1
|
Alemany I, Rose JN, Ferreira PF, Pennell DJ, Nielles‐Vallespin S, Scott AD, Doorly DJ. Realistic numerical simulations of diffusion tensor cardiovascular magnetic resonance: The effects of perfusion and membrane permeability. Magn Reson Med 2023; 90:1641-1656. [PMID: 37415339 PMCID: PMC10952789 DOI: 10.1002/mrm.29737] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/19/2023] [Accepted: 05/16/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE To study the sensitivity of diffusion tensor cardiovascular magnetic resonance (DT-CMR) to microvascular perfusion and changes in cell permeability. METHODS Monte Carlo (MC) random walk simulations in the myocardium have been performed to simulate self-diffusion of water molecules in histology-based media with varying extracellular volume fraction (ECV) and permeable membranes. The effect of microvascular perfusion on simulations of the DT-CMR signal has been incorporated by adding the contribution of particles traveling through an anisotropic capillary network to the diffusion signal. The simulations have been performed considering three pulse sequences with clinical gradient strengths: monopolar stimulated echo acquisition mode (STEAM), monopolar pulsed-gradient spin echo (PGSE), and second-order motion-compensated spin echo (MCSE). RESULTS Reducing ECV intensifies the diffusion restriction and incorporating membrane permeability reduces the anisotropy of the diffusion tensor. Widening the intercapillary velocity distribution results in increased measured diffusion along the cardiomyocytes long axis when the capillary networks are anisotropic. Perfusion amplifies the mean diffusivity for STEAM while the opposite is observed for short diffusion encoding time sequences (PGSE and MCSE). CONCLUSION The effect of perfusion on the measured diffusion tensor is reduced using an increased reference b-value. Our results pave the way for characterization of the response of DT-CMR to microstructural changes underlying cardiac pathology and highlight the higher sensitivity of STEAM to permeability and microvascular circulation due to its longer diffusion encoding time.
Collapse
Affiliation(s)
- Ignasi Alemany
- Department of AeronauticsImperial College LondonLondonUK
- Cardiovascular Magnetic Resonance Unit, Royal Brompton HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Jan N. Rose
- Department of AeronauticsImperial College LondonLondonUK
| | - Pedro F. Ferreira
- Cardiovascular Magnetic Resonance Unit, Royal Brompton HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Dudley J. Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Sonia Nielles‐Vallespin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Andrew D. Scott
- Cardiovascular Magnetic Resonance Unit, Royal Brompton HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | | |
Collapse
|
2
|
Abstract
The design of the energy metabolism system in striated muscle remains a major area of investigation. Here, we review our current understanding and emerging hypotheses regarding the metabolic support of muscle contraction. Maintenance of ATP free energy, so called energy homeostasis, via mitochondrial oxidative phosphorylation is critical to sustained contractile activity, and this major design criterion is the focus of this review. Cell volume invested in mitochondria reduces the space available for generating contractile force, and this spatial balance between mitochondria acontractile elements to meet the varying sustained power demands across muscle types is another important design criterion. This is accomplished with remarkably similar mass-specific mitochondrial protein composition across muscle types, implying that it is the organization of mitochondria within the muscle cell that is critical to supporting sustained muscle function. Beyond the production of ATP, ubiquitous distribution of ATPases throughout the muscle requires rapid distribution of potential energy across these large cells. Distribution of potential energy has long been thought to occur primarily through facilitated metabolite diffusion, but recent analysis has questioned the importance of this process under normal physiological conditions. Recent structural and functional studies have supported the hypothesis that the mitochondrial reticulum provides a rapid energy distribution system via the conduction of the mitochondrial membrane potential to maintain metabolic homeostasis during contractile activity. We extensively review this aspect of the energy metabolism design contrasting it with metabolite diffusion models and how mitochondrial structure can play a role in the delivery of energy in the striated muscle.
Collapse
Affiliation(s)
- Brian Glancy
- Muscle Energetics Laboratory, National Heart, Lung, and Blood Insititute and National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, Maryland
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Insititute, Bethesda, Maryland
| | - Robert S Balaban
- Muscle Energetics Laboratory, National Heart, Lung, and Blood Insititute and National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, Maryland
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Insititute, Bethesda, Maryland
| |
Collapse
|
3
|
Spinner GR, Stoeck CT, Mathez L, von Deuster C, Federau C, Kozerke S. On probing intravoxel incoherent motion in the heart‐spin‐echo versus stimulated‐echo DWI. Magn Reson Med 2019; 82:1150-1163. [DOI: 10.1002/mrm.27777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/06/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Georg R. Spinner
- Institute for Biomedical Engineering University and ETH Zurich Zurich Switzerland
| | - Christian T. Stoeck
- Institute for Biomedical Engineering University and ETH Zurich Zurich Switzerland
| | - Linda Mathez
- Institute for Biomedical Engineering University and ETH Zurich Zurich Switzerland
| | | | - Christian Federau
- Institute for Biomedical Engineering University and ETH Zurich Zurich Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering University and ETH Zurich Zurich Switzerland
| |
Collapse
|
4
|
Montero D, Lundby C. Effects of Exercise Training in Hypoxia Versus Normoxia on Vascular Health. Sports Med 2018; 46:1725-1736. [PMID: 27286988 DOI: 10.1007/s40279-016-0570-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Exercise training (ExT) prompts multiple beneficial adaptations associated with vascular health, such as increases in skeletal muscle capillarization and vascular dilator function and decreases in arterial stiffness. However, whether ExT performed in hypoxic conditions induces enhanced effects is unclear. OBJECTIVE We sought to systematically review the literature and determine whether hypoxic ExT leads to superior vascular adaptations compared with normoxic ExT. METHODS We searched MEDLINE, Scopus, and Web of Science from their inception until September 2015 for articles assessing vascular adaptations to ExT performed under hypoxic and normoxic conditions. We performed meta-analyses to determine the standardized mean difference (SMD) between the effects of ExT performed in hypoxia versus normoxia on vascular adaptations. We assessed heterogeneity among studies using I 2 statistics and evaluated publication bias via the Begg and Mazumdar's rank correlation test and Egger's regression test. RESULTS After systematic review, we included 21 controlled studies, including a total of 331 individuals (mean age 19-57 years, 265 males). ExT programs primarily consisted of cycling endurance training performed in normobaric hypoxia or normoxia; duration ranged from 3 to 10 weeks. The exercise intensity was similar in relative terms in the groups trained in hypoxia and normoxia in the majority of studies (17 of 21). After data pooling, skeletal muscle capillarization (n = 182, SMD = 0.40, 95 % confidence interval [CI] 0.10-0.70; P = 0.01) and vascular dilator function (n = 71, SMD = 0.67, 95 % CI 0.17-1.18; P = 0.009) but not arterial stiffness (n = 112, SMD = -0.03, 95 % CI -0.69 to 0.63; P = 0.93), were enhanced with ExT performed in hypoxia versus normoxia. We only found heterogeneity among studies assessing arterial stiffness (I 2 = 63 %, P = 0.02), and no publication bias was detected. CONCLUSION Based on current published studies, hypoxic ExT potentiates vascular adaptations related to skeletal muscle capillarization and dilator function. These findings may contribute to establishing effective exercise programs designed to enhance vascular health.
Collapse
Affiliation(s)
- David Montero
- Institute of Physiology, ZIHP, University of Zurich, Office 23 J 64, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Carsten Lundby
- Institute of Physiology, ZIHP, University of Zurich, Office 23 J 64, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
5
|
Baum O, Sollberger C, Raaflaub A, Odriozola A, Spohr G, Frese S, Tschanz SA. Increased capillary tortuosity and pericapillary basement membrane thinning in skeletal muscle of mice undergoing running wheel training. ACTA ACUST UNITED AC 2018; 221:jeb.171819. [PMID: 29246972 DOI: 10.1242/jeb.171819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 12/09/2017] [Indexed: 01/09/2023]
Abstract
To work out which microvascular remodeling processes occur in murine skeletal muscle during endurance exercise, we subjected C57BL/6 mice to voluntary running wheel training for 1 week (1 wk-t) or 6 weeks (6 wks-t). By means of morphometry, the capillarity as well as the compartmental and sub-compartmental structure of the capillaries were quantitatively described at the light microscopy level and at the electron microscopy level, respectively, in the plantaris (PLNT) muscle of the exercising mice in comparison to untrained littermates. In the early phase of the training (1 wk-t), angiogenesis [32% higher capillary/fiber (C/F) ratio; P<0.05] in PLNT muscle was accompanied by a tendency for capillary lumen enlargement (30%; P=0.06) and a reduction of the pericapillary basement membrane thickness [(CBMT) 12.7%; P=0.09] as well as a 21% shortening of intraluminal protrusion length (P<0.05), all compared with controls. After long-term training (6 wks-t), when the mice reached a steady state in running activity, additional angiogenesis (C/F ratio: 76%; P<0.05) and a 16.3% increase in capillary tortuosity (P<0.05) were established, accompanied by reversal of the lumen expansion (23%; P>0.05), further reduction of the CBMT (16.5%; P<0.05) and additional shortening of the intraluminal protrusion length (23%; P<0.05), all compared with controls. Other structural indicators, such as capillary profile sizes, profile area densities, perimeters of the capillary compartments and concentrations of endothelium-pericyte peg-socket junctions, were not significantly different between the mouse groups. Besides angiogenesis, increase of capillary tortuosity and reduction of CBMT represent the most striking microvascular remodeling processes in skeletal muscle of mice that undergo running wheel training.
Collapse
Affiliation(s)
- Oliver Baum
- Institute of Physiology, Charité-Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | | | - Andrea Raaflaub
- Institute of Anatomy, University of Bern, CH-3012 Bern, Switzerland
| | - Adolfo Odriozola
- Institute of Anatomy, University of Bern, CH-3012 Bern, Switzerland
| | - Gunnar Spohr
- Institute of Physiology, Charité-Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | - Sebastian Frese
- Institute of Physiology, Charité-Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | - Stefan A Tschanz
- Institute of Anatomy, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
6
|
Eržen I, Janáček J, Kreft M, Kubínová L, Cvetko E. Capillary Network Morphometry of Pig Soleus Muscle Significantly Changes in 24 Hours After Death. J Histochem Cytochem 2018; 66:23-31. [PMID: 29095670 PMCID: PMC5761944 DOI: 10.1369/0022155417737061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/20/2017] [Indexed: 11/22/2022] Open
Abstract
Capillary network characteristics are invaluable for diagnostics of muscle diseases. Biopsy material is limited in size and mostly not accessible for intensive research. Therefore, especially in human tissue, studies are performed on autopsy material. To approach the problem whether it is reliable to deduce hypotheses from autopsy material to explain physiological and pathological processes, we studied capillarity in pig soleus muscle 1 and 24 hr after death. Capillaries and muscle fibers were immunofluorescently marked, and images were acquired with a confocal microscope. Characteristics of the capillary network were estimated by image analysis methods using several plugins of the Ellipse program. Twenty-four hours after death, the measured characteristics of the capillary network differ by up to 50% when compared with samples excised 1 hr after death. Muscle fiber diameter, the measured capillary length, and tortuosity were reduced, and capillary network became more anisotropic. The main postmortem change that affects capillaries is evidently geometric deformation of muscle tissue. In conclusion, when comparing results from biopsy samples with those from autopsy samples, the effect of postmortem changes on the measured parameters must be carefully considered.
Collapse
Affiliation(s)
- Ida Eržen
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jiří Janáček
- Department of Biomathematics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Marko Kreft
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Lucie Kubínová
- Department of Biomathematics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Erika Cvetko
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
7
|
Mortensen SP, Egginton S, Madsen M, Hansen JB, Munch GDW, Iepsen UW, Åkerström T, Pedersen BK, Hellsten Y. Alpha adrenergic receptor blockade increases capillarization and fractional O 2 extraction and lowers blood flow in contracting human skeletal muscle. Acta Physiol (Oxf) 2017; 221:32-43. [PMID: 28199786 DOI: 10.1111/apha.12857] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/17/2017] [Accepted: 02/10/2017] [Indexed: 12/28/2022]
Abstract
AIM To assess the effect of elevated basal shear stress on angiogenesis in humans and the role of enhanced skeletal muscle capillarization on blood flow and O2 extraction. METHODS Limb haemodynamics and O2 extraction were measured at rest and during one-leg knee-extensor exercise (12 and 24 W) in 10 healthy untrained young men before and after 4-week treatment with an α1 receptor-antagonist (Terazosin, 1-2 mg day-1 ). Corresponding biopsies were taken from the m. vastus lateralis. RESULTS Resting leg blood flow was increased by 57% 6 h following Terazosin treatment (P < 0.05), while basal capillary-to-fibre ratio was 1.69 ± 0.08 and increased to 1.90 ± 0.08 after treatment (P < 0.05). Leg O2 extraction during knee-extensor exercise was higher (4-5%; P < 0.05), leg blood flow and venous lactate levels lower (6-7%; P < 0.05), while leg VO2 was not different after Terazosin treatment. CONCLUSIONS These results demonstrate that daily treatment with an α-adrenergic receptor blocker induces capillary growth in human skeletal muscle, likely due to increased shear stress. The increase in capillarization resulted in an increased fractional O2 extraction, a lower blood flow and venous lactate levels in the exercising leg. The increase in capillarization, and concomitant functional readouts in the exercising leg, may provide a basis for novel angiotherapy.
Collapse
Affiliation(s)
- S. P. Mortensen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - S. Egginton
- School of Biomedical Sciences; University of Leeds; Leeds UK
| | - M. Madsen
- Department of Nutrition, Exercise and Sport; University of Copenhagen; Copenhagen Denmark
| | - J. B. Hansen
- Department of Nutrition, Exercise and Sport; University of Copenhagen; Copenhagen Denmark
| | - G. D. W. Munch
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - U. W. Iepsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - T. Åkerström
- Department of Nutrition, Exercise and Sport; University of Copenhagen; Copenhagen Denmark
| | - B. K. Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - Y. Hellsten
- Department of Nutrition, Exercise and Sport; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
8
|
Baum O, Bigler M. Pericapillary basement membrane thickening in human skeletal muscles. Am J Physiol Heart Circ Physiol 2016; 311:H654-66. [PMID: 27371680 DOI: 10.1152/ajpheart.00048.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/19/2016] [Indexed: 01/09/2023]
Abstract
The basement membrane (BM) surrounding capillaries in skeletal muscles varies physiologically in thickness according to age, physical fitness, and anatomical site in humans. Furthermore, the pericapillary BM thickness (CBMT) increases pathophysiologically during several common disease states, including peripheral arterial disease and diabetes mellitus. This review on CBM thickening in human skeletal muscles is two pronged. First, it addresses the advantages/disadvantages of grid- and tablet-based measuring and morphometric techniques that are implemented to assess the CBMT on transmission electron micrographs. Second, it deals with the biology of CBM thickening in skeletal muscles, particularly its possible causes, molecular mechanisms, and functional impact. CBM thickening is triggered by several physical factors, including diabetes-associated glycation, hydrostatic pressure, and inflammation. Increased biosynthesis of type IV collagen expression or repetitive cycles in pericyte or endothelial cell degeneration/proliferation appear to be most critical for CBM accumulation. A thickened CBM obviously poses a greater barrier for diffusion, lowers the microvascular elasticity, and impedes transcytosis of inflammatory cells. Our own morphometric data reveal the CBM enlargement to be not accompanied by the pericyte coverage. Owing to an overlap or redundancy in the capillary supply, CBM thickening in skeletal muscles might not be such a devastating occurrence as in organs with endarterial circulation (e.g., kidney and retina). CBM growth in skeletal muscles can be reversed by training or administration of antidiabetic drugs. In conclusion, CBM thickening in skeletal muscles is a microvascular remodeling process by which metabolic, hemodynamic, and inflammatory forces are integrated together and which could play a hitherto underestimated role in etiology/progression of human diseases.
Collapse
Affiliation(s)
- Oliver Baum
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marius Bigler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
9
|
Olfert IM, Baum O, Hellsten Y, Egginton S. Advances and challenges in skeletal muscle angiogenesis. Am J Physiol Heart Circ Physiol 2015; 310:H326-36. [PMID: 26608338 PMCID: PMC4796623 DOI: 10.1152/ajpheart.00635.2015] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/18/2015] [Indexed: 12/25/2022]
Abstract
The role of capillaries is to serve as the interface for delivery of oxygen and removal of metabolites to/from tissues. During the past decade there has been a proliferation of studies that have advanced our understanding of angiogenesis, demonstrating that tissue capillary supply is under strict control during health but poorly controlled in disease, resulting in either excessive capillary growth (pathological angiogenesis) or losses in capillarity (rarefaction). Given that skeletal muscle comprises nearly 40% of body mass in humans, skeletal muscle capillary density has a significant impact on metabolism, endocrine function, and locomotion and is tightly regulated at many different levels. Skeletal muscle is also high adaptable and thus one of the few organ systems that can be experimentally manipulated (e.g., by exercise) to study physiological regulation of angiogenesis. This review will focus on the methodological concerns that have arisen in determining skeletal muscle capillarity and highlight the concepts that are reshaping our understanding of the angio-adaptation process. We also summarize selected new findings (physical influences, molecular changes, and ultrastructural rearrangement of capillaries) that identify areas of future research with the greatest potential to expand our understanding of how angiogenesis is normally regulated, and that may also help to better understand conditions of uncontrolled (pathological) angiogenesis.
Collapse
Affiliation(s)
- I Mark Olfert
- Center for Cardiovascular and Respiratory Sciences and Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia;
| | - Oliver Baum
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Ylva Hellsten
- Integrative Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; and
| | - Stuart Egginton
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
10
|
Glancy B, Hsu LY, Dao L, Bakalar M, French S, Chess DJ, Taylor JL, Picard M, Aponte A, Daniels MP, Esfahani S, Cushman S, Balaban RS. In vivo microscopy reveals extensive embedding of capillaries within the sarcolemma of skeletal muscle fibers. Microcirculation 2015; 21:131-47. [PMID: 25279425 DOI: 10.1111/micc.12098] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/03/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To provide insight into mitochondrial function in vivo, we evaluated the 3D spatial relationship between capillaries, mitochondria, and muscle fibers in live mice. METHODS 3D volumes of in vivo murine TA muscles were imaged by MPM. Muscle fiber type, mitochondrial distribution, number of capillaries, and capillary-to-fiber contact were assessed. The role of Mb-facilitated diffusion was examined in Mb KO mice. Distribution of GLUT4 was also evaluated in the context of the capillary and mitochondrial network. RESULTS MPM revealed that 43.6 ± 3.3% of oxidative fiber capillaries had ≥50% of their circumference embedded in a groove in the sarcolemma, in vivo. Embedded capillaries were tightly associated with dense mitochondrial populations lateral to capillary grooves and nearly absent below the groove. Mitochondrial distribution, number of embedded capillaries, and capillary-to-fiber contact were proportional to fiber oxidative capacity and unaffected by Mb KO. GLUT4 did not preferentially localize to embedded capillaries. CONCLUSIONS Embedding capillaries in the sarcolemma may provide a regulatory mechanism to optimize delivery of oxygen to heterogeneous groups of muscle fibers. We hypothesize that mitochondria locate to PV regions due to myofibril voids created by embedded capillaries, not to enhance the delivery of oxygen to the mitochondria.
Collapse
Affiliation(s)
- Brian Glancy
- Laboratory of Cardiac Energetics, NHLBI, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Design-based stereology: Planning, volumetry and sampling are crucial steps for a successful study. Ann Anat 2013; 196:3-11. [PMID: 23769130 DOI: 10.1016/j.aanat.2013.04.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 04/19/2013] [Accepted: 04/29/2013] [Indexed: 11/23/2022]
Abstract
Quantitative data obtained by means of design-based stereology can add valuable information to studies performed on a diversity of organs, in particular when correlated to functional/physiological and biochemical data. Design-based stereology is based on a sound statistical background and can be used to generate accurate data which are in line with principles of good laboratory practice. In addition, by adjusting the study design an appropriate precision can be achieved to find relevant differences between groups. For the success of the stereological assessment detailed planning is necessary. In this review we focus on common pitfalls encountered during stereological assessment. An exemplary workflow is included, and based on authentic examples, we illustrate a number of sampling principles which can be implemented to obtain properly sampled tissue blocks for various purposes.
Collapse
|
12
|
Webster KN, Dawson TJ. The high aerobic capacity of a small, marsupial rat-kangaroo (Bettongia penicillata) is matched by the mitochondrial and capillary morphology of its skeletal muscles. J Exp Biol 2012; 215:3223-30. [PMID: 22660784 DOI: 10.1242/jeb.071365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined the structure-function relationships that underlie the aerobic capacities of marsupial mammals that hop. Marsupials have relatively low basal metabolic rates (BMR) and historically were seen as 'low energy' mammals. However, the red kangaroo, Macropus rufus (family Macropodidae), has aerobic capacities equivalent to athletic placentals. It has an extreme aerobic scope (fAS) and its large locomotor muscles feature high mitochondrial and capillary volumes. M. rufus belongs to a modern group of kangaroos and its high fAS is not general for marsupials. However, other hopping marsupials may have elevated aerobic capacities. Bettongia penicillata, a rat-kangaroo (family Potoroidae), is a small (1 kg), active hopper whose fAS is somewhat elevated. We examined the oxygen delivery system in its muscles to ascertain links with hopping. An elevated fAS of 23 provided a relatively high maximal aerobic oxygen consumption ( ) in B. penicillata; associated with this is a skeletal muscle mass of 44% of body mass. Ten muscles were sampled to estimate the total mitochondrial and capillary volume of the locomotor muscles. Values in B. penicillata were similar to those in M. rufus and in athletic placentals. This small hopper had high muscle mitochondrial volume densities (7.1-11.9%) and both a large total capillary volume (6 ml kg(-1) body mass) and total capillary erythrocyte volume (3.2 ml kg(-1)). Apparently, a considerable aerobic capacity is required to achieve the benefits of the extended stride in fast hopping. Of note, the ratio of to total muscle mitochondrial volume in B. penicillata was 4.9 ml O(2) min(-1) ml(-1). Similar values occur in M. rufus and also placental mammals generally, not only athletic species. If such relationships occur in other marsupials, a fundamental structure-function relationship for oxygen delivery to muscles likely originated with or before the earliest mammals.
Collapse
Affiliation(s)
- Koa N Webster
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | |
Collapse
|
13
|
Ladd AABL, Ladd FVL, da Silva AAP, Oliveira MF, de Souza RR, Coppi AA. SCG postnatal remodelling--hypertrophy and neuron number stability--in Spix's yellow-toothed cavies (Galea spixii). Int J Dev Neurosci 2011; 30:129-37. [PMID: 22212604 DOI: 10.1016/j.ijdevneu.2011.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/04/2011] [Accepted: 12/04/2011] [Indexed: 02/05/2023] Open
Abstract
Whilst a fall in neuron numbers seems a common pattern during postnatal development, several authors have nonetheless reported an increase in neuron number, which may be associated with any one of a number of possible processes encapsulating either neurogenesis or late maturation and incomplete differentiation. Recent publications have thus added further fuel to the notion that a postnatal neurogenesis may indeed exist in sympathetic ganglia. In the light of these uncertainties surrounding the effects exerted by postnatal development on the number of superior cervical ganglion (SCG) neurons, we have used state-of-the-art design-based stereology to investigate the quantitative structure of SCG at four distinct timepoints after birth, viz., 1-3 days, 1 month, 12 months and 36 months. The main effects exerted by ageing on the SCG structure were: (i) a 77% increase in ganglion volume; (ii) stability in the total number of the whole population of SCG nerve cells (no change--either increase or decrease) during post-natal development; (iii) a higher proportion of uninucleate neurons to binucleate neurons only in newborn animals; (iv) a 130% increase in the volume of uninucleate cell bodies; and (v) the presence of BrdU positive neurons in animals at all ages. At the time of writing our results support the idea that neurogenesis takes place in the SCG of preás, albeit it warrants confirmation by further markers. We also hypothesise that a portfolio of other mechanisms: cell repair, maturation, differentiation and death may be equally intertwined and implicated in the numerical stability of SCG neurons during postnatal development.
Collapse
Affiliation(s)
- Aliny A B Lobo Ladd
- Laboratory of Stochastic Stereology and Chemical Anatomy (LSSCA)(1), Department of Surgery, College of Veterinary Medicine, University of São Paulo (USP), São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
14
|
Kochová P, Cimrman R, Janáček J, Witter K, Tonar Z. How to asses, visualize and compare the anisotropy of linear structures reconstructed from optical sections—A study based on histopathological quantification of human brain microvessels. J Theor Biol 2011; 286:67-78. [DOI: 10.1016/j.jtbi.2011.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 07/01/2011] [Accepted: 07/06/2011] [Indexed: 01/21/2023]
|
15
|
MATTFELDT T, CLARKE A, ARCHENHOLD G. Estimation of the directional distribution of spatial fibre processes using stereology and confocal scanning laser microscopy. J Microsc 2011. [DOI: 10.1111/j.1365-2818.1994.tb03432.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
|
17
|
Abstract
(1) Angiogenesis (growth of new capillaries from an existing capillary bed) may result from a mismatch in microvascular supply and metabolic demand (metabolic error signal). Krogh examined the distribution and number of capillaries to explore the correlation between O(2) delivery and O(2) consumption. Subsequently, the heterogeneity in angiogenic response within a muscle has been shown to reflect either differences in fibre type composition or mechanical load. However, local control leads to targetted angiogenesis in the vicinity of glycolytic fibre types following muscle stimulation, or oxidative fibres following endurance training, while heterogeneity of capillary spacing is maintained during ontogenetic growth. (2) Despite limited microscopy resolution and lack of specific markers, Krogh's interest in the structure of the capillary wall paved the way for understanding the mechanisms of capillary growth. Angiogenesis may be influenced by the response of perivascular or stromal cells (fibroblasts, macrophages and pericytes) to altered activity, likely acting as a source for chemical signals modulating capillary growth such as vascular endothelial growth factor. In addition, haemodynamic factors such as shear stress and muscle stretch play a significant role in adaptive remodelling of the microcirculation. (3) Most indices of capillarity are highly dependent on fibre size, resulting in possible bias because of scaling. To examine the consequences of capillary distribution, it is therefore helpful to quantify the area of tissue supplied by individual capillaries. This allows the spatial limitations inherent in most models of tissue oxygenation to be overcome generating an alternative approach to Krogh's tissue cylinder, the capillary domain, to improve descriptions of intracellular oxygen diffusion.
Collapse
Affiliation(s)
- S Egginton
- Department of Physiology, University of Birmingham, Birmingham, UK.
| |
Collapse
|
18
|
TSCHANZ S, BURRI P, WEIBEL E. A simple tool for stereological assessment of digital images: the STEPanizer. J Microsc 2011; 243:47-59. [DOI: 10.1111/j.1365-2818.2010.03481.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
ERŽEN I, JANÁČEK J, KUBÍNOVÁ L. Characterization of the Capillary Network in Skeletal Muscles From 3D Data. Physiol Res 2011; 60:1-13. [DOI: 10.33549/physiolres.931988] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In this review we present immunohistochemical methods for visualization of capillaries and muscle fibres in thick muscle sections. Special attention is paid to the procedures that preserve good morphology. Applying confocal microscopy and virtual 3D stereological grids, or tracing of capillaries in virtual reality, length of capillaries within a muscle volume or length of capillaries adjacent to a muscle fibre per fibre length, fibre surface area or fibre volume can be evaluated by an unbiased approach. Moreover, 3D models of capillaries and muscle fibres can be produced. Comparison of the developed methods with counting capillary profiles from 2D sections is discussed and the reader is warned that counting capillary profiles from 2D sections can underestimate the capillary length by as much as 75 percent. Application of the described 3D methodology is illustrated by the anatomical remodelling of capillarity during acute denervation and early reinnervation in the rat soleus and extensor digitorum longus muscles.
Collapse
Affiliation(s)
- I. ERŽEN
- Institute of Anatomy, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | |
Collapse
|
20
|
Ferraz de Carvalho CA, de Campos Boldrini S, Liberti EA. Estimating the length density of convoluted tubular systems - II: comparative analysis using five different methods. Micron 2010; 41:439-43. [PMID: 20378365 DOI: 10.1016/j.micron.2010.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/01/2010] [Accepted: 02/08/2010] [Indexed: 11/28/2022]
Abstract
An artificial convoluted tubular system with precise predefined parameters was created. It was stereologically analyzed in order to preview the potential probability to introduce errors when applied to biological systems like testicular tubes or glomerule like structures. The length of the convoluted tubules more frequently analyzed was estimated by five different methods. The analytical methods were based on both the number of tubule transections, which is related to the transection area and/or organ volume, and the axis length of an ideal cylinder. Tubular systems were analyzed with or without consideration of the transection shape. When shape was considered, two methods were compared: one evaluating the major and minor axes from elliptical profiles, and the other the crosses between parallel lines of a test system superimposed on circular, elliptical, or more complex profiles. Comparison of the five methods revealed different estimations of the length in relation to the pre-determined model, which varied from an 11.8% overestimation to a 39% underestimation. The fractionator method was proposed as alternative to diminish the work overload when counting intersections between lines of test systems and transection profiles. The results with the fractionator are very promising concerning the application of the method in laboratories of pathology.
Collapse
|
21
|
Karampinos DC, King KF, Sutton BP, Georgiadis JG. Intravoxel partially coherent motion technique: Characterization of the anisotropy of skeletal muscle microvasculature. J Magn Reson Imaging 2010; 31:942-53. [DOI: 10.1002/jmri.22100] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
22
|
|
23
|
Ravikumar P, Bellotto DJ, Johnson RL, Hsia CCW. Permanent alveolar remodeling in canine lung induced by high-altitude residence during maturation. J Appl Physiol (1985) 2009; 107:1911-7. [PMID: 19833809 DOI: 10.1152/japplphysiol.00552.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Young canines born at sea level (SL) and raised for 5 mo at high altitude (HA, 3,800 m), followed by return to SL before somatic maturation, showed enhanced alveolar gas exchange and diffusing capacity at rest and exercise that persisted into adulthood (McDonough P, Dane DM, Hsia CC, Yilmaz C, Johnson RL Jr. J Appl Physiol 100: 474-81, 2006; Hsia CCW, Johnson RL Jr, McDonough P, Dane DM, Hurst MD, Fehmel JL, Wagner HE, Wagner PD. J Appl Physiol 102: 1448-55, 2007). To examine the associated structural response, we quantified lung ultrastructure in male foxhounds raised at 3,800 m HA or their littermates raised at SL (n = 6 each) from 2.5 to 7.5 mo of age. Three years following return to SL, lungs were fixed for morphometric analysis. In HA-exposed animals compared with SL controls, lung volume at a given inflation pressure was higher with enlargement of alveolar ducts and sacs without significant differences in the volumes of alveolar cell components, septal tissue, or in alveolar-capillary surface areas. There was a shift toward a significantly lower harmonic mean thickness of the blood-gas diffusion barrier in HA-raised animals. As a control organ, muscle capillary length density of costal diaphragm was significantly higher in HA-raised animals, indicating parallel adaptation in oxygen transport organs. We conclude that, in actively growing animals, 5 mo of HA exposure that was discontinued before somatic maturation induced acinar remodeling that increased lung compliance and reduced the resistance of blood-gas diffusion barrier to diffusion that persisted into adulthood, but without permanent enhancement of alveolar tissue growth.
Collapse
Affiliation(s)
- Priya Ravikumar
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9034, USA
| | | | | | | |
Collapse
|
24
|
Krasnoperov RA, Gerasimov AN. Probability density functions for axial ratios of sectioning profiles of anisotropically arranged elliptical microvessels. Math Biosci 2009; 219:97-103. [PMID: 19318110 DOI: 10.1016/j.mbs.2009.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2007] [Revised: 03/03/2009] [Accepted: 03/13/2009] [Indexed: 10/21/2022]
Abstract
The article theoretically regards probability density functions (PDFs) for axial ratio (X/Y) of sectioning profiles of elliptical microvessels (MVs) arranged with anisotropy in a biological tissue volume. A technique for the PDF(X/Y) calculations in anisotropy of the elliptical MVs is described. The essence of this technique is introducing anisotropy in PDF(alpha,phi), i.e. the function of the joint distribution of the polar and planar angles alpha and phi, which define mutual orientation of the elliptical MVs and sectioning planes. With the aid of this technique, the anisotropy cases are studied with PDF(alpha,phi) given by pair combinations of the following distributions: (i) a uniform distribution of the angles alpha and/or phi, (ii) the angle alpha distribution with PDF(alpha)=sin alpha(alpha in [0,pi/2]), and (iii) Gaussian distributions of the alpha or phi values. Specifically, PDF(X/Y) curves are obtained for MVs with the true, or three-dimensional, axial ratio X(0)/Y(0)=2.0, and the anisotropy effects on the X/Y expected frequencies are analysed. Conclusions of this analysis, the PDF(X/Y) calculation technique, and the PDF(X/Y) curves obtained are useful for stereological reconstruction of anisotropically organised microcirculatory networks, with an ellipticity of their MVs being taken into consideration.
Collapse
Affiliation(s)
- R A Krasnoperov
- Proxima Technology Ltd., 5-2-64, General Karbyshev Blvd., Moscow 123154, Russia.
| | | |
Collapse
|
25
|
Janácek J, Cebasek V, Kubínová L, Ribaric S, Erzen I. 3D visualization and measurement of capillaries supplying metabolically different fiber types in the rat extensor digitorum longus muscle during denervation and reinnervation. J Histochem Cytochem 2009; 57:437-47. [PMID: 19124841 DOI: 10.1369/jhc.2008.953018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine whether capillarity in the denervated and reinnervated rat extensor digitorum longus muscle (EDL) is scaled by muscle fiber oxidative potential. We visualized capillaries adjacent to a metabolically defined fiber type and estimated capillarity of fibers with very high oxidative potential (O) vs fibers with very low oxidative potential (G). Capillaries and muscle fiber types were shown by a combined triple immunofluorescent technique and the histochemical method for NADH-tetrazolium reductase. Stacks of images were captured by a confocal microscope. Applying the Ellipse program, fibers were outlined, and the diameter, perimeter, cross-sectional area, length, surface area, and volume within the stack were calculated for both fiber types. Using the Tracer plug-in module, capillaries were traced within the three-dimensional (3D) volume, the length of capillaries adjacent to individual muscle fibers was measured, and the capillary length per fiber length (Lcap/Lfib), surface area (Lcap/Sfib), and volume (Lcap/Vfib) were calculated. Furthermore, capillaries and fibers of both types were visualized in 3D. In all experimental groups, O and G fibers significantly differed in girth, Lcap/Sfib, and Lcap/Vfib, but not in Lcap/Lfib. We conclude that capillarity in the EDL is scaled by muscle fiber size and not by muscle fiber oxidative potential.
Collapse
Affiliation(s)
- Jirí Janácek
- Department of Biomathematics, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
26
|
Ferraz de Carvalho CA, de Campos Boldrini S, Nishimaru F, Liberti EA. A simple method for estimating the length density of convoluted tubular systems. Micron 2007; 39:992-7. [PMID: 18024141 DOI: 10.1016/j.micron.2007.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 10/05/2007] [Accepted: 10/06/2007] [Indexed: 11/15/2022]
Abstract
We present a new method for estimating the length density (Lv) of convoluted tubular structures exhibiting an isotropic distribution. Although the traditional equation Lv=2Q/A is used, the parameter Q is obtained by considering the collective perimeters of tubular sections. This measurement is converted to a standard model of the structure, assuming that all cross-sections are approximately circular and have an average perimeter similar to that of actual circular cross-sections observed in the same material. The accuracy of this method was tested in eight experiments using hollow macaroni bent into helical shapes. After measuring the length of the macaroni segments, they were boiled and randomly packed into cylindrical volumes along with an aqueous suspension of gelatin and India ink. The solidified blocks were cut into slices 1.0 cm thick and 33.2 cm2 in area (A). The total perimeter of the macaroni cross-sections so revealed was stereologically estimated using a test system of straight parallel lines. Given Lv and the reference volume, the total length of macaroni in each section could be estimated. Additional corrections were made for the changes induced by boiling, and the off-axis position of the thread used to measure length. No statistical difference was observed between the corrected estimated values and the actual lengths. This technique is useful for estimating the length of capillaries, renal tubules, and seminiferous tubules.
Collapse
|
27
|
Abstract
AbstractThis brief review examines the athletic potential of mammals in general and the horse in particular as it relates to oxygen (O2) transport and utilization. The horse has been bred selectively for over six millennia based upon its ability to run fast. Whereas this has optimized cardiovascular and muscle function and the capacity to deliver and utilize O2, it has resulted in lung failure during intense exercise. Horses in their athletic prime are considered and attention is focused on their maximal capacities as related to O2transport, irrespective of ageper se. Following a few comments on the history of O2, this review moves from established principles of O2transport at the integrative organ level to the microcirculation and the processes and principles that govern O2offloading, where much remains to be discovered. Four principal questions are addressed: (1) as an athlete, what are the most outstanding physiological characteristics of the horse? (2) what anatomical and physiological capacities facilitate this superlative performance and such prodigious O2fluxes (i.e. maximal VO2)? (3) do cardiovascular dynamics or intramuscular energetic processes limit VO2kinetics (i.e. the speed at which VO2increases at the onset of exercise)? VO2kinetics determine the size of the O2deficit and as such represent an important determinant of muscle metabolism and fatigue; and (4) what determines the efficacy of muscle microcirculatory O2exchange?
Collapse
|
28
|
Parsons D, McIntyre K, Schulz W, Stray-Gundersen J. Capillarity of elite cross-country skiers: a lectin (Ulex europaeus I) marker. Scand J Med Sci Sports 2007. [DOI: 10.1111/j.1600-0838.1993.tb00368.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Parsons D, McIntyre K, Schulz W, Stray-Gundersen J. Capillarity of elite cross-country skiers: a lectin (Ulex europaeus I) marker. Scand J Med Sci Sports 2007. [DOI: 10.1111/j.1600-0838.1993.tb00385.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Cebasek V, Radochová B, Ribaric S, Kubínová L, Erzen I. Nerve injury affects the capillary supply in rat slow and fast muscles differently. Cell Tissue Res 2005; 323:305-12. [PMID: 16160855 DOI: 10.1007/s00441-005-0071-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 07/27/2005] [Indexed: 10/25/2022]
Abstract
The goal of this study was to determine the acute effects of permanent denervation on the length density of the capillary network in rat slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles and the effect of short-lasting reinnervation in slow muscle only. Denervation was performed by cutting the sciatic nerve. Both muscles were excised 2 weeks later. Reinnervation was studied 4 weeks after nerve crush in SOL muscle only. Capillaries and muscle fibres were visualised by triple immunofluorescent staining with antibodies against CD31 and laminin and with fluorescein-labelled Griffonia (Bandeira) simplicifolia lectin. A recently developed stereological approach allowing the estimation of the length of capillaries adjacent to each individual fibre (Lcap/Lfib) was employed. Three-dimensional virtual test grids were applied to stacks of optical images captured with a confocal microscope and their intersections with capillaries and muscle fibres were counted. Interrelationships among capillaries and muscle fibres were demonstrated with maximum intensity projection of the acquired stacks of optical images. The course of capillaries in EDL seemed to be parallel to the fibre axes, whereas in SOL, their preferential direction deviated from the fibre axes and formed more cross-connections among neighbouring capillaries. Lcap/Lfib was clearly reduced in denervated SOL but remained unchanged in EDL, although the muscle fibres significantly atrophied in both muscle types. When soleus muscle was reinnervated, capillary length per unit fibre length was completely restored. The physiological background for the different responses of the capillary network in slow and fast muscle is discussed.
Collapse
Affiliation(s)
- Vita Cebasek
- Institute of Anatomy, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
31
|
Mathieu-Costello O, Ju Y, Trejo-Morales M, Cui L. Greater capillary-fiber interface per fiber mitochondrial volume in skeletal muscles of old rats. J Appl Physiol (1985) 2005; 99:281-9. [PMID: 15774695 DOI: 10.1152/japplphysiol.00750.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective was to examine whether muscle structural capacity for O2 flux (i.e., capillary-to-fiber surface ratio) relative to fiber mitochondrial volume deteriorates with the muscle atrophy of aging in predominantly slow- (soleus, S) and fast-twitch (extensor digitorum longus, EDL) muscles of old (24 mo) and very old (35 mo) F344BN rats compared with adult (12 mo old). Wet muscle mass decreased 29% (196 +/- 4 to 139 +/- 5 mg) in S and 22% (192 +/- 3 to 150 +/- 3 mg) in EDL between 12 and 35 mo of age, without decline in body mass. Capillary density increased 65% (1,387 +/- 54 to 2,291 +/- 238 mm(-2)) in S and 130% (964 +/- 95 to 2,216 +/- 311 mm(-2)) in EDL, because of the muscle fiber atrophy, whereas capillary per fiber number remained unchanged. Altered capillary geometry, i.e., lesser contribution of tortuosity and branching to capillary length, was found in S at 35 compared with 12 and 24 mo, and not in EDL. Accounting for capillary geometry revealed 55% (1,776 +/- 78 to 2,750 +/- 271 mm(-2)) and 113% (1,194 +/- 112 to 2,540 +/- 343 mm(-2)) increases in capillary length-to-fiber volume ratio between 12 and 35 mo of age in S and EDL, respectively. Fiber mitochondrial volume density was unchanged over the same period, causing mitochondrial volume per micrometer fiber length to decrease in proportion to the fiber atrophy in both muscles. As a result of the smaller fiber mitochondrial volume in the face of the unchanged capillary-to-fiber number ratio, capillary-to-fiber surface ratio relative to fiber mitochondrial volume not only did not deteriorate, but in fact increased twofold in both muscles between 12 and 35 mo of age, independent of their different fiber type.
Collapse
Affiliation(s)
- O Mathieu-Costello
- Dept. of Medicine, 0623A, Univ. of California, San Diego, La Jolla, CA 92093-0623, USA
| | | | | | | |
Collapse
|
32
|
Abstract
The angiogenic response may be reliably evaluated only by the methods of quantitative morphology. These methods may appear deceivingly simple but they contain several possible pitfalls. This review presents major principles of proper methodology for determination of tissue vascularization using quantitative morphology. Description of appropriate preparation of the tissue is followed by a survey of methods available for visualization of the vascular structures, by the description of principles for proper sampling and measurements and, finally, by a section on how to present and interpret the results.
Collapse
Affiliation(s)
- Karel Rakusan
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
33
|
Clark JJ, Clark RJ, McMinn JT, Rodnick KJ. Microvascular and biochemical compensation during ventricular hypertrophy in male rainbow trout. Comp Biochem Physiol B Biochem Mol Biol 2004; 139:695-703. [PMID: 15581801 DOI: 10.1016/j.cbpc.2004.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 08/14/2004] [Accepted: 08/16/2004] [Indexed: 11/28/2022]
Abstract
We investigated whether there are compensatory changes in the coronary microvasculature, cardiac lipid metabolism, and myocyte ultrastructure associated with ventricular enlargement in male rainbow trout. Epicardial tissue was sampled at different stages of sexual maturation, and we estimated arterial capillary density, intercapillary diffusion distance, and applied a diffusion model to predict PO(2) at different workloads. We also measured biochemical indices of lipid metabolism and estimated fractional volumes of mitochondria and myofibrils in myocytes. Immature fish with nonenlarged ventricles had the highest capillary length densities (1620+/-158 mm mm(-3)). Maturing trout with moderate ventricular hypertrophy had lower capillary length densities (1103+/-58 mm mm(-3)) and similar diffusion distances (13.9+/-0.7 microm) compared with immature fish (11.7+/-0.9 microm). The largest ventricles had intermediate capillary length densities (1457+/-288 mm mm(-3)) and diffusion distances (12.8+/-0.8 microm). Modelling predicted that enlarged ventricles would not become anoxic even at maximal workloads. Biochemical markers of fatty acid metabolism and aerobic capacity were unchanged with hypertrophy. Volume densities of mitochondria and myofibrils were also not influenced by cardiac growth. In summary, ventricle hypertrophy results in expansion of the coronary capillary bed and the maintenance of the epicardial capacities for fat and oxidative metabolism.
Collapse
Affiliation(s)
- J Jason Clark
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209-8007, USA
| | | | | | | |
Collapse
|
34
|
Dawson TJ, Mifsud B, Raad MC, Webster KN. Aerobic characteristics of red kangaroo skeletal muscles: is a high aerobic capacity matched by muscle mitochondrial and capillary morphology as in placental mammals? J Exp Biol 2004; 207:2811-21. [PMID: 15235010 DOI: 10.1242/jeb.01115] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Marsupials and placentals together comprise the Theria, the advanced mammals, but they have had long independent evolutionary histories, with the last common ancestor occurring more than 125 million years ago. Although in the past the marsupials were considered to be metabolically `primitive', the red kangaroo Macropus rufus has been reported to have an aerobic capacity (V̇O2max)comparable to that of the most `athletic' of placentals such as dogs. However,kangaroos travel at moderate speeds with lower relative cost than quadrupedal placentals. Given the long independent evolution of the two therian groups,and their unusual locomotor energetics, do kangaroos achieve their high aerobic capacity using the same structural and functional mechanisms used by(athletic) placentals?
Red kangaroo skeletal muscle morphometry matched closely the general aerobic characteristics of placental mammals. The relationship between total mitochondrial volume in skeletal muscle and V̇O2max during exercise was identical to that in quadrupedal placentals, and differed from that in bipedal humans. As for placentals generally, red kangaroo mitochondrial oxygen consumption at V̇O2max was 4.7 ml O2 min–1 ml–1 of mitochondria. Also, the inner mitochondrial membrane densities were 35.8±0.7 m2 ml–1 of mitochondria, which is the same as for placental mammals, and the same pattern of similarity was seen for capillary densities and volumes.
The overall data for kangaroos was equivalent to that seen in athletic placentals such as dogs and pronghorns. Total skeletal muscle mass was high,being around 50% of body mass, and was concentrated around the pelvis and lower back. The majority of the muscles sampled had relatively high mitochondrial volume densities, in the range 8.8–10.6% in the major locomotor muscles. Again, capillary densities and capillary blood volumes followed the pattern seen for mitochondria. Our results indicate that the red kangaroo, despite its locomotion and extreme body form, shows fundamental aerobic/muscular relationships that appear common to both marsupials and placentals. The evolution of such metabolic relationships apparently predates the divergence of the therian groups in the early Cretaceous, and perhaps evolved in the mammal-like reptiles during the Triassic (220 million years ago) before the actual evolution of the mammals.
Collapse
Affiliation(s)
- Terence J Dawson
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | |
Collapse
|
35
|
Dawson TJ, Webster KN, Mifsud B, Raad E, Lee E, Needham AD. Functional capacities of marsupial hearts: size and mitochondrial parameters indicate higher aerobic capabilities than generally seen in placental mammals. J Comp Physiol B 2003; 173:583-90. [PMID: 12898164 DOI: 10.1007/s00360-003-0368-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2003] [Indexed: 11/28/2022]
Abstract
This study of marsupial hearts explored the aerobic capacities of this group of mammals; recent information suggests that marsupials possess higher aerobic abilities than previously accepted. Characteristics such as heart mass, mitochondrial features and capillary parameters were examined. A comprehensive study of the heart of red kangaroos was included because of the high maximum oxygen consumption of this species. Goats were also included as a reference placental mammal. Marsupials have a heart that is generally larger than that of placentals. The allometric equation for the relationship between heart mass and body mass for marsupials was M(h)=7.5M(b)(0.944) (M(h) in g and M(b) in kg); the equivalent equation for placental mammals was M(h)=6.0M(b)(0.97). Mitochondrial volume density and inner mitochondrial surface density do not differ between the two mammal groups; although capillary parameters indicated a lower capillary volume in marsupials. Heart size appears to be the major difference between the two groups. The overall pattern seen in marsupials is similar to that of "athletic" placentals and indicates a relatively high aerobic potential.
Collapse
Affiliation(s)
- T J Dawson
- School of Biological, Earth and Environmental Sciences, University of New South Wales, 2052, Sydney, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
36
|
Bernal D, Sepulveda C, Mathieu-Costello O, Graham JB. Comparative studies of high performance swimming in sharks I. Red muscle morphometrics, vascularization and ultrastructure. J Exp Biol 2003; 206:2831-43. [PMID: 12847127 DOI: 10.1242/jeb.00481] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tunas (family Scombridae) and sharks in the family Lamnidae are highly convergent for features commonly related to efficient and high-performance (i.e. sustained, aerobic) swimming. High-performance swimming by fishes requires adaptations augmenting the delivery, transfer and utilization of O(2) by the red myotomal muscle (RM), which powers continuous swimming. Tuna swimming performance is enhanced by a unique anterior and centrally positioned RM (i.e. closer to the vertebral column) and by structural features (relatively small fiber diameter, high capillary density and greater myoglobin concentration) increasing O(2) flux from RM capillaries to the mitochondria. A study of the structural and biochemical features of the mako shark (Isurus oxyrinchus) RM was undertaken to enable performance-capacity comparisons of tuna and lamnid RM. Similar to tunas, mako RM is positioned centrally and more anterior in the body. Another lamnid, the salmon shark (Lamna ditropis), also has this RM distribution, as does the closely related common thresher shark (Alopias vulpinus; family Alopiidae). However, in both the leopard shark (Triakis semifasciata) and the blue shark (Prionace glauca), RM occupies the position where it is typically found in most fishes; more posterior and along the lateral edge of the body. Comparisons among sharks in this study revealed no differences in the total RM quantity (approximately 2-3% of body mass) and, irrespective of position within the body, RM scaling is isometric in all species. Sharks thus have less RM than do tunas (4-13% of body mass). Relative to published data on other shark species, mako RM appears to have a higher capillary density, a greater capillary-to-fiber ratio and a higher myoglobin concentration. However, mako RM fiber size does not differ from that reported for other shark species and the total volume of mitochondria in mako RM is similar to that reported for other sharks and for tunas. Lamnid RM properties thus suggest a higher O(2) flux capacity than in other sharks; however, lamnid RM aerobic capacity appears to be less than that of tuna RM.
Collapse
Affiliation(s)
- D Bernal
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA.
| | | | | | | |
Collapse
|
37
|
Behnke BJ, McDonough P, Padilla DJ, Musch TI, Poole DC. Oxygen exchange profile in rat muscles of contrasting fibre types. J Physiol 2003; 549:597-605. [PMID: 12692174 PMCID: PMC2342949 DOI: 10.1113/jphysiol.2002.035915] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To determine whether fibre type affects the O2 exchange characteristics of skeletal muscle at the microcirculatory level we tested the hypothesis that, following the onset of contractions, muscle comprising predominately type I fibres (soleus, Sol, 86 % type I) would, based on demonstrated blood flow responses, exhibit a blunted microvascular PO2 (PO2,m, which is determined by the O2 delivery (QO2) to O2 uptake (VO2) ratio) profile (assessed via phosphorescence quenching) compared to muscle of primarily type II fibres (peroneal, Per, 84 % type II). PO2,m was measured at rest, and following the rest-contractions (twitch, 1 Hz, 2-4 V for 120 s) transition in Sol (n = 6) and Per (n = 6) muscles of Sprague-Dawley rats. Both muscles exhibited a delay followed by a mono-exponential decrease in PO2,m to the steady state. However, compared with Sol, Per demonstrated (1) a larger change in baseline minus steady state contracting PO2,m (DeltaPO2,m) (Per, 13.4 +/- 1.7 mmHg; Sol, 8.6 +/- 0.9 mmHg, P < 0.05); (2) a faster mean response time (i.e. time delay (TD) plus time constant (tau); Per, 23.8 +/- 1.5 s; Sol, 39.6 +/- 4.3 s, P < 0.05); and therefore (3) a greater rate of PO2,m decline (DeltaPO2,m/tau; Per, 0.92 +/- 0.08 mmHg s-1; Sol, 0.42 +/- 0.05 mmHg s-1, P < 0.05). These data demonstrate an increased microvascular pressure head of O2 at any given point after the initial time delay for Sol versus Per following the onset of contractions that is probably due to faster QO2 dynamics relative to those of VO2.
Collapse
Affiliation(s)
- Brad J Behnke
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506-5802, USA
| | | | | | | | | |
Collapse
|
38
|
Mathieu-Costello O, Morales S, Savolainen J, Vornanen M. Fiber capillarization relative to mitochondrial volume in diaphragm of shrew. J Appl Physiol (1985) 2002; 93:346-53. [PMID: 12070224 DOI: 10.1152/japplphysiol.00940.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective was to examine fiber capillarization in relation to fiber mitochondrial volume in the highly aerobic diaphragm of the shrew, the smallest mammal. The diaphragms of four common shrews [Sorex araneus; body mass, 8.2 +/- 1.3 (SE) g] and four lesser shrews (Sorex minutus, 2.6 +/- 0.1 g) were perfusion fixed in situ, processed for electron microscopy, and analyzed by morphometry. Capillary length per fiber volume was extremely high, at values of 8,008 +/- 1,054 and 12,332 +/- 625 mm(-2) in S. araneus and S. minutus, respectively (P = 0.012), with no difference in capillary geometry between the two species. Fiber mitochondrial volume density was 28.5 +/- 2.3% (S. araneus) and 36.5 +/- 1.4% (S. minutus; P = 0.025), yielding capillary length per milliliter mitochondria values (S. araneus, 27.8 +/- 1.5 km; S. minutus, 33.9 +/- 2.2 km; P = 0.06) as high as in the flight muscle of the hummingbird and small bats. The size of the capillary-fiber interface (i.e., capillary surface per fiber surface ratio) per fiber mitochondrial volume in shrew diaphragm was also as high as in bird and bat flight muscles, and it was about two times greater than in rat hindlimb muscle. Thus, whereas fiber capillary and mitochondrial volume densities decreased with increased body mass in S. araneus compared with S. minutus Soricinae shrews, fiber capillarization per milliliter mitochondria in both species was much higher than previously reported for shrew diaphragm, and it matched that of the intensely aerobic flight muscles of birds and mammals.
Collapse
Affiliation(s)
- O Mathieu-Costello
- Department of Medicine, University of California, San Diego, La Jolla 92093-0623, USA.
| | | | | | | |
Collapse
|
39
|
Kubínová L, Janácek J, Ribaric S, Cebasek V, Erzen I. Three-dimensional study of the capillary supply of skeletal muscle fibres using confocal microscopy. J Muscle Res Cell Motil 2002; 22:217-27. [PMID: 11763194 DOI: 10.1023/a:1012201314440] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Three-dimensional (3D) study of capillary network of individual muscle fibres in rat extensor digitorum longus (EDL) and soleus (SOL) muscles is presented. Stereology and 3D reconstruction techniques were applied to stacks of serial optical sections recorded by a confocal microscope from thick muscle slices. The results suggest that SOL muscle fibres have a larger surface area and volume as well as a larger length of capillaries per fibre length than EDL. On the other hand, these two muscles have a similar ratio of capillary length to fibre surface area. The 3D approach to evaluation of muscle fibre capillarization brings many advantages over traditional measurements made on single muscle sections and could also be applied to the study of angiogenesis in other tissues.
Collapse
Affiliation(s)
- L Kubínová
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague.
| | | | | | | | | |
Collapse
|
40
|
Abstract
The purpose of this study was to examine muscle capillary supply in harbor seals. Locomotory and nonlocomotory muscles of four harbor seals (mass = 17.5-41 kg) were glutaraldehyde-perfusion fixed and samples processed for electron microscopy and analyzed by morphometry. Capillary-to-fiber number and surface ratios were 0.81 +/- 0.05 and 0.16 +/- 0.01, respectively. Capillary length and surface area per volume of muscle fiber were 1,495 +/- 83 mm/mm(3) and 22.4 +/- 1.6 mm(2)/mm(3), respectively. In the locomotory muscles, we measured capillary length and surface area per volume mitochondria (20.1 +/- 1.7 km/ml and 2,531 +/- 440 cm(2)/ml). All these values are 1.5-3 times lower than in muscles with similar or lower volume densities of mitochondria in dogs of comparable size. Compared with terrestrial mammals, the skeletal muscles of harbor seals do not match their increased aerobic enzyme capacities and mitochondrial volume densities with greater muscle capillary supply. They have a smaller capillary-to-fiber interface and capillary supply per fiber mitochondrial volume than terrestrial mammals of comparable size.
Collapse
Affiliation(s)
- S B Kanatous
- Department of Medicine 0623A, University of California at San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
41
|
Ressel SJ. Ultrastructural design of anuran muscles used for call production in relation to the thermal environment of a species. J Exp Biol 2001; 204:1445-57. [PMID: 11273806 DOI: 10.1242/jeb.204.8.1445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
I examined the aerobic trunk muscles, which are used for call production, of male frogs from species that breed in different thermal environments to test the hypothesis that cold-adapted frogs should have fewer capillaries per unit mitochondrial volume in oxidative muscles than warm-adapted frogs because of reduced mitochondrial function at low temperatures. The species of interest were the cold-temperate Pseudacris crucifer and the warm-tropical Hyla microcephala in the family Hylidae, and the cold-temperate Rana sylvatica and the warm-temperate Rana clamitans in the family Ranidae. Trunk-muscle mitochondrial volume, V(V)(mt,f), was proportionally higher in species with higher mean calling rates (number of notes per hour), irrespective of the familial affinity of a species and the thermal environment in which it vocalized. Trunk-muscle capillary length density, J(V)(c,f), was significantly lower in P. crucifer than in H. microcephala because of significantly higher mean fiber area, a-(f). Conversely, trunk-muscle J(V)(c,f) was similar in the two ranid species. Using total capillary length, J(c), and total mitochondrial volume, V(mt,m), as a measure of maximal oxygen supply and demand, respectively, in trunk muscles, J(c)-to-V(mt,m) ratios were significantly lower in cold-adapted P. crucifer (4.3 km cm(−)(3)) and R. sylvatica (4.8 km cm(−)(3)) than in warm-adapted H. microcephala (7.1 km cm(−)(3)) and R. clamitans (6.4 km cm(−)(3)). In contrast, J(c)-to-V(mt,m) ratios in the more anaerobic gastrocnemius muscle of these species was not related to the thermal environment of a species, which may reflect capillaries conforming to microcirculatory functions, e.g. lactate removal, that take precedence over oxygen delivery. Mitochondrial cristae surface area, S(V)(im,mt), in P. crucifer trunk and gastrocnemius muscles (37.7+/−1.6 and 35.9+/−1.5 m(2)cm(−)(3) respectively) was, on average, similar to mammalian values, suggesting equivalent structural capacities of muscle mitochondria in these two taxa. Taken together, the present data suggest that trunk-muscle respiratory design may reflect a capillary supply commensurate with maximal levels of oxygen delivery set by mitochondria operating at different environmental temperatures. P. crucifer and H. microcephala trunk muscles were also characterized by a high lipid content, which contrasted with a near absence of trunk-muscle lipids in R. sylvatica and R. clamitans. The extraordinarily high lipid content of P. crucifer trunk muscles (26 % of muscle volume) may serve as an auxiliary oxygen pathway to mitochondria and thus compensate in part for this tissue's reduced capillary/fiber interface. The effect of potentially high depletion rates of trunk-muscle lipid stores on metabolic rates of male frogs while calling is discussed.
Collapse
Affiliation(s)
- S J Ressel
- Department of Ecology and Evolutionary Biology, U-43, University of Connecticut, Storrs, CT 06269-3043, USA.
| |
Collapse
|
42
|
Hoppeler H. Vascular growth in hypoxic skeletal muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 474:277-86. [PMID: 10635007 DOI: 10.1007/978-1-4615-4711-2_21] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The critical role of skeletal muscle capillaries is the supply of oxygen to skeletal muscle fibers during conditions of maximal aerobic work. The supply of substrates under these conditions is not limited by the vascular bed but rather by the capacity of the sarcolemmal transporter systems. Because of this dominant role of oxygen supply in muscle tissue, hypoxia has generally been considered to be an important stimulus for capillary neo-formation in skeletal muscle. Early morphometric work seemed to indicate that animals exposed to permanent hypoxia had in fact a significantly improved vascular supply in muscle tissue. Later work questioned these early findings and it was concluded that hypoxia per se was not a sufficient stimulus for capillary neo-formation but that additional stimuli such as cold-exposure needed to be present. In humans exposed to severe hypoxia during simulated or real ascents to Mt. Everest an increase in capillary density was in fact found. However, this increase could be shown to result from a reduction of muscle fiber volume and not from capillary growth. Broadly compatible results were obtained in animal experiments in which changes in capillarity were assessed in muscles with limited blood supply which were exposed to chronic electrical stimulation. Recently we have shown that endurance exercise training in humans results in a rise in mRNA of vascular endothelial growth factor (VEGF) only when carried out vigorously and in hypoxia. These results indicate that molecular techniques will allow in the near future to delineate the role played by hypoxia in capillary neo-formation.
Collapse
Affiliation(s)
- H Hoppeler
- Department of Anatomy, University of Bern, Switzerland
| |
Collapse
|
43
|
Artacho-Pérula E, Roldán-Villalobos R, Cruz-Orive LM. Application of the fractionator and vertical slices to estimate total capillary length in skeletal muscle. J Anat 1999; 195 ( Pt 3):429-37. [PMID: 10580858 PMCID: PMC1468012 DOI: 10.1046/j.1469-7580.1999.19530429.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new stereological method is proposed which combines vertical slice projections with the fractionator to estimate the total capillary length in a skeletal muscle. The method was demonstrated on the soleus muscle of a Wistar rat. The implementation required capillary highlighting, tissue sampling, and data acquisition in the form of intersection counts between capillary projections and cycloid test lines. The capillaries were demonstrated using vascular perfusion (with gelatine) of the hind leg of the rat. The sampling procedure followed the fractionator design, namely a multistage systematic sampling design with a known sampling fraction at each stage. To make the design unbiased, vertical slices were used; for efficiency, the vertical axis was chosen parallel to the main axis of the muscle. As prescribed to avoid bias, the cycloid test lines were superimposed on the slice projections, viewed under the light microscope, with their minor axes normal to the vertical axis. The estimation precision was compared for different sampling and subsampling fractions. The proposed method was globally highly efficient, unbiased, and easy to implement.
Collapse
Affiliation(s)
- E Artacho-Pérula
- Department of Morphological Sciences, School of Medicine, University of Córdoba, Spain.
| | | | | |
Collapse
|
44
|
Lewis AM, Mathieu-Costello O, McMillan PJ, Gilbert RD. Effects of long-term, high-altitude hypoxia on the capillarity of the ovine fetal heart. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H756-62. [PMID: 10444503 DOI: 10.1152/ajpheart.1999.277.2.h756] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the effect of chronic hypoxia on myocardial capillarity, we exposed pregnant ewes to an altitude of 3,820 m from day 30 to day 139 of gestation and compared the fetus to low-altitude (approximately 300 m) controls. We hypothesized that capillarity would increase in the hypoxic myocardium to optimize oxygen and metabolite flux to hypoxic tissues. Fetal hearts were fixed by retrograde aortic perfusion and processed for microscopy and stereological evaluation. Fiber cross-sectional area and capillary density were measured and standardized to sarcomere length. Capillary volume density and capillary diameter were measured, capillary-to-fiber ratio and capillary length density were calculated, and the capillary anisotropy coefficient was obtained from a table of known values. Capillary-to-fiber ratio, capillary volume density, and the capillary anisotropy coefficient were not different between hypoxia and control groups. Capillary diameter was significantly larger in the right compared with the left ventricle of hypoxic but not control hearts; fiber cross-sectional area tended to be larger in the right ventricle of both groups, but this was not significant. As a result of larger fiber size, capillary density and capillary length density were significantly smaller in the right ventricle of hypoxic but not control fetal hearts. Contrary to our hypothesis, the ovine fetus does not show morphological adaptation in the myocardium after approximately 109 days of high-altitude hypoxic stress.
Collapse
Affiliation(s)
- A M Lewis
- Center for Perinatal Biology, Loma Linda University, Loma Linda 92350, California, USA.
| | | | | | | |
Collapse
|
45
|
Kobayashi M, Kawamura K, Honma M, Masuda H, Suzuki Y, Hasegawa H. Tunnel capillaries of cardiac myocyte in pressure-overloaded rat heart-an ultrastructural three-dimensional study. Microvasc Res 1999; 57:258-72. [PMID: 10329252 DOI: 10.1006/mvre.1999.2148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To characterize the configuration of "tunnel capillaries" in myocytes, an ultrastructural three-dimensional (3-D) study was performed on pressure-overloaded rat hearts induced by 16-week constriction of the ascending aorta. The hearts showed high incidence (6.1 +/- 3.6%) of tunnel capillary formation. Eighty-two myocytes (26.4%) had tunnel capillaries in a cubic block of 120 x 656 x 446 micron3, which provided 1000 ultrathin serial sections. The cross-sectional area (925 +/- 226 micron2) of myocytes with tunnel capillaries was significantly larger than that of myocytes without tunnel capillaries (702 +/- 196 micron2) (P < 0.0001). There were three types of tunnel capillaries. Type I (13%) started from one intercellular capillary, ran across the myocyte, and then merged with other intercellular capillaries. Type II tunnel capillaries (87%) entered the myocyte from one intercellular capillary and ended within the myocyte. Type III tunnel capillaries were characterized by various combination of types I and II, forming a tunnel capillary network. Tunnel capillaries usually entered a myocyte at the place where the myocyte split or indented. Although some tunnel capillaries might be newly formed by angiogenesis, our 3-D study suggests that some of them are a deformation consequence of the myocardium remodeling in response to pressure overloading.
Collapse
Affiliation(s)
- M Kobayashi
- Second Department of Pathology, Akita University School of Medicine, Akita, 1-1-1 Hondo, 010-8543, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Stereologic methods are used to obtain quantitative information about three-dimensional structures based on observations from section planes or--to a limited degree--projections. Stereologic methods, which are used in biologic research and especially in the research of normal and pathologic kidneys, will be discussed in this review. Special emphasis will be placed on modern stereologic methods, free of assumptions of the structure, size, and shape, etc., so-called UFAPP (unbiased for all practical purposes) stereologic methods. The basic foundation of all stereology, sampling, will be reviewed in relation to most of the methods discussed. Estimation of error variances and some of the basic problems in stereology will be reviewed briefly. Finally, a few comments will be made about the future directions for stereology in kidney research.
Collapse
Affiliation(s)
- J R Nyengaard
- Stereological Research Laboratory, University Institute of Pathology, University of Aarhus, Denmark.
| |
Collapse
|
47
|
Hepple RT, Agey PJ, Hazelwood L, Szewczak JM, MacMillen RE, Mathieu-Costello O. Increased capillarity in leg muscle of finches living at altitude. J Appl Physiol (1985) 1998; 85:1871-6. [PMID: 9804593 DOI: 10.1152/jappl.1998.85.5.1871] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An increased ratio of muscle capillary to fiber number (capillary/fiber number) at altitude has been found in only a few investigations. The highly aerobic pectoralis muscle of finches living at 4,000-m altitude (Leucosticte arctoa; A) was recently shown to have a larger capillary/fiber number and greater contribution of tortuosity and branching to total capillary length than sea-level finches (Carpodacus mexicanus; SL) of the same subfamily (O. Mathieu-Costello, P. J. Agey, L. Wu, J. M. Szewczak, and R. E. MacMillen. Respir. Physiol. 111: 189-199, 1998). To evaluate the role of muscle aerobic capacity on this trait, we examined the less-aerobic leg muscle (deep portion of anterior thigh) in the same birds. We found that, similar to pectoralis, the leg muscle in A finches had a greater capillary/fiber number (1.42 +/- 0.06) than that in SL finches (0.77 +/- 0.05; P < 0.01), but capillary tortuosity and branching were not different. As also found in pectoralis, the resulting larger capillary/fiber surface in A finches was proportional to a greater mitochondrial volume per micrometer of fiber length compared with that in SL finches. These observations, in conjunction with a trend to a greater (rather than smaller) fiber cross-sectional area in A than in SL finches (A: 484 +/- 42, SL: 390 +/- 26 micrometer2, both values at 2.5-micrometer sarcomere length; P = 0.093), support the notion that chronic hypoxia is also a condition in which capillary-to-fiber structure is organized to match the size of the muscle capillary-to-fiber interface to fiber mitochondrial volume rather than to minimize intercapillary O2 diffusion distances.
Collapse
Affiliation(s)
- R T Hepple
- Department of Medicine, University of California, San Diego, La Jolla 92093-0623, California, USA
| | | | | | | | | | | |
Collapse
|
48
|
Zhou AL, Egginton S, Brown MD, Hudlicka O. Capillary growth in overloaded, hypertrophic adult rat skeletal muscle: an ultrastructural study. Anat Rec (Hoboken) 1998; 252:49-63. [PMID: 9737744 DOI: 10.1002/(sici)1097-0185(199809)252:1<49::aid-ar6>3.0.co;2-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We examined the early stages of angiogenesis in overloaded m. extensor digitorum longus following extirpation of the agonist m. tibialis anterior. Capillary-to-fibre ratio increased after 1 week (1.54+/-0.02) vs. control (1.38+/0.06; P < 0.01) and resulted in a greater tortuosity of the capillary bed at 2 weeks, indicating the presence of lateral sprouts or anastomoses. Capillary endothelial cells (ECs) showed ultrastructural signs of activation, were thickened, and had irregular luminal and abluminal surfaces. The proportion of ECs with abluminal processes increased after overload (13.5+/-0.6% vs. 2.0+/-1.5%, 1 week vs. contralateral, P < 0.01; 12.5+/-2.6% vs. 3.5+/-0.6%, 2 weeks vs. contralateral, P < 0.01), whereas there was no significant change in proportion of luminal processes. Abluminal processes occurred in approximately 13% of capillaries in overloaded muscles (P < 0.01 v. control and contralateral), and most were associated with focal breakage of the basement membrane (BM). Small sprouts (<3 microm in diameter) comprised of one or two ECs sometimes lacked a lumen, and others had a slitlike or vacuolelike lumen between adjacent ECs or vacuolelike lumen formed by fusion of vesicles within a single EC. Endothelial mitosis was occasionally seen in nonsprouting capillaries with intact BM, increasing the average number of ECs per capillary from approximately 1.7 in control muscles to 2.1 after 1 week of overload (P < 0.05) when bromodeoxyuridine incorporation was also higher (P < 0.001). We conclude that muscle overload induces capillary growth by sprouting of existing capillaries, probably due to mechanical stretch acting from the abluminal side of the vessels.
Collapse
MESH Headings
- Animals
- Basement Membrane/cytology
- Basement Membrane/ultrastructure
- Capillaries/physiology
- Capillaries/ultrastructure
- Cell Division/physiology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/ultrastructure
- Male
- Microscopy, Electron
- Muscle Contraction/physiology
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/physiology
- Muscle Fibers, Skeletal/ultrastructure
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiology
- Neovascularization, Physiologic/physiology
- Rats
- Rats, Wistar
- S Phase/physiology
Collapse
Affiliation(s)
- A L Zhou
- Department of Physiology, University of Birmingham, United Kingdom
| | | | | | | |
Collapse
|
49
|
Larsen JO, Gundersen HJ, Nielsen J. Global spatial sampling with isotropic virtual planes: estimators of length density and total length in thick, arbitrarily orientated sections. J Microsc 1998; 191:238-248. [PMID: 9767488 DOI: 10.1046/j.1365-2818.1998.00365.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Existing design-based direct length estimators require random rotation around at least one axis of the tissue specimen prior to sectioning to ensure isotropy of test probes. In some tissue it is, however, difficult or even impossible to define the region of interest, unless the tissue is sectioned in a specific, nonrandom orientation. Spatial uniform sampling with isotropic virtual planes circumvents the use of physically isotropic or vertical sections. The structure that is contained in a thick physical section is investigated with software-randomized isotropic virtual planes in volume probes in systematically sampled microscope fields using computer-assisted stereological analysis. A fixed volume of 3D space in each uniformly sampled field is probed with systematic random, isotropic virtual planes by a line that moves across the computer screen showing live video images of the microscope field when the test volume is scanned with a focal plane. The intersections between the linear structure and the virtual probes are counted with columns of two dimensional disectors. Global spatial sampling with sets of isotropic uniform random virtual planes provides a basis for length density estimates from a set of parallel physical sections of any orientation preferred by the investigator, i.e. the simplest sampling scheme in stereology. Additional virtues include optimal conditions for reducing the estimator variance, the possibility to estimate total length directly using a fractionator design and the potential to estimate efficiently the distribution of directions from a set of parallel physical sections with arbitrary orientation. Other implementations of the basic idea, systematic uniform sampling using probes that have total 3D x 4pi freedom inside the section, and therefore independent of the position and the orientation of the physical section, are briefly discussed.
Collapse
Affiliation(s)
- JO Larsen
- Stereological Research Laboratory, University of Aarhus, Denmark; Institute of Pathology, Aalborg Hospital, Aalborg, Denmark; Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark
| | | | | |
Collapse
|
50
|
Xu L, Poole DC, Musch TI. Effect of heart failure on muscle capillary geometry: implications for 02 exchange. Med Sci Sports Exerc 1998; 30:1230-7. [PMID: 9710862 DOI: 10.1097/00005768-199808000-00008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED There is strong evidence that chronic heart chronic heart failure (CHF) impairs skeletal muscle function independent of blood flow and bulk O2 delivery. PURPOSE This investigation sought to determine whether alterations in muscle capillary geometry and surface area that are thought to be primary determinants of the efficacy for blood-tissue 02 exchange might be altered in CHF and contribute to these changes. METHODS Plantaris (fast twitch) and soleus (slow twitch) muscles from control (C) and 6- to 7-wk post myocardial infarcted (CHF) rates were perfusion-fixed in situ. These muscles were analyzed using morphometric techniques that facilitated determination of muscle sarcomere length fiber cross-sectional area, capillary tortuosity and branching coefficient (c(K,0)), capillary length, volume, and surface area. RESULTS Normalized to a sarcomere length of 2.1 microns, plantaris fiber cross-sectional area decreased by 21% (P < 0.05), and capillary-to-fiber ratio decreased from 2.05 +2- 0.07 in C to 1.79 +2- 0.04 (P < 0.05) in CHF, but these variables were unchanged in soleus. These was no change in c(K,0) or capillary diameter in either muscle, and thus capillary length and surface area per fiber volume remained unchanged. From the measured fiber atrophy and capillary involution in plantaris reductions of total muscle capillary length, volume, and surface area of 11%, 9% and 17%, respectively, are estimated. CONCLUSION These changes, coupled with reduced blood flow may impair the effective matching of muscle fiber 02 delivery to 02 requirement during repeated muscle contractions (i.e. exercise). The scenario is expected to reduce intramyocyte 02 partial pressure and thereby contribute to the greater fatigability characteristic of the CHF condition.
Collapse
Affiliation(s)
- L Xu
- Department of Kinesiology, Kansas State University, Manhattan, 66506-5602, USA
| | | | | |
Collapse
|