1
|
Frederiksen RF, Slettemeås JS, Granstad S, Lagesen K, Pikkemaat MG, Urdahl AM, Simm R. Polyether ionophore resistance in a one health perspective. Front Microbiol 2024; 15:1347490. [PMID: 38351920 PMCID: PMC10863045 DOI: 10.3389/fmicb.2024.1347490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Antimicrobial resistance is a major threat to human health and must be approached from a One Health perspective. Use of antimicrobials in animal husbandry can lead to dissemination and persistence of resistance in human pathogens. Polyether ionophores (PIs) have antimicrobial activities and are among the most extensively used feed additives for major production animals. Recent discoveries of genetically encoded PI resistance mechanisms and co-localization of resistance mechanisms against PIs and antimicrobials used in human medicine on transferrable plasmids, have raised concerns that use of PIs as feed additives bear potential risks for human health. This review summarizes the current knowledge on PI resistance and discusses the potential consequences of PI-usage as feed additives in a One Health perspective.
Collapse
Affiliation(s)
| | - Jannice Schau Slettemeås
- Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, Ås, Norway
| | - Silje Granstad
- Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, Ås, Norway
| | - Karin Lagesen
- Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, Ås, Norway
| | - Mariel G. Pikkemaat
- Wageningen Food Safety Research, Wageningen University and Research, Wageningen, Netherlands
| | - Anne Margrete Urdahl
- Department of Animal Health, Welfare and Food Safety, Norwegian Veterinary Institute, Ås, Norway
| | - Roger Simm
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Simjee S, Tice G. The risk-benefit balance of resistance to ionophores in Enterococcus faecium and Enterococcus faecalis for ionophore coccidiostats in broiler chickens. J Antimicrob Chemother 2023; 78:2121-2130. [PMID: 37294561 DOI: 10.1093/jac/dkad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
In recent years, publications and debate have emerged in the scientific literature that have linked the use of ionophore coccidiostats, which are themselves not medically important and not related to any therapeutic antibiotics used in human and animal medicine, to resistance development to medically important antibiotics in Enterococcus faecium and Enterococcus faecalis, isolated from broilers and broiler meat. This has been based on the discovery of genes, now named NarAB, that appear to result in elevated MICs of the ionophores narasin, salinomycin and maduramycin and that these are linked to genes responsible for resistance to antibiotics that may be clinically relevant in human medicine. This article will seek to review the most significant publications in this regard and will also examine national antimicrobial resistance surveillance programmes in Norway, Sweden, Denmark and the Netherlands, in order to further evaluate this concern. The conclusion of the review is that the risk that enterococci may pass from broilers to humans and that antimicrobial resistance gene transfer may occur is negligible, remains unquantified and is highly unlikely to be of significance to human health. Indeed, to date no human nosocomial infections have been linked to poultry sources. Concurrently a review of the possible impact of a policy that limits access for poultry farmers and poultry veterinarians to ionophore coccidiostats in broilers indicates predictable negative consequences with regard to antibiotic resistance of significance to animal welfare and to human health.
Collapse
Affiliation(s)
| | - G Tice
- Independent Science, Policy and Regulatory Consultant, Wicklow, Co. Wicklow, Republic of Ireland
| |
Collapse
|
3
|
Laurentie J, Mourand G, Jouy E, Bougeard S, Keita A, Amelot M, Serror P, Kempf I. Study of the effect of administration of narasin or antibiotics on in vivo selection of a narasin- and multidrug-resistant Enterococcus cecorum strain. Vet Microbiol 2023; 282:109757. [PMID: 37119567 DOI: 10.1016/j.vetmic.2023.109757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/10/2023] [Accepted: 04/22/2023] [Indexed: 05/01/2023]
Abstract
Enterococcus cecorum is a member of the normal poultry gut microbiota and an emerging poultry pathogen. Some strains are resistant to key antibiotics and coccidiostats. We evaluated the impact on chicken excretion and persistence of a multidrug-resistant E. cecorum of administering narasin or antibiotics. E. cecorum CIRMBP-1294 (Ec1294) is non-wild-type to many antimicrobials, including narasin, levofloxacin, oxytetracycline and glycopeptides, it has a low susceptibility to amoxicillin, and carries a chromosomal vanA operon. Six groups of 15 chicks each were orally inoculated with Ec1294 and two groups were left untreated. Amoxicillin, oxytetracycline or narasin were administered orally to one group each, either at the recommended dose for five days (amoxicillin, oxytetracycline) or continuously (narasin). Faecal samples were collected weekly and caecal samples were obtained from sacrificed birds on day 28. Ec1294 titres were evaluated by culture on vancomycin- and levofloxacin-supplemented media in 5 % CO2. For inoculated birds given narasin, oxytetracycline or no antimicrobials, vancomycin-resistant enterococci were searched by culture on vancomycin-supplemented media incubated in air, and a PCR was used to detect the vanA gene. Ec1294 persisted in inoculated chicks up to day 28. Compared to the control group, the Ec1294 titre was significantly lower in the amoxicillin- and narasin-receiving groups on days 21 and 28, but was unexpectedly higher in the oxytetracycline-receiving group before and after oxytetracycline administration, preventing a conclusion for this group. No transfer of the vanA gene to other enterococci was detected. Other trials in various experimental conditions should now be conducted to confirm this apparent absence of co-selection of the multi-drug-resistant E. cecorum by narasin or amoxicillin administration.
Collapse
Affiliation(s)
- Jeanne Laurentie
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | | | - Eric Jouy
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | | | - Alassane Keita
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Michel Amelot
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France
| | - Pascale Serror
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy en Josas, France.
| | - Isabelle Kempf
- ANSES, Laboratoire de Ploufragan-Plouzané-Niort, Ploufragan, France.
| |
Collapse
|
4
|
Comparative Genome Analysis of Enterococcus cecorum Reveals Intercontinental Spread of a Lineage of Clinical Poultry Isolates. mSphere 2023; 8:e0049522. [PMID: 36794931 PMCID: PMC10117131 DOI: 10.1128/msphere.00495-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Enterococcus cecorum is an emerging pathogen responsible for osteomyelitis, spondylitis, and femoral head necrosis causing animal suffering and mortality and requiring antimicrobial use in poultry. Paradoxically, E. cecorum is a common inhabitant of the intestinal microbiota of adult chickens. Despite evidence suggesting the existence of clones with pathogenic potential, the genetic and phenotypic relatedness of disease-associated isolates remains little investigated. Here, we sequenced and analyzed the genomes and characterized the phenotypes of more than 100 isolates, the majority of which were collected over the last 10 years from 16 French broiler farms. Comparative genomics, genome-wide association studies, and the measured susceptibility to serum, biofilm-forming capacity, and adhesion to chicken type II collagen were used to identify features associated with clinical isolates. We found that none of the tested phenotypes could discriminate the origin of the isolates or the phylogenetic group. Instead, we found that most clinical isolates are grouped phylogenetically, and our analyses selected six genes that discriminate 94% of isolates associated with disease from those that are not. Analysis of the resistome and the mobilome revealed that multidrug-resistant clones of E. cecorum cluster into a few clades and that integrative conjugative elements and genomic islands are the main carriers of antimicrobial resistance. This comprehensive genomic analysis shows that disease-associated clones of E. cecorum belong mainly to one phylogenetic clade. IMPORTANCE Enterococcus cecorum is an important pathogen of poultry worldwide. It causes a number of locomotor disorders and septicemia, particularly in fast-growing broilers. Animal suffering, antimicrobial use, and associated economic losses require a better understanding of disease-associated E. cecorum isolates. To address this need, we performed whole-genome sequencing and analysis of a large collection of isolates responsible for outbreaks in France. By providing the first data set on the genetic diversity and resistome of E. cecorum strains circulating in France, we pinpoint an epidemic lineage that is probably also circulating elsewhere that should be targeted preferentially by preventive strategies in order to reduce the burden of E. cecorum-related diseases.
Collapse
|
5
|
Differences in Genotype and Antimicrobial Resistance between Campylobacter spp. Isolated from Organic and Conventionally Produced Chickens in Sweden. Pathogens 2021; 10:pathogens10121630. [PMID: 34959585 PMCID: PMC8705472 DOI: 10.3390/pathogens10121630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/01/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Antibiotic resistance is a major challenge worldwide and increased resistance to quinolones in Campylobacter is being reported. Analysis of antibiotic resistance was performed on 157 Campylobacter strains (123 C. jejuni and 34 C. coli) from conventional and organic chickens produced in Sweden. Susceptibility for tetracycline, ciprofloxacin, erythromycin, nalidixic acid, streptomycin, and gentamycin was determined by microdilution. All 77 isolates from organic chickens were sensitive to all antibiotics, except two C. jejuni that were resistant to tetracycline. Of the 80 isolates from conventional chickens, 22.5% of C. jejuni and 11.1% of C. coli were resistant to quinolones and 5.6% of C. jejuni were resistant to tetracycline. Whole-genome sequencing resulted in 50 different sequence types of C. jejuni and six of C. coli. Nine sequence types were found in both organic and conventional chickens. Two of these (ST-19 and ST-257) included isolates from conventional broilers with different resistance phenotypes to the remaining isolates from conventional and organic broilers. There are management differences between the production systems, such as feed, breed, use of coccidiostats, and access to outdoor area. It is unlikely that quinolone resistance has arisen due to use of antimicrobials, since fluoroquinolones are not permitted in Swedish broiler production.
Collapse
|
6
|
Parker CD, Lister SA, Gittins J. Impact assessment of the reduction or removal of ionophores used for controlling coccidiosis in the UK broiler industry. Vet Rec 2021; 189:e513. [PMID: 34101192 DOI: 10.1002/vetr.513] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/26/2021] [Accepted: 05/07/2021] [Indexed: 11/09/2022]
Abstract
Coccidiosis is a complex parasitic disease ubiquitous in all types of poultry production. It can have both a direct effect on bird health and welfare with significant negative impacts on the production parameters and indirect effect as it predisposes to other pathogens. Ionophore coccidiostats have been used safely for over 45 years by poultry producers. Concerns have been raised that their use in livestock production could promote the development of antibiotic resistance, but their unique mode of action makes it unlikely. Conversely their removal can result in increased use of therapeutic antibiotics to treat disease posing a greater risk of antibiotic resistance development. Economic and environmental models examining the impact of the removal of ionophore coccidiostats from UK production suggest the annual cost to the broiler sector would be between £68.02-£109.95 million and result in an additional 84,000 tonnes CO2 e being produced per annum. Any cost increase would make this wholesome and affordable animal protein less affordable to poorer sectors of society. Increased greenhouse gas production, demand for water and land as a result of less efficient production will impact on climate change targets.
Collapse
Affiliation(s)
- Charles Daniel Parker
- Slate Hall Veterinary Practice, Unit 28 Moorlands Trading Estate, Metheringham, Lincs, UK
| | | | - Jason Gittins
- ADAS Agriculture and Land Management Group, Helsby, UK
| |
Collapse
|
7
|
Nazeer N, Uribe-Diaz S, Rodriguez-Lecompte JC, Ahmed M. Antimicrobial peptides as an alternative to relieve antimicrobial growth promoters in poultry. Br Poult Sci 2021; 62:672-685. [PMID: 33908289 DOI: 10.1080/00071668.2021.1919993] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. This review describes different classes of antimicrobial peptides (AMP) found in the gastrointestinal (GI) tract of avian species, and their antimicrobial and immunomodulatory activities. The potential benefits of synthetic AMP in poultry production are examined, in the context of the use of AMP as alternatives to antimicrobial growth promoters (AGP).2. Since the mid-1950s, antibiotic growth promoters (AGP) have been used in feed at low prophylactic doses to modulate the homoeostasis of intestinal microbiota, decreasing the risk of intestinal dysbacteriosis and the growth of pathogens within the avian gut. Over the last three decades, AGP have faced major regulatory restrictions due to concerns of generating antimicrobial resistance (AMR). It is now well documented that the rate of infectious disease outbreaks is higher in flocks that are not fed prophylactic antibiotics, resulting in a compensatory increase in antimicrobial use for therapeutic purposes.3. Endogenous natural AMP production is associated with the presence of microbiota and their interaction with the intestinal epithelial and lamina propria lymphoid cells. Their antimicrobial activity shapes the beneficial microbiota population and controls intestinal pathogens such Clostridium and Salmonella spp., and stimulates the development and maturation of the local immune system.4. Similar to AGP, AMP can establish a well-balanced gut beneficial microbiota for adequate immune-competence, animal health and high growth performance parameters such as feed intake, daily weight, feed conversion and accumulated mortality.5. Antimicrobial proteins and peptides constitute an essential part of the innate immune system of all organisms and protect the host from invading pathogenic bacteria, viruses, fungi, and parasites by interacting with the negatively charged pathogen membranes.
Collapse
Affiliation(s)
- N Nazeer
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Canada
| | - S Uribe-Diaz
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Canada.,Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | | | - M Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Canada
| |
Collapse
|
8
|
Burkin MA, Galvidis IA. Simultaneous immunodetection of ionophore antibiotics, salinomycin and narasin, in poultry products and milk. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1550-1558. [PMID: 33861252 DOI: 10.1039/d0ay02309d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rabbit polyclonal antibodies were generated against the ionophore antibiotic salinomycin (SAL) as a determinant of the BSA-SAL conjugate. The homologous ELISA format was found to be preferred for similar recognition of SAL and narasin (NAR) with IC50 values of 0.55 and 0.57 ng mL-1, respectively. Both analytes could be determined in the range of 0.1-2.7 ng mL-1 (IC20-IC80) with a detection limit of 0.03 ng mL-1. To analyze matrices, individual pretreatment of samples was required. For chicken muscles, simple buffer extraction was sufficient to recover 87-110% of ionophores. Extraction with acetonitrile followed by evaporation of the solvent was best for recovering 67-108% SAL and NAR from egg homogenate. A feature of the extraction of ionophores from milk was the elimination of fat-mediated interference by organic solvation. It was found that the absence of Na+ and K+ ions during reconstitution of sample extracts was a key factor contributing to the increase in the average recovery of ionophores from 32% to 93%. Thanks to this special pretreatment and improved recovery, the developed immunoassay method was suitable for the analysis of ionophore antibiotics SAL and NAR in a milk matrix, which has not been previously reported.
Collapse
Affiliation(s)
- Maksim A Burkin
- Mechnikov Research Institute for Vaccines and Sera, Moscow 105064, Russia.
| | - Inna A Galvidis
- Mechnikov Research Institute for Vaccines and Sera, Moscow 105064, Russia.
| |
Collapse
|
9
|
Naemi AO, Dey H, Kiran N, Sandvik ST, Slettemeås JS, Nesse LL, Simm R. NarAB Is an ABC-Type Transporter That Confers Resistance to the Polyether Ionophores Narasin, Salinomycin, and Maduramicin, but Not Monensin. Front Microbiol 2020; 11:104. [PMID: 32117133 PMCID: PMC7010723 DOI: 10.3389/fmicb.2020.00104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Polyether ionophores are antimicrobial compounds used as feed additives in poultry feed to control diseases caused by coccidia. In addition to the anticoccidial activity of these compounds, polyether ionophores also contain antibacterial properties. Resistance to the polyether ionophore narasin was recently shown to exist on mobile plasmids in Enterococcus faecium and the resistance mechanism was suggested to be associated with a two-gene operon encoding an ABC-type transporter. In this study we demonstrate that the genes encoding the putative narasin resistance mechanism confers reduced susceptibility to the polyether ionophores narasin, salinomycin and maduramicin, but not to monensin and suggest that this resistance mechanism should be referred to as NarAB. Importantly, NarAB does not affect the susceptibility of E. faecium to any of the tested antimicrobial compounds that are used in clinical medicine. However, we show that conjugation in the presence of certain polyether ionophores increases the number of vancomycin resistant E. faecium suggesting that narasin and certain other polyether ionophores can contribute to the persistence of VRE in poultry populations.
Collapse
Affiliation(s)
- Ali-Oddin Naemi
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Hymonti Dey
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Nosheen Kiran
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | | | | | | | - Roger Simm
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Granstad S, Kristoffersen AB, Benestad SL, Sjurseth SK, David B, Sørensen L, Fjermedal A, Edvardsen DH, Sanson G, Løvland A, Kaldhusdal M. Effect of Feed Additives as Alternatives to In-feed Antimicrobials on Production Performance and Intestinal Clostridium perfringens Counts in Broiler Chickens. Animals (Basel) 2020; 10:ani10020240. [PMID: 32028636 PMCID: PMC7070674 DOI: 10.3390/ani10020240] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/19/2022] Open
Abstract
Numerous non-antibiotic feed additives (alternatives to antibiotics, ATAs) have been marketed, but few have been evaluated under uniform testing conditions modelling commercial flocks. We compared 24 ATA treatments and the ionophorous coccidiostat narasin against a diet without any feed additives. Feed conversion ratio and body weight gain were registered from day 0 to 28 in Ross 308 chickens housed on litter floor. The chickens were challenged with Eimeria spp., and cecal Clostridium perfringens (CP) counts were investigated. Active components from all ATA classes had a positive impact on intestinal health or production performance. Whereas narasin had a strong CP-reducing effect in combination with performance-promoting impact, only two ATA treatments achieved significantly beneficial effects on CP counts as well as feed conversion during the time span following Eimeria challenge. Active components present in these two treatments include a Bacillus subtilis probiotic strain, short- and medium-chain fatty acids and Saccharomyces cerevisiae components. Different ATA classes had beneficial impact during distinct rearing phases and on specific performance targets, suggesting that optimizing combinations and use of active components can make ATAs even more useful tools in broiler rearing without the use of in-feed antimicrobials. Further studies of promising ATAs and ATA combinations are required.
Collapse
Affiliation(s)
- Silje Granstad
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway; (A.B.K.); (S.L.B.); (S.K.S.); (M.K.)
- Correspondence:
| | - Anja B. Kristoffersen
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway; (A.B.K.); (S.L.B.); (S.K.S.); (M.K.)
| | - Sylvie L. Benestad
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway; (A.B.K.); (S.L.B.); (S.K.S.); (M.K.)
| | - Siri K. Sjurseth
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway; (A.B.K.); (S.L.B.); (S.K.S.); (M.K.)
| | - Bruce David
- Nortura SA, P.O. Box 360 Økern, 0513 Oslo, Norway; (B.D.); (A.L.)
| | - Line Sørensen
- Felleskjøpet Fôrutvikling AS, Nedre Ila 20, 7018 Trondheim, Norway; (L.S.); (G.S.)
| | | | | | - Gorm Sanson
- Felleskjøpet Fôrutvikling AS, Nedre Ila 20, 7018 Trondheim, Norway; (L.S.); (G.S.)
| | - Atle Løvland
- Nortura SA, P.O. Box 360 Økern, 0513 Oslo, Norway; (B.D.); (A.L.)
| | - Magne Kaldhusdal
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway; (A.B.K.); (S.L.B.); (S.K.S.); (M.K.)
| |
Collapse
|
11
|
Simm R, Slettemeås JS, Norström M, Dean KR, Kaldhusdal M, Urdahl AM. Significant reduction of vancomycin resistant E. faecium in the Norwegian broiler population coincided with measures taken by the broiler industry to reduce antimicrobial resistant bacteria. PLoS One 2019; 14:e0226101. [PMID: 31830083 PMCID: PMC6907784 DOI: 10.1371/journal.pone.0226101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022] Open
Abstract
Vancomycin resistant enterococci (VRE) belong to the most common causes of nosocomial infections worldwide. It has been reported that use of the glycopeptide growth promoter avoparcin selected for a significant livestock-reservoir of VRE in many European countries, including Norway. However, although avoparcin was banned as a feed-additive in 1995, VRE have for unknown reasons consistently been reported in samples from Norwegian broilers. When avoparcin was banned, broiler-feed was supplemented with the polyether ionophore narasin in order to control the diseases coccidiosis and the frequent sequela necrotic enteritis. A potential link between transferrable vancomycin resistance and reduced susceptibility to narasin was recently reported. The use of narasin as a feed additive was abolished by the Norwegian broiler industry in 2016 and since then, broilers have been reared without in-feed antibacterial supplements. In this study, we demonstrate that all VRE isolates from Norwegian broilers collected in 2006-2014 displayed reduced susceptibility to narasin. Surveillance data collected two years after the narasin abolishment show a significant reduction in VRE, below the detection limit of the surveillance method, and a concurrent marked reduction in Enterococcus faecium with reduced susceptibility to narasin. The significant decline of E. faecium with reduced susceptibility to these antimicrobial compounds also coincided with an increased focus on cleaning and disinfection between broiler flocks. Furthermore, data from a controlled in vivo experiment using Ross 308 broilers indicate that the proportion of E. faecium with reduced susceptibility to narasin was heavily reduced in broilers fed a narasin-free diet compared to a diet supplemented with narasin. Our results are consistent with that the abolishment of this feed additive, possibly in combination with the increased focus on cleaning and disinfection, has had a substantial impact on the occurrence of VRE in the Norwegian broiler population.
Collapse
Affiliation(s)
- Roger Simm
- Institute of Oral Biology, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
12
|
Unknown Risk on the Farm: Does Agricultural Use of Ionophores Contribute to the Burden of Antimicrobial Resistance? mSphere 2019; 4:4/5/e00433-19. [PMID: 31554722 PMCID: PMC6763768 DOI: 10.1128/msphere.00433-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ionophores are the second most widely used class of antibiotic in agriculture, with over 4 million kilograms sold in the United States in 2016. Because ionophores are not used in humans, it is widely assumed that their agricultural use will not impact human health. Consequently, these drugs have not been subject to the same regulations as medically important antibiotics. Ionophores are the second most widely used class of antibiotic in agriculture, with over 4 million kilograms sold in the United States in 2016. Because ionophores are not used in humans, it is widely assumed that their agricultural use will not impact human health. Consequently, these drugs have not been subject to the same regulations as medically important antibiotics. Here, I argue that the current evidence base is insufficient to conclude that ionophores do not contribute to human relevant antimicrobial resistance. It is unclear whether ionophore resistance can result in cross-resistance to medically important antibiotics. Moreover, recent evidence suggests that ionophore use may coselect for resistance to vancomycin in some cases. Systematic investigation of the consequences of agricultural ionophore use for human health is therefore imperative.
Collapse
|
13
|
The rise and fall of a vancomycin-resistant clone of Enterococcus faecium among broilers in Sweden. J Glob Antimicrob Resist 2019; 17:233-235. [DOI: 10.1016/j.jgar.2018.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 11/22/2022] Open
|
14
|
Genomic Surveillance of Enterococcus faecium Reveals Limited Sharing of Strains and Resistance Genes between Livestock and Humans in the United Kingdom. mBio 2018; 9:mBio.01780-18. [PMID: 30401778 PMCID: PMC6222123 DOI: 10.1128/mbio.01780-18] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The rise in rates of human infection caused by vancomycin-resistant Enterococcus faecium (VREfm) strains between 1988 to the 2000s in Europe was suggested to be associated with acquisition from livestock. As a result, the European Union banned the use of the glycopeptide drug avoparcin as a growth promoter in livestock feed. While some studies reported a decrease in VREfm in livestock, others reported no reduction. Here, we report the first livestock VREfm prevalence survey in the UK since 2003 and the first large-scale study using whole-genome sequencing to investigate the relationship between E. faecium strains in livestock and humans. We found a low prevalence of VREfm in retail meat and limited evidence for recent sharing of strains between livestock and humans with bloodstream infection. There was evidence for limited sharing of genes encoding antibiotic resistance between these reservoirs, a finding which requires further research. Vancomycin-resistant Enterococcus faecium (VREfm) is a major cause of nosocomial infection and is categorized as high priority by the World Health Organization global priority list of antibiotic-resistant bacteria. In the past, livestock have been proposed as a putative reservoir for drug-resistant E. faecium strains that infect humans, and isolates of the same lineage have been found in both reservoirs. We undertook cross-sectional surveys to isolate E. faecium (including VREfm) from livestock farms, retail meat, and wastewater treatment plants in the United Kingdom. More than 600 isolates from these sources were sequenced, and their relatedness and antibiotic resistance genes were compared with genomes of almost 800 E. faecium isolates from patients with bloodstream infection in the United Kingdom and Ireland. E. faecium was isolated from 28/29 farms; none of these isolates were VREfm, suggesting a decrease in VREfm prevalence since the last UK livestock survey in 2003. However, VREfm was isolated from 1% to 2% of retail meat products and was ubiquitous in wastewater treatment plants. Phylogenetic comparison demonstrated that the majority of human and livestock-related isolates were genetically distinct, although pig isolates from three farms were more genetically related to human isolates from 2001 to 2004 (minimum of 50 single-nucleotide polymorphisms [SNPs]). Analysis of accessory (variable) genes added further evidence for distinct niche adaptation. An analysis of acquired antibiotic resistance genes and their variants revealed limited sharing between humans and livestock. Our findings indicate that the majority of E. faecium strains infecting patients are largely distinct from those from livestock in this setting, with limited sharing of strains and resistance genes.
Collapse
|
15
|
Kadykalo S, Roberts T, Thompson M, Wilson J, Lang M, Espeisse O. The value of anticoccidials for sustainable global poultry production. Int J Antimicrob Agents 2017; 51:304-310. [PMID: 28935212 DOI: 10.1016/j.ijantimicag.2017.09.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 08/31/2017] [Accepted: 09/10/2017] [Indexed: 11/18/2022]
Abstract
Coccidiosis is a self-limiting disease that is universally present in poultry operations, causing extensive damage to the intestinal lining of the bird. Global economic losses from coccidiosis are estimated to be $3 billion per year. In-feed anticoccidial use has been the predominant form of coccidiosis control. However, due to widespread emergence of antimicrobial resistance, concerns have been raised regarding the safety of anticoccidials and the potential impact on human, animal, and environmental health. To investigate the benefits, risks, and alternatives to anticoccidial use, a comprehensive review of recent literature was conducted. Several live vaccines are available, which, when used in combination with anticoccidials, have been shown to help restore sensitivity of infective parasites. However, their use has been limited because of increased cost; increased susceptibility to bacterial enteritis; challenges with consistent application; and slow development of immunity. Various alternative feed products are available, but do not have a direct anticoccidial effect, and few studies have demonstrated consistent field efficacy of these products. Consumer and environmental safety of anticoccidials is monitored and assessed by governing bodies. Furthermore, there is a lack of current evidence to indicate that bacterial resistance poses a public health concern. The findings from this review indicate that in the absence of alternatives, poultry production is optimized by using anticoccidials, benefiting all three pillars of sustainability, including social (bird health, welfare, and food safety), economic (production efficiency), and environmental aspects.
Collapse
Affiliation(s)
- Stefanie Kadykalo
- Novometrix Research Inc., 4564 Nassagaweya-Puslinch Townline, Moffat, Ontario, L0P 1J, Canada
| | - Tara Roberts
- Novometrix Research Inc., 4564 Nassagaweya-Puslinch Townline, Moffat, Ontario, L0P 1J, Canada.
| | - Michelle Thompson
- Novometrix Research Inc., 4564 Nassagaweya-Puslinch Townline, Moffat, Ontario, L0P 1J, Canada
| | - Jeff Wilson
- Novometrix Research Inc., 4564 Nassagaweya-Puslinch Townline, Moffat, Ontario, L0P 1J, Canada; Population Medicine Department, University of Guelph, 50 Stone Road E., Guelph, Ontario, N1G 2W1, Canada
| | - Marcelo Lang
- Elanco Animal Health, 2500 Innovation Way, Greenfield, Indianapolis, 46140, USA
| | - Olivier Espeisse
- Elanco Animal Health, 24 Boulevard Vital Bouhot, 92220, Neuilly, Seine, France
| |
Collapse
|
16
|
Transferable genes putatively conferring elevated minimum inhibitory concentrations of narasin in Enterococcus faecium from Swedish broilers. Vet Microbiol 2016; 184:80-3. [PMID: 26854348 DOI: 10.1016/j.vetmic.2016.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/12/2016] [Accepted: 01/16/2016] [Indexed: 11/21/2022]
Abstract
The minimum inhibitory concentration (MIC) of the polyether ionophore antibiotic narasin is elevated in a large proportion of Enterococcus faecium from Swedish broilers. The aim of this study was to identify gene(s) responsible for these elevated MICs. Six plasmids, four conferring vancomycin resistance and elevated MIC of narasin and two only conferring resistance to vancomycin, were sequenced. The genes for a putative mechanism for elevated MIC of narasin was used to design a PCR assay which in turn was used to screen 100 isolates of E. faecium from Swedish broilers. A 5.9 kb area was only found in the plasmids transferring elevated MIC of narasin. This area included two genes coding for an ABC-type transporter; an 'ABC transporter permease protein' and an 'ABC-type multidrug transport system, ATPase component'. These genes are known to confer resistance to the ionophore tetronasin. PCR investigation confirmed a correlation between the presence of the genes and a MIC of narasin ≥ 2 mg/L. The results of this study indicate that the ABC permease together with the ABC ATPase are responsible for the elevated MIC of narasin present among E. faecium in Swedish broilers. To our knowledge, this is the first report of a putative transferable mechanism for elevated MIC of narasin.
Collapse
|
17
|
Berglund B. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infect Ecol Epidemiol 2015; 5:28564. [PMID: 26356096 PMCID: PMC4565060 DOI: 10.3402/iee.v5.28564] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/28/2015] [Accepted: 08/05/2015] [Indexed: 12/01/2022] Open
Abstract
Antibiotic resistance is a growing problem which threatens modern healthcare globally. Resistance has traditionally been viewed as a clinical problem, but recently non-clinical environments have been highlighted as an important factor in the dissemination of antibiotic resistance genes (ARGs). Horizontal gene transfer (HGT) events are likely to be common in aquatic environments; integrons in particular are well suited for mediating environmental dissemination of ARGs. A growing body of evidence suggests that ARGs are ubiquitous in natural environments. Particularly, elevated levels of ARGs and integrons in aquatic environments are correlated to proximity to anthropogenic activities. The source of this increase is likely to be routine discharge of antibiotics and resistance genes, for example, via wastewater or run-off from livestock facilities and agriculture. While very high levels of antibiotic contamination are likely to select for resistant bacteria directly, the role of sub-inhibitory concentrations of antibiotics in environmental antibiotic resistance dissemination remains unclear. In vitro studies have shown that low levels of antibiotics can select for resistant mutants and also facilitate HGT, indicating the need for caution. Overall, it is becoming increasingly clear that the environment plays an important role in dissemination of antibiotic resistance; further studies are needed to elucidate key aspects of this process. Importantly, the levels of environmental antibiotic contamination at which resistant bacteria are selected for and HGT is facilitated at should be determined. This would enable better risk analyses and facilitate measures for preventing dissemination and development of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Björn Berglund
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden;
| |
Collapse
|
18
|
Midtvedt T. [An announcement of concern about antibiotics in chicken feed]. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2015; 135:742. [PMID: 25947591 DOI: 10.4045/tidsskr.15.0196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
19
|
Werner G, Coque TM, Franz CMAP, Grohmann E, Hegstad K, Jensen L, van Schaik W, Weaver K. Antibiotic resistant enterococci-tales of a drug resistance gene trafficker. Int J Med Microbiol 2013; 303:360-79. [PMID: 23602510 DOI: 10.1016/j.ijmm.2013.03.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enterococci have been recognized as important hospital-acquired pathogens in recent years, and isolates of E. faecalis and E. faecium are the third- to fourth-most prevalent nosocomial pathogen worldwide. Acquired resistances, especially against penicilin/ampicillin, aminoglycosides (high-level) and glycopeptides are therapeutically important and reported in increasing numbers. On the other hand, isolates of E. faecalis and E. faecium are commensals of the intestines of humans, many vertebrate and invertebrate animals and may also constitute an active part of the plant flora. Certain enterococcal isolates are used as starter cultures or supplements in food fermentation and food preservation. Due to their preferred intestinal habitat, their wide occurrence, robustness and ease of cultivation, enterococci are used as indicators for fecal pollution assessing hygiene standards for fresh- and bathing water and they serve as important key indicator bacteria for various veterinary and human resistance surveillance systems. Enterococci are widely prevalent and genetically capable of acquiring, conserving and disseminating genetic traits including resistance determinants among enterococci and related Gram-positive bacteria. In the present review we aimed at summarizing recent advances in the current understanding of the population biology of enterococci, the role mobile genetic elements including plasmids play in shaping the population structure and spreading resistance. We explain how these elements could be classified and discuss mechanisms of plasmid transfer and regulation and the role and cross-talk of enterococcal isolates from food and food animals to humans.
Collapse
Affiliation(s)
- Guido Werner
- National Reference Centre for Stapyhlococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode Branch, Burgstr. 37, 38855 Wernigerode, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Nilsson O. Vancomycin resistant enterococci in farm animals - occurrence and importance. Infect Ecol Epidemiol 2012; 2:IEE-2-16959. [PMID: 22957131 PMCID: PMC3426332 DOI: 10.3402/iee.v2i0.16959] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/16/2012] [Accepted: 03/28/2012] [Indexed: 11/14/2022] Open
Abstract
The view on enterococci has over the years shifted from harmless commensals to opportunistic but important pathogens mainly causing nosocomial infections. One important part of this development is the emergence of vancomycin resistance enterococci (VRE). The term VRE includes several combinations of bacterial species and resistance genes of which the most clinically important is Enterococcus faecium with vanA type vancomycin resistance. This variant is also the most common VRE among farm animals. The reason for VRE being present among farm animals is selection by extensive use of the vancomycin analog avoparcin for growth promotion. Once the use of avoparcin was discontinued, the prevalence of VRE among farm animals decreased. However, VRE are still present among farm animals and by spread via food products they could potentially have a negative impact on public health. This review is based on the PhD thesis Vancomycin Resistant Enterococci in Swedish Broilers - Emergence, Epidemiology and Elimination and makes a short summary of VRE in humans and food producing animals. The specific situation regarding VRE in Swedish broiler production is also mentioned.
Collapse
Affiliation(s)
- Oskar Nilsson
- Department of Animal health and Antimicrobial strategies, National Veterinary Institute, Uppsala, Sweden
| |
Collapse
|