1
|
Zhang Y, Wang C, Yan D, Si L, Chang L, Li T. Molecular characterization and functional analysis of ZAP-like gene in common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109981. [PMID: 39461392 DOI: 10.1016/j.fsi.2024.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
The zinc finger antiviral protein (ZAP) is a host antiviral factor that could restrict the replication of various RNA and DNA viruses. To date, the antiviral properties of ZAP gene have been demonstrated in multiple mammals and a few of bird species, while no data is available regarding the immune role of ZAP in fish. In this study, one ZAP-like gene (CcZAPL) was identified form common carp and its antiviral role was investigated. Expression analysis showed that CcZAPL was widely expressed in multiple fish tissues, with highest level in the head kidney, and confocal microscopy analysis showed the sublocation of CcZAPL mainly in the nucleus of Epithelioma papulosum cyprini (EPC) cells. After in vivo stimulation by Spring viraemia of carp virus (SVCV), CcZAPL was induced in gene expression, and in EPC cells overexpression of CcZAPL led to significantly decreased virus load of SVCV and diminished cytopathic effect (CPE). Moreover, after SVCV infection in vitro, expressions of cytokines including IFN, ISG15, PKR, Mx and TNF-α were observed to be up-regulated in CcZAPL-overexpressed EPC cells. Our findings indicated that CcZAPL played a positive role in the control of SVCV, which will allow us to gain new insights into the immune role of ZAP in fish antiviral immunity.
Collapse
Affiliation(s)
- Yingying Zhang
- School of Fisheries, Ludong University, Yantai, PR China
| | - Cuixia Wang
- School of Fisheries, Ludong University, Yantai, PR China
| | - Dongchun Yan
- School of Fisheries, Ludong University, Yantai, PR China
| | - Lingjun Si
- School of Fisheries, Ludong University, Yantai, PR China
| | - Linrui Chang
- School of Fisheries, Ludong University, Yantai, PR China
| | - Ting Li
- School of Fisheries, Ludong University, Yantai, PR China.
| |
Collapse
|
2
|
Akram N, El-Matbouli M, Saleh M. The Immune Response to the Myxozoan Parasite Myxobolus cerebralis in Salmonids: A Review on Whirling Disease. Int J Mol Sci 2023; 24:17392. [PMID: 38139218 PMCID: PMC10743445 DOI: 10.3390/ijms242417392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Salmonids are affected by the economically significant whirling disease (WD) caused by the myxozoan parasite Myxobolus cerebralis. In the past, it was endemic to Eurasia, but it has now spread to different regions of North America, Europe, New Zealand, and South Africa. Among salmonids, rainbow trout is considered the most highly susceptible host. Upon entering to the host's body, the parasite invades the spine and cranium, resulting in whirling behaviour, a blackened tail, and destruction of cartilage. The disease is characterized by the infiltration of numerous inflammatory cells, primarily lymphocytes and macrophages, with the onset of fibrous tissue infiltration. Several efforts have been undertaken to investigate the role of various immune modulatory molecules and immune regulatory genes using advanced molecular methods including flow cytometry and transcriptional techniques. Investigation of the molecular and cellular responses, the role of STAT3 in Th17 cell differentiation, and the inhibitory actions of suppressors of cytokine signaling (SOCS) on interferons and interleukins, as well as the role of natural resistance-associated macrophage proteins (Nramp) in WD have significantly contributed to our understanding of the immune regulation mechanism in salmonids against M. cerebralis. This review thoroughly highlights previous research and discusses potential future directions for understanding the molecular immune response of salmonids and the possible development of prophylactic approaches against WD.
Collapse
Affiliation(s)
| | | | - Mona Saleh
- Division of Fish Health, Department of Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria; (N.A.)
| |
Collapse
|
3
|
Fish Innate Immune Response to Viral Infection-An Overview of Five Major Antiviral Genes. Viruses 2022; 14:v14071546. [PMID: 35891526 PMCID: PMC9317989 DOI: 10.3390/v14071546] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 12/11/2022] Open
Abstract
Fish viral diseases represent a constant threat to aquaculture production. Thus, a better understanding of the cellular mechanisms involved in establishing an antiviral state associated with protection against virus replication and pathogenesis is paramount for a sustainable aquaculture industry. This review summarizes the current state of knowledge on five selected host innate immune-related genes in response to the most relevant viral pathogens in fish farming. Viruses have been classified as ssRNA, dsRNA, and dsDNA according to their genomes, in order to shed light on what those viruses may share in common and what response may be virus-specific, both in vitro (cell culture) as well as in vivo. Special emphasis has been put on trying to identify markers of resistance to viral pathogenesis. That is, those genes more often associated with protection against viral disease, a key issue bearing in mind potential applications into the aquaculture industry.
Collapse
|
4
|
Bledsoe JW, Ma J, Cain K, Bruce TJ, Rawles A, Abernathy J, Welker T, Overturf K. Multi-tissue RNAseq reveals genetic and temporal differences in acute response to viral (IHNV) infection among three selected lines of rainbow trout with varying resistance. FISH & SHELLFISH IMMUNOLOGY 2022; 124:343-361. [PMID: 35398222 DOI: 10.1016/j.fsi.2022.03.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Utilizing RNA-seq, this study compared the transcriptomic responses of three improved strains (VSel, PSel, and CSel) of rainbow trout fry during acute stages of challenge with infectious hematopoietic necrosis virus (IHNV). The VSel strain has been selected for resistance against the specific strain of IHNV used in our challenge, PSel has undergone selection for utilization of plant-protein based feeds and previously has shown elevated non-specific disease resistance despite no disease related selection pressures, and the final strain, CSel, is a commercial strain that has been domesticated for several years but has not been selected for specific viral disease resistance. Following a 21-day IHNV challenge, Kaplan-Meier survival estimator curves and cumulative percent mortality (CPM) showed significant differences in IHNV resistance across strains: VSel - 19.3 ± 5.0%, PSel - 67. ± 3.03%, CSel - 94.6 ± 4.1% CPM. To evaluate acute responses to IHNV infection, whole blood, as well as samples from the kidney, liver, and intestine, were collected at 0, 4, 12, 24, and 48 h post infection (hpi). Serum lysozyme activity, a marker of non-specific innate immunity, showed strain and temporal effects during the acute infection phase with PSel showing the highest activity at 0 and 48 hpi. Differential gene expression responses were detected, with varying degrees, in all tissues, both between strains, as well as across acute timepoints within strains. The VSel strain showed upregulation for a particular subset of viral recognition genes during early infection timepoints and rather limited upregulation of immune genes later, while maintaining and reactivating metabolic pathways. The CSel strain showed a downregulation of metabolic related genes and a limited upregulation of immune genes, while the PSel strain showed similar downregulation of metabolic genes during acute infection, yet when compared to the CSel strain, showed a more robust innate immune response. Evaluation of upregulated immune response genes, as well as interferon-related genes showed the PSel strain to have the greatest number of uniquely upregulated immune genes in both the kidney and intestine, with CSel and PSel showing a similar number of such genes upregulated in liver. A moderate number of immune response genes were shared between PSel and CSel in all tissues, though both PSel and VSel showed a high number of uniquely overexpressed immune response genes in the kidney, and PSel showed the highest number of uniquely upregulated interferon related genes in the intestine. Overall, the VSel response was unique from the CSel with very little overlap in activated immune responses. Findings from this study highlight the disparity in IHNV resistance among genetic strains of rainbow trout, while identifying molecular mechanisms underlying differences in disease phenotypes. Furthermore, our results on trout strains with distinct selection backgrounds yields comparative insights into the adaptive gains brought about by selection programs for pathogen-specific disease resistance, as well as the non-specific immune enhancement associated with selection for utilization of plant-based diets.
Collapse
Affiliation(s)
- Jacob W Bledsoe
- Aquaculture Research Institute, Department of Animal, Veterinary & Food Sciences, University of Idaho, Hagerman, ID, USA
| | - Jia Ma
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID, USA
| | - Ken Cain
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID, USA
| | - Timothy J Bruce
- School of Fisheries, Aquaculture & Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Anna Rawles
- ARS-USDA, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA
| | - Jason Abernathy
- ARS-USDA, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA
| | - Tom Welker
- United States Department of Agriculture-Agricultural Research Service, Hagerman Fish Culture Experiment Station, Hagerman, ID, USA
| | - Ken Overturf
- United States Department of Agriculture-Agricultural Research Service, Hagerman Fish Culture Experiment Station, Hagerman, ID, USA.
| |
Collapse
|
5
|
Samanta M, Satapathy S, Paichha M, Choudhary P. Labeo rohita Mx1 exhibits the critical structural motifs of the family of large GTPases of mammals and is activated by rhabdovirus vaccination and bacterial RNA stimulations. Anim Biotechnol 2020; 33:22-42. [PMID: 32367758 DOI: 10.1080/10495398.2020.1759612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Myxovirus resistance (Mx) proteins belonging to the dynamin superfamily of high molecular weight GTPases exist in various isoforms and play crucial role in innate immunity. In addition to the isoforms, Mx1 also plays important role in exerting its anti-viral actions against a broad range of animal RNA viruses. In rohu (Labeo rohita), mx1 full-length cDNA sequence consists of 2440 nucleotides (nt) encoding 628 amino acids (aa) polypeptide of 71.289 kDa. Structurally, it belongs to the family of large GTPases with one DYNc domain (13-257aa) comprising of dynamin family motifs (LPRGSGIVTR) and the tripartite GTP-binding motifs (GDQSSGKS, DLPG and TKPD) at the N-terminal and one GED domain (537-628aa) at C-terminus. Rohu Mx1 is closely related to zebrafish Mx1 and is widely expressed in gill, liver, kidney, spleen and blood. In response to rhabdovirus vaccinations, poly I:C stimulation and bacterial infections, mx1 gene expression in rohu was significantly (p < 0.05) induced in majority of the tested organs/tissues. Stimulation of rohu gill cell line with bacterial RNA also induced mx1 gene expression. Together these data suggest the important role of Mx1 in innate immunity in rohu against wide spectrum of fish pathogens.
Collapse
Affiliation(s)
- Mrinal Samanta
- Fish Health Management Division, Immunology Laboratory, Indian Council of Agricultural Research-Central Institute of Freshwater Aquaculture Kausalyaganga, Bhubaneswar, Odisha, India
| | - Sweta Satapathy
- Fish Health Management Division, Immunology Laboratory, Indian Council of Agricultural Research-Central Institute of Freshwater Aquaculture Kausalyaganga, Bhubaneswar, Odisha, India
| | - Mahismita Paichha
- Fish Health Management Division, Immunology Laboratory, Indian Council of Agricultural Research-Central Institute of Freshwater Aquaculture Kausalyaganga, Bhubaneswar, Odisha, India
| | - Pushpa Choudhary
- Fish Health Management Division, Immunology Laboratory, Indian Council of Agricultural Research-Central Institute of Freshwater Aquaculture Kausalyaganga, Bhubaneswar, Odisha, India
| |
Collapse
|
6
|
Muire PJ, Hanson LA, Wills R, Petrie-Hanson L. Differential gene expression following TLR stimulation in rag1-/- mutant zebrafish tissues and morphological descriptions of lymphocyte-like cell populations. PLoS One 2017; 12:e0184077. [PMID: 28910320 PMCID: PMC5598945 DOI: 10.1371/journal.pone.0184077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 08/17/2017] [Indexed: 12/21/2022] Open
Abstract
In the absence of lymphocytes, rag1-/- mutant zebrafish develop protective immunity to bacteria. In mammals, induction of protection by innate immunity can be mediated by macrophages or natural killer (NK) cells. To elucidate potential responsive cell populations, we morphologically characterized lymphocyte-like cells (LLCs) from liver, spleen and kidney hematopoietic tissues. In fish, these cells include NK cells and Non-specific cytotoxic cells (NCCs). We also evaluated the transcriptional expression response of select genes that are important indicators of NK and macrophage activation after exposure to specific TLR ligands. The LLC cell populations could be discriminated by size and further discriminated by the presence of cytoplasmic granules. Expression levels of mx, tnfα, ifnγ, t-bet and nitr9 demonstrated dynamic changes in response to intra-coelomically administered β glucan (a TLR2/6 ligand), Poly I:C (a TLR3 ligand) and resiquimod (R848) (a TLR7/8 ligand). Following TLR 2/6 stimulation, there was a greater than 100 fold increase in ifnγ in liver, kidney and spleen and moderate increases in tnfα in liver and kidney. TLR3 stimulation caused broad up regulation of mx, down-regulation of tnfα in kidney and spleen tissues and up regulation of nitr9 in the kidney. Following TLR 7/8 stimulation, there was a greater than 100 fold increase in ifnγ in liver and kidney and t-bet in liver. Our gene expression findings suggest that LLCs and macrophages are stimulated following β glucan exposure. Poly I:C causes type I interferon response and mild induction of LLC in the kidney and R-848 exposure causes the strongest LLC stimulation. Overall, the strongest NK like gene expression occurred in the liver. These differential effects of TLR ligands in rag1-/- mutant zebrafish shows strong NK cell-like gene expression responses, especially in the liver, and provides tools to evaluate the basis for protective immunity mediated by the innate immune cells of fish.
Collapse
Affiliation(s)
- Preeti J. Muire
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Larry A. Hanson
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Robert Wills
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Lora Petrie-Hanson
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| |
Collapse
|
7
|
Valero Y, García-Alcázar A, Esteban MÁ, Cuesta A, Chaves-Pozo E. Antimicrobial response is increased in the testis of European sea bass, but not in gilthead seabream, upon nodavirus infection. FISH & SHELLFISH IMMUNOLOGY 2015; 44:203-213. [PMID: 25707600 DOI: 10.1016/j.fsi.2015.02.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/14/2015] [Accepted: 02/10/2015] [Indexed: 06/04/2023]
Abstract
Antimicrobial peptides (AMPs) have a crucial role in the fish innate immune response, being considered a fundamental component of the first line of defence against pathogens. Moreover, AMPs have not been studied in the fish gonad since this is used by some pathogens as a vehicle or a reservoir to be transmitted to the progeny, as occurs with nodavirus (VNNV), which shows vertical transmission through the gonad and/or gonadal fluids, but no study has looked into the gonad of infected fish. In this framework, we have characterized the antimicrobial response triggered by VNNV in the testis of European sea bass, a very susceptible species of the virus, and in the gilthead seabream, which acts as a reservoir, both in vivo and in vitro, and compared with that present in the serum and brain (target tissue of VNNV). First, our data show a great antiviral response in the brain of gilthead seabream and in the gonad of European sea bass. In addition, for the first time, our results demonstrate that the antimicrobial activities (complement, lysozyme and bactericidal) and the expression of AMP genes such as complement factor 3 (c3), lysozyme (lyz), hepcidin (hamp), dicentracin (dic), piscidin (pis) or β-defensin (bdef) in the gonad of both species are very different, but generally activated in the European sea bass, probably related with the differences of susceptibility upon VNNV infection, and even differs to the brain response. Furthermore, the in vitro data suggest that some AMPs are locally regulated playing a local immune response in the gonad, while others are more dependent of the systemic immune system. Data are discussed in the light to ascertain their potential role in viral clearance by the gonad to avoid vertical transmission.
Collapse
Affiliation(s)
- Yulema Valero
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n. Puerto de Mazarrón, 30860 Murcia, Spain
| | - Alicia García-Alcázar
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n. Puerto de Mazarrón, 30860 Murcia, Spain
| | - M Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Alberto Cuesta
- Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Carretera de la Azohía s/n. Puerto de Mazarrón, 30860 Murcia, Spain.
| |
Collapse
|
8
|
Du Y, Yi M, Xiao P, Meng L, Li X, Sun G, Liu Y. The impact of Aeromonas salmonicida infection on innate immune parameters of Atlantic salmon (Salmo salar L). FISH & SHELLFISH IMMUNOLOGY 2015; 44:307-315. [PMID: 25725402 DOI: 10.1016/j.fsi.2015.02.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 06/04/2023]
Abstract
Enzyme activities and gene expression of a number of innate immune parameters in the serum, mucus and skin of Atlantic salmon (Salmo salar) were investigated after challenge with a pathogenic strain of Aeromonas salmonicida (A. salmonicida). Fish were injected in the dorsal muscle with either 100 μl bacterium solution, about 3.05 × 10(7) CFU/ml A. salmonicida, or 100 μl 0.9% NaCl (as control group) and tissue samples were collected at days 0, 2, 4 and 6 post-injection. Lysozyme (LSZ) and alkaline phosphatase (AKP) activities in serum, mucus and skin, and LSZ and AKP mRNA expression in skin of the challenged fish were higher than those of the control at most of the experimental time, with significant differences at several time points (P < 0.05), indicating the involvement of LSZ and AKP in the innate immunity of Atlantic salmon to A. salmonicida. Superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities in mucus and skin, along with the SOD, POD and CAT mRNA expression in skin significantly decreased at day 4 and 6, indicating the decreased antioxidant capacity of the challenged fish. Glutamate pyruvate transaminase (GPT) and glutamic oxalacetic transaminase (GOT) activities in serum, mucus and skin of the challenged group were all higher than those of the control after the injection, and at several time points significant differences were found between the two groups, suggesting organs of fish were impaired after the pathogen infection. The changes of the GPT and GOT activities could be used as potential biomarkers for the impairment of physiological functions caused by the pathogen infection. Identified biomarkers of the immune responses will contribute to the early-warning system of the disease. So this study will not only provide a theoretical basis for vaccine development, but also provide basic data for the establishment of early warning systems for diseases caused by A. salmonicida in Atlantic salmon rearing.
Collapse
Affiliation(s)
- Yishuai Du
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mengmeng Yi
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Peng Xiao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lingjie Meng
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xian Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Guoxiang Sun
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Ying Liu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
9
|
Henriksen MMM, Kania PW, Buchmann K, Dalsgaard I. Effect of hydrogen peroxide and/or Flavobacterium psychrophilum on the gills of rainbow trout, Oncorhynchus mykiss (Walbaum). JOURNAL OF FISH DISEASES 2015; 38:259-270. [PMID: 25830180 DOI: 10.1111/jfd.12232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The immune response and morphological changes in the gills of rainbow trout fry after immersion in hydrogen peroxide (H2O2), Flavobacterium psychrophilum or combined exposure were examined. The gills were sampled 4, 48, 125 and 192 h after exposure, and the regulation of expression of the following genes was investigated using qPCR: IgT, IgM, CD8, CD4, MHC I, MHC II, IL-4/13A, TcR-β, IL-10, IL-1β, IL-17, SAA and FoxP3. Bacteria were not observed in haematoxylin-and-eosin-stained gill tissue, but the presence of F. psychrophilum 16S rRNA was detected using qPCR. The 16S rRNA levels were correlated with gene expression. Although pretreatment with H2O2 before immersion in F. psychrophilum did not significantly alter the amount of bacteria found in the gill, the immune response was influenced: exposure to F. psychrophilum resulted in a negative correlation with expression of IL-17c1, MHC I and MHC II, while pretreatment with H2O2 resulted in a positive correlation with IL-4/13A and IgM. Exposure to either H2O2 or F. psychrophilum influenced the regulation of gene expression and damaged tissue. Exposure to both combined altered the immune response to infection and postponed healing of gill tissue.
Collapse
|
10
|
Marancik D, Gao G, Paneru B, Ma H, Hernandez AG, Salem M, Yao J, Palti Y, Wiens GD. Whole-body transcriptome of selectively bred, resistant-, control-, and susceptible-line rainbow trout following experimental challenge with Flavobacterium psychrophilum. Front Genet 2015; 5:453. [PMID: 25620978 PMCID: PMC4288049 DOI: 10.3389/fgene.2014.00453] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/11/2014] [Indexed: 01/28/2023] Open
Abstract
Genetic improvement for enhanced disease resistance in fish is an increasingly utilized approach to mitigate endemic infectious disease in aquaculture. In domesticated salmonid populations, large phenotypic variation in disease resistance has been identified but the genetic basis for altered responsiveness remains unclear. We previously reported three generations of selection and phenotypic validation of a bacterial cold water disease (BCWD) resistant line of rainbow trout, designated ARS-Fp-R. This line has higher survival after infection by either standardized laboratory challenge or natural challenge as compared to two reference lines, designated ARS-Fp-C (control) and ARS-Fp-S (susceptible). In this study, we utilized 1.1 g fry from the three genetic lines and performed RNA-seq to measure transcript abundance from the whole body of naive and Flavobacterium psychrophilum infected fish at day 1 (early time-point) and at day 5 post-challenge (onset of mortality). Sequences from 24 libraries were mapped onto the rainbow trout genome reference transcriptome of 46,585 predicted protein coding mRNAs that included 2633 putative immune-relevant gene transcripts. A total of 1884 genes (4.0% genome) exhibited differential transcript abundance between infected and mock-challenged fish (FDR < 0.05) that included chemokines, complement components, tnf receptor superfamily members, interleukins, nod-like receptor family members, and genes involved in metabolism and wound healing. The largest number of differentially expressed genes occurred on day 5 post-infection between naive and challenged ARS-Fp-S line fish correlating with high bacterial load. After excluding the effect of infection, we identified 21 differentially expressed genes between the three genetic lines. In summary, these data indicate global transcriptome differences between genetic lines of naive animals as well as differentially regulated transcriptional responses to infection.
Collapse
Affiliation(s)
- David Marancik
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture Kearneysville, WV, USA
| | - Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture Kearneysville, WV, USA
| | - Bam Paneru
- Department of Biology, Middle Tennessee State University Murfreesboro, TN, USA
| | - Hao Ma
- Animal and Nutritional Sciences, West Virginia University Morgantown, WV, USA
| | - Alvaro G Hernandez
- High-Throughput Sequencing and Genotyping Unit, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - Mohamed Salem
- Department of Biology, Middle Tennessee State University Murfreesboro, TN, USA
| | - Jianbo Yao
- Animal and Nutritional Sciences, West Virginia University Morgantown, WV, USA
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture Kearneysville, WV, USA
| | - Gregory D Wiens
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, United States Department of Agriculture Kearneysville, WV, USA
| |
Collapse
|
11
|
Henriksen MMM, Kania PW, Buchmann K, Dalsgaard I. Evaluation of the immune response in rainbow trout fry, Oncorhynchus mykiss (Walbaum), after waterborne exposure to Flavobacterium psychrophilum and/or hydrogen peroxide. JOURNAL OF FISH DISEASES 2015; 38:55-66. [PMID: 24547972 DOI: 10.1111/jfd.12201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/20/2013] [Accepted: 12/22/2013] [Indexed: 06/03/2023]
Abstract
The immune response in rainbow trout fry against Flavobacterium psychrophilum was elucidated using an immersion-based challenge with or without prior exposure to hydrogen peroxide (H2O2). Samples were taken from the head kidney 4, 48, 125 and 192 h after immersion, and the regulation of several genes was examined. Bacterial load was assessed based on the presence of 16S rRNA and correlated with gene expression, and the levels of specific antibodies in the blood were measured 50 days post-infection. Separately, both H2O2 and F. psychrophilum influenced gene expression, and pre-treatment with H2O2 influenced the response to infection with F. psychrophilum. Pre-treatment with H2O2 also affected correlation between gene regulation and pathogen load for several genes. A delay in antibody production in H2O2-treated fish in the early phase of infection was indicated, but H2O2 exposure did not affect antibody levels 50 days post-infection. An increasing amount of F. psychrophilum 16S rRNA was found in the head kidneys of infected fish pre-treated with H2O2 relative to the F. psychrophilum group. The results show that a single pre-treatment with H2O2 impairs the response against F. psychrophilum and may intensify infection.
Collapse
|
12
|
Pionnier N, Adamek M, Miest JJ, Harris SJ, Matras M, Rakus KŁ, Irnazarow I, Hoole D. C-reactive protein and complement as acute phase reactants in common carp Cyprinus carpio during CyHV-3 infection. DISEASES OF AQUATIC ORGANISMS 2014; 109:187-199. [PMID: 24991845 DOI: 10.3354/dao02727] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is the aetiological agent of a highly virulent and lethal disease of common carp Cyprinus carpio and its ornamental koi varieties. However, specific knowledge about immune mechanisms behind the infection process is very limited. We aimed to evaluate the effect of the CyHV-3 infection on the profile of 2 major components of the common carp immune acute phase response: the C-reactive protein (CRP) and the complement system. Common carp were infected with CyHV-3 by bath immersion. Fish were sampled before the infection and at 6, 12, 24, 72, 120 and 336 h post-infection for serum and head kidney, liver, gill and spleen tissues. CRP levels and complement activity were determined from the serum, whereas CRP- and complement-related genes (crp1, crp2, c1rs, bf/c2, c3, masp2) expression profiles were analysed in the tissues by quantitative PCR. Both CRP levels and complement activity increased significantly up to 10- and 3-fold, respectively, in the serum of infected fish during the challenge. Analysis revealed distinct organ- and time-dependent expression profile patterns for all selected genes. These results suggest that CRP and complement behave as acute phase reactants to CyHV-3 infection in common carp with an organ- and time-dependent response.
Collapse
Affiliation(s)
- Nicolas Pionnier
- Institute of Science and Technology in Medicine, School of Life Sciences, Keele University, ST5 5BG Keele, UK
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Rebl A, Korytář T, Köbis JM, Verleih M, Krasnov A, Jaros J, Kühn C, Köllner B, Goldammer T. Transcriptome profiling reveals insight into distinct immune responses to Aeromonas salmonicida in gill of two rainbow trout strains. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:333-348. [PMID: 24122123 DOI: 10.1007/s10126-013-9552-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/22/2013] [Indexed: 06/02/2023]
Abstract
The fish gills represent a crucial organ for the communication with the aquatic environment. Transcriptional changes in gills of two hatchery rainbow trout strains in response to injection with the potent pathogen Aeromonas salmonicida were detected by global gene expression profiling using a 4×44K oligonucleotide microarray. Emphasis was placed on "day 3 postinfection" representing a decisive time point for the resolution of inflammation. The comparison of features and pathways differentially regulated in branchial tissues revealed that the local breeding strain BORN and imported American rainbow trout apply common and specific immune strategies. In gills of infected BORN trout, we observed a dynamic regulation of genes controlling NF-κB pathways and the induction of factors promoting the development of myeloid cells, whereas an increased expression of lysozyme and immunoglobulin genes was obvious in gills of infected import trout. In order to prove the relevance of the array-predicted candidates as well as well-known immune genes for gill immunity, a subsequent in vitro experiment was conducted. Altogether, we uncovered dynamic but moderate changes in the expression of a broad range of immune-relevant features implying the gill's involvement in pathogen defense strategies.
Collapse
|
14
|
Collet B. Innate immune responses of salmonid fish to viral infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:160-73. [PMID: 23981327 DOI: 10.1016/j.dci.2013.08.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 05/07/2023]
Abstract
Viruses are the most serious pathogenic threat to the production of the main aquacultured salmonid species the rainbow trout Oncorhynchus mykiss and the Atlantic salmon Salmo salar. The viral diseases Infectious Pancreatic Necrosis (IPN), Pancreatic Disease (PD), Infectious Haemorrhagic Necrosis (IHN), Viral Haemorrhagic Septicaemia (VHS), and Infectious Salmon Anaemia (ISA) cause massive economic losses to the global salmonid aquaculture industry every year. To date, no solution exists to treat livestock affected by a viral disease and only a small number of efficient vaccines are available to prevent infection. As a consequence, understanding the host immune response against viruses in these fish species is critical to develop prophylactic and preventive control measures. The innate immune response represents an important part of the host defence mechanism preventing viral replication after infection. It is a fast acting response designed to inhibit virus propagation immediately within the host, allowing for the adaptive specific immunity to develop. It has cellular and humoral components which act in synergy. This review will cover inflammation responses, the cell types involved, apoptosis, antimicrobial peptides. Particular attention will be given to the type I interferon system as the major player in the innate antiviral defence mechanism of salmonids. Viral evasion strategies will also be discussed.
Collapse
|
15
|
Schwenteit JM, Breithaupt A, Teifke JP, Koppang EO, Bornscheuer UT, Fischer U, Gudmundsdottir BK. Innate and adaptive immune responses of Arctic charr (Salvelinus alpinus, L.) during infection with Aeromonas salmonicida subsp. achromogenes and the effect of the AsaP1 toxin. FISH & SHELLFISH IMMUNOLOGY 2013; 35:866-873. [PMID: 23811350 DOI: 10.1016/j.fsi.2013.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/18/2013] [Accepted: 06/18/2013] [Indexed: 06/02/2023]
Abstract
Aeromonas salmonicida subsp. achromogenes, the causative agent of atypical furunculosis in many fish species, secretes the toxic metalloendopeptidase AsaP1. This study aimed to analyze innate and adaptive immune parameters induced in Arctic charr (Salvelinus alpinus, L.) infected with wild type (wt) A. salmonicida subsp. achromogenes and its isogenic asaP1 deletion mutant (AsaP1-deficient). Head-kidney, liver and spleen were obtained from i.p. infected charr (wt, AsaP1-deficient), during a time schedule of 7 d post infection. Reverse transcription quantitative real-time PCR (RT-qPCR) was applied to study the expression of immune parameters: pro-inflammatory cytokines IL-1β and TNF-α; anti-inflammatory cytokine IL-10; chemokines CXCL-8 (IL-8) and CC-chemokine; the cytokines IFN-γ and IL-4/13A as tracers for Th1 and Th2 immune responses, respectively; and the cell markers CD8α and CD83. In addition, lymphoid organs were histopathologically examined at days 3 and 7 post infection, including B (IgM) and T (CD3ε) cell staining. The detected immune responses were initially driven by innate mechanisms represented by the up-regulation of pro-inflammatory cytokines and chemokines and later on by adaptive Th2 related responses cumulating in B-cell recruitment as shown by regulation of immune parameters in spleen and head-kidney, with significant differences between mutant and wt infected fish. Histological sections revealed IgM-positive cells around ellipsoid arterioles in spleen, while CD3ε positive cells were found in clusters scattered all over the section. However, histopathological differences were only detected between infected and non-infected fish, but not between AsaP1-deficient mutant and wt infected fish. This work represents the first study on innate and adaptive immune responses of Arctic charr induced by a bacterial infection.
Collapse
Affiliation(s)
- Johanna M Schwenteit
- Institute for Experimental Pathology, University of Iceland, Keldur, Keldnavegur 3, IS-112 Reykjavík, Iceland.
| | | | | | | | | | | | | |
Collapse
|
16
|
Prevalence of Flavobacterium psychrophilum bacterial cells in farmed rainbow trout: characterization of metallothionein A and interleukin1-β genes as markers overexpressed in spleen and kidney of diseased fish. Vet Microbiol 2012; 162:127-35. [PMID: 22989515 DOI: 10.1016/j.vetmic.2012.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 07/16/2012] [Accepted: 08/19/2012] [Indexed: 11/20/2022]
Abstract
The aim of the present study was to assess the prevalence of the flavobacteria within farmed trout and to quantify their bacterial burden. A total of 61 fish were sampled from seven farms, and were distributed in two groups: (1) visibly diseased fish suffering from the rainbow trout fry syndrome or the bacterial cold water disease caused by the bacteria Flavobacterium psychrophilum and (2) normally appearing fish. F. psychrophilum cells were titered by qPCR, targeting a specific area of the 16S rRNA gene in skin, muscle, gills, liver, spleen and kidney from all fish. The pathogen was detected in these organs whatever the health status, with titers ranging from 10(4) to 6 × 10(7)bacteria/g of tissue in normally appearing fish, thus showing they were bacterial carriers. Two organs allowed differentiation between diseased and normally appearing fish: spleen and kidney, with titers ranging from 10(6) to 10(7)bacteria/g of tissue in normally appearing fish vs 10(11) to 10(12)bacteria/g of tissue in diseased fish. No relationship was found between immunoglobulin M-like titer in plasma and health status. Gene expression analysis in fish organs revealed two genes that were markers of the bacterial infection: mt-a and il-1β genes encoding the metallothionein A and the interleukin1-β, respectively. These genes were both over-expressed in gills, liver, spleen and kidney of diseased fish. Four genes encoding immunity markers were down-regulated in spleen (a key organ implicated in immunity) of diseased fish: tgf-β, cd8-α, mhc2-β and igt, suggesting a weakened immune system in diseased fish.
Collapse
|
17
|
Langevin C, Blanco M, Martin SAM, Jouneau L, Bernardet JF, Houel A, Lunazzi A, Duchaud E, Michel C, Quillet E, Boudinot P. Transcriptional responses of resistant and susceptible fish clones to the bacterial pathogen Flavobacterium psychrophilum. PLoS One 2012; 7:e39126. [PMID: 22720048 PMCID: PMC3374740 DOI: 10.1371/journal.pone.0039126] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/16/2012] [Indexed: 12/31/2022] Open
Abstract
Flavobacterium psychrophilum is a bacterial species that represents one of the most important pathogens for aquaculture worldwide, especially for salmonids. To gain insights into the genetic basis of the natural resistance to F. psychrophilum, we selected homozygous clones of rainbow trout with contrasted susceptibility to the infection. We compared the transcriptional response to the bacteria in the pronephros of a susceptible and a resistant line by micro-array analysis five days after infection. While the basal transcriptome of healthy fish was significantly different in the resistant and susceptible lines, the transcriptome modifications induced by the bacteria involved essentially the same genes and pathways. The response to F. psychrophilum involved antimicrobial peptides, complement, and a number of enzymes and chemokines. The matrix metalloproteases mmp9 and mmp13 were among the most highly induced genes in both genetic backgrounds. Key genes of both pro- and anti-inflammatory response such as IL1 and IL10, were up-regulated with a greater magnitude in susceptible animals where the bacterial load was also much higher. While higher resistance to F. psychrophilum does not seem to be based on extensive differences in the orientation of the immune response, several genes including complement C3 showed stronger induction in the resistant fish. They may be important for the variation of susceptibility to the infection.
Collapse
Affiliation(s)
- Christelle Langevin
- INRA, Molecular Virology and Immunology, Domaine de Vilvert, Jouy en Josas, France
| | - Mar Blanco
- Department of Animal Health, Faculty of Veterinary Sciences, Complutense University, Madrid, Spain
| | - Samuel A. M. Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Luc Jouneau
- INRA, Molecular Virology and Immunology, Domaine de Vilvert, Jouy en Josas, France
| | | | - Armel Houel
- INRA, Molecular Virology and Immunology, Domaine de Vilvert, Jouy en Josas, France
| | - Aurélie Lunazzi
- INRA, Molecular Virology and Immunology, Domaine de Vilvert, Jouy en Josas, France
| | - Eric Duchaud
- INRA, Molecular Virology and Immunology, Domaine de Vilvert, Jouy en Josas, France
| | - Christian Michel
- INRA, Molecular Virology and Immunology, Domaine de Vilvert, Jouy en Josas, France
| | - Edwige Quillet
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, Domaine de Vilvert, Jouy en Josas, France
| | - Pierre Boudinot
- INRA, Molecular Virology and Immunology, Domaine de Vilvert, Jouy en Josas, France
- * E-mail:
| |
Collapse
|
18
|
Falco A, Frost P, Miest J, Pionnier N, Irnazarow I, Hoole D. Reduced inflammatory response to Aeromonas salmonicida infection in common carp (Cyprinus carpio L.) fed with β-glucan supplements. FISH & SHELLFISH IMMUNOLOGY 2012; 32:1051-7. [PMID: 22406448 DOI: 10.1016/j.fsi.2012.02.028] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 05/02/2023]
Abstract
The objective of the present study was to determine the action of β-glucans as feed additives on the gene expression profile of some inflammatory-related cytokines from common carp (Cyprinus carpio L.) during the early stages of a non-lethal bacterial infection with Aeromonas salmonicida. β-glucan (MacroGard(®)), was administered daily to carp (6 mg per kg body weight) in the form of supplemented commercial food pellets for 14 days prior to infection. Control and treated fish were then intraperitoneally injected with PBS or 4×10(8) bacteria per fish and were sampled at time 0 and 6h, 12h, 1 day, 3 days and 5 days post-injection. Head kidney and gut were collected and the gene expression patterns for tnfα1, tnfα2, il1β, il6 and il10 were analyzed by quantitative PCR. Results obtained showed that treatment with β-glucans generally down-regulated the expression of all measured genes when compared to their corresponding controls. After injection, highest changes in the gene expression levels were obtained at 6h; particularly, in head kidney there was higher up-regulation of tnfa1 and tnfa2 in infected fish fed β-glucans in comparison to control feed; however, in gut there was a significant down-regulation of tnfα1, tnfα2, il1β and il6 in infected fish fed β-glucans. Analysis of carp specific antibodies against A. salmonicida 30 days after injection revealed their levels were reduced in the infected β-glucan group. In conclusion, a diet supplemented with β-glucan (MacroGard(®)) reduced the gene expression levels of some inflammation-related cytokines in common carp. Such a response appears to be dependent of organ studied and therefore the immunostimulant may be preventing an acute and potential dangerous response in gut, whilst enhancing the inflammatory response in head kidney when exposed to A. salmonicida.
Collapse
Affiliation(s)
- Alberto Falco
- School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | | | | | | | | | | |
Collapse
|
19
|
Evenhuis JP, Cleveland BM. Modulation of rainbow trout (Oncorhynchus mykiss) intestinal immune gene expression following bacterial challenge. Vet Immunol Immunopathol 2012; 146:8-17. [DOI: 10.1016/j.vetimm.2012.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/03/2012] [Accepted: 01/13/2012] [Indexed: 10/14/2022]
|
20
|
Wu MS, Chen CW, Lin CH, Tzeng CS, Chang CY. Differential expression profiling of orange-spotted grouper larvae, Epinephelus coioides (Hamilton), that survived a betanodavirus outbreak. JOURNAL OF FISH DISEASES 2012; 35:215-225. [PMID: 22324345 DOI: 10.1111/j.1365-2761.2012.01341.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Nervous necrosis virus (NNV), a piscine nodavirus, has caused serious viral nervous necrosis and viral encephalopathy and retinopathy in hatchery-reared larvae and juveniles of a wide range of marine teleost species worldwide in the last two decades. Although the mortality of NNV-infected larvae is nearly 100%, there are still some larvae that survive this catastrophe. To comprehensively understand the variations of these survivors at the molecular level, we collected orange-spotted grouper larvae that survived an NNV outbreak in an indoor hatchery in southern Taiwan to study differential gene expression. Healthy larvae with high, medium and low levels of detected NNV were compared with morbid larvae using a 9600-clone-containing grouper larva cDNA microarray, and differential gene expression was further confirmed by a quantitative real-time polymerase chain reaction. Significant variation exists in healthy larvae. The following genes were upregulated: adenylate kinase 1-2, myosin binding protein H-like, myosin light chain 2, myosin light chain 3, tropomyosin, fast/white muscle troponin T embryonic isoform, and parvalbumin 1 and 2 genes. The following genes were downregulated: apolipoprotein A-I, trypsinogen, pyruvate kinase and astacin-like metalloprotease. Moreover, immunoglobulin M heavy chain gene transcription was significantly higher in healthy larvae that had high virus levels, indicating that humoral immunity might protect organisms from viral infection. These results suggest that some non-immune-related genes may have played important roles in survival during the larval metamorphosis stage, after betanodavirus infection.
Collapse
Affiliation(s)
- M-S Wu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | |
Collapse
|
21
|
Millán A, Gómez-Tato A, Pardo BG, Fernández C, Bouza C, Vera M, Alvarez-Dios JA, Cabaleiro S, Lamas J, Lemos ML, Martínez P. Gene expression profiles of the spleen, liver, and head kidney in turbot (Scophthalmus maximus) along the infection process with Aeromonas salmonicida using an immune-enriched oligo-microarray. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:1099-1114. [PMID: 21503602 DOI: 10.1007/s10126-011-9374-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 03/29/2011] [Indexed: 05/30/2023]
Abstract
We evaluated the expression profiles of turbot in the spleen, liver, and head kidney across five temporal points of the Aeromonas salmonicida infection process using an 8 × 15 K Agilent oligo-microarray. The microarray included 2,176 different fivefold replicated gene probes designed from a turbot 3' sequenced EST database. We were able to identify 471 differentially expressed (DE) genes (17.3% of the whole microarray), 223 in the spleen, 246 in the liver, and 125 in the head kidney, in at least one of the five temporal points sampled for each organ. Most of these genes could be annotated (83.0%) and functionally categorized using Gene Ontology terms (69.1%) after the additional sequencing of DE genes from the 5' end. Many DE genes were related to innate and acquired immune functions in accordance to previous studies with this pathogen in other fish species. A high proportion of DE genes were organ specific (77.1%), but their associated GO functions were rather similar in the three organs. The most striking difference in functional distribution was observed between the up- and down-regulated gene groups. Up-regulated genes were mostly associated to key immune functions while down-regulated ones mainly involved metabolism- and transport-related genes. Genetic response appeared clustered in groups of genes with similar expression profiles along the temporal series. The spleen showed the most clustering while the liver and head kidney displayed a higher diversification. The information obtained will aid to understand the turbot immune response and will specifically be valuable to develop strategies of defense to A. salmonicida to achieve more resistant broodstocks for turbot industry.
Collapse
Affiliation(s)
- Adrián Millán
- Departamento de Genética, Facultad de Veterinaria, Campus de Lugo, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Raida MK, Holten-Andersen L, Buchmann K. Association between Yersinia ruckeri infection, cytokine expression and survival in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2011; 30:1257-1264. [PMID: 21501689 DOI: 10.1016/j.fsi.2011.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 03/15/2011] [Accepted: 03/27/2011] [Indexed: 05/30/2023]
Abstract
The immune response against bacterial pathogens has been widely studied in teleosts and it is evident that survival chances differ significantly within a host population. Identification of indicators for susceptibility and responsiveness will improve our understanding of this host-pathogen interaction. The present work shows that the transcripts of cytokine genes in blood cells sampled three days post-infection was significantly higher in fish which obtained a high bacteriemia and died at later time points when compared to both non-infected control fish and infected fish that survived the infection. Rainbow trout were infected by bath challenge in a bacterial suspension (LD(60) dose, 1.8 × 10(9) CFU/ml Yersiniaruckeri for 1 h) and subsequently transferred to individual aquaria for 30 days of observation. Blood samples were analyzed for presence of Y. ruckeri both by culture and quantitative RT real-time PCR (qRT-PCR) and transcript levels of 28 genes encoding molecules which are important in the immune response. The transcript levels of a number of central cytokines, chemokines and cytokine receptors (IL-1β, IL-6, IL-8, IL-10, TNF-α, IL-receptor II) were significantly increased in infected fish that died later. In addition, a significantly higher amount of Y. ruckeri was found in the blood of the fish that died when compared to survivors. The study indicates that highly susceptible trout obtain an early heavy septicemia infection, which elicits a high up-regulation of the transcript of pro-inflammatory cytokines. Thus, less susceptible fish are protected by other factors and contract merely a weak non-lethal infection eliciting no or a weak cytokine response.
Collapse
Affiliation(s)
- Martin K Raida
- Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Frederiksberg, Denmark.
| | | | | |
Collapse
|
23
|
Kong HJ, Hong GE, Nam BH, Kim YO, Kim WJ, Lee SJ, Lee NS, Do JW, Cho HK, Cheong J, Lee CH, Kim KK. An immune responsive complement factor D/adipsin and kallikrein-like serine protease (PoDAK) from the olive flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2009; 27:486-492. [PMID: 19591942 DOI: 10.1016/j.fsi.2009.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 06/26/2009] [Accepted: 06/26/2009] [Indexed: 05/28/2023]
Abstract
The cDNA encoding of a complement factor D/adipsin and kallikrein-like serine protease, designated PoDAK, was isolated from the olive flounder Paralichthys olivaceus. PoDAK cDNA encodes a polypeptide with 277 amino acids containing conserved catalytic triad residues of serine proteases. The amino acid sequence of PoDAK showed high similarity to the kallikrein-like protein of medaka, mammalian adipsin/complement factor D and tissue kallikrein homolog, KT-14 of trout, complement factor D of zebrafish, and shared 31.6-36.8% homology with complement factor D/adipsin known from other species, including mammals. Phylogenetic analysis revealed that PoDAK clustered with the kallikrein-like protein of medaka and mammalian adipsin/complement factor D and tissue kallikrein homolog KT-14 of trout. The expression of PoDAK mRNA was high in the gills and heart, moderate in muscle, liver, intestine, stomach, kidney, and spleen of healthy flounder, and increased in the kidney, liver, and spleen of flounder challenged by the viral hemorrhagic septicemia virus (VHSV) or Streptococcus iniae. In situ hybridization confirmed that PoDAK mRNA is localized in the kidney and heart of individuals infected with VHSV. Further investigations are needed to clarify the function of PoDAK in vivo and in vitro.
Collapse
Affiliation(s)
- Hee Jeong Kong
- Biotechnology Research Division, National Fisheries Research and Development Institute, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan 619-705, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bjornsdottir B, Fast MD, Sperker SA, Brown LL, Gudmundsdottir BK. Effects of Moritella viscosa antigens on pro-inflammatory gene expression in an Atlantic salmon (Salmo salar Linnaeus) cell line (SHK-1). FISH & SHELLFISH IMMUNOLOGY 2009; 26:858-863. [PMID: 19345267 DOI: 10.1016/j.fsi.2009.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/19/2009] [Accepted: 03/20/2009] [Indexed: 05/27/2023]
Abstract
Moritella viscosa is the causative agent of winter ulcer disease in salmonids reared in North-Atlantic countries. In this study the effects of selected M. viscosa antigens on cytotoxicity and pro-inflammatory gene expression in an Atlantic salmon (Salmo salar Linnaeus) macrophage-like cell line (SHK-1) were examined. SHK-1 cells were stimulated with live and heat-killed bacterial cells, extracellular products (ECP) and an extracellular vibriolysin, termed MvP1. Following incubation, cytotoxicity and expression levels of interleukin-1 beta (IL-1 beta) and interleukin-8 (IL-8) were examined at different time points. Both live M. viscosa cells and ECP were cytotoxic, but neither heat-killed cells, nor the MvP1 peptidase caused cell death. Expression levels of both IL-1 beta and IL-8 increased significantly after stimulation with live cells, but heat-killed cells only caused increased IL-8 expression. ECP did not affect IL-1 beta expression, but did stimulate IL-8 expression. The isolated MvP1 peptidase stimulated both IL-1 beta and IL-8 expression at the highest concentration tested. This study reveals a difference in the induction of pro-inflammatory gene expression in salmon SHK-1 cells between live and heat-killed M. viscosa cells, and also that an unknown secreted factor is the main stimulant of IL-beta and IL-8 expression.
Collapse
Affiliation(s)
- Bryndis Bjornsdottir
- Institute for Experimental Pathology, University of Iceland, Keldur v/Vesturlandsveg, 112 Reykjavík, Iceland
| | | | | | | | | |
Collapse
|
25
|
MacKenzie S, Balasch JC, Novoa B, Ribas L, Roher N, Krasnov A, Figueras A. Comparative analysis of the acute response of the trout, O. mykiss, head kidney to in vivo challenge with virulent and attenuated infectious hematopoietic necrosis virus and LPS-induced inflammation. BMC Genomics 2008; 9:141. [PMID: 18366750 PMCID: PMC2291046 DOI: 10.1186/1471-2164-9-141] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 03/26/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The response of the trout, O. mykiss, head kidney to bacterial lipopolysaccharide (LPS) or active and attenuated infectious hematopoietic necrosis virus (IHNV and attINHV respectively) intraperitoneal challenge, 24 and 72 hours post-injection, was investigated using a salmonid-specific cDNA microarray. RESULTS The head kidney response to i.p. LPS-induced inflammation in the first instance displays an initial stress reaction involving suppression of major cellular processes, including immune function, followed by a proliferative hematopoietic-type/biogenesis response 3 days after administration. The viral response at the early stage of infection highlights a suppression of hematopoietic and protein biosynthetic function and a stimulation of immune response. In fish infected with IHNV a loss of cellular function including signal transduction, cell cycle and transcriptional activity 72 hours after infection reflects the tissue-specific pathology of IHNV infection. attIHNV treatment on the other hand shows a similar pattern to native IHNV infection at 24 hours however at 72 hours a divergence from the viral response is seen and replace with a recovery response more similar to that observed for LPS is observed. CONCLUSION In conclusion we have been able to identify and characterise by transcriptomic analysis two different types of responses to two distinct immune agents, a virus, IHNV and a bacterial cell wall component, LPS and a 'mixed' response to an attenuated IHNV. This type of analysis will lead to a greater understanding of the physiological response and the development of effective immune responses in salmonid fish to different pathogenic and pro-inflammatory agents.
Collapse
Affiliation(s)
- Simon MacKenzie
- Unitat de Fisiologia Animal, Departament de Biologia Cellular, de Fisiologia i d'Immunologia, Universitat Autonoma de Barcelona (UAB), Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
26
|
Raida MK, Buchmann K. Bath vaccination of rainbow trout (Oncorhynchus mykiss Walbaum) against Yersinia ruckeri: effects of temperature on protection and gene expression. Vaccine 2008; 26:1050-62. [PMID: 18237828 DOI: 10.1016/j.vaccine.2007.12.029] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 12/11/2007] [Accepted: 12/16/2007] [Indexed: 10/22/2022]
Abstract
Protection of rainbow trout fry following bath vaccination with a bacterin of Y. ruckeri O1, the bacterial pathogen causing enteric red mouth disease (ERM), was investigated at 5, 15 and 25 degrees C. Rainbow trout fry were acclimatised for 8 weeks at the three temperatures before vaccination. They were subsequently challenged with Y. ruckeri 4 and 8 weeks post-vaccination which demonstrated a significant protection of vaccinated fish kept at 15 degrees C. No protective effect of vaccination in rainbow trout reared at 5 and 25 degrees C could be recorded. Spleen tissue was sampled from vaccinated and control fish at 0, 8, 24 and 72 h post-vaccination in order to analyse gene transcript profiles using quantitative real-time RT-PCR (q-PCR). Gene expression in fish vaccinated at 15 degrees C (the protected fish) was up-regulated with regard to the pro-inflammatory cytokines IFN-gamma, TNF-alpha, IL-6 and the anti-inflammatory cytokines IL-10 and TGF-beta, the cell receptors TcR, CD8alpha, CD4, C5aR and the teleost specific immunoglobulin IgT. Passive immunisation using transfer of plasma from vaccinated fish to naïve fish conferred no protection. This indicates that humoral factors such as Ig and complement are less important in the protection induced by bath vaccination. Expression of cellular factors such as CD8alpha was significantly increased in the protected trout and this suggests that cellular factors including cytotoxic T-cells could play a role in immunity against Y. ruckeri.
Collapse
Affiliation(s)
- M K Raida
- Faculty of Life Sciences, Department of Veterinary Pathobiology, University of Copenhagen, Frederiksberg, Denmark.
| | | |
Collapse
|