vaccine.2016.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/30/2015] [Accepted: 01/05/2016] [Indexed: 11/26/2022]
Abstract
Infectious laryngotracheitis (ILT) is a respiratory disease of poultry caused by an alphaherpesvirus, ILTV. The live vaccine is applied worldwide by drinking water or by the respiratory route, and by the vent application in Israel. No system of direct evaluation of the efficacy of vaccination exists today, except of antibody elicitation, which is an indirect indication of vaccination intake and might happen due to environment exposure. We suggest for the first time an assay for evaluating the accuracy of the vaccination process by spotting the spread of the live vaccine systemically, namely by virus detection in the feather shafts of the vaccinated birds. The feathers are particularly beneficial as they are easy to collect, non-lethal for the bird, therefore advantageous for monitoring purposes. Moreover, the continuous survey of the vaccine virus unveiled the different kinetics of viremia by the different vaccination routes; while after the vent vaccination the systemic viremia peaks during the first week afterwards, after two consecutive vaccine administration by drinking water with 6 day interval, the vireamia peaks only after the second administration. A robust amplification was needed because the vaccine ILTV was present in the bird in minute quantities compared to the wild-type virus. For the vaccine virus identification in feather shafts a nested real-time PCR for the TK ILTV gene was developed. The sensitivity of detection of the nested rtPCR was greater by 1000 compared to conventional nested PCR and 10 times that real-time PCR.
Collapse
Affiliation(s)
- I Davidson
- Division of Avian Diseases, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel.
| | - I Raibshtein
- Division of Avian Diseases, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel
| | - A Altori
- Division of Avian Diseases, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan 50250, Israel
| | - N Elkin
- Biovac, Biological Laboratories, Ltd, Israel
| |
Collapse
|
10
|
Blais-Lecours P, Perrott P, Duchaine C. Non-culturable bioaerosols in indoor settings: Impact on health and molecular approaches for detection. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2015; 110:45-53. [PMID: 32288547 PMCID: PMC7108366 DOI: 10.1016/j.atmosenv.2015.03.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 03/09/2015] [Accepted: 03/19/2015] [Indexed: 05/21/2023]
Abstract
Despite their significant impact on respiratory health, bioaerosols in indoor settings remain understudied and misunderstood. Culture techniques, predominantly used for bioaerosol characterisation in the past, allow for the recovery of only a small fraction of the real airborne microbial burden in indoor settings, given the inability of several microorganisms to grow on agar plates. However, with the development of new tools to detect non-culturable environmental microorganisms, the study of bioaerosols has advanced significantly. Most importantly, these techniques have revealed a more complex bioaerosol burden that also includes non-culturable microorganisms, such as archaea and viruses. Nevertheless, air quality specialists and consultants remain reluctant to adopt these new research-developed techniques, given that there are relatively few studies found in the literature, making it difficult to find a point of comparison. Furthermore, it is unclear as to how this new non-culturable data can be used to assess the impact of bioaerosol exposure on human health. This article reviews the literature that describes the non-culturable fraction of bioaerosols, focussing on bacteria, archaea and viruses, and examines its impact on bioaerosol-related diseases. It also outlines available molecular tools for the detection and quantification of these microorganisms and states various research needs in this field.
Collapse
Affiliation(s)
- Pascale Blais-Lecours
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Phillipa Perrott
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Caroline Duchaine
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
- Département de biochimie, de microbiologie et de bioinformatique, Faculté des sciences et de génie, Université Laval, Québec, QC, Canada
| |
Collapse
|
11
|
A nested real-time PCR assay for the quantification of Plasmodium falciparum DNA extracted from dried blood spots. Malar J 2014; 13:393. [PMID: 25282516 PMCID: PMC4197274 DOI: 10.1186/1475-2875-13-393] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/30/2014] [Indexed: 11/24/2022] Open
Abstract
Background As public health efforts seek to eradicate malaria, there has been an emphasis on eliminating low-density parasite reservoirs in asymptomatic carriers. As such, diagnosing submicroscopic Plasmodium infections using PCR-based techniques has become important not only in clinical trials of malaria vaccines and therapeutics, but also in active malaria surveillance campaigns. However, PCR-based quantitative assays that rely on nucleic acid extracted from dried blood spots (DBS) have demonstrated lower sensitivity than assays that use cryopreserved whole blood as source material. Methods The density of Plasmodium falciparum asexual parasites was quantified using genomic DNA extracted from dried blood spots (DBS) and the sensitivity of two approaches was compared: quantitative real-time PCR (qPCR) targeting the P. falciparum 18S ribosomal RNA gene, either with an initial conventional PCR amplification prior to qPCR (nested qPCR), or without an initial amplification (qPCR only). Parasite densities determined by nested qPCR, qPCR only, and light microscopy were compared. Results Nested qPCR results in 10-fold higher sensitivity (0.5 parasites/μl) when compared to qPCR only (five parasites/ul). Among microscopy-positive samples, parasite densities calculated by nested qPCR correlated strongly with microscopy for both asymptomatic (Pearson’s r = 0.58, P < 0.001) and symptomatic (Pearson’s r = 0.70, P < 0.0001) P. falciparum infections. Conclusion Nested qPCR improves the sensitivity for the detection of P. falciparum blood-stage infection from clinical DBS samples. This approach may be useful for active malaria surveillance in areas where submicroscopic asymptomatic infections are prevalent. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-393) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
McDonald RS, Sambol AR, Heimbuch BK, Brown TL, Hinrichs SH, Wander JD. Proportional mouse model for aerosol infection by influenza. J Appl Microbiol 2012; 113:767-78. [PMID: 22809111 PMCID: PMC7166995 DOI: 10.1111/j.1365-2672.2012.05402.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 07/13/2012] [Accepted: 07/16/2012] [Indexed: 12/19/2022]
Abstract
AIMS The aim of this study was to demonstrate a prototype tool for measuring infectivity of an aerosolized human pathogen - influenza A/PR/8/34 (H1N1) virus - using a small-animal model in the Controlled Aerosol Test System (CATS). METHODS AND RESULTS Intranasal inoculation of nonadapted H1N1 virus into C57BL, BALB/c and CD-1 mice caused infection in all three species. Respiratory exposure of CD-1 mice to the aerosolized virus at graduated doses was accomplished in a modified rodent exposure apparatus. Weight change was recorded for 7 days postexposure, and viral populations in lung tissue homogenates were measured post mortem by DNA amplification (qRT-PCR), direct fluorescence and microscopic evaluation of cytopathic effect. Plots of weight change and of PCR cycle threshold vs delivered dose were linear to threshold doses of ~40 TCID(50) and ~12 TCID(50) , respectively. CONCLUSIONS MID(50) for inspired H1N1 aerosols in CD-1 mice is between 12 and 40 TCID(50) ; proportionality to dose of weight loss and viral populations makes the CD-1 mouse a useful model for measuring infectivity by inhalation. SIGNIFICANCE AND IMPACT OF THE STUDY In the CATS, this mouse-virus model provides the first quantitative method to evaluate the ability of respiratory protective technologies to attenuate the infectivity of an inspired pathogenic aerosol.
Collapse
Affiliation(s)
- R S McDonald
- Applied Research Associates, Inc, Panama City, FL, USA
| | | | | | | | | | | |
Collapse
|
13
|
Shen F, Tan M, Wang Z, Yao M, Xu Z, Wu Y, Wang J, Guo X, Zhu T. Integrating silicon nanowire field effect transistor, microfluidics and air sampling techniques for real-time monitoring biological aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:7473-80. [PMID: 21780777 DOI: 10.1021/es1043547] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Numerous threats from biological aerosol exposures, such as those from H1N1 influenza, SARS, bird flu, and bioterrorism activities necessitate the development of a real-time bioaerosol sensing system, which however is a long-standing challenge in the field. Here, we developed a real-time monitoring system for airborne influenza H3N2 viruses by integrating electronically addressable silicon nanowire (SiNW) sensor devices, microfluidics and bioaerosol-to-hydrosol air sampling techniques. When airborne influenza H3N2 virus samples were collected and delivered to antibody-modified SiNW devices, discrete nanowire conductance changes were observed within seconds. In contrast, the conductance levels remained relatively unchanged when indoor air or clean air samples were delivered. A 10-fold increase in virus concentration was found to give rise to about 20-30% increase in the sensor response. The selectivity of the sensing device was successfully demonstrated using H1N1 viruses and house dust allergens. From the simulated aerosol release to the detection, we observed a time scale of 1-2 min. Quantitative polymerase chain reaction (qPCR) tests revealed that higher virus concentrations in the air samples generally corresponded to higher conductance levels in the SiNW devices. In addition, the display of detection data on remote platforms such as cell phone and computer was also successfully demonstrated with a wireless module. The work here is expected to lead to innovative methods for biological aerosol monitoring, and further improvements in each of the integrated elements could extend the system to real world applications.
Collapse
Affiliation(s)
- Fangxia Shen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yu D, Wu S, Wang B, Chen Y, Li L. Rapid detection of common viruses using multi-analyte suspension arrays. J Virol Methods 2011; 177:64-70. [PMID: 21741408 DOI: 10.1016/j.jviromet.2011.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 06/13/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
A method that uses specific oligonucleotide probes coupled to a specific array of fluorescent microspheres in multi-analyte suspension arrays was employed for the detection of common viruses, such as Herpes virus (HSV), Human papillomavirus (HPV) and Hepatitis B virus (HBV). Sixteen species-specific probes and 9 sets of specific primers were designed based on conserved sequences of these viruses in the GenBank database. Serial symmetric PCR, asymmetric PCR and multiple PCR assays were employed to evaluate the sensitivity, specificity and reproducibility of multi-analyte suspension arrays analyzed on a Luminex-100 analyzer instrument. The symmetric PCR amplification of four types of HSV, four types of HPV and HBV genotypes of B, C and D, combined with their corresponding species-specific probes and specificities were completely concordant with the results from a comparative sequence analyses. There was no significant difference in the median fluorescence intensity (MFI) value between symmetric PCR and asymmetric PCR when the viral DNA concentration was above 10(4)copies/test. Both PCR products were negative in the multi-analyte suspension arrays with viral DNA concentrations less than 10(3)copies/test. A multi-analyte suspension array is a flexible, high-throughput, relatively simple method for rapid identification of common viruses in the clinical laboratory.
Collapse
Affiliation(s)
- Daojun Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University., 79 Qingchun Rd., Hangzhou, 310003 China
| | | | | | | | | |
Collapse
|
15
|
Houspie L, De Coster S, Keyaerts E, Narongsack P, De Roy R, Talboom I, Sisk M, Maes P, Verbeeck J, Van Ranst M. Exhaled breath condensate sampling is not a new method for detection of respiratory viruses. Virol J 2011; 8:98. [PMID: 21375748 PMCID: PMC3059288 DOI: 10.1186/1743-422x-8-98] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 03/04/2011] [Indexed: 11/24/2022] Open
Abstract
Background Exhaled breath condensate (EBC) sampling has been considered an inventive and novel method for the isolation of respiratory viruses. Methods In our study, 102 volunteers experiencing upper airway infection were recruited over the winter and early spring of 2008/2009 and the first half of the winter of 2009/2010. Ninety-nine EBCs were successfully obtained and screened for 14 commonly circulating respiratory viruses. To investigate the efficiency of virus isolation from EBC, a nasal swab was taken in parallel from a subset of volunteers. The combined use of the ECoVent device with the RTube™ allowed the registration of the exhaled volume and breathing frequency during collection. In this way, the number of exhaled viral particles per liter air or per minute can theoretically be estimated. Results Viral screening resulted in the detection of 4 different viruses in EBC and/or nasal swabs: Rhinovirus, Human Respiratory Syncytial Virus B, Influenza A and Influenza B. Rhinovirus was detected in 6 EBCs and 1 EBC was Influenza B positive. We report a viral detection rate of 7% for the EBCs, which is much lower than the detection rate of 46.8% observed using nasal swabs. Conclusion Although very promising, EBC collection using the RTube™ is not reliable for diagnosis of respiratory infections.
Collapse
Affiliation(s)
- Lieselot Houspie
- Laboratory of Clinical Virology, Rega Institute for Medical Research, Catholic University of Leuven, Minderbroedersstraat 10, B3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Erlandsson L, Nielsen LP, Fomsgaard A. Amp-PCR: combining a random unbiased Phi29-amplification with a specific real-time PCR, performed in one tube to increase PCR sensitivity. PLoS One 2010; 5:e15719. [PMID: 21209824 PMCID: PMC3013126 DOI: 10.1371/journal.pone.0015719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/30/2010] [Indexed: 01/23/2023] Open
Abstract
In clinical situations where a diagnostic real-time PCR assay is not sensitive enough, leading to low or falsely negative results, or where detection earlier in a disease progression would benefit the patient, an unbiased pre-amplification prior to the real-time PCR could be beneficial. In Amp-PCR, an unbiased random Phi29 pre-amplification is combined with a specific real-time PCR reaction. The two reactions are separated physically by a wax-layer (AmpliWax®) and are run in sequel in the same sealed tube. Amp-PCR can increase the specific PCR signal at least 100×106-fold and make it possible to detect positive samples normally under the detection limit of the specific real-time PCR. The risk of contamination is eliminated and Amp-PCR could replace nested-PCR in situations where increased sensitivity is needed e.g. in routine PCR diagnostic analysis. We show Amp-PCR to work on clinical samples containing circular and linear viral dsDNA genomes, but can work well on DNA of any origin, both from non-cellular (virus) and cellular sources (bacteria, archae, eukaryotes).
Collapse
Affiliation(s)
- Lena Erlandsson
- Virus Research and Development, Department of Virology, Statens Serum Institut, Copenhagen, Denmark.
| | | | | |
Collapse
|
17
|
Abstract
Viral infections of the pediatric central nervous system (CNS) encompass a broad spectrum of both perinatally and postnatally acquired diseases with potentially devastating effects on the developing brain. In children, viral infections have been associated with chronic encephalopathy, encephalitis, demyelinating disease, tumors, and epilepsy. Older diagnostic techniques of biopsy, viral culture, electron microscopy, gel-based polymerase chain reaction (PCR), and viral titer quantification are being replaced with more rapid, sensitive, and specific real-time and microarray-based PCR technologies. Advances in neuroimaging technologies have provided for earlier recognition of CNS injury without elucidation of specific viral etiology. Although the mainstay therapy of many pediatric neurovirologic diseases, aside from HIV, includes intravenous acyclovir, much work is being done to develop novel antiviral immunotherapies aimed at both treating and preventing pediatric CNS viral disease.
Collapse
Affiliation(s)
- John R Crawford
- Department of Neurosciences and Pediatrics, University of California, 9500 Gilman Drive Box 0935, San Diego, CA 92093, USA.
| |
Collapse
|
18
|
Bromberg L, Raduyk S, Hatton TA. Functional Magnetic Nanoparticles for Biodefense and Biological Threat Monitoring and Surveillance. Anal Chem 2009; 81:5637-45. [DOI: 10.1021/ac9003437] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Lev Bromberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - Svetlana Raduyk
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | - T. Alan Hatton
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| |
Collapse
|