1
|
Chromosomal Microarray Analysis Has a Poor Diagnostic Yield in Children with Developmental Delay/Intellectual Disability When Concurrent Cerebellar Anomalies Are Present. THE CEREBELLUM 2021; 19:629-635. [PMID: 32472476 DOI: 10.1007/s12311-020-01145-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chromosomal microarray analysis is commonly used as screening test for children with neurodevelopmental issues, also in case of complex neurological phenotypes. Developmental delay/intellectual disability is a common presentation sign in pediatric ataxias, diseases with high clinical and genetic heterogeneity. In order to determine the diagnostic yield of Array-CGH in such conditions, all the tests performed in the last 10-year activity of a single referral center in children who present, besides the neurodevelopmental impairment, cerebellar abnormalities have been systematically gathered. The study demonstrates that, except for Dandy-Walker malformation or poly-malformative phenotypes, chromosomal microarray analysis should be discouraged as first-line diagnostic test in pediatric ataxias with neurodevelopmental disability.
Collapse
|
2
|
Bogliş A, Cosma AS, Tripon F, Bãnescu C. Exon 21 deletion in the OPHN1 gene in a family with syndromic X-linked intellectual disability: Case report. Medicine (Baltimore) 2020; 99:e21632. [PMID: 32872024 PMCID: PMC7437857 DOI: 10.1097/md.0000000000021632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION The oligophrenin-1 (OPHN1) gene, localized on the X chromosome, is a Rho-GTPase activating protein that is related to syndromic X-linked intellectual disability (XLID). XLID, characterized by brain anomalies, namely cerebellar hypoplasia, specific facial features, and intellectual disability, is produced by different mutations in the OPHN1 gene. PATIENT CONCERNS In this report, we present the clinical and molecular findings of a family affected by a mild XLID due to a deletion in the OPHN1 gene, exon 21, Xq12 region using Multiplex Ligation-dependent Probe Amplification (MLPA) analysis. The clinical features present in the family are a mild developmental delay, behavioral disturbances, facial dysmorphism, pes planus, nystagmus, strabismus, epilepsy, and occipital arachnoid cyst. INTERVENTIONS The MLPA analysis was performed for investigation of the copy number variations within the X chromosome for the family. DIAGNOSIS AND OUTCOME The MLPA analysis detected a deletion in the OPHN1 gene, exon 21 for the proband, and a heterozygous deletion for the probands mother. The deletion of the Xq12 region of maternal origin, including the exon 21 of the OPHN1 gene, confirmed for the probands nephew. LESSONS Our findings emphasize the utility of the MLPA analysis to identify deletions in the OPHN1 gene responsible for syndromic XLID. Therefore, we suggest that MLPA analysis should be performed as an alternative diagnostic test for all patients with a mild intellectual disability associated or not with behavioral disturbances, facial dysmorphism, and brain anomalies.
Collapse
Affiliation(s)
- Alina Bogliş
- Laboratory of Medical Genetics, Emergency Clinical County Hospital Târgu Mureş, Târgu Mureş¸ Romania
- Department of Genetics, George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
- Laboratory of Molecular Biology/Genetics, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Adriana S. Cosma
- Laboratory of Medical Genetics, Emergency Clinical County Hospital Târgu Mureş, Târgu Mureş¸ Romania
| | - Florin Tripon
- Laboratory of Medical Genetics, Emergency Clinical County Hospital Târgu Mureş, Târgu Mureş¸ Romania
- Department of Genetics, George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
- Laboratory of Molecular Biology/Genetics, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Claudia Bãnescu
- Laboratory of Medical Genetics, Emergency Clinical County Hospital Târgu Mureş, Târgu Mureş¸ Romania
- Department of Genetics, George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
- Laboratory of Molecular Biology/Genetics, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureş, Târgu Mureş, Romania
| |
Collapse
|
3
|
Schwartz TS, Wojcik MH, Pelletier RC, Edward HL, Picker JD, Holm IA, Towne MC, Beggs AH, Agrawal PB. Expanding the phenotypic spectrum associated with OPHN1 variants. Eur J Med Genet 2018; 62:137-143. [PMID: 29960046 DOI: 10.1016/j.ejmg.2018.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/02/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
Genomic sequencing has allowed for the characterization of new gene-to-disease relationships, as well as the identification of variants in established disease genes in patients who do not fit the classically-described phenotype. This is especially true in rare syndromes where the clinical spectrum is not fully known. After a lengthy and costly diagnostic odyssey, patients with atypical presentations may be left with many questions even after a genetic diagnosis is identified. We present a 22-year old male with hypotonia, developmental delay, seizure disorder, and dysmorphic facial features who enrolled in our rare disease research center at 18 years of age, where exome sequencing revealed a novel, likely pathogenic variant in the OPHN1 gene. Through efforts by the study team and collaborations with the larger genetics community, contacts with other families with OPHN1 variants were eventually made, and outreach by these families expanded the patient network. This partnership between families and researchers facilitated the gathering of phenotypic information, allowing for comparison of clinical presentations among three new patients and those previously reported in the literature. These comparisons found previously unreported commonalities between the newly identified patients, such as the presence of otitis media and the lack of genitourinary abnormalities (i.e. hypoplastic scrotum, microphallus, cryptorchidism), which had been noted to be classic features of patients with OPHN1 variants. As genomic sequencing becomes more common, connecting patients with novel variants in the same gene will facilitate phenotypic analysis and continue to refine the clinical spectrum associated with that gene.
Collapse
Affiliation(s)
- Talia S Schwartz
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA
| | - Monica H Wojcik
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA
| | - Renee C Pelletier
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; Center for Cancer Risk Assessment, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Heather L Edward
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA
| | - Jonathan D Picker
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA
| | - Ingrid A Holm
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA
| | - Meghan C Towne
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; Ambry Genetics, Aliso Viejo, CA, USA
| | - Alan H Beggs
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA
| | - Pankaj B Agrawal
- Division of Genetics & Genomics, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; The Manton Center for Orphan Disease Research, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Moortgat S, Lederer D, Deprez M, Buzatu M, Clapuyt P, Boulanger S, Benoit V, Mary S, Guichet A, Ziegler A, Colin E, Bonneau D, Maystadt I. Expanding the phenotypic spectrum associated with OPHN1 mutations: Report of 17 individuals with intellectual disability but no cerebellar hypoplasia. Eur J Med Genet 2018; 61:442-450. [PMID: 29510240 DOI: 10.1016/j.ejmg.2018.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 01/20/2023]
Abstract
Mutations in the oligophrenin 1 gene (OPHN1) have been identified in patients with X-linked intellectual disability (XLID) associated with cerebellar hypoplasia and ventriculomegaly, suggesting it could be a recognizable syndromic intellectual disability (ID). Affected individuals share additional clinical features including speech delay, seizures, strabismus, behavioral difficulties, and slight facial dysmorphism. OPHN1 is located in Xq12 and encodes a Rho-GTPase-activating protein involved in the regulation of the G-protein cycle. Rho protein members play an important role in dendritic growth and in plasticity of excitatory synapses. Here we report on 17 individuals from four unrelated families affected by mild to severe intellectual disability due to OPHN1 mutations without cerebellar anomaly on brain MRI. We describe clinical, genetic and neuroimaging data of affected patients. Among the identified OPHN1 mutations, we report for the first time a missense mutation occurring in a mosaic state. We discuss the intrafamilial clinical variability of the disease and compare our patients with those previously reported. We emphasize the power of next generation techniques (X-exome sequencing, whole-exome sequencing and targeted multi-gene panel) to expand the phenotypic and mutational spectrum of OPHN1-related ID.
Collapse
Affiliation(s)
- Stéphanie Moortgat
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium.
| | - Damien Lederer
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium
| | - Marie Deprez
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium; Département de Neuro-pédiatrie, Clinique Sainte-Elisabeth, Namur, Belgium
| | - Marga Buzatu
- Département de Neuro-pédiatrie, Hôpital Civil Marie Curie, Charleroi, Belgium
| | - Philippe Clapuyt
- Department of Radiology, Pediatric Imaging Unit, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Sébastien Boulanger
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium
| | - Valérie Benoit
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium
| | - Sandrine Mary
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium
| | - Agnès Guichet
- Department of Biochemistry and Genetics, Angers University Hospital, and UMR INSERM 1083, CNRS 6015, Angers, France
| | - Alban Ziegler
- Department of Biochemistry and Genetics, Angers University Hospital, and UMR INSERM 1083, CNRS 6015, Angers, France
| | - Estelle Colin
- Department of Biochemistry and Genetics, Angers University Hospital, and UMR INSERM 1083, CNRS 6015, Angers, France
| | - Dominique Bonneau
- Department of Biochemistry and Genetics, Angers University Hospital, and UMR INSERM 1083, CNRS 6015, Angers, France
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Charleroi, Gosselies, Belgium
| |
Collapse
|
5
|
Abstract
X-linked cerebellar ataxias (XLCA) are an expanding group of genetically heterogeneous and clinically variable conditions characterized by cerebellar dysgenesis (hypoplasia, atrophy, or dysplasia) caused by gene mutations or genomic imbalances on the X chromosome. The neurologic features of XLCA include hypotonia, developmental delay, intellectual disability, ataxia, and other cerebellar signs. Normal cognitive development has also been reported. Cerebellar defects may be isolated or associated with other brain malformations or extraneurologic involvement. More than 20 genes on the X chromosome, mainly encoding for proteins involved in brain development and synaptic function that have been constantly or occasionally associated with a pathologic cerebellar phenotype, and several families with X-linked inheritance have been reported. Given the excess of males with ataxia, this group of conditions is probably underestimated and families of patients with neuroradiologic and clinical evidence of a cerebellar disorder should be counseled for high risk of X-linked inheritance.
Collapse
Affiliation(s)
- Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, Rome, Italy.
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesu' Children's Research Hospital, Rome, Italy
| |
Collapse
|
6
|
Large in-frame intragenic deletion of OPHN1 in a male patient with a normal intelligence quotient score. Clin Dysmorphol 2017; 26:47-49. [PMID: 27390894 DOI: 10.1097/mcd.0000000000000139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Mignon-Ravix C, Cacciagli P, Choucair N, Popovici C, Missirian C, Milh M, Mégarbané A, Busa T, Julia S, Girard N, Badens C, Sigaudy S, Philip N, Villard L. Intragenic rearrangements in X-linked intellectual deficiency: results of a-CGH in a series of 54 patients and identification of TRPC5 and KLHL15 as potential XLID genes. Am J Med Genet A 2014; 164A:1991-7. [PMID: 24817631 DOI: 10.1002/ajmg.a.36602] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/03/2014] [Indexed: 01/24/2023]
Abstract
High-resolution array comparative genomic hybridization (a-CGH) enables the detection of intragenic rearrangements, such as single exon deletion or duplication. This approach can lead to the identification of new disease genes. We report on the analysis of 54 male patients presenting with intellectual deficiency (ID) and a family history suggesting X-linked (XL) inheritance or maternal skewed X-chromosome inactivation (XCI), using a home-made X-chromosome-specific microarray covering the whole human X-chromosome at high resolution. The majority of patients had whole genome array-CGH prior to the selection and we did not include large rearrangements such as MECP2 and FMR1 duplications. We identified four rearrangements considered as causative or potentially pathogenic, corresponding to a detection rate of 8%. Two CNVs affected known XLID genes and were therefore considered as causative (IL1RAPL1 and OPHN1 intragenic deletions). Two new CNVs were considered as potentially pathogenic as they affected interesting candidates for ID. The first CNV is a deletion of the first exon of the TRPC5 gene, encoding a cation channel implicated in dendrite growth and patterning, in a child presenting with ID and an autism spectrum disorder (ASD). The second CNV is a partial deletion of KLHL15, in a patient with severe ID, epilepsy, and anomalies of cortical development. In both cases, in spite of strong arguments for clinical relevance, we were not able at this stage to confirm pathogenicity of the mutations, and the causality of the variants identified in XLID remains to be confirmed.
Collapse
Affiliation(s)
- Cécile Mignon-Ravix
- Inserm, UMR_S 910, Marseille, France; Aix Marseille Université, GMGF, Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
A novel in-frame deletion affecting the BAR domain of OPHN1 in a family with intellectual disability and hippocampal alterations. Eur J Hum Genet 2013; 22:644-51. [PMID: 24105372 DOI: 10.1038/ejhg.2013.216] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/12/2013] [Accepted: 08/16/2013] [Indexed: 12/13/2022] Open
Abstract
Oligophrenin-1 (OPHN1) is one of at least seven genes located on chromosome X that take part in Rho GTPase-dependent signaling pathways involved in X-linked intellectual disability (XLID). Mutations in OPHN1 were primarily described as an exclusive cause of non-syndromic XLID, but the re-evaluation of the affected individuals using brain imaging displayed fronto-temporal atrophy and cerebellar hypoplasia as neuroanatomical marks. In this study, we describe clinical, genetic and neuroimaging data of a three generation Brazilian XLID family co-segregating a novel intragenic deletion in OPHN1. This deletion results in an in-frame loss of exon 7 at transcription level (c.781_891del; r.487_597del), which is predicted to abolish 37 amino acids from the highly conserved N-terminal BAR domain of OPHN1. cDNA expression analysis demonstrated that the mutant OPHN1 transcript is stable and no abnormal splicing was observed. Features shared by the affected males of this family include neonatal hypotonia, strabismus, prominent root of the nose, deep set eyes, hyperactivity and instability/intolerance to frustration. Cranial MRI scans showed large lateral ventricles, vermis hypoplasia and cystic dilatation of the cisterna magna in all affected males. Interestingly, hippocampal alterations that have not been reported in patients with loss-of-function OPHN1 mutations were found in three affected individuals, suggesting an important function for the BAR domain in the hippocampus. This is the first description of an in-frame deletion within the BAR domain of OPHN1 and could provide new insights into the role of this domain in relation to brain and cognitive development or function.
Collapse
|
9
|
Utine GE, Kiper PÖ, Alanay Y, Haliloğlu G, Aktaş D, Boduroğlu K, Tunçbilek E, Alikaşifoğlu M. Searching for Copy Number Changes in Nonsyndromic X-Linked Intellectual Disability. Mol Syndromol 2011; 2:64-71. [PMID: 22511893 DOI: 10.1159/000334289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2011] [Indexed: 11/19/2022] Open
Abstract
Intellectual disability (ID) has a prevalence of 2-3% with 0.3% of the population being severely retarded. Etiology is heterogeneous, owing to numerous genetic and environmental factors. Underlying etiology remains undetermined in 75-80% of mildly disabled patients and 20-50% of those severely disabled. Twelve percent of all ID is thought to be X-linked (XLID). This study covers copy number analysis of some of the known XLID genes, using multiplex ligation-dependent probe amplification (MLPA) in 100 nonsyndromic patients. One of the patients was found to have duplication in all exons of MECP2 gene, and another had duplication in the fifth exon of TM4SF2/TSPAN7 gene. Affymetrix® 6.0 whole-genome SNP microarray confirmed the duplication in MECP2 and showed duplication of exons 2-7 in TM4SF2/TSPAN7, respectively. MECP2 duplication has recently been recognized as a syndromic cause of XLID in males, whereas duplications in TM4SF2/TSPAN7 are yet to be determined as a cause of XLID. Being an efficient, rapid, easy-to-perform, easy-to-interpret, and cost-effective method of copy number analysis of specific DNA sequences, MLPA presents wide clinical utility and may be included in diagnostic workup of ID, particularly when microarrays are unavailable as a first-line approach.
Collapse
Affiliation(s)
- G E Utine
- Clinical Genetics Unit, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Fickie MR, Stoler JM. Oculo-ectodermal syndrome: Report of a case with mosaicism for a deletion on Xq12. Am J Med Genet A 2011; 155A:3122-4. [DOI: 10.1002/ajmg.a.34294] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 07/28/2011] [Indexed: 11/09/2022]
|
11
|
Pirozzi F, Di Raimo FR, Zanni G, Bertini E, Billuart P, Tartaglione T, Tabolacci E, Brancaccio A, Neri G, Chiurazzi P. Insertion of 16 amino acids in the BAR domain of the oligophrenin 1 protein causes mental retardation and cerebellar hypoplasia in an Italian family. Hum Mutat 2011; 32:E2294-307. [PMID: 21796728 DOI: 10.1002/humu.21567] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 07/07/2011] [Indexed: 11/10/2022]
Abstract
We observed a three-generation family with two maternal cousins and an uncle affected by mental retardation (MR) with cerebellar hypoplasia. X-linked inheritance and the presence of cerebellar malformation suggested a mutation in the OPHN1 gene. In fact, mutational screening revealed a 2-bp deletion that abolishes a donor splicing site, resulting in the inclusion of the initial 48 nucleotides of intron 7 in the mRNA. This mutation determines the production of a mutant oligophrenin 1 protein with 16 extra amino acids inserted in-frame in the N-terminal BAR (Bin1/amphiphysin/Rvs167) domain. This is the first case of a mutation in OPHN1 that does not result in the production of a truncated protein or in its complete loss. OPHN1 (ARHGAP41) encodes a GTPase-activating (GAP) protein belonging to the GRAF subfamily characterized by an N-terminal BAR domain, followed by a pleckstrin-homology (PH) domain and the GAP domain. GRAF proteins play a role in endocytosis and are supposed to dimerize via their BAR domain, that induces membrane curvature. The extra 16 amino acids cause the insertion of 4.4 turns in the third alpha-helix of the BAR domain and apparently impair the protein function. In fact, the clinical phenotype of these patients is identical to that of patients with loss-of-function mutations.
Collapse
|
12
|
Zanni G, Bertini ES. X-linked disorders with cerebellar dysgenesis. Orphanet J Rare Dis 2011; 6:24. [PMID: 21569638 PMCID: PMC3115841 DOI: 10.1186/1750-1172-6-24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 05/15/2011] [Indexed: 12/15/2022] Open
Abstract
X-linked disorders with cerebellar dysgenesis (XLCD) are a genetically heterogeneous and clinically variable group of disorders in which the hallmark is a cerebellar defect (hypoplasia, atrophy or dysplasia) visible on brain imaging, caused by gene mutations or genomic imbalances on the X-chromosome. The neurological features of XLCD include hypotonia, developmental delay, intellectual disability, ataxia and/or other cerebellar signs. Normal cognitive development has also been reported. Cerebellar dysgenesis may be isolated or associated with other brain malformations or multiorgan involvement. There are at least 15 genes on the X-chromosome that have been constantly or occasionally associated with a pathological cerebellar phenotype. 8 XLCD loci have been mapped and several families with X-linked inheritance have been reported. Recently, two recurrent duplication syndromes in Xq28 have been associated with cerebellar hypoplasia. Given the report of several forms of XLCD and the excess of males with ataxia, this group of conditions is probably underestimated and families of patients with neuroradiological and clinical evidence of a cerebellar disorder should be counseled for high risk of X-linked inheritance.
Collapse
Affiliation(s)
- Ginevra Zanni
- Unit of Molecular Medicine, Departement of Neurosciences, Bambino Gesù ediatric Research Hospital, 4 Piazza S. Onofrio, 00165 Rome, Italy.
| | | |
Collapse
|
13
|
Al-Owain M, Kaya N, Al-Zaidan H, Al-Hashmi N, Al-Bakheet A, Al-Muhaizea M, Chedrawi A, Basran RK, Milunsky A. Novel intragenic deletion in OPHN1 in a family causing XLMR with cerebellar hypoplasia and distinctive facial appearance. Clin Genet 2011; 79:363-70. [DOI: 10.1111/j.1399-0004.2010.01462.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|