1
|
Steele JA, Zimmer-Faust AG, Clerkin TJ, González-Fernández A, Lowry SA, Blackwood AD, Raygoza K, Langlois K, Boehm AB, Noble RT, Griffith JF, Schiff KC. Survey of pathogens and human fecal markers in stormwater across a highly populated urban region. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025. [PMID: 40223663 DOI: 10.1039/d4em00578c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Microbial contamination of urban stormwater, rivers, and creeks during rainstorms is a persistent and widespread problem. Remediation of these waters has proven to be challenging since there are many potential sources for the fecal indicator bacteria on which water quality is regulated. Microbial source tracking markers have allowed for improved identification and quantification of the sources of contamination, but the majority of the source-attributed microbial targets are not responsible for causing the illnesses associated with waterborne human fecal contamination. Thus there is a need to better understand the relationships of human pathogens and human fecal markers in stormwater. In this study, we used a spatially-intensive sampling approach (31 sites) across southern California for the analysis of stormwater. During three storms from 2021-2023, we used droplet digital PCR to quantify the human fecal markers HF183 and Lachno3 along with human adenovirus, human norovirus, Campylobacter spp., and Salmonella spp. This spatially intensive sampling design captures information from a 5900 km2 area with ∼22 million people. We detected human markers HF183 and Lachno3 genes at 90% and 97% of the sites; concentrations ranged from below detection to 104 and 105 gene copies per 100 mL, respectively. We found variable concentrations of human bacterial and viral pathogen genes. HF183 was significantly correlated to human adenovirus and Lachno3. Lachno3 was also significantly correlated with Salmonella. We reported PCR inhibition in 83-90% of the samples but found that separating sediment and adding proteinase K during lysis improved DNA/RNA extraction efficiency and reduced inhibition.
Collapse
Affiliation(s)
- Joshua A Steele
- Southern California Coastal Water Research Project, Costa Mesa, CA, USA.
| | | | - Thomas J Clerkin
- Institute of Marine Sciences, The University of North Carolina at Chapel Hill, Morehead City, NC, USA
| | | | - Sarah A Lowry
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - A Denene Blackwood
- Institute of Marine Sciences, The University of North Carolina at Chapel Hill, Morehead City, NC, USA
| | - Kayla Raygoza
- Southern California Coastal Water Research Project, Costa Mesa, CA, USA.
| | - Kylie Langlois
- Southern California Coastal Water Research Project, Costa Mesa, CA, USA.
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California, USA
| | - Rachel T Noble
- Institute of Marine Sciences, The University of North Carolina at Chapel Hill, Morehead City, NC, USA
| | - John F Griffith
- Southern California Coastal Water Research Project, Costa Mesa, CA, USA.
| | - Kenneth C Schiff
- Southern California Coastal Water Research Project, Costa Mesa, CA, USA.
| |
Collapse
|
2
|
Sathyanarayana SH, Robins AA, Toledo DM, Gallagher TL, Tsongalis GJ, Hubbard JA, Lefferts JA, Martin IW. Simplifying SARS-CoV-2 wastewater-based surveillance using an automated FDA EUA assay. Microbiol Spectr 2025; 13:e0249024. [PMID: 39998239 PMCID: PMC11960137 DOI: 10.1128/spectrum.02490-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
Wastewater-based surveillance (WBS) can track the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in communities. Laboratory methods for this testing involve labor-intensive, multi-step processes. This study assessed the feasibility of performing WBS with an off-label use of an automated commercial SARS-CoV-2 assay that had received Emergency Use Authorization for human diagnostic testing from the United States Food and Drug Administration (FDA EUA). Twenty-four-hour composite samples of primary influent wastewater from seven municipalities in New Hampshire and Vermont were collected between September 2020 and February 2021, and were centrifuged upon receipt. An aliquot of fresh supernatant was immediately tested with the Abbott m2000 RealTime SARS-CoV-2 assay (Abbott Molecular, Des Plaines, IL, USA). Corresponding aliquots were then stored at -80°C until they were thawed, polyethylene glycol (PEG) concentrated, and tested by two PCR-based laboratory-developed tests (LDTs). Wastewater samples (103) were tested with successful detection of SARS-CoV-2 viral RNA by all three methods. Bland-Altman analysis showed overall concordant results with a bias of -0.13 and -0.42 log copies/mL detected by the FDA EUA assay compared to the LDTs. Specimen stability assessment demonstrated a decrease of 33.9% measurable viral RNA after three freeze-thaw cycles. SARS-CoV-2 detection in wastewater using an FDA EUA assay on an automated commercial testing platform performed comparably but with more efficient workflow when compared to two LDTs. This sample-to-answer automated method could save time and labor for surveillance testing, but further validation of its ability to quantitate SARS-CoV-2 viral RNA is necessary.IMPORTANCEThis proof-of-principle study evaluates an off-label use of an automated United States Food and Drug Administration (FDA) Emergency Use Authorization (EUA) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) human diagnostic assay for wastewater surveillance. Compared to standard, labor-intensive, multi-step methods currently in use for wastewater surveillance testing, an off-label use of an FDA EUA assay on an automated platform offers a sample-to-answer testing requiring less labor and a faster turnaround time.
Collapse
Affiliation(s)
| | - Ashlee A. Robins
- Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire, USA
| | - Diana M. Toledo
- The Broad Institute at MIT and Harvard, Cambridge, Massachusetts, USA
| | - Torrey L. Gallagher
- Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire, USA
| | - Gregory J. Tsongalis
- Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire, USA
| | | | - Joel A. Lefferts
- Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire, USA
| | - Isabella W. Martin
- Department of Pathology and Laboratory Medicine, Dartmouth Health, Lebanon, New Hampshire, USA
| |
Collapse
|
3
|
Korajkic A, McMinn BR, Pemberton AC, Kelleher J, Ahmed W. The comparison of decay rates of infectious SARS-CoV-2 and viral RNA in environmental waters and wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174379. [PMID: 38955270 PMCID: PMC11290430 DOI: 10.1016/j.scitotenv.2024.174379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Understanding the decay characteristics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater and ambient waters is important for multiple applications including assessment of risk of exposure associated with handling wastewater samples, public health risk associated with recreation in wastewater polluted ambient waters and better understanding and interpretation of wastewater-based epidemiology (WBE) results. We evaluated the decay rates of infectious SARS-CoV-2 and viral RNA in wastewater and ambient waters under temperature regimes representative of seasonal fluctuations. Infectious virus was seeded in autoclaved primary wastewater effluent, final dechlorinated wastewater effluent, lake water, and marine water at a final concentration of 6.26 ± 0.07 log10 plaque forming units per milliliter. Each suspension was incubated at either 4°, 25°, and 37 °C. Samples were initially collected on an hourly basis, then approximately every other day for 15 days. All samples were analyzed for infectious virus via a plaque assay using the Vero E6 cell line, and viral gene copy levels were quantified with the US CDC's N1 and N2 reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) assays. The infectious virus decayed significantly faster (p ≤ 0.0214) compared to viral RNA, which persisted for the duration of the study irrespective of the incubation conditions. The initial loss (within 15 min of seeding) as well as decay of infectious SARS-CoV-2 was significantly faster (p ≤ 0.0387) in primary treated wastewater compared to other water types, but viral RNA did not degrade appreciably in this matrix until day 15. Overall, temperature was the most important driver of decay, and after 24 h, no infectious SARS-CoV-2 was detected at 37 °C in any water type. Moreover, the CDC N2 gene assay target decayed significantly (p ≤ 0.0174) faster at elevated temperatures compared to CDC N1, which has important implications for RT-qPCR assay selection for WBE approach.
Collapse
Affiliation(s)
- Asja Korajkic
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States.
| | - Brian R McMinn
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Adin C Pemberton
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Julie Kelleher
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct 41 Boggo Road, Qld 4102, Australia
| |
Collapse
|
4
|
Li F, Liu J, Maldonado-Gómez MX, Frese SA, Gänzle MG, Walter J. Highly accurate and sensitive absolute quantification of bacterial strains in human fecal samples. MICROBIOME 2024; 12:168. [PMID: 39244633 PMCID: PMC11380787 DOI: 10.1186/s40168-024-01881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/26/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Next-generation sequencing (NGS) approaches have revolutionized gut microbiome research and can provide strain-level resolution, but these techniques have limitations in that they are only semi-quantitative, suffer from high detection limits, and generate data that is compositional. The present study aimed to systematically compare quantitative PCR (qPCR) and droplet digital PCR (ddPCR) for the absolute quantification of Limosilactobacillus reuteri strains in human fecal samples and to develop an optimized protocol for the absolute quantification of bacterial strains in fecal samples. RESULTS Using strain-specific PCR primers for L. reuteri 17938, ddPCR showed slightly better reproducibility, but qPCR was almost as reproducible and showed comparable sensitivity (limit of detection [LOD] around 104 cells/g feces) and linearity (R2 > 0.98) when kit-based DNA isolation methods were used. qPCR further had a wider dynamic range and is cheaper and faster. Based on these findings, we conclude that qPCR has advantages over ddPCR for the absolute quantification of bacterial strains in fecal samples. We provide an optimized and easy-to-follow step-by-step protocol for the design of strain-specific qPCR assays, starting from primer design from genome sequences to the calibration of the PCR system. Validation of this protocol to design PCR assays for two L. reuteri strains, PB-W1 and DSM 20016 T, resulted in a highly accurate qPCR with a detection limit in spiked fecal samples of around 103 cells/g feces. Applying our strain-specific qPCR assays to fecal samples collected from human subjects who received live L. reuteri PB-W1 or DSM 20016 T during a human trial demonstrated a highly accurate quantification and sensitive detection of these two strains, with a much lower LOD and a broader dynamic range compared to NGS approaches (16S rRNA gene sequencing and whole metagenome sequencing). CONCLUSIONS Based on our analyses, we consider qPCR with kit-based DNA extraction approaches the best approach to accurately quantify gut bacteria at the strain level in fecal samples. The provided step-by-step protocol will allow scientists to design highly sensitive strain-specific PCR systems for the accurate quantification of bacterial strains of not only L. reuteri but also other bacterial taxa in a broad range of applications and sample types. Video Abstract.
Collapse
Affiliation(s)
- Fuyong Li
- Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| | - Junhong Liu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | | | - Steven A Frese
- Department of Nutrition, University of Nevada, Reno, NV, 89557, USA
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Jens Walter
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
- School of Microbiology, Department of Medicine, and APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
| |
Collapse
|
5
|
Zafeiriadou A, Kaltsis L, Thomaidis NS, Markou A. Simultaneous detection of influenza A, B and respiratory syncytial virus in wastewater samples by one-step multiplex RT-ddPCR assay. Hum Genomics 2024; 18:48. [PMID: 38769549 PMCID: PMC11103825 DOI: 10.1186/s40246-024-00614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND After the occurrence of the COVID-19 pandemic, detection of other disseminated respiratory viruses using highly sensitive molecular methods was declared essential for monitoring the spread of health-threatening viruses in communities. The development of multiplex molecular assays are essential for the simultaneous detection of such viruses even at low concentrations. In the present study, a highly sensitive and specific multiplex one-step droplet digital PCR (RT-ddPCR) assay was developed for the simultaneous detection and absolute quantification of influenza A (IAV), influenza B (IBV), respiratory syncytial virus (RSV), and beta-2-microglobulin transcript as an endogenous internal control (IC B2M). RESULTS The assay was first evaluated for analytical sensitivity and specificity, linearity, reproducibility, and recovery rates with excellent performance characteristics and then applied to 37 wastewater samples previously evaluated with commercially available and in-house quantitative real-time reverse transcription PCR (RT-qPCR) assays. IAV was detected in 16/37 (43%), IBV in 19/37 (51%), and RSV in 10/37 (27%) of the wastewater samples. Direct comparison of the developed assay with real-time RT-qPCR assays showed statistically significant high agreement in the detection of IAV (kappa Cohen's correlation coefficient: 0.834, p = 0.001) and RSV (kappa: 0.773, p = 0.001) viruses between the two assays, while the results for the detection of IBV (kappa: 0.355, p = 0.27) showed good agreement without statistical significance. CONCLUSIONS Overall, the developed one-step multiplex ddPCR assay is cost-effective, highly sensitive and specific, and can simultaneously detect three common respiratory viruses in the complex matrix of wastewater samples even at low concentrations. Due to its high sensitivity and resistance to PCR inhibitors, the developed assay could be further used as an early warning system for wastewater monitoring.
Collapse
Affiliation(s)
- Anastasia Zafeiriadou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, ZografouAthens, Greece
| | - Lazaros Kaltsis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, ZografouAthens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, ZografouAthens, Greece
| | - Athina Markou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, ZografouAthens, Greece.
| |
Collapse
|
6
|
Boehm AB, Wolfe MK, White BJ, Hughes B, Duong D, Banaei N, Bidwell A. Human norovirus (HuNoV) GII RNA in wastewater solids at 145 United States wastewater treatment plants: comparison to positivity rates of clinical specimens and modeled estimates of HuNoV GII shedders. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:440-447. [PMID: 37550566 PMCID: PMC11222142 DOI: 10.1038/s41370-023-00592-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Human norovirus (HuNoV) is a leading cause of disease globally, yet actual incidence is unknown. HuNoV infections are not reportable in the United States, and surveillance is limited to tracking severe illnesses or outbreaks. Wastewater monitoring for HuNoV has been done previously and results indicate it is present in wastewater influent and concentrations are associated with HuNoV infections in the communities contributing to wastewater. However, work has mostly been limited to monthly samples of liquid wastewater at one or a few wastewater treatment plants (WWTPs). OBJECTIVE The objectives of this study are to investigate whether HuNoV GII preferentially adsorbs to wastewater solids, investigate concentrations of HuNoV GII in wastewater solids in wastewater treatment plants across the county, and explore how those relate to clinical measures of disease occurrence. In addition, we aim to develop and apply a mass-balance model that predicts the fraction of individuals shedding HuNoV in their stool based on measured concentrations in wastewater solids. METHODS We measured HuNoV GII RNA in matched wastewater solids and liquid influent in 7 samples from a WWTP. We also applied the HuNoV GII assay to measure viral RNA in over 6000 wastewater solids samples from 145 WWTPs from across the United States daily to three times per week for up to five months. Measurements were made using digital droplet RT-PCR. RESULTS HuNoV GII RNA preferentially adsorbs to wastewater solids where it is present at 1000 times the concentration in influent. Concentrations of HuNoV GII RNA correlate positively with clinical HuNoV positivity rates. Model output of the fraction of individuals shedding HuNoV is variable and uncertain, but consistent with indirect estimates of symptomatic HuNoV infections in the United States. IMPACT STATEMENT Illness caused by HuNoV is not reportable in the United States so there is limited data on disease occurrence. Wastewater monitoring can provide information about the community spread of HuNoV. Data from wastewater can be available within 24 h of sample receipt at a laboratory. Wastewater is agnostic to whether individuals seek medical care, are symptomatic, and the severity of illness. Knowledge gleaned from wastewater may be used by public health professionals to make recommendations on hand washing, surface disinfection, or other behaviors to reduce transmission of HuNoV, or medical doctors to inform clinical decision making.
Collapse
Affiliation(s)
- Alexandria B Boehm
- Department of Civil & Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, CA, USA.
| | - Marlene K Wolfe
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | | | | | - Niaz Banaei
- Stanford Health Care Clinical Microbiology Laboratory, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Amanda Bidwell
- Department of Civil & Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
Breadner PR, Dhiyebi HA, Fattahi A, Srikanthan N, Hayat S, Aucoin MG, Boegel SJ, Bragg LM, Craig PM, Xie Y, Giesy JP, Servos MR. A comparative analysis of the partitioning behaviour of SARS-CoV-2 RNA in liquid and solid fractions of wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165095. [PMID: 37355124 PMCID: PMC10287177 DOI: 10.1016/j.scitotenv.2023.165095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
As fragments of SARS-CoV-2 RNA can be quantified and measured temporally in wastewater, surveillance of concentrations of SARS-CoV-2 in wastewater has become a vital resource for tracking the spread of COVID-19 in and among communities. However, the absence of standardized methods has affected the interpretation of data for public health efforts. In particular, analyzing either the liquid or solid fraction has implications for the interpretation of how viral RNA is quantified. Characterizing how SARS-CoV-2 or its RNA fragments partition in wastewater is a central part of understanding fate and behaviour in wastewater. In this study, partitioning of SARS-CoV-2 was investigated by use of centrifugation with varied durations of spin and centrifugal force, polyethylene glycol (PEG) precipitation followed by centrifugation, and ultrafiltration of wastewater. Partitioning of the endogenous pepper mild mottled virus (PMMoV), used to normalize the SARS-CoV-2 signal for fecal load in trend analysis, was also examined. Additionally, two surrogates for coronavirus, human coronavirus 229E and murine hepatitis virus, were analyzed as process controls. Even though SARS-CoV-2 has an affinity for solids, the total RNA copies of SARS-CoV-2 per wastewater sample, after centrifugation (12,000 g, 1.5 h, no brake), were partitioned evenly between the liquid and solid fractions. Centrifugation at greater speeds for longer durations resulted in a shift in partitioning for all viruses toward the solid fraction except for PMMoV, which remained mostly in the liquid fraction. The surrogates more closely reflected the partitioning of SARS-CoV-2 under high centrifugation speed and duration while PMMoV did not. Interestingly, ultrafiltration devices were inconsistent in estimating RNA copies in wastewater, which can influence the interpretation of partitioning. Developing a better understanding of the fate of SARS-CoV-2 in wastewater and creating a foundation of best practices is the key to supporting the current pandemic response and preparing for future potential infectious diseases.
Collapse
Affiliation(s)
- Patrick R Breadner
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Hadi A Dhiyebi
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Azar Fattahi
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Nivetha Srikanthan
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Samina Hayat
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Scott J Boegel
- Department of Chemical Engineering, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Leslie M Bragg
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Yuwei Xie
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Environmental Science, Baylor University, One Bear Place, Waco, TX 76798, USA
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
8
|
Hart JJ, Jamison MN, McNair JN, Woznicki SA, Jordan B, Rediske RR. Using watershed characteristics to enhance fecal source identification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117642. [PMID: 36907065 DOI: 10.1016/j.jenvman.2023.117642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/17/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Fecal pollution is one of the most prevalent forms of pollution affecting waterbodies worldwide, threatening public health and negatively impacting aquatic environments. Microbial source tracking (MST) applies polymerase chain reaction (PCR) technology to help identify the source of fecal pollution. In this study, we combine spatial data for two watersheds with general and host-associated MST markers to target human (HF183/BacR287), bovine (CowM2), and general ruminant (Rum2Bac) sources. Concentrations of MST markers in samples were determined with droplet digital PCR (ddPCR). The three MST markers were detected at all sites (n = 25), but bovine and general ruminant markers were significantly associated with watershed characteristics. MST results, combined with watershed characteristics, suggest that streams draining areas with low-infiltration soil groups and high agricultural land use are at an increased risk for fecal contamination. Microbial source tracking has been applied in numerous studies to aid in identifying the sources of fecal contamination, but these studies usually lack information on the involvement of watershed characteristics. Our study combined watershed characteristics with MST results to provide more comprehensive insight into the factors that influence fecal contamination in order to implement the most effective best management practices.
Collapse
Affiliation(s)
- John J Hart
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI, 49441, USA.
| | - Megan N Jamison
- Oakland University, Department of Chemistry, 146 Library Dr., Rochester, MI, 48309, USA.
| | - James N McNair
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI, 49441, USA.
| | - Sean A Woznicki
- Oakland University, Department of Chemistry, 146 Library Dr., Rochester, MI, 48309, USA.
| | - Ben Jordan
- Ottawa Conservation District, 16731 Ferris St, Grand Haven, MI, 49417, USA.
| | - Richard R Rediske
- Robert B. Annis Water Resources Institute, 740 West Shoreline Dr, Muskegon, MI, 49441, USA.
| |
Collapse
|
9
|
González-Fernández A, Symonds EM, Gallard-Gongora JF, Mull B, Lukasik JO, Rivera Navarro P, Badilla Aguilar A, Peraud J, Mora Alvarado D, Cantor A, Breitbart M, Cairns MR, Harwood VJ. Risk of Gastroenteritis from Swimming at a Wastewater-Impacted Tropical Beach Varies across Localized Scales. Appl Environ Microbiol 2023; 89:e0103322. [PMID: 36847564 PMCID: PMC10057883 DOI: 10.1128/aem.01033-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/21/2023] [Indexed: 03/01/2023] Open
Abstract
Population growth and changing climate are expected to increase human exposure to pathogens in tropical coastal waters. We examined microbiological water quality in three rivers within 2.3 km of each other that impact a Costa Rican beach and in the ocean outside their plumes during the rainy and dry seasons. We performed quantitative microbial risk assessment (QMRA) to predict the risk of gastroenteritis associated with swimming and the amount of pathogen reduction needed to achieve safe conditions. Recreational water quality criteria based on enterococci were exceeded in >90% of river samples but in only 13% of ocean samples. Multivariate analysis grouped microbial observations by subwatershed and season in river samples but only by subwatershed in the ocean. The modeled median risk from all pathogens in river samples was between 0.345 and 0.577, 10-fold above the U.S. Environmental Protection Agency (U.S. EPA) benchmark of 0.036 (36 illnesses/1,000 swimmers). Norovirus genogroup I (NoVGI) contributed most to risk, but adenoviruses raised risk above the threshold in the two most urban subwatersheds. The risk was greater in the dry compared to the rainy season, due largely to the greater frequency of NoVGI detection (100% versus 41%). Viral log10 reduction needed to ensure safe swimming conditions varied by subwatershed and season and was greatest in the dry season (3.8 to 4.1 dry; 2.7 to 3.2 rainy). QMRA that accounts for seasonal and local variability of water quality contributes to understanding the complex influences of hydrology, land use, and environment on human health risk in tropical coastal areas and can contribute to improved beach management. IMPORTANCE This holistic investigation of sanitary water quality at a Costa Rican beach assessed microbial source tracking (MST) marker genes, pathogens, and indicators of sewage. Such studies are still rare in tropical climates. Quantitative microbial risk assessment (QMRA) found that rivers impacting the beach consistently exceeded the U.S. EPA risk threshold for gastroenteritis of 36/1,000 swimmers. The study improves upon many QMRA studies by measuring specific pathogens, rather than relying on surrogates (indicator organisms or MST markers) or estimating pathogen concentrations from the literature. By analyzing microbial levels and estimating the risk of gastrointestinal illness in each river, we were able to discern differences in pathogen levels and human health risks even though all rivers were highly polluted by wastewater and were located less than 2.5 km from one another. This variability on a localized scale has not, to our knowledge, previously been demonstrated.
Collapse
Affiliation(s)
| | - Erin M. Symonds
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
- Department of Anthropology, Southern Methodist University, Dallas, Texas, USA
| | | | - Bonnie Mull
- BCS Laboratories, Inc., Gainesville, Florida, USA
| | | | - Pablo Rivera Navarro
- Laboratorio Nacional de Aguas, Instituto Costarricense de Acueductos y Alcantarillados, Tres Ríos, Cartago, Costa Rica
| | - Andrei Badilla Aguilar
- Laboratorio Nacional de Aguas, Instituto Costarricense de Acueductos y Alcantarillados, Tres Ríos, Cartago, Costa Rica
| | - Jayme Peraud
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Darner Mora Alvarado
- Laboratorio Nacional de Aguas, Instituto Costarricense de Acueductos y Alcantarillados, Tres Ríos, Cartago, Costa Rica
| | - Allison Cantor
- Department of Anthropology, Southern Methodist University, Dallas, Texas, USA
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
| | - Maryann R. Cairns
- Department of Anthropology, Southern Methodist University, Dallas, Texas, USA
| | - Valerie J. Harwood
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
10
|
McMinn BR, Korajkic A, Pemberton AC, Kelleher J, Ahmed W, Villegas EN, Oshima K. Assessment of two volumetrically different concentration approaches to improve sensitivities for SARS-CoV-2 detection during wastewater monitoring. J Virol Methods 2023; 311:114645. [PMID: 36332716 PMCID: PMC9624105 DOI: 10.1016/j.jviromet.2022.114645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Wastewater monitoring for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), the virus responsible for the global coronavirus disease 2019 (COVID-19) pandemic, has highlighted the need for methodologies capable of assessing viral prevalence during periods of low population infection. To address this need, two volumetrically different, methodologically similar concentration approaches were compared for their abilities to detect viral nucleic acid and infectious SARS-CoV-2 signal from primary influent samples. For Method 1, 2 L of SARS-CoV-2 seeded wastewater was evaluated using a dead-end hollow fiber ultrafilter (D-HFUF) for primary concentration, followed by the CP Select™ for secondary concentration. For Method 2, 100 mL of SARS-CoV-2 seeded wastewater was evaluated using the CP Select™ procedure. Following D-HFUF concentration (Method 1), significantly lower levels of infectious SARS-CoV-2 were lost (P value range: 0.0398-0.0027) compared to viral gene copy (GC) levels detected by the US Centers for Disease Control (CDC) N1 and N2 reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) assays. Subsamples at different steps in the concentration process were also taken to better characterize the losses of SARS-CoV-2 during the concentration process. During the centrifugation step (prior to CP Select™ concentration), significantly higher losses (P value range: 0.0003 to <0.0001) occurred for SARS-CoV-2 GC levels compared to infectious virus for Method 1, while between the methods, significantly higher infectious viral losses were observed for Method 2 (P = 0.0002). When analyzing overall recovery of endogenous SARS-CoV-2 in wastewater samples, application of Method 1 improved assay sensitivities (P = <0.0001) compared with Method 2; this was especially evident during periods of lower COVID-19 case rates within the sewershed. This study describes a method which can successfully concentrate infectious SARS-CoV-2 and viral RNA from wastewater. Moreover, we demonstrated that large volume wastewater concentration provides additional sensitivity needed to improve SARS-CoV-2 detection, especially during low levels of community disease prevalence.
Collapse
Affiliation(s)
- Brian R. McMinn
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 United States,Corresponding author
| | - Asja Korajkic
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 United States
| | - Adin C. Pemberton
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 United States
| | - Julie Kelleher
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 United States
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Eric N. Villegas
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 United States
| | - Kevin Oshima
- Office of Research and Development, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268 United States
| |
Collapse
|
11
|
Miller S, Greenwald H, Kennedy LC, Kantor RS, Jiang R, Pisarenko A, Chen E, Nelson KL. Microbial Water Quality through a Full-Scale Advanced Wastewater Treatment Demonstration Facility. ACS ES&T ENGINEERING 2022; 2:2206-2219. [PMID: 36530600 PMCID: PMC9745798 DOI: 10.1021/acsestengg.2c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
The fates of viruses, bacteria, and antibiotic resistance genes during advanced wastewater treatment are important to assess for implementation of potable reuse systems. Here, a full-scale advanced wastewater treatment demonstration facility (ozone, biological activated carbon filtration, micro/ultrafiltration, reverse osmosis, and advanced oxidation) was sampled over three months. Atypically, no disinfectant residual was applied before the microfiltration step. Microbial cell concentrations and viability were assessed via flow cytometry and adenosine triphosphate (ATP). Concentrations of bacteria (16S rRNA gene), viruses (human adenovirus and JC polyomavirus), and antibiotic resistance genes (sul1 and bla TEM ) were assessed via quantitative PCR following the concentration of large sample volumes by dead-end ultrafiltration. In all membrane filtration permeates, microbial concentrations were higher than previously reported for chloraminated membranes, and log10 reduction values were lower than expected. Concentrations of 16S rRNA and sul1 genes were reduced by treatment but remained quantifiable in reverse osmosis permeate. It is unclear whether sul1 in the RO permeate was from the passage of resistance genes or new growth of microorganisms, but the concentrations were on the low end of those reported for conventional drinking water distribution systems. Adenovirus, JC polyomavirus, and bla TEM genes were reduced below the limit of detection (∼10-2 gene copies per mL) by microfiltration. The results provide insights into how treatment train design and operation choices affect microbial water quality as well as the use of flow cytometry and ATP for online monitoring and process control.
Collapse
Affiliation(s)
- Scott Miller
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - Hannah Greenwald
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - Lauren C. Kennedy
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
- Department
of Civil and Environmental Engineering, College of Engineering, Stanford University, Stanford, California 94305, United States
| | - Rose S. Kantor
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - Renjing Jiang
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| | - Aleksey Pisarenko
- Trussell
Technologies, Inc., Solana
Beach, California 92075, United States
| | - Elise Chen
- Trussell
Technologies, Inc., Solana
Beach, California 92075, United States
| | - Kara L. Nelson
- Department
of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- National
Science Foundation Engineering Research Center for Re-inventing the
Nation’s Urban Water Infrastructure (ReNUWIt), Berkeley, California 94720, United States
| |
Collapse
|
12
|
Ahmed W, Smith WJM, Metcalfe S, Jackson G, Choi PM, Morrison M, Field D, Gyawali P, Bivins A, Bibby K, Simpson SL. Comparison of RT-qPCR and RT-dPCR Platforms for the Trace Detection of SARS-CoV-2 RNA in Wastewater. ACS ES&T WATER 2022; 2:1871-1880. [PMID: 36380768 PMCID: PMC8848507 DOI: 10.1021/acsestwater.1c00387] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We compared reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and RT digital PCR (RT-dPCR) platforms for the trace detection of SARS-CoV-2 RNA in low-prevalence COVID-19 locations in Queensland, Australia, using CDC N1 and CDC N2 assays. The assay limit of detection (ALOD), PCR inhibition rates, and performance characteristics of each assay, along with the positivity rates with the RT-qPCR and RT-dPCR platforms, were evaluated by seeding known concentrations of exogenous SARS-CoV-2 in wastewater. The ALODs using RT-dPCR were approximately 2-5 times lower than those using RT-qPCR. During sample processing, the endogenous (n = 96) and exogenous (n = 24) SARS-CoV-2 wastewater samples were separated, and RNA was extracted from both wastewater eluates and pellets (solids). The RT-dPCR platform demonstrated a detection rate significantly greater than that of RT-qPCR for the CDC N1 and CDC N2 assays in the eluate (N1, p = 0.0029; N2, p = 0.0003) and pellet (N1, p = 0.0015; N2, p = 0.0067) samples. The positivity results also indicated that for the analysis of SARS-CoV-2 RNA in wastewater, including the eluate and pellet samples may further increase the detection sensitivity using RT-dPCR.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO
Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Wendy J. M. Smith
- CSIRO
Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Suzanne Metcalfe
- CSIRO
Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Greg Jackson
- Water
Unit, Health Protection Branch, Prevention Division, Queensland Health, Brisbane, QLD 4001, Australia
| | - Phil M. Choi
- Water
Unit, Health Protection Branch, Prevention Division, Queensland Health, Brisbane, QLD 4001, Australia
| | - Mary Morrison
- Water
Unit, Health Protection Branch, Prevention Division, Queensland Health, Brisbane, QLD 4001, Australia
| | - Daniel Field
- Water
Unit, Health Protection Branch, Prevention Division, Queensland Health, Brisbane, QLD 4001, Australia
| | - Pradip Gyawali
- Institute
of Environmental Science and Research Ltd. (ESR), Porirua 5240, New Zealand
| | - Aaron Bivins
- Department
of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kyle Bibby
- Department
of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | | |
Collapse
|
13
|
Liguori K, Keenum I, Davis BC, Calarco J, Milligan E, Harwood VJ, Pruden A. Antimicrobial Resistance Monitoring of Water Environments: A Framework for Standardized Methods and Quality Control. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9149-9160. [PMID: 35732277 DOI: 10.1080/10643389.2021.2024739] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Antimicrobial resistance (AMR) is a grand societal challenge with important dimensions in the water environment that contribute to its evolution and spread. Environmental monitoring could provide vital information for mitigating the spread of AMR; this includes assessing antibiotic resistance genes (ARGs) circulating among human populations, identifying key hotspots for evolution and dissemination of resistance, informing epidemiological and human health risk assessment models, and quantifying removal efficiencies by domestic wastewater infrastructure. However, standardized methods for monitoring AMR in the water environment will be vital to producing the comparable data sets needed to address such questions. Here we sought to establish scientific consensus on a framework for such standardization, evaluating the state of the science and practice of AMR monitoring of wastewater, recycled water, and surface water, through a literature review, survey, and workshop leveraging the expertise of academic, governmental, consulting, and water utility professionals.
Collapse
Affiliation(s)
- Krista Liguori
- The Charles Edward Via, Jr., Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Ishi Keenum
- The Charles Edward Via, Jr., Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Benjamin C Davis
- The Charles Edward Via, Jr., Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Jeanette Calarco
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, United States
| | - Erin Milligan
- The Charles Edward Via, Jr., Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33620, United States
| | - Amy Pruden
- The Charles Edward Via, Jr., Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
14
|
Rugh MB, Grant SB, Hung WC, Jay JA, Parker EA, Feraud M, Li D, Avasarala S, Holden PA, Liu H, Rippy MA, Werfhorst LCVD, Kefela T, Peng J, Shao S, Graham KE, Boehm AB, Choi S, Mohanty SK, Cao Y. Highly variable removal of pathogens, antibiotic resistance genes, conventional fecal indicators and human-associated fecal source markers in a pilot-scale stormwater biofilter operated under realistic stormflow conditions. WATER RESEARCH 2022; 219:118525. [PMID: 35533621 DOI: 10.1016/j.watres.2022.118525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/17/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Green stormwater infrastructure systems, such as biofilters, provide many water quality and other environmental benefits, but their ability to remove human pathogens and antibiotic resistance genes (ARGs) from stormwater runoff is not well documented. In this study, a field scale biofilter in Southern California (USA) was simultaneously evaluated for the breakthrough of a conservative tracer (bromide), conventional fecal indicators, bacterial and viral human-associated fecal source markers (HF183, crAssphage, and PMMoV), ARGs, and bacterial and viral pathogens. When challenged with a 50:50 mixture of untreated sewage and stormwater (to mimic highly contaminated storm flow) the biofilter significantly removed (p < 0.05) 14 of 17 microbial markers and ARGsin descending order of concentration reduction: ermB (2.5 log(base 10) reduction) > Salmonella (2.3) > adenovirus (1.9) > coliphage (1.5) > crAssphage (1.2) > E. coli (1.0) ∼ 16S rRNA genes (1.0) ∼ fecal coliform (1.0) ∼ intl1 (1.0) > Enterococcus (0.9) ∼ MRSA (0.9) ∼ sul1 (0.9) > PMMoV (0.7) > Entero1A (0.5). No significant removal was observed for GenBac3, Campylobacter, and HF183. From the bromide data, we infer that 0.5 log-units of attenuation can be attributed to the dilution of incoming stormwater with water stored in the biofilter; removal above this threshold is presumably associated with non-conservative processes, such as physicochemical filtration, die-off, and predation. Our study documents high variability (>100-fold) in the removal of different microbial contaminants and ARGs by a field-scale stormwater biofilter operated under transient flow and raises further questions about the utility of human-associated fecal source markers as surrogates for pathogen removal.
Collapse
Affiliation(s)
- Megyn B Rugh
- Department of Civil and Environmental Engineering, UCLA, Los Angeles, CA 90095, USA
| | - Stanley B Grant
- Department of Civil and Environmental Engineering, Occoquan Watershed Monitoring Laboratory, Virginia Tech, 9408 Prince William Street, Manassas VA 20110, USA; Center for Coastal Studies, Virginia Tech, 1068A Derring Hall (0420), Blacksburg, VA 24061, USA
| | - Wei-Cheng Hung
- Department of Civil and Environmental Engineering, UCLA, Los Angeles, CA 90095, USA
| | - Jennifer A Jay
- Department of Civil and Environmental Engineering, UCLA, Los Angeles, CA 90095, USA
| | - Emily A Parker
- Department of Civil and Environmental Engineering, Occoquan Watershed Monitoring Laboratory, Virginia Tech, 9408 Prince William Street, Manassas VA 20110, USA
| | - Marina Feraud
- Bren School of Environmental Science and Management, 2400 Bren Hall, UC Santa Barbara, Santa Barbara CA 93106, USA
| | - Dong Li
- Bren School of Environmental Science and Management, 2400 Bren Hall, UC Santa Barbara, Santa Barbara CA 93106, USA
| | - Sumant Avasarala
- Department of Chemical and Environmental Engineering, Bourns Hall A239, UC Riverside, Riverside, CA 92521, USA
| | - Patricia A Holden
- Bren School of Environmental Science and Management, 2400 Bren Hall, UC Santa Barbara, Santa Barbara CA 93106, USA
| | - Haizhou Liu
- Department of Chemical and Environmental Engineering, Bourns Hall A239, UC Riverside, Riverside, CA 92521, USA
| | - Megan A Rippy
- Department of Civil and Environmental Engineering, UCLA, Los Angeles, CA 90095, USA; Center for Coastal Studies, Virginia Tech, 1068A Derring Hall (0420), Blacksburg, VA 24061, USA
| | - Laurie C Van De Werfhorst
- Bren School of Environmental Science and Management, 2400 Bren Hall, UC Santa Barbara, Santa Barbara CA 93106, USA
| | - Timnit Kefela
- Bren School of Environmental Science and Management, 2400 Bren Hall, UC Santa Barbara, Santa Barbara CA 93106, USA
| | - Jian Peng
- Orange County Environmental Resources, 2301 North Glassell Street, Orange, CA 92865, USA
| | - Stella Shao
- GSI Environmental Inc., 19200 Von Karman Ave, St 800, Irvine, CA 92612, USA
| | - Katherine E Graham
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
| | - Samuel Choi
- Orange County Sanitation District, 10844 Ellis Avenue, Fountain Valley, CA 92708, USA
| | - Sanjay K Mohanty
- Department of Civil and Environmental Engineering, UCLA, Los Angeles, CA 90095, USA
| | - Yiping Cao
- Orange County Sanitation District, 10844 Ellis Avenue, Fountain Valley, CA 92708, USA; Source Molecular Corporation, 15280 NW 79th 10 Court, St 107, Miami Lakes, FL 33016, USA.
| |
Collapse
|
15
|
Wang Y, Zheng G, Wang D, Zhou L. Occurrence of bacterial and viral fecal markers in municipal sewage sludge and their removal during sludge conditioning processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114802. [PMID: 35228166 DOI: 10.1016/j.jenvman.2022.114802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Fecal contamination in wastewater treatment system may pose severe threats to human health, but the detailed contamination of fecal bacterial and viral pathogens in municipal sewage sludge remains unclear. In addition, it is also unclear how sludge conditioning treatments would impact the distribution of fecal markers in conditioned sewage sludge. Before addressing these two issues, the possible polymerase chain reaction (PCR) inhibition effect when determining the abundances of fecal markers in both sludge solids and sludge supernatants should be solved, and methods of effectively concentrating fecal markers from sludge supernatant should also be developed. In the present study, we found that the serial tenfold dilution effectively reduced the PCR inhibition effect when determining the abundances of fecal markers including cross-assembly phages (CrAssphage), JC polyomavirus (JCPyV), human-specific HF183 bacteroides (HF183), human BK polyomavirus (BKPyV), human adenovirus (HAdV) and Escherichia coli (EC), while the utilization of negatively charged HA membrane was effective to recover fecal markers from sludge supernatant. The results of a six-month monitoring revealed that gene markers of CrAssphage, JCPyV, HF183, BKPyV, HAdV, and EC can be detected in municipal sewage sludge collected from a local wastewater treatment plant. Among the investigated four chemical conditioning methods, i.e., chemical conditioning with polyacrylamide (PAM), Fe[III]/CaO, or Fenton's reagent, and chemical acidification conditioning, chemical conditioning with Fenton's reagent was much more effective than the other three conditioning methods to reduce the abundances of fecal markers in the supernatant and solid of conditioned sewage sludge. Furthermore, the investigated fecal markers in the conditioned sewage sludge can be simultaneously attenuated by employing suitable conditioning methods, consequently reducing the associated environmental risks.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 337055, China
| | - Guanyu Zheng
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China.
| | - Dianzhan Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, 210095, China
| |
Collapse
|
16
|
Ahmed W, Simpson SL, Bertsch PM, Bibby K, Bivins A, Blackall LL, Bofill-Mas S, Bosch A, Brandão J, Choi PM, Ciesielski M, Donner E, D'Souza N, Farnleitner AH, Gerrity D, Gonzalez R, Griffith JF, Gyawali P, Haas CN, Hamilton KA, Hapuarachchi HC, Harwood VJ, Haque R, Jackson G, Khan SJ, Khan W, Kitajima M, Korajkic A, La Rosa G, Layton BA, Lipp E, McLellan SL, McMinn B, Medema G, Metcalfe S, Meijer WG, Mueller JF, Murphy H, Naughton CC, Noble RT, Payyappat S, Petterson S, Pitkänen T, Rajal VB, Reyneke B, Roman FA, Rose JB, Rusiñol M, Sadowsky MJ, Sala-Comorera L, Setoh YX, Sherchan SP, Sirikanchana K, Smith W, Steele JA, Sabburg R, Symonds EM, Thai P, Thomas KV, Tynan J, Toze S, Thompson J, Whiteley AS, Wong JCC, Sano D, Wuertz S, Xagoraraki I, Zhang Q, Zimmer-Faust AG, Shanks OC. Minimizing errors in RT-PCR detection and quantification of SARS-CoV-2 RNA for wastewater surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:149877. [PMID: 34818780 PMCID: PMC8386095 DOI: 10.1016/j.scitotenv.2021.149877] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 05/18/2023]
Abstract
Wastewater surveillance for pathogens using reverse transcription-polymerase chain reaction (RT-PCR) is an effective and resource-efficient tool for gathering community-level public health information, including the incidence of coronavirus disease-19 (COVID-19). Surveillance of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in wastewater can potentially provide an early warning signal of COVID-19 infections in a community. The capacity of the world's environmental microbiology and virology laboratories for SARS-CoV-2 RNA characterization in wastewater is increasing rapidly. However, there are no standardized protocols or harmonized quality assurance and quality control (QA/QC) procedures for SARS-CoV-2 wastewater surveillance. This paper is a technical review of factors that can cause false-positive and false-negative errors in the surveillance of SARS-CoV-2 RNA in wastewater, culminating in recommended strategies that can be implemented to identify and mitigate some of these errors. Recommendations include stringent QA/QC measures, representative sampling approaches, effective virus concentration and efficient RNA extraction, PCR inhibition assessment, inclusion of sample processing controls, and considerations for RT-PCR assay selection and data interpretation. Clear data interpretation guidelines (e.g., determination of positive and negative samples) are critical, particularly when the incidence of SARS-CoV-2 in wastewater is low. Corrective and confirmatory actions must be in place for inconclusive results or results diverging from current trends (e.g., initial onset or reemergence of COVID-19 in a community). It is also prudent to perform interlaboratory comparisons to ensure results' reliability and interpretability for prospective and retrospective analyses. The strategies that are recommended in this review aim to improve SARS-CoV-2 characterization and detection for wastewater surveillance applications. A silver lining of the COVID-19 pandemic is that the efficacy of wastewater surveillance continues to be demonstrated during this global crisis. In the future, wastewater should also play an important role in the surveillance of a range of other communicable diseases.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia.
| | | | - Paul M Bertsch
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Kyle Bibby
- Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| | - Aaron Bivins
- Department of Civil & Environmental Engineering & Earth Science, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| | - Linda L Blackall
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Sílvia Bofill-Mas
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | - João Brandão
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisboa, Portugal
| | - Phil M Choi
- Water Unit, Health Protection Branch, Prevention Division, Queensland Health, QLD, Australia; The University of Queensland, Queensland Alliance for Environmental Health Sciences, QLD, Australia
| | - Mark Ciesielski
- University of North Carolina at Chapel Hill, Institute of Marine Sciences, Morehead City, NC, United States
| | - Erica Donner
- Future Industries Institute, University of South Australia, University Boulevard, Mawson Lakes, SA 5095, Australia
| | - Nishita D'Souza
- Department of Fisheries and Wildlife, Michigan State University, E. Lansing, MI, USA
| | - Andreas H Farnleitner
- Institute of Chemical, Environmental & Bioscience Engineering, Research Group Environmental Microbiology and Molecular Diagnostic, 166/5/3, Technische Universität Wien, Vienna, Austria; Research Division Water Quality and Health, Department Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, Dr. Karl-Dorrek-Straβe 30, 3500 Krems an der Donau, Austria
| | - Daniel Gerrity
- Southern Nevada Water Authority, P.O. Box 99954, Las Vegas, NV 89193, USA
| | - Raul Gonzalez
- Hampton Roads Sanitation District, 1434 Air Rail Avenue, Virginia Beach, VA 23455, USA
| | - John F Griffith
- Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA
| | - Pradip Gyawali
- Institute of Environmental Science and Research Ltd (ESR), Porirua 5240, New Zealand
| | | | - Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment and The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85287, USA
| | | | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Rehnuma Haque
- Environmental Interventions Unit, Icddr,b, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212, Bangladesh
| | - Greg Jackson
- Water Unit, Health Protection Branch, Prevention Division, Queensland Health, QLD, Australia
| | - Stuart J Khan
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, NSW 2052, Australia
| | - Wesaal Khan
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Asja Korajkic
- United States Environmental Protection Agency, Office of Research and Development, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| | - Giuseppina La Rosa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Blythe A Layton
- Department of Research & Innovation, Clean Water Services, Hillsboro, OR, USA
| | - Erin Lipp
- Environmental Health Sciences Department, University of Georgia, Athens, GA 30602, USA
| | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, WI, USA
| | - Brian McMinn
- United States Environmental Protection Agency, Office of Research and Development, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| | - Gertjan Medema
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Suzanne Metcalfe
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Wim G Meijer
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Jochen F Mueller
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, QLD, Australia
| | - Heather Murphy
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Coleen C Naughton
- University of California Merced, Department of Civil and Environmental Engineering, 5200 N. Lake Rd., Merced, CA 95343, USA
| | - Rachel T Noble
- University of North Carolina at Chapel Hill, Institute of Marine Sciences, Morehead City, NC, United States
| | - Sudhi Payyappat
- Sydney Water, 1 Smith Street, Parramatta, NSW 2150, Australia
| | - Susan Petterson
- Water and Health Pty Ltd., 13 Lord St, North Sydney, NSW 2060, Australia; School of Medicine, Griffith University, Parklands Drive, Gold Coast, Australia
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Expert Microbiology Unit, P.O. Box 95, FI-70701 Kuopio, Finland; University of Helsinki, Faculty of Veterinary Medicine, Department of Food Hygiene and Environmental Health, P.O. Box 66, FI-00014, Finland
| | - Veronica B Rajal
- Facultad de Ingeniería and Instituto de Investigaciones para la Industria Química (INIQUI) - CONICET and Universidad Nacional de Salta, Av. Bolivia 5150, Salta, Argentina
| | - Brandon Reyneke
- Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa
| | - Fernando A Roman
- University of California Merced, Department of Civil and Environmental Engineering, 5200 N. Lake Rd., Merced, CA 95343, USA
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, E. Lansing, MI, USA
| | - Marta Rusiñol
- Institute of Environmental Assessment & Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Michael J Sadowsky
- Biotechnology Institute and Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, USA
| | - Laura Sala-Comorera
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Yin Xiang Setoh
- Environmental Health Institute, National Environment Agency, Singapore
| | - Samendra P Sherchan
- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, New Orleans, LA 70112, USA
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kampangpetch 6 Road, Laksi, Bangkok 10210, Thailand
| | - Wendy Smith
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Joshua A Steele
- Southern California Coastal Water Research Project, Costa Mesa, CA 92626, USA
| | - Rosalie Sabburg
- CSIRO Agriculture and Food, Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - Erin M Symonds
- College of Marine Science, University of South Florida, St. Petersburg, FL, USA
| | - Phong Thai
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, QLD, Australia
| | - Kevin V Thomas
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, QLD, Australia
| | - Josh Tynan
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, QLD, Australia
| | - Simon Toze
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Janelle Thompson
- Asian School of the Environment, Nanyang Technological University, Singapore 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering (SCELSE) Singapore 637551
| | | | | | - Daisuke Sano
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Aramaki, Aoba-Ku, Sendai, Miyagi 980-8597, Japan
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE) Singapore 637551; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798
| | - Irene Xagoraraki
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Qian Zhang
- Biotechnology Institute and Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, USA
| | | | - Orin C Shanks
- United States Environmental Protection Agency, Office of Research and Development, 26W Martin Luther King Jr. Drive, Cincinnati, OH 45268, USA
| |
Collapse
|
17
|
Datorre JG, de Carvalho AC, dos Reis MB, dos Reis M, Matsushita M, Santos F, Guimarães DP, Reis RM. Accuracy and Clinical Relevance of Intra-Tumoral Fusobacterium nucleatum Detection in Formalin-Fixed Paraffin-Embedded (FFPE) Tissue by Droplet Digital PCR (ddPCR) in Colorectal Cancer. Diagnostics (Basel) 2022; 12:114. [PMID: 35054281 PMCID: PMC8775036 DOI: 10.3390/diagnostics12010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
The use of droplet digital PCR (ddPCR) to identify and quantify low-abundance targets is a significant advantage for accurately detecting potentially oncogenic bacteria. Fusobacterium nucleatum (Fn) is implicated in colorectal cancer (CRC) tumorigenesis and is becoming an important prognostic biomarker. We evaluated the detection accuracy and clinical relevance of Fn DNA by ddPCR in a molecularly characterized, formalin-fixed, paraffin-embedded (FFPE) CRC cohort previously analyzed by qPCR for Fn levels. Following a ddPCR assay optimization and an analytical evaluation, Fn DNA were measured in 139 CRC FFPE cases. The measures of accuracy for Fn status compared to the prior results generated by qPCR and the association with clinicopathological and molecular patients' features were also evaluated. The ddPCR-based Fn assay was sensitive and specific to positive controls. Fn DNA were detected in 20.1% of cases and further classified as Fn-high and Fn-low/negative, according to the median amount of Fn DNA that were detected in all cases and associated with the patient's worst prognosis. There was a low agreement between the Fn status determined by ddPCR and qPCR (Cohen's Kappa = 0.210). Our findings show that ddPCR can detect and quantify Fn in FFPE tumor tissues and highlights its clinical relevance in Fn detection in a routine CRC setting.
Collapse
Affiliation(s)
- José Guilherme Datorre
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784400, Brazil; (J.G.D.); (A.C.d.C.); (M.B.d.R.); (D.P.G.)
| | - Ana Carolina de Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784400, Brazil; (J.G.D.); (A.C.d.C.); (M.B.d.R.); (D.P.G.)
| | - Mariana Bisarro dos Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784400, Brazil; (J.G.D.); (A.C.d.C.); (M.B.d.R.); (D.P.G.)
| | - Monise dos Reis
- Department of Pathology, Barretos Cancer Hospital, Barretos 14784400, Brazil; (M.d.R.); (M.M.)
| | - Marcus Matsushita
- Department of Pathology, Barretos Cancer Hospital, Barretos 14784400, Brazil; (M.d.R.); (M.M.)
| | - Florinda Santos
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos 14784400, Brazil;
| | - Denise Peixoto Guimarães
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784400, Brazil; (J.G.D.); (A.C.d.C.); (M.B.d.R.); (D.P.G.)
- Department of Prevention, Barretos Cancer Hospital, Barretos 14784400, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784400, Brazil; (J.G.D.); (A.C.d.C.); (M.B.d.R.); (D.P.G.)
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4704553 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4704553 Braga, Portugal
| |
Collapse
|
18
|
Ciesielski M, Blackwood D, Clerkin T, Gonzalez R, Thompson H, Larson A, Noble R. Assessing sensitivity and reproducibility of RT-ddPCR and RT-qPCR for the quantification of SARS-CoV-2 in wastewater. J Virol Methods 2021; 297:114230. [PMID: 34252511 PMCID: PMC8267102 DOI: 10.1016/j.jviromet.2021.114230] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/29/2022]
Abstract
Throughout the COVID-19 global pandemic there has been significant interest and investment in using Wastewater-Based Epidemiology (WBE) for surveillance of viral pathogen presence and infections at the community level. There has been a push for widescale implementation of standardized protocols to quantify viral loads in a range of wastewater systems. To address concerns regarding sensitivity, limits of quantification, and large-scale reproducibility, a comparison of two similar workflows using RT-qPCR and RT-ddPCR was conducted. Sixty raw wastewater influent samples were acquired from nine distinct wastewater treatment plants (WWTP's) served by the Hampton Roads Sanitation District (HRSD, Virginia Beach, Virginia) over a 6-month period beginning March 9th, 2020. Common reagents, controls, master mixes and nucleic acid extracts were shared between two individual processing groups based out of HRSD and the UNC Chapel Hill Institute of Marine Sciences (IMS, Morehead City, North Carolina). Samples were analyzed in parallel using One-Step RT-qPCR and One-Step RT-ddPCR with Nucleocapsid Protein 2 (N2) specific primers and probe. Influent SARS-CoV-2 N2 concentrations steadily increased over time spanning a range from non-detectable to 2.13E + 05 copies/L. Systematic dilution of the extracts indicated that inhibitory components in the wastewater matrices did not significantly impede the detection of a positive N2 signal for either workflow. The RT-ddPCR workflow had a greater analytical sensitivity with a lower Limit of Detection (LOD) at 0.066 copies/μl of template compared to RT-qPCR with a calculated LOD of 12.0 copies/μL of template. Interlaboratory comparisons using non-parametric correlation analysis demonstrated that there was a strong, significant, positive correlation between split extracts when employing RT-ddPCR for analysis with a ρ value of 0.86.
Collapse
Affiliation(s)
- Mark Ciesielski
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, United States
| | - Denene Blackwood
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, United States
| | - Thomas Clerkin
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, United States
| | - Raul Gonzalez
- Hampton Roads Sanitation District, Virginia Beach, Virginia, United States
| | - Hannah Thompson
- Hampton Roads Sanitation District, Virginia Beach, Virginia, United States
| | - Allison Larson
- Hampton Roads Sanitation District, Virginia Beach, Virginia, United States
| | - Rachel Noble
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina, United States.
| |
Collapse
|
19
|
Villacorta-Rath C, Hoskin CJ, Strugnell JM, Burrows D. Long distance (>20 km) downstream detection of endangered stream frogs suggests an important role for eDNA in surveying for remnant amphibian populations. PeerJ 2021; 9:e12013. [PMID: 34692243 PMCID: PMC8483009 DOI: 10.7717/peerj.12013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/28/2021] [Indexed: 01/04/2023] Open
Abstract
Background Globally, amphibian species have suffered drastic population declines over the past 40 years. Hundreds of species are now listed as Critically Endangered, with many of these considered "possibly extinct". Most of these species are stream-dwelling frogs inhabiting remote, montane areas, where remnant populations are hard to find using traditional surveys. Environmental DNA (eDNA) could revolutionize surveys for 'missing' and endangered amphibian populations by screening water samples from downstream sections to assess presence in the upstream catchments. However, the utility of this survey technique is dependent on quantifying downstream detection probability and distances. Methods Here we tested downstream detection distances in two endangered stream frogs (Litoria lorica and L. nannotis) that co-occur in a remote stream catchment in north-east Australia, and for which we know precise downstream distributional limits from traditional surveys. Importantly, the two last populations of L. lorica persist in this catchment: one small (~1,000 frogs) and one very small (~100 frogs). We conducted eDNA screening at a series of sites kilometers downstream from the populations using precipitation from two fixed water volumes (15 and 100 mL) and via water filtering (mean 1,480 L). Results We detected L. nannotis and the small L. lorica population (~1,000 frogs) at most sampling sites, including 22.8 km downstream. The filtration method was highly effective for far-downstream detection, as was precipitation from 100 mL water samples, which also resulted in consistent detections at the far-downstream sites (including to 22.8 km). In contrast, we had limited downstream detection success for the very small L. lorica population (~100 frogs). Discussion The ecological aspects of our study system, coupled with thorough traditional surveys, enabled us to measure downstream eDNA detection distances with accuracy. We demonstrate that eDNA from a small population of approximately 1,000 frogs can be detected as far as 22.8 km downstream from the population. Water filtration is considered best for eDNA detection of rare aquatic species-indeed it was effective in this study-but we also achieved far-downstream detections when precipitating eDNA from 100 mL water samples. Collecting small water volumes for subsequent precipitation in the lab is more practical than filtration when surveying remote areas. Our downstream detection distances (>20 km) suggest eDNA is a valuable tool for detecting rare stream amphibians. We provide recommendations on optimal survey methods.
Collapse
Affiliation(s)
- Cecilia Villacorta-Rath
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville, QLD, Australia
| | - Conrad J Hoskin
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Jan M Strugnell
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Damien Burrows
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville, QLD, Australia
| |
Collapse
|
20
|
Borchardt MA, Boehm AB, Salit M, Spencer SK, Wigginton KR, Noble RT. The Environmental Microbiology Minimum Information (EMMI) Guidelines: qPCR and dPCR Quality and Reporting for Environmental Microbiology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10210-10223. [PMID: 34286966 DOI: 10.1021/acs.est.1c01767] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Real-time quantitative polymerase chain reaction (qPCR) and digital PCR (dPCR) methods have revolutionized environmental microbiology, yielding quantitative organism-specific data of nucleic acid targets in the environment. Such data are essential for characterizing interactions and processes of microbial communities, assessing microbial contaminants in the environment (water, air, fomites), and developing interventions (water treatment, surface disinfection, air purification) to curb infectious disease transmission. However, our review of recent qPCR and dPCR literature in our field of health-related environmental microbiology showed that many researchers are not reporting necessary and sufficient controls and methods, which would serve to strengthen their study results and conclusions. Here, we describe the application, utility, and interpretation of the suite of controls needed to make high quality qPCR and dPCR measurements of microorganisms in the environment. Our presentation is organized by the discrete steps and operations typical of this measurement process. We propose systematic terminology to minimize ambiguity and aid comparisons among studies. Example schemes for batching and combining controls for efficient work flow are demonstrated. We describe critical reporting elements for enhancing data credibility, and we provide an element checklist in the Supporting Information. Additionally, we present several key principles in metrology as context for laboratories to devise their own quality assurance and quality control reporting framework. Following the EMMI guidelines will improve comparability and reproducibility among qPCR and dPCR studies in environmental microbiology, better inform engineering and public health actions for preventing disease transmission through environmental pathways, and for the most pressing issues in the discipline, focus the weight of evidence in the direction toward solutions.
Collapse
Affiliation(s)
- Mark A Borchardt
- Environmentally Integrated Dairy Management Research Unit, USDA Agricultural Research Service, 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Marc Salit
- Departments of Pathology and Bioengineering, Stanford University, Stanford, California 94305, United States
- Joint Initiative for Metrology in Biology, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Susan K Spencer
- Environmentally Integrated Dairy Management Research Unit, USDA Agricultural Research Service, 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
| | - Krista R Wigginton
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor Michigan 48109, United States
| | - Rachel T Noble
- Insitute for the Environment, University of North Carolina, Chapel Hill, North Carolina 27517, United States
| |
Collapse
|
21
|
Short communication: Evaluation of charged membrane filters and buffers for concentration and recovery of infectious salmon anaemia virus in seawater. PLoS One 2021; 16:e0253297. [PMID: 34133472 PMCID: PMC8208535 DOI: 10.1371/journal.pone.0253297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/02/2021] [Indexed: 11/19/2022] Open
Abstract
Infectious salmon anaemia virus (ISAV) is the cause of an important waterborne disease of farmed Atlantic salmon. Detection of virus in water samples may constitute an alternative method to sacrificing fish for surveillance of fish populations for the presence of ISA-virus. We aimed to evaluate different membrane filters and buffers for concentration and recovery of ISAV in seawater, prior to molecular detection. One litre each of artificial and natural seawater was spiked with ISAV, followed by concentration with different filters and subsequent elution with different buffers. The negatively charged MF hydrophilic membrane filter, combined with NucliSENS® lysis buffer, presented the highest ISAV recovery percentages with 12.5 ± 1.3% by RT-qPCR and 31.7 ± 10.7% by RT-ddPCR. For the positively charged 1 MDS Zeta Plus® Virosorb® membrane filter, combined with NucliSENS® lysis buffer, the ISAV recovery percentages were 3.4 ± 0.1% by RT-qPCR and 10.8 ± 14.2% by RT-ddPCR. The limits of quantification (LOQ) were estimated to be 2.2 x 103 ISAV copies/L of natural seawater for both RT-qPCR and RT-ddPCR. The ISAV concentration method was more efficient in natural seawater.
Collapse
|
22
|
Crain C, Kezer K, Steele S, Owiti J, Rao S, Victorio M, Austin B, Volner A, Draper W, Griffith J, Steele J, Seifert M. Application of ddPCR for detection of Enterococcus spp. in coastal water quality monitoring. J Microbiol Methods 2021; 184:106206. [PMID: 33766607 DOI: 10.1016/j.mimet.2021.106206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 11/28/2022]
Abstract
Droplet digital polymerase chain reaction (ddPCR) was evaluated for the detection of fecal indicator bacteria (FIB), Enterococcus spp., in San Diego County beach water samples collected under diverse conditions, from multiple pollution sources, as part of regulatory monitoring activities over 20 months. Two US EPA-approved methods, qPCR (EPA 1609.1) and Enterolert (SM9230D), were used as reference comparator methods. A total of 361 samples were assayed by both ddPCR and qPCR and yielded an acceptable Index of Agreement (IA) of 0.89, based on EPA Site-Specific analysis guidelines. A Pearson's correlation coefficient of r = 0.87 (p < 0.001), further indicated a strong relationship between the methods results. From the 361 samples, 185 split samples with ddPCR and Enterolert values within the limits of quantification, were used as a 'training' data set to derive an intrinsic copy number equation (ICE) for scaling ddPCR gene copy number to Enterolert most probable number (MPN). Of the 1993 samples that comprised the complete 'test' data set assayed by ddPCR and Enterolert, 1086 generated results that fell within the limits of quantification for Enterolert and yielded an overall IA of 0.64. Re-analysis using median as a measure of central tendency to account for significant skewing of Enterolert data yielded an IA of 0.72. Beach grouping-specific IA values ranged from 0.63 to 0.93. Pearson's correlation coefficient, r, ranged from 0.13 to 0.94 within beach groupings and generated a combined value of 0.60 for all groupings. Using the ICE, a ddPCR advisory threshold of 1413 DNA copy number/100 mL was empirically determined to be the equivalent to the California Enterolert beach action threshold of 104 MPN/100 mL, based on comparison with all 1993 paired ddPCR and Enterolert results. Using the 1413 DNA copy number/100 mL as a beach action threshold for ddPCR resulted in a 90.4% agreement with Enterolert (6.0% false negative and 3.7% false positive). Together these findings support the conclusion that ddPCR readouts align closely with Enterolert MPN for identifying FIB exceedance levels of Enterococcus spp. in coastal waters of San Diego, CA.
Collapse
Affiliation(s)
- Chad Crain
- California Department of Public Health, Drinking Water and Radiation Laboratory Branch, 850 Marina Bay Pkwy G164, Richmond, CA 94804, United States of America.
| | - Keith Kezer
- San Diego County Department of Environmental Health, 5500 Overland Ave #170, San Diego, CA 92123, United States of America
| | - Syreeta Steele
- San Diego County Public Health Laboratory, 3851 Rosecrans St, San Diego, CA 92110, United States of America
| | - Judith Owiti
- California Department of Public Health, Drinking Water and Radiation Laboratory Branch, 850 Marina Bay Pkwy G164, Richmond, CA 94804, United States of America
| | - Sphoorthy Rao
- California Department of Public Health, Drinking Water and Radiation Laboratory Branch, 850 Marina Bay Pkwy G164, Richmond, CA 94804, United States of America
| | - Maria Victorio
- San Diego County Public Health Laboratory, 3851 Rosecrans St, San Diego, CA 92110, United States of America
| | - Brett Austin
- San Diego County Public Health Laboratory, 3851 Rosecrans St, San Diego, CA 92110, United States of America
| | - Alon Volner
- California Department of Public Health, Drinking Water and Radiation Laboratory Branch, 850 Marina Bay Pkwy G164, Richmond, CA 94804, United States of America
| | - William Draper
- California Department of Public Health, Drinking Water and Radiation Laboratory Branch, 850 Marina Bay Pkwy G164, Richmond, CA 94804, United States of America
| | - John Griffith
- Southern California Coastal Water Research Project, 3535 Harbor Blvd. Suite 110, Costa Mesa, CA 92626, United States of America
| | - Joshua Steele
- Southern California Coastal Water Research Project, 3535 Harbor Blvd. Suite 110, Costa Mesa, CA 92626, United States of America
| | - Marva Seifert
- University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America
| |
Collapse
|
23
|
Whitney O, Kennedy LC, Fan VB, Hinkle A, Kantor R, Greenwald H, Crits-Christoph A, Al-Shayeb B, Chaplin M, Maurer AC, Tjian R, Nelson KL. Sewage, Salt, Silica, and SARS-CoV-2 (4S): An Economical Kit-Free Method for Direct Capture of SARS-CoV-2 RNA from Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4880-4888. [PMID: 33759506 PMCID: PMC8009096 DOI: 10.1021/acs.est.0c08129] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 05/19/2023]
Abstract
Wastewater-based epidemiology is an emerging tool to monitor COVID-19 infection levels by measuring the concentration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater. There remains a need to improve wastewater RNA extraction methods' sensitivity, speed, and reduce reliance on often expensive commercial reagents to make wastewater-based epidemiology more accessible. We present a kit-free wastewater RNA extraction method, titled "Sewage, Salt, Silica and SARS-CoV-2" (4S), that employs the abundant and affordable reagents sodium chloride (NaCl), ethanol, and silica RNA capture matrices to recover sixfold more SARS-CoV-2 RNA from wastewater than an existing ultrafiltration-based method. The 4S method concurrently recovered pepper mild mottle virus (PMMoV) and human 18S ribosomal subunit rRNA, which have been proposed as fecal concentration controls. The SARS-CoV-2 RNA concentrations measured in three sewersheds corresponded to the relative prevalence of COVID-19 infection determined via clinical testing. Lastly, controlled experiments indicate that the 4S method prevented RNA degradation during storage of wastewater samples, was compatible with heat pasteurization, and in our experience, 20 samples can be processed by one lab technician in approximately 2 h. Overall, the 4S method is promising for effective, economical, and accessible wastewater-based epidemiology for SARS-CoV-2, providing another tool to fight the global pandemic.
Collapse
Affiliation(s)
- Oscar
N. Whitney
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720-1710, United States
| | - Lauren C. Kennedy
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Vinson B. Fan
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720-1710, United States
| | - Adrian Hinkle
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Rose Kantor
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Hannah Greenwald
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Alexander Crits-Christoph
- Department
of Plant and Microbial Biology, University
of California, Berkeley, California 94720-1710, United States
- Innovative
Genomics Institute, Berkeley, California 94704, United States
| | - Basem Al-Shayeb
- Department
of Plant and Microbial Biology, University
of California, Berkeley, California 94720-1710, United States
- Innovative
Genomics Institute, Berkeley, California 94704, United States
| | - Mira Chaplin
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Anna C. Maurer
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720-1710, United States
| | - Robert Tjian
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720-1710, United States
- The
Howard Hughes Medical Institute, University
of California Berkeley, Berkeley, California 94720, United States
| | - Kara L. Nelson
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
- Innovative
Genomics Institute, Berkeley, California 94704, United States
| |
Collapse
|
24
|
Whitney ON, Kennedy LC, Fan VB, Hinkle A, Kantor R, Greenwald H, Crits-Christoph A, Al-Shayeb B, Chaplin M, Maurer AC, Tjian R, Nelson KL. Sewage, Salt, Silica, and SARS-CoV-2 (4S): An Economical Kit-Free Method for Direct Capture of SARS-CoV-2 RNA from Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021. [PMID: 33759506 DOI: 10.17504/protocols.io.biwfkfbn] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Wastewater-based epidemiology is an emerging tool to monitor COVID-19 infection levels by measuring the concentration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater. There remains a need to improve wastewater RNA extraction methods' sensitivity, speed, and reduce reliance on often expensive commercial reagents to make wastewater-based epidemiology more accessible. We present a kit-free wastewater RNA extraction method, titled "Sewage, Salt, Silica and SARS-CoV-2" (4S), that employs the abundant and affordable reagents sodium chloride (NaCl), ethanol, and silica RNA capture matrices to recover sixfold more SARS-CoV-2 RNA from wastewater than an existing ultrafiltration-based method. The 4S method concurrently recovered pepper mild mottle virus (PMMoV) and human 18S ribosomal subunit rRNA, which have been proposed as fecal concentration controls. The SARS-CoV-2 RNA concentrations measured in three sewersheds corresponded to the relative prevalence of COVID-19 infection determined via clinical testing. Lastly, controlled experiments indicate that the 4S method prevented RNA degradation during storage of wastewater samples, was compatible with heat pasteurization, and in our experience, 20 samples can be processed by one lab technician in approximately 2 h. Overall, the 4S method is promising for effective, economical, and accessible wastewater-based epidemiology for SARS-CoV-2, providing another tool to fight the global pandemic.
Collapse
Affiliation(s)
- Oscar N Whitney
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-1710, United States
| | - Lauren C Kennedy
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Vinson B Fan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-1710, United States
| | - Adrian Hinkle
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Rose Kantor
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Hannah Greenwald
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Alexander Crits-Christoph
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-1710, United States
- Innovative Genomics Institute, Berkeley, California 94704, United States
| | - Basem Al-Shayeb
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-1710, United States
- Innovative Genomics Institute, Berkeley, California 94704, United States
| | - Mira Chaplin
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Anna C Maurer
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-1710, United States
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-1710, United States
- The Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California 94720, United States
| | - Kara L Nelson
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
- Innovative Genomics Institute, Berkeley, California 94704, United States
| |
Collapse
|
25
|
Whitney ON, Kennedy LC, Fan VB, Hinkle A, Kantor R, Greenwald H, Crits-Christoph A, Al-Shayeb B, Chaplin M, Maurer AC, Tjian R, Nelson KL. Sewage, Salt, Silica, and SARS-CoV-2 (4S): An Economical Kit-Free Method for Direct Capture of SARS-CoV-2 RNA from Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021. [PMID: 33759506 DOI: 10.17504/protocols.io.biwekfbe] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Wastewater-based epidemiology is an emerging tool to monitor COVID-19 infection levels by measuring the concentration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater. There remains a need to improve wastewater RNA extraction methods' sensitivity, speed, and reduce reliance on often expensive commercial reagents to make wastewater-based epidemiology more accessible. We present a kit-free wastewater RNA extraction method, titled "Sewage, Salt, Silica and SARS-CoV-2" (4S), that employs the abundant and affordable reagents sodium chloride (NaCl), ethanol, and silica RNA capture matrices to recover sixfold more SARS-CoV-2 RNA from wastewater than an existing ultrafiltration-based method. The 4S method concurrently recovered pepper mild mottle virus (PMMoV) and human 18S ribosomal subunit rRNA, which have been proposed as fecal concentration controls. The SARS-CoV-2 RNA concentrations measured in three sewersheds corresponded to the relative prevalence of COVID-19 infection determined via clinical testing. Lastly, controlled experiments indicate that the 4S method prevented RNA degradation during storage of wastewater samples, was compatible with heat pasteurization, and in our experience, 20 samples can be processed by one lab technician in approximately 2 h. Overall, the 4S method is promising for effective, economical, and accessible wastewater-based epidemiology for SARS-CoV-2, providing another tool to fight the global pandemic.
Collapse
Affiliation(s)
- Oscar N Whitney
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-1710, United States
| | - Lauren C Kennedy
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Vinson B Fan
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-1710, United States
| | - Adrian Hinkle
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Rose Kantor
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Hannah Greenwald
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Alexander Crits-Christoph
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-1710, United States
- Innovative Genomics Institute, Berkeley, California 94704, United States
| | - Basem Al-Shayeb
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-1710, United States
- Innovative Genomics Institute, Berkeley, California 94704, United States
| | - Mira Chaplin
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Anna C Maurer
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-1710, United States
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-1710, United States
- The Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California 94720, United States
| | - Kara L Nelson
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710, United States
- Innovative Genomics Institute, Berkeley, California 94704, United States
| |
Collapse
|
26
|
Byrne DM, Hamilton KA, Houser SA, Mubasira M, Katende D, Lohman HAC, Trimmer JT, Banadda N, Zerai A, Guest JS. Navigating Data Uncertainty and Modeling Assumptions in Quantitative Microbial Risk Assessment in an Informal Settlement in Kampala, Uganda. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5463-5474. [PMID: 33750111 DOI: 10.1021/acs.est.0c05693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Decision-makers in developing communities often lack credible data to inform decisions related to water, sanitation, and hygiene. Quantitative microbial risk assessment (QMRA), which quantifies pathogen-related health risks across exposure routes, can be informative; however, the utility of QMRA for decision-making is often undermined by data gaps. This work integrates QMRA, uncertainty and sensitivity analyses, and household surveys in Bwaise, Kampala (Uganda) to characterize the implications of censored data management, identify sources of uncertainty, and incorporate risk perceptions to improve the suitability of QMRA for informal settlements or similar settings. In Bwaise, drinking water, hand rinse, and soil samples were collected from 45 households and supplemented with data from 844 surveys. Quantified pathogen (adenovirus, Campylobacter jejuni, and Shigella spp./EIEC) concentrations were used with QMRA to model infection risks from exposure through drinking water, hand-to-mouth contact, and soil ingestion. Health risks were most sensitive to pathogen data, hand-to-mouth contact frequency, and dose-response models (particularly C. jejuni). When managing censored data, results from upper limits of detection, half of limits of detection, and uniform distributions returned similar results, which deviated from lower limits of detection and maximum likelihood estimation imputation approaches. Finally, risk perceptions (e.g., it is unsafe to drink directly from a water source) were identified to inform risk management.
Collapse
Affiliation(s)
- Diana M Byrne
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Kerry A Hamilton
- The School with Sustainable Engineering and the Built Environment and The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Stephanie A Houser
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Muwonge Mubasira
- Community Integrated Development Initiatives, P.O. Box 764, Kampala, Uganda
| | - David Katende
- Community Integrated Development Initiatives, P.O. Box 764, Kampala, Uganda
| | - Hannah A C Lohman
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - John T Trimmer
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| | - Noble Banadda
- Department of Agricultural & Biosystems Engineering, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Assata Zerai
- Department of Sociology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jeremy S Guest
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Avenue, 3221 Newmark Civil Engineering Laboratory, Urbana, Illinois 61801, United States
| |
Collapse
|
27
|
Kantor RS, Nelson KL, Greenwald HD, Kennedy LC. Challenges in Measuring the Recovery of SARS-CoV-2 from Wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3514-3519. [PMID: 33656856 DOI: 10.1021/acs.est.0c08210] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Wastewater-based epidemiology is an emerging tool for tracking the spread of SARS-CoV-2 through populations. However, many factors influence recovery and quantification of SARS-CoV-2 from wastewater, complicating data interpretation. Specifically, these factors may differentially affect the measured virus concentration, depending on the laboratory methods used to perform the test. Many laboratories add a proxy virus to wastewater samples to determine losses associated with concentration and extraction of viral RNA. While measuring recovery of a proxy virus is an important process control, in this piece, we describe the caveats and limitations to the interpretation of this control, including that it typically does not account for losses during RNA extraction. We recommend reporting the directly measured concentration data alongside the measured recovery efficiency, rather than attempting to correct the concentration for recovery efficiency. Even though the ability to directly compare SARS-CoV-2 concentrations from different sampling locations determined using different methods is limited, concentration data (uncorrected for recovery) can be useful for public health response.
Collapse
Affiliation(s)
- Rose S Kantor
- Department of Civil and Environmental Engineering, University of California, Berkeley, 663 Davis Hall, Berkeley, California 94720, United States
| | - Kara L Nelson
- Department of Civil and Environmental Engineering, University of California, Berkeley, 663 Davis Hall, Berkeley, California 94720, United States
| | - Hannah D Greenwald
- Department of Civil and Environmental Engineering, University of California, Berkeley, 663 Davis Hall, Berkeley, California 94720, United States
| | - Lauren C Kennedy
- Department of Civil and Environmental Engineering, University of California, Berkeley, 663 Davis Hall, Berkeley, California 94720, United States
| |
Collapse
|
28
|
González-Fernández A, Symonds EM, Gallard-Gongora JF, Mull B, Lukasik JO, Rivera Navarro P, Badilla Aguilar A, Peraud J, Brown ML, Mora Alvarado D, Breitbart M, Cairns MR, Harwood VJ. Relationships among microbial indicators of fecal pollution, microbial source tracking markers, and pathogens in Costa Rican coastal waters. WATER RESEARCH 2021; 188:116507. [PMID: 33126000 DOI: 10.1016/j.watres.2020.116507] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Tropical coastal waters are understudied, despite their ecological and economic importance. They also reflect projected climate change scenarios for other climate zones, e.g., increased rainfall and water temperatures. We conducted an exploratory microbial water quality study at a tropical beach influenced by sewage-contaminated rivers, and tested the hypothesis that fecal microorganisms (fecal coliforms, enterococci, Clostridium perfringens, somatic and male-specific coliphages, pepper mild mottle virus (PMMoV), Bacteroides HF183, norovirus genogroup I (NoVGI), Salmonella, Cryptosporidium and Giardia) would vary by season and tidal stage. Most microorganisms' concentrations were greater in the rainy season; however, NoVGI was only detected in the dry season and Cryptosporidium was the only pathogen most frequently detected in rainy season. Fecal indicator bacteria (FIB) levels exceeded recreational water quality criteria standards in >85% of river samples and in <50% of ocean samples, regardless of the FIB or regulatory criterion. Chronic sewage contamination was demonstrated by detection of HF183 and PMMoV in 100% of river samples, and in >89% of ocean samples. Giardia, Cryptosporidium, Salmonella, and NoVGI were frequently detected in rivers (39%, 39%, 26%, and 39% of samples, respectively), but infrequently in ocean water, particularly during the dry season. Multivariate analysis showed that C. perfringens, somatic coliphage, male-specific coliphage, and PMMoV were the subset of indicators that maximized the correlation with pathogens in the rivers. In the ocean, the best subset of indicators was enterococci, male-specific coliphage, and PMMoV. We also executed redudancy analyses on environmental parameters and microorganim concentrations, and found that rainfall best predicted microbial concentrations. The seasonal interplay of rainfall and pathogen prevalence undoubtedly influences beach users' health risks. Relationships are likely to be complex, with some risk factors increasing and others decreasing each season. Future use of multivariate approaches to better understand linkages among environmental conditions, microbial predictors (fecal indicators and MST markers), and pathogens will improve prediction of high-risk scenarios at recreational beaches.
Collapse
Affiliation(s)
| | - Erin M Symonds
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA
| | | | - Bonnie Mull
- Biological Consulting Services of North Central Floida, Inc., Gainesville, FL 32609, USA
| | - Jerzy O Lukasik
- Biological Consulting Services of North Central Floida, Inc., Gainesville, FL 32609, USA
| | - Pablo Rivera Navarro
- Laboratorio Nacional de Aguas, Instituto Costarricense de Acueductos y Alcantarillados, Tres Ríos, Cartago, Costa Rica
| | - Andrei Badilla Aguilar
- Laboratorio Nacional de Aguas, Instituto Costarricense de Acueductos y Alcantarillados, Tres Ríos, Cartago, Costa Rica
| | - Jayme Peraud
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Megan L Brown
- Department of Anthropology, Southern Methodist University, Dallas, TX 75205, USA
| | - Darner Mora Alvarado
- Laboratorio Nacional de Aguas, Instituto Costarricense de Acueductos y Alcantarillados, Tres Ríos, Cartago, Costa Rica
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA
| | - Maryann R Cairns
- Department of Anthropology, Southern Methodist University, Dallas, TX 75205, USA
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
29
|
Whitney ON, Kennedy LC, Fan V, Hinkle A, Kantor R, Greenwald H, Crits-Christoph A, Al-Shayeb B, Chaplin M, Maurer AC, Tjian R, Nelson KL. Sewage, Salt, Silica and SARS-CoV-2 (4S): An economical kit-free method for direct capture of SARS-CoV-2 RNA from wastewater. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.12.01.20242131. [PMID: 33300015 PMCID: PMC7724686 DOI: 10.1101/2020.12.01.20242131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wastewater-based epidemiology is an emerging tool to monitor COVID-19 infection levels by measuring the concentration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in wastewater. There remains a need to improve wastewater RNA extraction methods' sensitivity, speed, and reduce reliance on often expensive commercial reagents to make wastewater-based epidemiology more accessible. We present a kit-free wastewater RNA extraction method, titled "Sewage, Salt, Silica and SARS-CoV-2" (4S), that employs the abundant and affordable reagents sodium chloride (NaCl), ethanol and silica RNA capture matrices to recover 6-fold more SARS-CoV-2 RNA from wastewater than an existing ultrafiltration-based method. The 4S method concurrently recovered pepper mild mottle virus (PMMoV) and human 18S ribosomal subunit rRNA, both suitable as fecal concentration controls. The SARS-CoV-2 RNA concentrations measured in three sewersheds corresponded to the relative prevalence of COVID-19 infection determined via clinical testing. Lastly, controlled experiments indicate that the 4S method prevented RNA degradation during storage of wastewater samples, was compatible with heat pasteurization, and could be performed in approximately 3 hours. Overall, the 4S method is promising for effective, economical, and accessible wastewater-based epidemiology for SARS-CoV-2, providing another tool to fight the global pandemic.
Collapse
Affiliation(s)
- Oscar N. Whitney
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Lauren C. Kennedy
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Vinson Fan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Adrian Hinkle
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Rose Kantor
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Hannah Greenwald
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Alexander Crits-Christoph
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, 94704, USA
| | - Basem Al-Shayeb
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, 94704, USA
| | - Mira Chaplin
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Anna C. Maurer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- The Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California 94720, USA
| | - Kara L. Nelson
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, 94704, USA
| |
Collapse
|
30
|
Harvey AP, Fuhrmeister ER, Cantrell M, Pitol AK, Swarthout JM, Powers JE, Nadimpalli ML, Julian TR, Pickering AJ. Longitudinal monitoring of SARS-CoV-2 RNA on high-touch surfaces in a community setting. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.27.20220905. [PMID: 33140065 PMCID: PMC7605577 DOI: 10.1101/2020.10.27.20220905] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Environmental surveillance of surface contamination is an unexplored tool for understanding transmission of SARS-CoV-2 in community settings. We conducted longitudinal swab sampling of high-touch non-porous surfaces in a Massachusetts town during a COVID-19 outbreak from April to June 2020. Twenty-nine of 348 (8.3 %) surface samples were positive for SARS-CoV-2, including crosswalk buttons, trash can handles, and door handles of essential business entrances (grocery store, liquor store, bank, and gas station). The estimated risk of infection from touching a contaminated surface was low (less than 5 in 10,000), suggesting fomites play a minimal role in SARS-CoV-2 community transmission. The weekly percentage of positive samples (out of n=33 unique surfaces per week) best predicted variation in city-level COVID-19 cases using a 7-day lead time. Environmental surveillance of SARS-CoV-2 RNA on high-touch surfaces could be a useful tool to provide early warning of COVID-19 case trends.
Collapse
Affiliation(s)
- Abigail P. Harvey
- Civil and Environmental Engineering, Tufts University, Medford, MA, 02155
| | | | - Molly Cantrell
- Civil and Environmental Engineering, Tufts University, Medford, MA, 02155
| | - Ana K. Pitol
- Department of Civil and Environmental Engineering, Imperial College London, United Kingdom
| | - Jenna M. Swarthout
- Civil and Environmental Engineering, Tufts University, Medford, MA, 02155
| | - Julie E. Powers
- Civil and Environmental Engineering, Tufts University, Medford, MA, 02155
| | - Maya L. Nadimpalli
- Civil and Environmental Engineering, Tufts University, Medford, MA, 02155
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dubendorf CH-8600, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Amy J. Pickering
- Civil and Environmental Engineering, Tufts University, Medford, MA, 02155
- Department of Civil and Environmental Engineering, University of California, Berkeley
| |
Collapse
|
31
|
Holcomb DA, Stewart JR. Microbial Indicators of Fecal Pollution: Recent Progress and Challenges in Assessing Water Quality. Curr Environ Health Rep 2020; 7:311-324. [PMID: 32542574 PMCID: PMC7458903 DOI: 10.1007/s40572-020-00278-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Fecal contamination of water is a major public health concern. This review summarizes recent developments and advancements in water quality indicators of fecal contamination. RECENT FINDINGS This review highlights a number of trends. First, fecal indicators continue to be a valuable tool to assess water quality and have expanded to include indicators able to detect sources of fecal contamination in water. Second, molecular methods, particularly PCR-based methods, have advanced considerably in their selected targets and rigor, but have added complexity that may prohibit adoption for routine monitoring activities at this time. Third, risk modeling is beginning to better connect indicators and human health risks, with the accuracy of assessments currently tied to the timing and conditions where risk is measured. Research has advanced although challenges remain for the effective use of both traditional and alternative fecal indicators for risk characterization, source attribution and apportionment, and impact evaluation.
Collapse
Affiliation(s)
- David A Holcomb
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr., Chapel Hill, NC, 27599-7435, USA
| | - Jill R Stewart
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Dr., Chapel Hill, NC, 27599-7431, USA.
| |
Collapse
|
32
|
Gray J, Masters N, Wiegand A, Katouli M. Field assessment of horse-associated genetic markers HoF597 and mtCytb for detecting the source of contamination in surface waters. Can J Microbiol 2020; 66:623-630. [PMID: 32692953 DOI: 10.1139/cjm-2019-0499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the specificity and sensitivity of two horse-associated markers, HoF597 and Horse mtCytb, and 12 mitochondrial and bacterial markers of six animal species (human, cow, pig, bird, dog, chicken) in the faecal samples of 50 individual horses. Both horse markers were detected in 48 (96%) faecal samples. Cross-reactivity with dog (BacCan545) and pig (P23-2) occurred in 88% and 72% of horse faecal samples, respectively. Several other bacterial and mitochondrial markers of non-target hosts were also detected; however, their specificities were >80%. Analyses of samples from surface waters (n = 11) on or adjacent to properties from which horse faecal samples had been collected showed only the presence of HoF597 but not horse mitochondrial marker. Our data suggest that while bacterial and (or) mitochondrial markers of other animal species may be present in horse faeces, dog and pig markers may predominantly be present in horse faecal samples, which points to their nonspecificity as markers for microbial source tracking. Although HoF597 and Horse mtCytb are highly sensitive and specific for the detection of horse faecal pollution, because of their low numbers, mitochondrial (mtDNA) markers may not be robust for screening surface waters.
Collapse
Affiliation(s)
- Jessica Gray
- Genecology Research Centre, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia
| | - Nicole Masters
- Genecology Research Centre, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia
| | - Aaron Wiegand
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia
| | - Mohammad Katouli
- Genecology Research Centre, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia
| |
Collapse
|
33
|
Holcomb DA, Knee J, Sumner T, Adriano Z, de Bruijn E, Nalá R, Cumming O, Brown J, Stewart JR. Human fecal contamination of water, soil, and surfaces in households sharing poor-quality sanitation facilities in Maputo, Mozambique. Int J Hyg Environ Health 2020; 226:113496. [PMID: 32135507 PMCID: PMC7174141 DOI: 10.1016/j.ijheh.2020.113496] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/09/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Identifying the origin of fecal contamination can support more effective interventions to interrupt enteric pathogen transmission. Microbial source tracking (MST) assays may help to identify environmental routes of pathogen transmission although these assays have performed poorly in highly contaminated domestic settings, highlighting the importance of both diagnostic validation and understanding the context-specific ecological, physical, and sociodemographic factors driving the spread of fecal contamination. We assessed fecal contamination of compounds (clusters of 2-10 households that share sanitation facilities) in low-income neighborhoods of urban Maputo, Mozambique, using a set of MST assays that were validated with animal stool and latrine sludge from study compounds. We sampled five environmental compartments involved in fecal microbe transmission and exposure: compound water source, household stored water and food preparation surfaces, and soil from the entrance to the compound latrine and the entrances to each household. Each sample was analyzed by culture for the general fecal indicator Escherichia coli (cEC) and by real-time PCR for the E. coli molecular marker EC23S857, human-associated markers HF183/BacR287 and Mnif, and GFD, an avian-associated marker. We collected 366 samples from 94 households in 58 compounds. At least one microbial target (indicator organism or marker gene) was detected in 96% of samples (353/366), with both E. coli targets present in the majority of samples (78%). Human targets were frequently detected in soils (59%) and occasionally in stored water (17%) but seldom in source water or on food surfaces. The avian target GFD was rarely detected in any sample type but was most common in soils (4%). To identify risk factors of fecal contamination, we estimated associations with sociodemographic, meteorological, and physical sample characteristics for each microbial target and sample type combination using Bayesian censored regression for target concentration responses and Bayesian logistic regression for target detection status. Associations with risk factors were generally weak and often differed in direction between different targets and sample types, though relationships were somewhat more consistent for physical sample characteristics. Wet soils were associated with elevated concentrations of cEC and EC23S857 and odds of detecting HF183. Water storage container characteristics that expose the contents to potential contact with hands and other objects were weakly associated with human target detection. Our results describe a setting impacted by pervasive domestic fecal contamination, including from human sources, that was largely disconnected from the observed variation in socioeconomic and sanitary conditions. This pattern suggests that in such highly contaminated settings, transformational changes to the community environment may be required before meaningful impacts on fecal contamination can be realized.
Collapse
Affiliation(s)
- David A Holcomb
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jackie Knee
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Trent Sumner
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Zaida Adriano
- We Consult, Maputo, Mozambique; Departamento de Geografia, Universidade Eduardo Mondlane, Maputo, Mozambique
| | | | - Rassul Nalá
- Instituto Nacional de Saúde, Ministério da Saúde, Maputo, Mozambique
| | - Oliver Cumming
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Joe Brown
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Jill R Stewart
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
34
|
Fuhrmeister E, Ercumen A, Pickering AJ, Jeanis KM, Crider Y, Ahmed M, Brown S, Alam M, Sen D, Islam S, Kabir MH, Islam M, Rahman M, Kwong LH, Arnold BF, Luby SP, Colford JM, Nelson KL. Effect of Sanitation Improvements on Pathogens and Microbial Source Tracking Markers in the Rural Bangladeshi Household Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4316-4326. [PMID: 32167305 PMCID: PMC7144219 DOI: 10.1021/acs.est.9b04835] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 05/19/2023]
Abstract
Diarrheal illnesses from enteric pathogens are a leading cause of death in children under five in low- and middle-income countries (LMICs). Sanitation is one way to reduce the spread of enteric pathogens in the environment; however, few studies have investigated the effectiveness of sanitation in rural LMICs in reducing pathogens in the environment. In this study, we measured the impact of a sanitation intervention (dual-pit latrines, sani-scoops, child potties delivered as part of a randomized control trial, WASH Benefits) in rural Bangladeshi household compounds by assessing prevalence ratios, differences, and changes in the concentration of pathogen genes and host-specific fecal markers. We found no difference in the prevalence of pathogenic Escherichia coli, norovirus, or Giardia genes in the domestic environment in the sanitation and control arms. The prevalence of the human fecal marker was lower on child hands and the concentration of animal fecal marker was lower on mother hands in the sanitation arm in adjusted models, but these associations were not significant after correcting for multiple comparisons. In the subset of households with ≥10 individuals per compound, the prevalence of enterotoxigenic E. coli genes on child hands was lower in the sanitation arm. Incomplete removal of child and animal feces or the compound (versus community-wide) scale of intervention could explain the limited impacts of improved sanitation.
Collapse
Affiliation(s)
- Erica
R. Fuhrmeister
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Ayse Ercumen
- School
of Public Health, University of California, Berkeley, California 94720, United States
- Department
of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Amy J. Pickering
- Civil
and Environmental Engineering, Tufts University, Medford, Massachusetts 02153, United States
| | - Kaitlyn M. Jeanis
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Yoshika Crider
- Energy
and Resources Group, University of California, Berkeley, California 94720, United States
| | - Mahaa Ahmed
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Sara Brown
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Mahfuja Alam
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka 1212, Bangladesh
| | - Debashis Sen
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka 1212, Bangladesh
| | - Sharmin Islam
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka 1212, Bangladesh
| | - Mir Himayet Kabir
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka 1212, Bangladesh
| | - Mahfuza Islam
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka 1212, Bangladesh
| | - Mahbubur Rahman
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka 1212, Bangladesh
| | - Laura H. Kwong
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Benjamin F. Arnold
- School
of Public Health, University of California, Berkeley, California 94720, United States
| | - Stephen P. Luby
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| | - John M. Colford
- School
of Public Health, University of California, Berkeley, California 94720, United States
| | - Kara L. Nelson
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
35
|
Bauza V, Madadi V, Ocharo R, Nguyen TH, Guest JS. Enteric pathogens from water, hands, surface, soil, drainage ditch, and stream exposure points in a low-income neighborhood of Nairobi, Kenya. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:135344. [PMID: 31874341 DOI: 10.1016/j.scitotenv.2019.135344] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/28/2019] [Accepted: 10/31/2019] [Indexed: 05/18/2023]
Abstract
Child exposure to fecal-oral pathogens occurs through several transmission pathways. However, the relative importance of different exposure points for pathogen transmission both inside and outside households is not well understood. We conducted a cross-sectional study in the urban slum of Kibera in Nairobi, Kenya, collecting 237 environmental samples from 40 households from source water, stored drinking water, caregiver hands, child hands, household surfaces, soil, standing water, open drainage ditches, and streams. We quantified the fecal indicator Escherichia coli and the enteric pathogens of adenovirus, Campylobacter jejuni, Shigella spp./enteroinvasive E. coli (EIEC), and Vibrio cholerae. At least one enteric pathogens was detected in 13% of household stored water, 47% of hand, 46% of table surface, 26% of plate surface, 75% of floor surface, 96% of soil, 56% of standing water, 77% of drainage ditch, and 100% of stream samples despite all households having access to a toilet or latrine. Our results provide evidence that children may be exposed to enteric pathogens from several exposure points, that domestic hygiene practices related to water treatment and child handwashing were associated with reduced pathogen detection in this setting, but household table and floor cleaning practices were not, that ownership or presence of chickens in the compound was associated with increased detection of C. jejuni inside households and on soil, that there were interactions among different transmission pathways for enteric pathogens, and that there were differential correlations between E. coli and enteric pathogens for different pathogens and environmental sample types. Additionally, V. cholerae was detected at several exposure points during a cholera outbreak. Overall, these results suggest that interventions that can disrupt many transmission pathways may be needed to reduce enteric pathogen exposure in this urban slum setting.
Collapse
Affiliation(s)
- Valerie Bauza
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, United States
| | | | - Robinson Ocharo
- Department of Sociology and Social Work, University of Nairobi, Kenya
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, United States
| | - Jeremy S Guest
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, United States.
| |
Collapse
|
36
|
Hamzah L, Boehm AB, Davis J, Pickering AJ, Wolfe M, Mureithi M, Harris A. Ruminant Fecal Contamination of Drinking Water Introduced Post-Collection in Rural Kenyan Households. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E608. [PMID: 31963600 PMCID: PMC7027003 DOI: 10.3390/ijerph17020608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/25/2022]
Abstract
In sub-Saharan Africa, many families travel to collect water and store it in their homes for daily use, presenting an opportunity for the introduction of fecal contamination. One stored and one source water sample were each collected from 45 households in rural Kenya. All 90 samples were analyzed for fecal indicator bacteria (E. coli and enterococci) and species-specific contamination using molecular microbial source tracking assays. Human (HF183), avian (GFD), and ruminant (BacR) contamination were detected in 52, two, and four samples, respectively. Stored water samples had elevated enterococci concentrations (p < 0.01, Wilcoxon matched pairs test) and more frequent BacR detection (89% versus 27%, p < 0.01, McNemar's exact test) relative to source water samples. fsQCA (fuzzy set qualitative comparative analysis) was conducted on the subset of households with no source water BacR contamination to highlight combinations of factors associated with the introduction of BacR contamination to stored water supplies. Three combinations were identified: (i) ruminants in the compound, safe water extraction methods, and long storage time, (ii) ruminants, unsafe water extraction methods, and no soap at the household handwashing station, and (iii) long storage time and no soap. This suggests that multiple pathways contribute to the transmission of ruminant fecal contamination in this context, which would have been missed if data were analyzed using standard regression techniques.
Collapse
Affiliation(s)
- Latifah Hamzah
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA; (L.H.); (A.B.B.); (J.D.); (M.W.)
| | - Alexandria B. Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA; (L.H.); (A.B.B.); (J.D.); (M.W.)
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Jennifer Davis
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA; (L.H.); (A.B.B.); (J.D.); (M.W.)
- Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA
| | - Amy J. Pickering
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA 01255, USA;
| | - Marlene Wolfe
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA; (L.H.); (A.B.B.); (J.D.); (M.W.)
- Innovations for Poverty Action, Nairobi, Kenya;
| | | | - Angela Harris
- Department of Civil, Construction, and Environmental Engineering, NC State University, Raleigh, NC 27695, USA
| |
Collapse
|
37
|
Ly A, Dhand NK, Sergeant ESG, Marsh I, Plain KM. Determining an optimal pool size for testing beef herds for Johne's disease in Australia. PLoS One 2019; 14:e0225524. [PMID: 31747440 PMCID: PMC6867630 DOI: 10.1371/journal.pone.0225524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022] Open
Abstract
Bovine Johne's disease (JD) is a chronic debilitating disease affecting cattle breeds worldwide. Pooled faecal samples are routinely tested by culture to detect Mycobacterium avium subsp. paratuberculosis (Mptb) infection. More recently, a direct high throughput molecular test has been introduced in Australia for the detection of Mptb in faeces to circumvent the long culture times, however, the optimal pool size for beef cattle faeces is not known. This study aimed to determine the optimal pool size to achieve the highest test sensitivity and specificity for beef cattle. Individual archived faecal samples with low, medium and high quantities of Mptb (n = 30) were pooled with faecal samples from confirmed JD negative animals to create pool sizes of 5, 10, 15 and 20, to assess the diagnostic sensitivity relative to individual faecal qPCR. Samples from JD-free cattle (n = 10) were similarly evaluated for diagnostic specificity. Overall, 160 pools were created, with Mptb DNA extracted using magnetic bead isolation method prior to Mptb-specific IS900 quantitative PCR (qPCR). The pool size of 10 yielded the highest sensitivity 73% (95% CI: 54-88%), regardless of the quantity of Mptb DNA present in the faeces. There was no significant differences between the four different pool sizes for positive pool detection, however, there was statistical significance between low, medium and high quantities of Mptb. Diagnostic specificity was determined to be 100%. The increase in pool size greater than 10 increased the chances of PCR inhibition, which was successfully relieved with the process of DNA dilution. The results of this study demonstrate that the pool size of 10 performed optimally in the direct faecal qPCR. The results from this study can be applied in future simulation modelling studies to provide suggestions on the cost-effective testing for JD in beef cattle.
Collapse
Affiliation(s)
- Anna Ly
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - Navneet K. Dhand
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | | | - Ian Marsh
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, Australia
| | - Karren M. Plain
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
- * E-mail:
| |
Collapse
|
38
|
Fuhrmeister E, Ercumen A, Pickering AJ, Jeanis KM, Ahmed M, Brown S, Arnold BF, Hubbard AE, Alam M, Sen D, Islam S, Kabir MH, Kwong LH, Islam M, Unicomb L, Rahman M, Boehm AB, Luby SP, Colford JM, Nelson KL. Predictors of Enteric Pathogens in the Domestic Environment from Human and Animal Sources in Rural Bangladesh. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10023-10033. [PMID: 31356066 PMCID: PMC6727619 DOI: 10.1021/acs.est.8b07192] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 05/19/2023]
Abstract
Fecal indicator organisms are measured to indicate the presence of fecal pollution, yet the association between indicators and pathogens varies by context. The goal of this study was to empirically evaluate the relationships between indicator Escherichia coli, microbial source tracking markers, select enteric pathogen genes, and potential sources of enteric pathogens in 600 rural Bangladeshi households. We measured indicators and pathogen genes in stored drinking water, soil, and on mother and child hands. Additionally, survey and observational data on sanitation and domestic hygiene practices were collected. Log10 concentrations of indicator E. coli were positively associated with the prevalence of pathogenic E. coli genes in all sample types. Given the current need to rely on indicators to assess fecal contamination in the field, it is significant that in this study context indicator E. coli concentrations, measured by IDEXX Colilert-18, provided quantitative information on the presence of pathogenic E. coli in different sample types. There were no significant associations between the human fecal marker (HumM2) and human-specific pathogens in any environmental sample type. There was an increase in the prevalence of Giardia lamblia genes, any E. coli virulence gene, and the specific E. coli virulence genes stx1/2 with every log10 increase in the concentration of the animal fecal marker (BacCow) on mothers' hands. Thus, domestic animals were important contributors to enteric pathogens in these households.
Collapse
Affiliation(s)
- Erica
R. Fuhrmeister
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Ayse Ercumen
- School
of Public Health, University of California, Berkeley, California 94720, Unites States
- Department
of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Amy J. Pickering
- Civil
and Environmental Engineering, Tufts University, Medford, Massachusetts 02153, United States
| | - Kaitlyn M. Jeanis
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Mahaa Ahmed
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Sara Brown
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Benjamin F. Arnold
- School
of Public Health, University of California, Berkeley, California 94720, Unites States
| | - Alan E. Hubbard
- School
of Public Health, University of California, Berkeley, California 94720, Unites States
| | - Mahfuja Alam
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka, 1212, Bangladesh
| | - Debashis Sen
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka, 1212, Bangladesh
| | - Sharmin Islam
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka, 1212, Bangladesh
| | - Mir Himayet Kabir
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka, 1212, Bangladesh
| | - Laura H. Kwong
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Mahfuza Islam
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka, 1212, Bangladesh
| | - Leanne Unicomb
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka, 1212, Bangladesh
| | - Mahbubur Rahman
- Infectious
Disease Division, International Centre for
Diarrhoeal Disease Research Bangladesh, Dhaka, 1212, Bangladesh
| | - Alexandria B. Boehm
- Department
of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Stephen P. Luby
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| | - John M. Colford
- School
of Public Health, University of California, Berkeley, California 94720, Unites States
| | - Kara L. Nelson
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
39
|
Nshimyimana JP, Cruz MC, Wuertz S, Thompson JR. Variably improved microbial source tracking with digital droplet PCR. WATER RESEARCH 2019; 159:192-202. [PMID: 31096066 DOI: 10.1016/j.watres.2019.04.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 05/05/2023]
Abstract
This study addressed whether digital droplet PCR (ddPCR) could improve sensitivity and specificity of human-associated Bacteroidales genetic markers, BacHum and B. theta, and their quantification in environmental and fecal composite samples. Human markers were quantified by qPCR and ddPCR platforms obtained from the same manufacturer. A total of 180 samples were evaluated by each platform including human and animal feces, sewage, and environmental water. The sensitivity of ddPCR and qPCR marker assays in sewage and human stool was 0.85-1.00 with marginal reduction in human stool by ddPCR relative to qPCR (<10%). The prevalence and distribution of markers across complex sample types was similar (74-100% agreement) by both platforms with qPCR showing higher sensitivity for markers in environmental and composite samples and ddPCR showing greater reproducibility for marker detection in fecal composites. Determination of BacHum prevalence in fecal samples by ddPCR increased specificity relative to qPCR (from 0.58 to 0.88) and accuracy (from 0.77 to 0.94), while the B. theta assay performed similarly on both platforms (specificity = 0.98). In silico analysis indicated higher specificity of ddPCR for BacHum was not solely attributed to reduced sensitivity relative to qPCR. Marker concentrations measured by ddPCR for all sample types were consistently lower than those measured by qPCR, by a factor of 2.6 ± 2.8 for B. theta and 18.7 ± 10.0 for BacHum. We suggest that differences in assay performance on ddPCR and qPCR platforms may be linked to the characteristics of the assay targets (that is, genes with multiple versus single copies and encoding proteins versus ribosomal RNA) however further work is needed to validate these ideas. We conclude that ddPCR is a suitable tool for microbial source tracking, however, other factors such as cost-effectiveness and assay-specific performance should be considered.
Collapse
Affiliation(s)
- Jean Pierre Nshimyimana
- School of Civil and Environmental Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, NTU, 60 Nanyang Dr., Singapore, 637551, Singapore; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Mercedes C Cruz
- Singapore Centre for Environmental Life Sciences Engineering, NTU, 60 Nanyang Dr., Singapore, 637551, Singapore
| | - Stefan Wuertz
- School of Civil and Environmental Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, NTU, 60 Nanyang Dr., Singapore, 637551, Singapore
| | - Janelle R Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA, 02139, USA; Centre for Environmental Sensing and Modeling, Singapore-MIT Alliance for Research and Technology, 1 Create Way, Singapore, 138602, Singapore.
| |
Collapse
|
40
|
Nappier SP, Ichida A, Jaglo K, Haugland R, Jones KR. Advancements in mitigating interference in quantitative polymerase chain reaction (qPCR) for microbial water quality monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:732-740. [PMID: 30939326 PMCID: PMC6555561 DOI: 10.1016/j.scitotenv.2019.03.242] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/13/2019] [Accepted: 03/15/2019] [Indexed: 05/31/2023]
Abstract
The United States Environmental Protection Agency's (EPA)1 2012 Recreational Water Quality Criteria included an Enterococcus spp. quantitative polymerase chain reaction (qPCR) method as a supplemental indicator-method. In 2012, performance of qPCR for beach monitoring remained limited, specifically with addressing interference. A systematic literature search of peer-reviewed publications was conducted to identify where Enterococcus spp. and E. coli qPCR methods have been applied in ambient waters. In the present study, we evaluated interference rates, contributing factors resulting in increased interference in these methods, and method improvements that reduced interference. Information on qPCR methods of interest and interference controls were reported in 16 papers for Enterococcus spp. and 13 papers for E. coli. Of the Enterococcus spp. qPCR methods assessed in this effort, the lowest frequencies of interference were reported in samples using Method 1609. Low frequencies of sample interference were also reported EPA's modified E. coli qPCR method, which incorporates the same reagents and interference controls as Method 1609. The literature indicates that more work is needed to demonstrate the utility of E. coli qPCR for widespread beach monitoring purposes, whereas more broad use of Method 1609 for Enterococcus spp. is appropriate when the required and suggested controls are employed.
Collapse
Affiliation(s)
- Sharon P Nappier
- U.S. Environmental Protection Agency, Office of Water, Office of Science and Technology, 1200 Pennsylvania Avenue, NW, Washington, DC 20460, USA.
| | | | | | - Rich Haugland
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, Cincinnati, USA
| | | |
Collapse
|
41
|
Sivaganesan M, Aw TG, Briggs S, Dreelin E, Aslan A, Dorevitch S, Shrestha A, Isaacs N, Kinzelman J, Kleinheinz G, Noble R, Rediske R, Scull B, Rosenberg S, Weberman B, Sivy T, Southwell B, Siefring S, Oshima K, Haugland R. Standardized data quality acceptance criteria for a rapid Escherichia coli qPCR method (Draft Method C) for water quality monitoring at recreational beaches. WATER RESEARCH 2019; 156:456-464. [PMID: 30952079 PMCID: PMC9943056 DOI: 10.1016/j.watres.2019.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 05/31/2023]
Abstract
There is growing interest in the application of rapid quantitative polymerase chain reaction (qPCR) and other PCR-based methods for recreational water quality monitoring and management programs. This interest has strengthened given the publication of U.S. Environmental Protection Agency (EPA)-validated qPCR methods for enterococci fecal indicator bacteria (FIB) and has extended to similar methods for Escherichia coli (E. coli) FIB. Implementation of qPCR-based methods in monitoring programs can be facilitated by confidence in the quality of the data produced by these methods. Data quality can be determined through the establishment of a series of specifications that should reflect good laboratory practice. Ideally, these specifications will also account for the typical variability of data coming from multiple users of the method. This study developed proposed standardized data quality acceptance criteria that were established for important calibration model parameters and/or controls from a new qPCR method for E. coli (EPA Draft Method C) based upon data that was generated by 21 laboratories. Each laboratory followed a standardized protocol utilizing the same prescribed reagents and reference and control materials. After removal of outliers, statistical modeling based on a hierarchical Bayesian method was used to establish metrics for assay standard curve slope, intercept and lower limit of quantification that included between-laboratory, replicate testing within laboratory, and random error variability. A nested analysis of variance (ANOVA) was used to establish metrics for calibrator/positive control, negative control, and replicate sample analysis data. These data acceptance criteria should help those who may evaluate the technical quality of future findings from the method, as well as those who might use the method in the future. Furthermore, these benchmarks and the approaches described for determining them may be helpful to method users seeking to establish comparable laboratory-specific criteria if changes in the reference and/or control materials must be made.
Collapse
Affiliation(s)
- Mano Sivaganesan
- U.S. Environmental Protection Agency, National Risk Management Research Laboratory, 26 W. M.L. King Dr, Cincinnati, OH, 45268, USA
| | - Tiong Gim Aw
- Department of Global Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA, 70112, USA
| | - Shannon Briggs
- Water Resources Division, Michigan Department of Environmental Quality, P. O. Box 30458, 525 West Allegan Street, Lansing, MI, 48909, USA
| | - Erin Dreelin
- Center for Water Sciences, Michigan State University, 1405 South Harrison Road, East Lansing, MI, 48823, USA
| | - Asli Aslan
- Georgia Southern University, Department of Environmental Health Sciences, 501 Forest Drive, Statesboro, GA, 30458, USA
| | - Samuel Dorevitch
- University of Illinois at Chicago, School of Public Health, 2121 W. Taylor Street, Chicago, IL, 60612, USA
| | - Abhilasha Shrestha
- University of Illinois at Chicago, School of Public Health, 2121 W. Taylor Street, Chicago, IL, 60612, USA
| | - Natasha Isaacs
- U.S. Geological Survey, Upper Midwest Water Science Center, 6520 Mercantile Way, Ste 5, Lansing, MI, 48911, USA
| | - Julie Kinzelman
- City of Racine Public Health Department, 730 Washington Ave, Racine, WI, 53403, USA
| | - Greg Kleinheinz
- University of Wisconsin-Oshkosh, Environmental Research Laboratory, 800 Algoma Boulevard, Oshkosh, WI, 54901, USA
| | - Rachel Noble
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC, 28557, USA
| | - Rick Rediske
- Annis Water Resources Institute, Lake Michigan Center, 740 W. Shoreline Dr, Muskegon, MI, 49441, USA
| | - Brian Scull
- Annis Water Resources Institute, Lake Michigan Center, 740 W. Shoreline Dr, Muskegon, MI, 49441, USA
| | - Susan Rosenberg
- Oakland County Health Division Laboratory, 1200 N. Telegraph, Pontiac, MI, 48341, USA
| | - Barbara Weberman
- Oakland County Health Division Laboratory, 1200 N. Telegraph, Pontiac, MI, 48341, USA
| | - Tami Sivy
- Saginaw Valley State University, Department of Chemistry, 7400 Bay Road, University Center, MI, 48710, USA
| | - Ben Southwell
- Lake Superior State University, Environmental Analysis Laboratory, 650 W. Easterday Ave, Sault Ste Marie, MI, 49783, USA
| | - Shawn Siefring
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 26 W. M.L. King Dr, Cincinnati, OH, 45268, USA
| | - Kevin Oshima
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 26 W. M.L. King Dr, Cincinnati, OH, 45268, USA
| | - Richard Haugland
- U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 26 W. M.L. King Dr, Cincinnati, OH, 45268, USA.
| |
Collapse
|
42
|
Machado MC, Vimbela GV, Nilsson M, Dallaire S, Wu R, Tripathi A. Rapid electrophoretic recovery of DNA from dried blood spots. Electrophoresis 2019; 40:1812-1819. [PMID: 31095765 DOI: 10.1002/elps.201800363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 03/31/2019] [Accepted: 04/23/2019] [Indexed: 11/09/2022]
Abstract
Large-scale genetic screening of neonatal dried blood spots for episomal DNA has a great potential to lower patient mortality and morbidity through early diagnosis of primary immunodeficiencies. However, DNA extraction from the surface of dried blood spots remains one of the most time consuming, costly, and labor-intensive parts of DNA analysis. In the present study, we developed and optimized a rapid methodology using only 50 V and heat to extract episomal DNA from dried blood spots prepared from diagnostic cord blood samples. This electric field DNA extraction is the first methodology to use an electric field to extract episomal DNA from a dried blood spot. This 25-minute procedure has one of the lowest times for the extraction of episomal DNA found within the literature and this novel procedure not only negates the need for costly treatment and wash steps, but reduces the time of manual procedures by more than 30 min while retaining the 75-80% of the yield. Combined with real-time PCR, this novel method of electric field extraction not only provides an effective tool for the large scale genetic analysis of neonates, but a key step forward in the simplification and standardization of diagnostic testing.
Collapse
Affiliation(s)
- Mary C Machado
- Center for Biomedical Engineering, School of Engineering Brown University, Providence, RI
| | - Gina V Vimbela
- Center for Biomedical Engineering, School of Engineering Brown University, Providence, RI
| | | | | | - Rongcong Wu
- PerkinElmer, 940 Winter Street, Waltham, Massachusetts, USA
| | - Anubhav Tripathi
- Center for Biomedical Engineering, School of Engineering Brown University, Providence, RI
| |
Collapse
|
43
|
Factors Influencing Legionella Contamination of Domestic Household Showers. Pathogens 2019; 8:pathogens8010027. [PMID: 30813532 PMCID: PMC6470800 DOI: 10.3390/pathogens8010027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 01/27/2023] Open
Abstract
Legionnaires’ disease is a potentially fatal pneumonia like infection caused by inhalation or aspiration of water particles contaminated with pathogenic Legionella spp. Household showers have been identified as a potential source of sporadic, community-acquired Legionnaires’ disease. This study used qPCR to enumerate Legionella spp. and Legionella pneumophila in water samples collected from domestic showers across metropolitan Adelaide, South Australia. A survey was used to identify risk factors associated with contamination and to examine awareness of Legionella control in the home. The hot water temperature was also measured. A total of 74.6% (50/68) and 64.2% (43/68) showers were positive for Legionella spp. and L. pneumophila, respectively. Statistically significant associations were found between Legionella spp. concentration and maximum hot water temperature (p = 0.000), frequency of shower use (p = 0.000) and age of house (p = 0.037). Lower Legionella spp. concentrations were associated with higher hot water temperatures, showers used at least every week and houses less than 5 years old. However, examination of risk factors associated with L. pneumophila found that there were no statistically significant associations (p > 0.05) with L. pneumophila concentrations and temperature, type of hot water system, age of system, age of house or frequency of use. This study demonstrated that domestic showers were frequently colonized by Legionella spp. and L. pneumophila and should be considered a potential source of sporadic Legionnaires’ disease. Increasing hot water temperature and running showers every week to enable water sitting in pipes to be replenished by the municipal water supply were identified as strategies to reduce the risk of Legionella in showers. The lack of public awareness in this study identified the need for public health campaigns to inform vulnerable populations of the steps they can take to reduce the risk of Legionella contamination and exposure.
Collapse
|
44
|
Yuan D, Cui M, Yu S, Wang H, Jing R. Droplet digital PCR for quantification of PML-RARα in acute promyelocytic leukemia: a comprehensive comparison with real-time PCR. Anal Bioanal Chem 2019; 411:895-903. [PMID: 30617397 DOI: 10.1007/s00216-018-1508-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 11/26/2022]
Abstract
Real-time quantitative PCR (qPCR) has been widely implemented for molecular testing, but there are still some inherent limitations that hamper its usefulness. Droplet digital PCR (ddPCR), which can provide direct, standards-free quantification, has recently received increasing attention. In our study, a comprehensive comparison of ddPCR with qPCR in relation to the quantification of PML-RARα was performed to evaluate the diagnostic potential of ddPCR. Results showed that ddPCR displayed significant concordance with qPCR in the detection of PML-RARα in clinical samples, but showed advantages over qPCR in terms of precision, limit of detection (LOD), and other basic performance parameters. A study of the feasibility of duplexing also indicated that ddPCR could simultaneously quantify the target PML-RARα and the clinical common reference gene ABL in a reaction, in contrast to qPCR. Moreover, ddPCR was more tolerant than qPCR of inhibition, and was shown to be able to quantify inhibition-prone samples. Another advantage of using ddPCR in clinical applications is that it will yield accurate results for patients with PML-RARα levels that fluctuate around the LOD of qPCR. Therefore, ddPCR is considered to have the potential to become a reliable alternative technique for quantifying PML-RARα. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Dandan Yuan
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, No 20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Ming Cui
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, No 20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Shuping Yu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, No 20, Xisi Road, Nantong, 226001, Jiangsu, China
| | - Huimin Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, No 20, Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Rongrong Jing
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, No 20, Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
45
|
Ferrihydrite treatment to mitigate inhibition of RT-qPCR virus detection from large-volume environmental water samples. J Virol Methods 2019; 263:60-67. [DOI: 10.1016/j.jviromet.2018.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/11/2018] [Accepted: 10/22/2018] [Indexed: 11/19/2022]
|
46
|
Feist SM, Jones RL, Copley JL, Pearson LS, Berry GA, Qualls CP. Development and Validation of an Environmental DNA Method for Detection of the Alligator Snapping Turtle (Macrochelys temminckii). CHELONIAN CONSERVATION AND BIOLOGY 2018. [DOI: 10.2744/ccb-1315.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sheena M. Feist
- Mississippi Department of Wildlife, Fisheries, and Parks, Museum of Natural Science, 2148 Riverside
| | - Robert L. Jones
- Mississippi Department of Wildlife, Fisheries, and Parks, Museum of Natural Science, 2148 Riverside
| | - Jeremy L. Copley
- Mississippi Department of Wildlife, Fisheries, and Parks, Museum of Natural Science, 2148 Riverside
| | - Luke S. Pearson
- University of Southern Mississippi, Department of Biological Sciences, 118 College Drive #5018, Hatt
| | - Gabrielle A. Berry
- University of Southern Mississippi, Department of Biological Sciences, 118 College Drive #5018, Hatt
| | - Carl P. Qualls
- University of Southern Mississippi, Department of Biological Sciences, 118 College Drive #5018, Hatt
| |
Collapse
|
47
|
Devane ML, Weaver L, Singh SK, Gilpin BJ. Fecal source tracking methods to elucidate critical sources of pathogens and contaminant microbial transport through New Zealand agricultural watersheds - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 222:293-303. [PMID: 29860123 DOI: 10.1016/j.jenvman.2018.05.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
In New Zealand, there is substantial potential for microbial contaminants from agricultural fecal sources to be transported into waterways. The flow and transport pathways for fecal contaminants vary at a range of scales and is dependent on chemical, physical and biological attributes of pathways, soils, microorganisms and landscape characteristics. Understanding contaminant transport pathways from catchment to stream can aid water management strategies. It is not practical, however to conduct direct field measurement for all catchments on the fate and transport of fecal pathogens due to constraints on time, personnel, and material resources. To overcome this problem, fecal source tracking can be utilised to link catchment characteristics to fecal signatures identifying critical sources. In this article, we have reviewed approaches to identifying critical sources and pathways for fecal microorganisms from agricultural sources, and make recommendations for the appropriate use of these fecal source tracking (FST) tools.
Collapse
Affiliation(s)
- Megan L Devane
- Institute of Environmental Science and Research Ltd. (ESR), P.O. Box 29181, Christchurch, New Zealand.
| | - Louise Weaver
- Institute of Environmental Science and Research Ltd. (ESR), P.O. Box 29181, Christchurch, New Zealand
| | - Shailesh K Singh
- National Institute of Water and Atmospheric Research, 10 Kyle St, Riccarton Christchurch, 8011, New Zealand
| | - Brent J Gilpin
- Institute of Environmental Science and Research Ltd. (ESR), P.O. Box 29181, Christchurch, New Zealand
| |
Collapse
|
48
|
Byappanahalli MN, Nevers MB, Shively DA, Spoljaric A, Otto C. Real-Time Water Quality Monitoring at a Great Lakes National Park. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:1086-1093. [PMID: 30272770 DOI: 10.2134/jeq2017.11.0462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Quantitative polymerase chain reaction (qPCR) was used by the USEPA to establish new recreational water quality criteria in 2012 using the indicator bacteria enterococci. The application of this method has been limited, but resource managers are interested in more timely monitoring results. In this study, we evaluated the efficacy of qPCR as a rapid, alternative method to the time-consuming membrane filtration (MF) method for monitoring water at select beaches and rivers of Sleeping Bear Dunes National Lakeshore in Empire, MI. Water samples were collected from four locations (Esch Road Beach, Otter Creek, Platte Point Bay, and Platte River outlet) in 2014 and analyzed for culture-based (MF) and non-culture-based (i.e., qPCR) endpoints using and enterococci bacteria. The MF and qPCR enterococci results were significantly, positively correlated overall ( = 0.686, < 0.0001, = 98) and at individual locations as well, except at the Platte River outlet location: Esch Road Beach ( = 0.441, = 0.031, = 24), Otter Creek ( = 0.592, = 0.002, = 24), and Platte Point Bay ( = 0.571, = 0.004, = 24). Similarly, MF and qPCR results were significantly, positively correlated ( = 0.469, < 0.0001, = 95), overall but not at individual locations. Water quality standard exceedances based on enterococci levels by qPCR were lower than by MF method: 3 and 16, respectively. Based on our findings, we conclude that qPCR may be a viable alternative to the culture-based method for monitoring water quality on public lands. Rapid, same-day results are achievable by the qPCR method, which greatly improves protection of the public from water-related illnesses.
Collapse
|
49
|
Chamoun MN, Sullivan MJ, Ulett GC. Quantification of bacteriuria caused by Hemolysin-positive Escherichia coli in human and mouse urine using quantitative polymerase chain reaction (qPCR) targeting hlyD. J Microbiol Methods 2018; 152:173-178. [DOI: 10.1016/j.mimet.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/10/2018] [Accepted: 08/12/2018] [Indexed: 12/21/2022]
|
50
|
Xue J, Caton K, Sherchan S. Comparison of next-generation droplet digital PCR with quantitative PCR for enumeration ofNaegleria fowleriin environmental water and clinical samples. Lett Appl Microbiol 2018; 67:322-328. [DOI: 10.1111/lam.13051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/25/2018] [Accepted: 07/11/2018] [Indexed: 11/28/2022]
Affiliation(s)
- J. Xue
- Department of Global Environmental Health Sciences; School of Public Health and Tropical Medicine, Tulane University; New Orleans LA USA
| | - K. Caton
- Department of Global Environmental Health Sciences; School of Public Health and Tropical Medicine, Tulane University; New Orleans LA USA
| | - S.P. Sherchan
- Department of Global Environmental Health Sciences; School of Public Health and Tropical Medicine, Tulane University; New Orleans LA USA
| |
Collapse
|