1
|
Koga D, Kusumi S, Yagi H, Kato K. Three-dimensional analysis of the intracellular architecture by scanning electron microscopy. Microscopy (Oxf) 2024; 73:215-225. [PMID: 37930813 DOI: 10.1093/jmicro/dfad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
The two-dimensional observation of ultrathin sections from resin-embedded specimens provides an insufficient understanding of the three-dimensional (3D) morphological information of membranous organelles. The osmium maceration method, developed by Professor Tanaka's group >40 years ago, is the only technique that allows direct observation of the 3D ultrastructure of membrane systems using scanning electron microscopy (SEM), without the need for any reconstruction process. With this method, the soluble cytoplasmic proteins are removed from the freeze-cracked surface of cells while preserving the integrity of membranous organelles, achieved by immersing tissues in a diluted osmium solution for several days. By employing the maceration method, researchers using SEM have revealed the 3D ultrastructure of organelles such as the Golgi apparatus, mitochondria and endoplasmic reticulum in various cell types. Recently, we have developed new SEM techniques based on the maceration method to explore further possibilities of this method. These include: (i) a rapid osmium maceration method that reduces the reaction duration of the procedure, (ii) a combination method that combines agarose embedding with osmium maceration to elucidate the 3D ultrastructure of organelles in free and cultured cells and (iii) a correlative immunofluorescence and SEM technique that combines cryosectioning with the osmium maceration method, enabling the correlation of the immunocytochemical localization of molecules with the 3D ultrastructure of organelles. In this paper, we review the novel osmium maceration methods described earlier and discuss their potential and future directions in the field of biology and biomedical research.
Collapse
Affiliation(s)
- Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-higashi, Asahikawa 078-8510, Japan
| | - Satoshi Kusumi
- Division of Morphological Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori 3-1, Mizuho-ku, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori 3-1, Mizuho-ku, Nagoya 467-8603, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
| |
Collapse
|
2
|
Rekvig OP. SLE: a cognitive step forward-a synthesis of rethinking theories, causality, and ignored DNA structures. Front Immunol 2024; 15:1393814. [PMID: 38895113 PMCID: PMC11183320 DOI: 10.3389/fimmu.2024.1393814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is classified by instinctual classification criteria. A valid proclamation is that these formally accepted SLE classification criteria legitimate the syndrome as being difficult to explain and therefore enigmatic. SLE involves scientific problems linked to etiological factors and criteria. Our insufficient understanding of the clinical condition uniformly denoted SLE depends on the still open question of whether SLE is, according to classification criteria, a well-defined one disease entity or represents a variety of overlapping indistinct syndromes. Without rational hypotheses, these problems harm clear definition(s) of the syndrome. Why SLE is not anchored in logic, consequent, downstream interdependent and interactive inflammatory networks may rely on ignored predictive causality principles. Authoritative classification criteria do not reflect consequent causality criteria and do not unify characterization principles such as diagnostic criteria. We need now to reconcile legendary scientific achievements to concretize the delimitation of what SLE really is. Not all classified SLE syndromes are "genuine SLE"; many are theoretically "SLE-like non-SLE" syndromes. In this study, progressive theories imply imperative challenges to reconsider the fundamental impact of "the causality principle". This may offer us logic classification and diagnostic criteria aimed at identifying concise SLE syndromes as research objects. Can a systems science approach solve this problem?
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Fürst Medical Laboratory, Oslo, Norway
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Kang MJ, Cho YW, Kim TH. Progress in Nano-Biosensors for Non-Invasive Monitoring of Stem Cell Differentiation. BIOSENSORS 2023; 13:bios13050501. [PMID: 37232862 DOI: 10.3390/bios13050501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023]
Abstract
Non-invasive, non-destructive, and label-free sensing techniques are required to monitor real-time stem cell differentiation. However, conventional analysis methods, such as immunocytochemistry, polymerase chain reaction, and Western blot, involve invasive processes and are complicated and time-consuming. Unlike traditional cellular sensing methods, electrochemical and optical sensing techniques allow non-invasive qualitative identification of cellular phenotypes and quantitative analysis of stem cell differentiation. In addition, various nano- and micromaterials with cell-friendly properties can greatly improve the performance of existing sensors. This review focuses on nano- and micromaterials that have been reported to improve sensing capabilities, including sensitivity and selectivity, of biosensors towards target analytes associated with specific stem cell differentiation. The information presented aims to motivate further research into nano-and micromaterials with advantageous properties for developing or improving existing nano-biosensors to achieve the practical evaluation of stem cell differentiation and efficient stem cell-based therapies.
Collapse
Affiliation(s)
- Min-Ji Kang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yeon-Woo Cho
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
4
|
Bernard F, Jouette J, Durieu C, Le Borgne R, Guichet A, Claret S. GFP-Tagged Protein Detection by Electron Microscopy Using a GBP-APEX Tool in Drosophila. Front Cell Dev Biol 2021; 9:719582. [PMID: 34476234 PMCID: PMC8406855 DOI: 10.3389/fcell.2021.719582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022] Open
Abstract
In cell biology, detection of protein subcellular localizations is often achieved by optical microscopy techniques and more rarely by electron microscopy (EM) despite the greater resolution offered by EM. One of the possible reasons was that protein detection by EM required specific antibodies whereas this need could be circumvented by using fluorescently-tagged proteins in optical microscopy approaches. Recently, the description of a genetically encodable EM tag, the engineered ascorbate peroxidase (APEX), whose activity can be monitored by electron-dense DAB precipitates, has widened the possibilities of specific protein detection in EM. However, this technique still requires the generation of new molecular constructions. Thus, we decided to develop a versatile method that would take advantage of the numerous GFP-tagged proteins already existing and create a tool combining a nanobody anti-GFP (GBP) with APEX. This GBP-APEX tool allows a simple and efficient detection of any GFP fusion proteins without the needs of specific antibodies nor the generation of additional constructions. We have shown the feasibility and efficiency of this method to detect various proteins in Drosophila ovarian follicles such as nuclear proteins, proteins associated with endocytic vesicles, plasma membranes or nuclear envelopes. Lastly, we expressed this tool in Drosophila with the UAS/GAL4 system that enables spatiotemporal control of the protein detection.
Collapse
Affiliation(s)
- Fred Bernard
- Polarity and Morphogenesis Team, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| | - Julie Jouette
- Polarity and Morphogenesis Team, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| | - Catherine Durieu
- Imagoseine Platform, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| | - Rémi Le Borgne
- Imagoseine Platform, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| | - Antoine Guichet
- Polarity and Morphogenesis Team, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| | - Sandra Claret
- Polarity and Morphogenesis Team, Institut Jacques Monod, CNRS, UMR 7592, University of Paris, Paris, France
| |
Collapse
|
5
|
Oorschot V, Lindsey BW, Kaslin J, Ramm G. TEM, SEM, and STEM-based immuno-CLEM workflows offer complementary advantages. Sci Rep 2021; 11:899. [PMID: 33441723 PMCID: PMC7806999 DOI: 10.1038/s41598-020-79637-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 12/08/2020] [Indexed: 11/18/2022] Open
Abstract
Identifying endogenous tissue stem cells remains a key challenge in developmental and regenerative biology. To distinguish and molecularly characterise stem cell populations in large heterogeneous tissues, the combination of cytochemical cell markers with ultrastructural morphology is highly beneficial. Here, we realise this through workflows of multi-resolution immuno-correlative light and electron microscopy (iCLEM) methodologies. Taking advantage of the antigenicity preservation of the Tokuyasu technique, we have established robust protocols and workflows and provide a side-by-side comparison of iCLEM used in combination with scanning EM (SEM), scanning TEM (STEM), or transmission EM (TEM). Evaluation of the applications and advantages of each method highlights their practicality for the identification, quantification, and characterization of heterogeneous cell populations in small organisms, organs, or tissues in healthy and diseased states. The iCLEM techniques are broadly applicable and can use either genetically encoded or cytochemical markers on plant, animal and human tissues. We demonstrate how these protocols are particularly suited for investigating neural stem and progenitor cell populations of the vertebrate nervous system.
Collapse
Affiliation(s)
- Viola Oorschot
- Ramaciotti Centre for Cryo EM, Monash University, Melbourne, VIC, 3800, Australia
- European Molecular Biology Laboratory, Electron Microscopy Core Facility, Heidelberg, Germany
| | - Benjamin W Lindsey
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, R3E 0J9, Canada
| | - Jan Kaslin
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, 3800, Australia.
| | - Georg Ramm
- Ramaciotti Centre for Cryo EM, Monash University, Melbourne, VIC, 3800, Australia.
- Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
6
|
Tran HT, Tsai EHR, Lewis AJ, Moors T, Bol JGJM, Rostami I, Diaz A, Jonker AJ, Guizar-Sicairos M, Raabe J, Stahlberg H, van de Berg WDJ, Holler M, Shahmoradian SH. Alterations in Sub-Axonal Architecture Between Normal Aging and Parkinson's Diseased Human Brains Using Label-Free Cryogenic X-ray Nanotomography. Front Neurosci 2020; 14:570019. [PMID: 33324142 PMCID: PMC7724048 DOI: 10.3389/fnins.2020.570019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/14/2020] [Indexed: 01/25/2023] Open
Abstract
Gaining insight to pathologically relevant processes in continuous volumes of unstained brain tissue is important for a better understanding of neurological diseases. Many pathological processes in neurodegenerative disorders affect myelinated axons, which are a critical part of the neuronal circuitry. Cryo ptychographic X-ray computed tomography in the multi-keV energy range is an emerging technology providing phase contrast at high sensitivity, allowing label-free and non-destructive three dimensional imaging of large continuous volumes of tissue, currently spanning up to 400,000 μm3. This aspect makes the technique especially attractive for imaging complex biological material, especially neuronal tissues, in combination with downstream optical or electron microscopy techniques. A further advantage is that dehydration, additional contrast staining, and destructive sectioning/milling are not required for imaging. We have developed a pipeline for cryo ptychographic X-ray tomography of relatively large, hydrated and unstained biological tissue volumes beyond what is typical for the X-ray imaging, using human brain tissue and combining the technique with complementary methods. We present four imaged volumes of a Parkinson's diseased human brain and five volumes from a non-diseased control human brain using cryo ptychographic X-ray tomography. In both cases, we distinguish neuromelanin-containing neurons, lipid and melanic pigment, blood vessels and red blood cells, and nuclei of other brain cells. In the diseased sample, we observed several swellings containing dense granular material resembling clustered vesicles between the myelin sheaths arising from the cytoplasm of the parent oligodendrocyte, rather than the axoplasm. We further investigated the pathological relevance of such swollen axons in adjacent tissue sections by immunofluorescence microscopy for phosphorylated alpha-synuclein combined with multispectral imaging. Since cryo ptychographic X-ray tomography is non-destructive, the large dataset volumes were used to guide further investigation of such swollen axons by correlative electron microscopy and immunogold labeling post X-ray imaging, a possibility demonstrated for the first time. Interestingly, we find that protein antigenicity and ultrastructure of the tissue are preserved after the X-ray measurement. As many pathological processes in neurodegeneration affect myelinated axons, our work sets an unprecedented foundation for studies addressing axonal integrity and disease-related changes in unstained brain tissues.
Collapse
Affiliation(s)
| | | | - Amanda J. Lewis
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Tim Moors
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - J. G. J. M. Bol
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Ana Diaz
- Paul Scherrer Institut, Villigen, Switzerland
| | - Allert J. Jonker
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Joerg Raabe
- Paul Scherrer Institut, Villigen, Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, Basel, Switzerland
| | - Wilma D. J. van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | |
Collapse
|
7
|
Kamigaki T, Ogawa A. Observation of exopolysaccharides (EPS) from Lactobacillus helveticus SBT2171 using the Tokuyasu method. Microscopy (Oxf) 2020; 69:286-290. [PMID: 32367129 DOI: 10.1093/jmicro/dfaa021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 11/13/2022] Open
Abstract
Some species of lactic acid bacteria used for the production of natural cheese produce exopolysaccharides (EPS). Electron microscopy is useful for analyzing the microstructure of EPS produced by lactic acid bacteria. However, pretreatments used to observe the microstructure of EPS by electron microscopy, such as dehydration and resin embedding, can result in EPS flowing out easily from the cell. Therefore, in this study, the Tokuyasu method was conducted on cryosection to reduce EPS outflow. Two types of observation method, namely, using lectin and ruthenium red, were conducted in an attempt to observe EPS produced by Lactobacillus helveticus SBT2171. Observation using the lectin method confirmed that colloidal gold particles conjugated with a lectin recognizing β-galactoside were present in the capsule. Structures that appeared to be β-galactoside-containing slime polysaccharides that were released from the cell wall were also observed. Observation using ruthenium red showed that capsular polysaccharides (CPS) in the capsule were present as a net-like structure. Colloidal gold conjugation with an anti-β-lactoglobulin antibody, in addition to ruthenium red staining, allowed the identification of slime polysaccharides released from the cell wall in the milk protein network derived from the culture medium. Based on these results, the Tokuyasu method was considered to be a useful pretreatment method to clarify and observe the presence of EPS. In particular, both CPS in the capsule and slime exopolysaccharides released from the cell wall were visualized.
Collapse
Affiliation(s)
- Takamichi Kamigaki
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe, Saitama 350-1165, Japan
| | - Akihiro Ogawa
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., 1-1-2 Minamidai, Kawagoe, Saitama 350-1165, Japan
| |
Collapse
|
8
|
Andrian T, Bakkum T, van Elsland DM, Bos E, Koster AJ, Albertazzi L, van Kasteren SI, Pujals S. Super-resolution correlative light-electron microscopy using a click-chemistry approach for studying intracellular trafficking. Methods Cell Biol 2020; 162:303-331. [PMID: 33707017 DOI: 10.1016/bs.mcb.2020.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Correlative light and electron microscopy (CLEM) entails a group of multimodal imaging techniques that are combined to pinpoint to the location of fluorescently labeled molecules in the context of their ultrastructural cellular environment. Here we describe a detailed workflow for STORM-CLEM, in which STochastic Optical Reconstruction Microscopy (STORM), an optical super-resolution technique, is correlated with transmission electron microscopy (TEM). This protocol has the advantage that both imaging modalities have resolution at the nanoscale, bringing higher synergies on the information obtained. The sample is prepared according to the Tokuyasu method followed by click-chemistry labeling and STORM imaging. Then, after heavy metal staining, electron microscopy imaging is performed followed by correlation of the two images. The case study presented here is on intracellular pathogens, but the protocol is versatile and could potentially be applied to many types of samples.
Collapse
Affiliation(s)
- Teodora Andrian
- Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Thomas Bakkum
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Leiden, The Netherlands
| | - Daphne M van Elsland
- Department of Cell and Chemical Biology, The Institute for Chemical Immunology, Leiden University Medical Center LUMC, Leiden, The Netherlands
| | - Erik Bos
- Department of Cell and Chemical Biology, Section Electron Microscopy, Leiden University Medical Center LUMC, Leiden, The Netherlands
| | - Abraham J Koster
- Department of Cell and Chemical Biology, Section Electron Microscopy, Leiden University Medical Center LUMC, Leiden, The Netherlands
| | - Lorenzo Albertazzi
- Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain; Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Sander I van Kasteren
- Leiden Institute of Chemistry and The Institute for Chemical Immunology, Leiden University, Leiden, The Netherlands.
| | - Sílvia Pujals
- Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, Barcelona, Spain; Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
9
|
Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, Rotter-Maskowitz A, Weiser R, Mallel G, Gigi E, Meltser A, Douglas GM, Kamer I, Gopalakrishnan V, Dadosh T, Levin-Zaidman S, Avnet S, Atlan T, Cooper ZA, Arora R, Cogdill AP, Khan MAW, Ologun G, Bussi Y, Weinberger A, Lotan-Pompan M, Golani O, Perry G, Rokah M, Bahar-Shany K, Rozeman EA, Blank CU, Ronai A, Shaoul R, Amit A, Dorfman T, Kremer R, Cohen ZR, Harnof S, Siegal T, Yehuda-Shnaidman E, Gal-Yam EN, Shapira H, Baldini N, Langille MGI, Ben-Nun A, Kaufman B, Nissan A, Golan T, Dadiani M, Levanon K, Bar J, Yust-Katz S, Barshack I, Peeper DS, Raz DJ, Segal E, Wargo JA, Sandbank J, Shental N, Straussman R. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 2020; 368:973-980. [PMID: 32467386 DOI: 10.1126/science.aay9189] [Citation(s) in RCA: 1160] [Impact Index Per Article: 290.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/22/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022]
Abstract
Bacteria were first detected in human tumors more than 100 years ago, but the characterization of the tumor microbiome has remained challenging because of its low biomass. We undertook a comprehensive analysis of the tumor microbiome, studying 1526 tumors and their adjacent normal tissues across seven cancer types, including breast, lung, ovary, pancreas, melanoma, bone, and brain tumors. We found that each tumor type has a distinct microbiome composition and that breast cancer has a particularly rich and diverse microbiome. The intratumor bacteria are mostly intracellular and are present in both cancer and immune cells. We also noted correlations between intratumor bacteria or their predicted functions with tumor types and subtypes, patients' smoking status, and the response to immunotherapy.
Collapse
Affiliation(s)
- Deborah Nejman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Livyatan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.,Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Garold Fuks
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Nancy Gavert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yaara Zwang
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Leore T Geller
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Roi Weiser
- Division of Surgery, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Giuseppe Mallel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Elinor Gigi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Arnon Meltser
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Gavin M Douglas
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Iris Kamer
- Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | | | - Tali Dadosh
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Smadar Levin-Zaidman
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Tehila Atlan
- Department of Bioinformatics, Jerusalem College of Technology, Jerusalem, Israel
| | - Zachary A Cooper
- Translational Medicine, Oncology R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Reetakshi Arora
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandria P Cogdill
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Md Abdul Wadud Khan
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Ologun
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuval Bussi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.,Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.,Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Adina Weinberger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.,Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Lotan-Pompan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.,Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Perry
- Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Merav Rokah
- Department of Thoracic Surgery, Sheba Medical Center, Ramat Gan, Israel
| | | | - Elisa A Rozeman
- Department of Medical Oncology and Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Christian U Blank
- Department of Medical Oncology and Division of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Anat Ronai
- Pediatric Gastroenterology Institute, Rambam Medical Center, Haifa, Israel
| | - Ron Shaoul
- Pediatric Gastroenterology Institute, Rambam Medical Center, Haifa, Israel
| | - Amnon Amit
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
| | - Tatiana Dorfman
- Division of General Surgery, Rambam Health Care Campus, Haifa, Israel.,Ambulatory and Breast Surgery Service, Rambam Health Care Campus, Haifa, Israel
| | - Ran Kremer
- Department of Thoracic Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Zvi R Cohen
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Neurosurgery, Sheba Medical Center, Ramat Gan, Israel
| | - Sagi Harnof
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Neurosurgery, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Tali Siegal
- Neuro-Oncology Unit, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | | | | | - Hagit Shapira
- Institute of Pathology, Megalab, Maccabi Healthcare Services, Rehovot, Israel
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Morgan G I Langille
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Alon Ben-Nun
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Thoracic Surgery, Sheba Medical Center, Ramat Gan, Israel
| | - Bella Kaufman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Aviram Nissan
- Department of Surgical Oncology (Surgery C), Sheba Medical Center, Ramat Gan, Israel
| | - Talia Golan
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Maya Dadiani
- Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Keren Levanon
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Cancer Research Center, Sheba Medical Center, Ramat Gan, Israel
| | - Jair Bar
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Institute of Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Shlomit Yust-Katz
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Neuro-Oncology Unit, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| | - Iris Barshack
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Pathology, Sheba Medical Center, Ramat Gan, Israel
| | - Daniel S Peeper
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Dan J Raz
- Division of Thoracic Surgery, City of Hope Medical Center, Duarte, CA, USA
| | - Eran Segal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.,Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Jennifer A Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Judith Sandbank
- Institute of Pathology, Megalab, Maccabi Healthcare Services, Rehovot, Israel
| | - Noam Shental
- Department of Mathematics and Computer Science, The Open University of Israel, Ra'anana, Israel
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
10
|
Impact of preanalytical conditions on plasma concentration and size distribution of extracellular vesicles using Nanoparticle Tracking Analysis. Sci Rep 2018; 8:17216. [PMID: 30464183 PMCID: PMC6249294 DOI: 10.1038/s41598-018-35401-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
Optimal pre-analytical handling is essential for valid measurements of plasma concentration and size distribution of extracellular vesicles (EVs). We investigated the impact of plasma preparation, various anticoagulants (Citrate, EDTA, CTAD, Heparin), and fasting status on concentration and size distribution of EVs measured by Nanoparticle Tracking Analysis (NTA). Blood was drawn from 10 healthy volunteers to investigate the impact of plasma preparation and anticoagulants, and from 40 individuals from a population-based study to investigate the impact of postprandial lipidemia. Plasma concentration of EVs was measured by NTA after isolation by high-speed centrifugation, and size distribution of EVs was determined using NTA and scanning electron microscopy (SEM). Plasma concentrations and size distributions of EVs were essentially similar for the various anticoagulants. Transmission electron microscopy (TEM) confirmed the presence of EVs. TEM and SEM-analyses showed that the EVs retained spherical morphology after high-speed centrifugation. Plasma EVs were not changed in postprandial lipidemia, but the mean sizes of VLDL particles were increased and interfered with EV measurements (explained 66% of the variation in EVs-concentration in the postprandial phase). Optimization of procedures for separating VLDL particles and EVs is therefore needed before NTA-assessment of EVs can be used as biomarkers of disease.
Collapse
|
11
|
Jamaly S, Basavaraj MG, Starikova I, Olsen R, Braekkan SK, Hansen JB. Elevated plasma levels of P-selectin glycoprotein ligand-1-positive microvesicles in patients with unprovoked venous thromboembolism. J Thromb Haemost 2018; 16:S1538-7836(22)02209-7. [PMID: 29851269 DOI: 10.1111/jth.14162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 11/26/2022]
Abstract
Essentials PSGL-1+ microvesicles (MVs) may be important in venous thromboembolism (VTE). We measured plasma levels and parental origin of PSGL-1+ MVs in patients with unprovoked VTE. VTE patients had higher plasma levels of PSGL-1+ MVs than healthy controls. The PSGL-1+ MVs originated mainly from monocytes and endothelial cells. SUMMARY Background Microvesicles (MVs) express antigens from their parental cells and have a highly procoagulant surface. Animal studies suggest that P-selectin glycoprotein ligand-1-positive (PSGL-1+ ) MVs play a role in the pathogenesis of venous thromboembolism (VTE). Objective The aim of this study was to determine plasma levels, the cellular origin and the morphological characteristics of PSGL-1+ MVs in patients with unprovoked VTE. Methods We conducted a population-based case-control study in 20 patients with a history of unprovoked VTE and 20 age- and sex-matched healthy controls recruited from the general population. Plasma levels, the cellular origin and the morphological characteristics of PSGL-1+ MVs were evaluated using flow cytometry, electron microscopy and confocal microscopy. Results Plasma levels of PSGL-1+ MVs were associated with increased risk of VTE. The odds ratio per one standard deviation increase in PSGL-1+ MVs was 3.11 (95% confidence interval [CI], 1.41-6.88) after adjustment for age and sex, and 2.88 (95% CI, 1.29-6.41) after further adjustment for body mass index. The PSGL-1+ MVs originated mainly from monocytes and endothelial cells determined by double staining with markers of parental cells using flow cytometry and transmission electron microscopy. Scanning electron microscopy of PSGL-1-labeled plasma-derived MVs displayed dominantly spherical vesicles that varied between 50 and 300 nm in diameter. Conclusions Increased plasma levels of PSGL-1+ MVs are associated with the risk of unprovoked VTE. Large population-based prospective studies are required to validate our findings.
Collapse
Affiliation(s)
- S Jamaly
- K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - M G Basavaraj
- K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - I Starikova
- K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - R Olsen
- Advanced Microscopy Core Facility, Institute of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - S K Braekkan
- K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - J-B Hansen
- K.G. Jebsen Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
12
|
Baranowski Ł, Kurek W, Lichocka M, Sobczak M. A cryotechnique-based method for low abundance protein immunolocalization in tomato (Solanum lycopersicum) roots infected with a nematode, Globodera rostochiensis. Micron 2018; 108:24-30. [PMID: 29550672 DOI: 10.1016/j.micron.2018.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 10/18/2022]
Abstract
Plant-parasitic cyst forming nematodes induce in host roots a specific feeding site called a syncytium. Modifications induced by the pathogen in cells incorporated into syncytium include their hypertrophy and changes in apoplast caused by over-expression of plant proteins, e.g. cellulases. As a result cell wall openings between syncytial elements are formed. The major aim of our investigation was to immunolocalize cellulases involved in these cell-wall modifications. Experiments were conducted on tomato (Solanum lycopersicum cv. "Money Maker") infected with Globodera rostochiensis. Root segments containing syncytia were processed using two techniques: conventional method of embedding in LR-White resin and cryotechnique of progressive lowering of temperature (PLT). It is believed that the latter is superior to other techniques in keeping in place cell components and preserving antigenicity of macromolecules. It is especially useful when low abundance proteins have to be immunodetected at their place of action. The main principle of the PLT technique is a stepwise lowering of temperature throughout probe dehydration, infiltration and embedding in an appropriate resin. Two-step immunolocalization and visualization using fluorochrome (FITC) at light microscopy level or colloidal gold particles at transmission electron microscopy level was performed in this study. The labeling of cellulase 7 protein at both microscopy levels was more intensive and specific on PLT-treated sections as compared to sections obtained from the classical method. Our results confirm the usefulness of the PLT cryotechnique for plant immunocytochemistry and indicate that in nematode-infected roots cellulase 7 is predominantly present in the syncytia.
Collapse
Affiliation(s)
- Łukasz Baranowski
- Department of Botany, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-766 Warsaw, Poland.
| | - Wojciech Kurek
- Department of Botany, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-766 Warsaw, Poland
| | - Małgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Mirosław Sobczak
- Department of Botany, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-766 Warsaw, Poland
| |
Collapse
|
13
|
Horvei KD, Pedersen HL, Fismen S, Thiyagarajan D, Schneider A, Rekvig OP, Winkler TH, Seredkina N. Lupus nephritis progression in FcγRIIB-/-yaa mice is associated with early development of glomerular electron dense deposits and loss of renal DNase I in severe disease. PLoS One 2017; 12:e0188863. [PMID: 29190833 PMCID: PMC5708736 DOI: 10.1371/journal.pone.0188863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/14/2017] [Indexed: 12/20/2022] Open
Abstract
FcγRIIB-/-yaa mice develop severe lupus glomerulonephritis due to lack of an inhibitory immune cell receptor combined with a Y-chromosome linked autoimmune accelerator mutation. In the present study, we have investigated nephritis development and progression in FcγRIIB-/-yaa mice to find shared features with NZB/NZW F1 lupus prone mice and human disease. We sacrificed 25 male FcγRIIB-/-yaa mice at various disease stages, and grouped them according to activity and chronicity indices for lupus nephritis. Glomerular morphology and localization of electron dense deposits containing IgG were further determined by immune electron microscopy. Renal DNase I and pro-inflammatory cytokine mRNA levels were measured by real-time quantitative PCR. DNase I protein levels was assessed by immunohistochemistry and zymography. Our results demonstrate early development of electron dense deposits containing IgG in FcγRIIB-/-yaa mice, before detectable levels of serum anti-dsDNA antibodies. Similar to NZB/NZW F1, electron dense deposits in FcγRIIB-/-yaa progressed from being confined to the mesangium in the early stage of lupus nephritis to be present also in capillary glomerular basement membranes. In the advanced stage of lupus nephritis, renal DNase I was lost on both transcriptional and protein levels, which has previously been shown in NZB/NZW F1 mice and in human disease. Although lupus nephritis appears on different genetic backgrounds, our findings suggest similar processes when comparing different murine models and human lupus nephritis.
Collapse
Affiliation(s)
- Kjersti Daae Horvei
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UIT-The Arctic University of Norway, Tromsø, Norway
| | - Hege Lynum Pedersen
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UIT-The Arctic University of Norway, Tromsø, Norway
| | - Silje Fismen
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UIT-The Arctic University of Norway, Tromsø, Norway
| | - Dhivya Thiyagarajan
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UIT-The Arctic University of Norway, Tromsø, Norway
| | - Andrea Schneider
- Department of Biology, Nikolaus-Fiebiger-Zentrum für Molekulare Medizin, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ole Petter Rekvig
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UIT-The Arctic University of Norway, Tromsø, Norway
| | - Thomas H Winkler
- Department of Biology, Nikolaus-Fiebiger-Zentrum für Molekulare Medizin, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Natalya Seredkina
- RNA and Molecular Pathology Research Group, Department of Medical Biology, Faculty of Health Sciences, UIT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
14
|
Abada A, Levin-Zaidman S, Porat Z, Dadosh T, Elazar Z. SNARE priming is essential for maturation of autophagosomes but not for their formation. Proc Natl Acad Sci U S A 2017; 114:12749-12754. [PMID: 29138318 PMCID: PMC5715740 DOI: 10.1073/pnas.1705572114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Autophagy, a unique intracellular membrane-trafficking pathway, is initiated by the formation of an isolation membrane (phagophore) that engulfs cytoplasmic constituents, leading to generation of the autophagosome, a double-membrane vesicle, which is targeted to the lysosome. The outer autophagosomal membrane consequently fuses with the lysosomal membrane. Multiple membrane-fusion events mediated by SNARE molecules have been postulated to promote autophagy. αSNAP, the adaptor molecule for the SNARE-priming enzyme N-ethylmaleimide-sensitive factor (NSF) is known to be crucial for intracellular membrane fusion processes, but its role in autophagy remains unclear. Here we demonstrated that knockdown of αSNAP leads to inhibition of autophagy, manifested by an accumulation of sealed autophagosomes located in close proximity to lysosomes but not fused with them. Under these conditions, moreover, association of both Atg9 and the autophagy-related SNARE protein syntaxin17 with the autophagosome remained unaffected. Finally, our results suggested that under starvation conditions, the levels of αSNAP, although low, are nevertheless sufficient to partially promote the SNARE priming required for autophagy. Taken together, these findings indicate that while autophagosomal-lysosomal membrane fusion is sensitive to inhibition of SNARE priming, the initial stages of autophagosome biogenesis and autophagosome expansion remain resistant to its loss.
Collapse
Affiliation(s)
- Adi Abada
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Smadar Levin-Zaidman
- Department of Chemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ziv Porat
- Life Sciences Core Facilities, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Tali Dadosh
- Department of Chemical Research Support, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Zvulun Elazar
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel;
| |
Collapse
|
15
|
Hansen AK, Figenschau Y, Zubiaurre-Martinez I. Co-expression of 1α-hydroxylase and vitamin D receptor in human articular chondrocytes. BMC Musculoskelet Disord 2017; 18:432. [PMID: 29110708 PMCID: PMC5674837 DOI: 10.1186/s12891-017-1791-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 10/30/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The aim was to investigate whether resident chondrocytes in human articular cartilage and in subculture express vitamin D receptor (VDR) and the enzyme that hydroxylates the prohormone 25(OH)D3 to the active hormone 1α,25(OH)2D3, namely 1α-hydroxylase (CYP27B1). Any putative effects of vitamin D on chondrocytes were also explored. METHODS Cartilage from human osteoarthritic knee joints, cultured chondrocytes and cells grown in 3D spheroids were examined for the expression of VDR and 1α-hydroxylase by PCR, Western blots and immunolabelling. Receptor engagement was judged by visualizing nuclear translocation. The effects of 25(OH)D3 and 1α,25(OH)2D3 on chondrocyte functions were assessed in proliferation-, chondrogenesis- and cartilage signature-gene expression assays. The capability of chondrocytes to hydroxylate 25(OH)D3 was determined by measuring the concentration of metabolites. Finally, a putative regulation of receptor and enzyme expression by 1α,25(OH)2D3 or interleukin (IL)-1β, was investigated by Western blot. RESULTS Gene expression was positive for VDR in freshly isolated cells from native cartilage, cells subcultured in monolayers and in spheroids, whereas protein expression, otherwise judged low, was apparent in monolayers. Nuclear translocation of VDR occurred upon 1α,25(OH)2D3 treatment. Transcripts for 1α-hydroxylase were detected in freshly isolated cells, cultured cells and spheroids. Western blots and immunolabelling detected 1α-hydroxylase protein in all materials, while staining of tissue appeared confined to cells at the superficial layer. A dose-dependent 1α,25(OH)2D3 production was measured when the enzyme substrate was supplied to cell cultures. Western blots revealed that the VDR, but not 1α-hydroxylase, was induced by IL-1β treatment in adherent cells. Proliferation in monolayers was enhanced by both 25(OH)D3 and 1α,25(OH)2D3, and both compounds had negative effects on chondrogenesis and cartilage-matrix genes. CONCLUSIONS VDR expression in resident cartilage chondrocytes, generally considered differentiated cells, is elusive. A similar pattern applies for redifferentiated chondrocytes in spheroid cultures, whereas dedifferentiated cells, established in monolayers, stably express VDR. Both 25(OH)D3 and 1α,25(OH)2D3 are able to potentiate cell proliferation but have a negative impact in proteoglycan synthesis. Chondrocytes express 1α-hydroxylase and may contribute to the production of 1α,25(OH)2D3 into the joint environment. Effects of vitamin D could be unfavourable in the context of cartilage matrix synthesis.
Collapse
Affiliation(s)
- Ann Kristin Hansen
- Department of Orthopaedic Surgery, University Hospital of North Norway, Tromsø, Norway. .,Bone and joint research group, Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway.
| | - Yngve Figenschau
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway.,Endocrinology Research Group, Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway.,Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Inigo Zubiaurre-Martinez
- Bone and joint research group, Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| |
Collapse
|
16
|
Electron microscopy using the genetically encoded APEX2 tag in cultured mammalian cells. Nat Protoc 2017; 12:1792-1816. [PMID: 28796234 DOI: 10.1038/nprot.2017.065] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Electron microscopy (EM) is the premiere technique for high-resolution imaging of cellular ultrastructure. Unambiguous identification of specific proteins or cellular compartments in electron micrographs, however, remains challenging because of difficulties in delivering electron-dense contrast agents to specific subcellular targets within intact cells. We recently reported enhanced ascorbate peroxidase 2 (APEX2) as a broadly applicable genetic tag that generates EM contrast on a specific protein or subcellular compartment of interest. This protocol provides guidelines for designing and validating APEX2 fusion constructs, along with detailed instructions for cell culture, transfection, fixation, heavy-metal staining, embedding in resin, and EM imaging. Although this protocol focuses on EM in cultured mammalian cells, APEX2 is applicable to many cell types and contexts, including intact tissues and organisms, and is useful for numerous applications beyond EM, including live-cell proteomic mapping. This protocol, which describes procedures for sample preparation from cell monolayers and cell pellets, can be completed in 10 d, including time for APEX2 fusion construct validation, cell growth, and solidification of embedding resins. Notably, the only additional steps required relative to a standard EM sample preparation are cell transfection and a 2- to 45-min staining period with 3,3-diaminobenzidine (DAB) and hydrogen peroxide (H2O2).
Collapse
|
17
|
A Cryosectioning Technique for the Observation of Intracellular Structures and Immunocytochemistry of Tissues in Atomic Force Microscopy (AFM). Sci Rep 2017; 7:6462. [PMID: 28743939 PMCID: PMC5526917 DOI: 10.1038/s41598-017-06942-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
The use of cryosectioning facilitates the morphological analysis and immunocytochemistry of cells in tissues in atomic force microscopy (AFM). The cantilever can access all parts of a tissue sample in cryosections after the embedding medium (sucrose) has been replaced with phosphate-buffered saline (PBS), and this approach has enabled the production of a type of high-resolution image. The images resembled those obtained from freeze-etching replica electron microscopy (EM) rather than from thin-section EM. The AFM images showed disks stacked and enveloped by the cell membrane in rod photoreceptor outer segments (ROS) at EM resolution. In addition, ciliary necklaces on the surface of connecting cilium, three-dimensional architecture of synaptic ribbons, and the surface of the post-synaptic membrane facing the active site were revealed, which were not apparent using thin-section EM. AFM could depict the molecular binding of anti-opsin antibodies conjugated to a secondary fluorescent antibody bound to the disk membrane. The specific localization of the anti-opsin binding sites was verified through correlation with immunofluorescence signals in AFM combined with confocal fluorescence microscope. To prove reproducibility in other tissues besides retina, cryosectioning-AFM was also applied to elucidate molecular organization of sarcomere in a rabbit psoas muscle.
Collapse
|
18
|
Signalome-wide RNAi screen identifies GBA1 as a positive mediator of autophagic cell death. Cell Death Differ 2017; 24:1288-1302. [PMID: 28574511 PMCID: PMC5520177 DOI: 10.1038/cdd.2017.80] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 12/28/2022] Open
Abstract
Activating alternative cell death pathways, including autophagic cell death, is a promising direction to overcome the apoptosis resistance observed in various cancers. Yet, whether autophagy acts as a death mechanism by over consumption of intracellular components is still controversial and remains undefined at the ultrastructural and the mechanistic levels. Here we identified conditions under which resveratrol-treated A549 lung cancer cells die by a mechanism that fulfills the previous definition of autophagic cell death. The cells displayed a strong and sustained induction of autophagic flux, cell death was prevented by knocking down autophagic genes and death occurred in the absence of apoptotic or necroptotic pathway activation. Detailed ultrastructural characterization revealed additional critical events, including a continuous increase over time in the number of autophagic vacuoles, in particular autolysosomes, occupying most of the cytoplasm at terminal stages. This was followed by loss of organelles, disruption of intracellular membranes including the swelling of perinuclear space and, occasionally, a unique type of nuclear shedding. A signalome-wide shRNA-based viability screen was applied to identify positive mediators of this type of autophagic cell death. One top hit was GBA1, the Gaucher disease-associated gene, which encodes glucocerebrosidase, an enzyme that metabolizes glucosylceramide to ceramide and glucose. Interestingly, glucocerebrosidase expression levels and activity were elevated, concomitantly with increased intracellular ceramide levels, both of which correlated in time with the appearance of the unique death characteristics. Transfection with siGBA1 attenuated the increase in glucocerebrosidase activity and the intracellular ceramide levels. Most importantly, GBA1 knockdown prevented the strong increase in LC3 lipidation, and many of the ultrastructural changes characteristic of this type of autophagic cell death, including a significant decrease in cytoplasmic area occupied by autophagic vacuoles. Together, these findings highlight the critical role of GBA1 in mediating enhanced self-consumption of intracellular components and endomembranes, leading to autophagic cell death.
Collapse
|
19
|
Herbst RH, Bar-Zvi D, Reikhav S, Soifer I, Breker M, Jona G, Shimoni E, Schuldiner M, Levy AA, Barkai N. Heterosis as a consequence of regulatory incompatibility. BMC Biol 2017; 15:38. [PMID: 28494792 PMCID: PMC5426048 DOI: 10.1186/s12915-017-0373-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/11/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The merging of genomes in inter-specific hybrids can result in novel phenotypes, including increased growth rate and biomass yield, a phenomenon known as heterosis. Heterosis is typically viewed as the opposite of hybrid incompatibility. In this view, the superior performance of the hybrid is attributed to heterozygote combinations that compensate for deleterious mutations accumulating in each individual genome, or lead to new, over-dominating interactions with improved performance. Still, only fragmented knowledge is available on genes and processes contributing to heterosis. RESULTS We describe a budding yeast hybrid that grows faster than both its parents under different environments. Phenotypically, the hybrid progresses more rapidly through cell cycle checkpoints, relieves the repression of respiration in fast growing conditions, does not slow down its growth when presented with ethanol stress, and shows increased signs of DNA damage. A systematic genetic screen identified hundreds of S. cerevisiae alleles whose deletion reduced growth of the hybrid. These growth-affecting alleles were condition-dependent, and differed greatly from alleles that reduced the growth of the S. cerevisiae parent. CONCLUSIONS Our results define a budding yeast hybrid that is perturbed in multiple regulatory processes but still shows a clear growth heterosis. We propose that heterosis results from incompatibilities that perturb regulatory mechanisms, which evolved to protect cells against damage or prepare them for future challenges by limiting cell growth.
Collapse
Affiliation(s)
- Rebecca H Herbst
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02114, USA
| | - Dana Bar-Zvi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sharon Reikhav
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ilya Soifer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Current affiliation: Calico Labs, South San Francisco, CA, 94080, USA
| | - Michal Breker
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ghil Jona
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Avraham A Levy
- Plant and Environmental Sciences Department, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
20
|
Ariotti N, Hall TE, Parton RG. Correlative light and electron microscopic detection of GFP-labeled proteins using modular APEX. Methods Cell Biol 2017; 140:105-121. [PMID: 28528629 DOI: 10.1016/bs.mcb.2017.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The use of green fluorescent protein (GFP) and related proteins has revolutionized light microscopy. Here we describe a rapid and simple method to localize GFP-tagged proteins in cells and in tissues by electron microscopy (EM) using a modular approach involving a small GFP-binding peptide (GBP) fused to the ascorbate peroxidase-derived APEX2 tag. We provide a method for visualizing GFP-tagged proteins by light and EM in cultured cells and in the zebrafish using modular APEX-GBP. Furthermore, we describe in detail the benefits of this technique over many of the currently available correlative light and electron microscopy approaches and demonstrate APEX-GBP is readily applicable to modern three-dimensional techniques.
Collapse
Affiliation(s)
| | - Thomas E Hall
- The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
21
|
Mohammed A, O'Hare MB, Warley A, Tear G, Tuxworth RI. in vivo localization of the neuronal ceroid lipofuscinosis proteins, CLN3 and CLN7, at endogenous expression levels. Neurobiol Dis 2017; 103:123-132. [PMID: 28365214 PMCID: PMC5441185 DOI: 10.1016/j.nbd.2017.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/03/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022] Open
Abstract
The neuronal ceroid lipofuscinoses are a group of recessively inherited, childhood-onset neurodegenerative conditions. Several forms are caused by mutations in genes encoding putative lysosomal membrane proteins. Studies of the cell biology underpinning these disorders are hampered by the poor antigenicity of the membrane proteins, which makes visualization of the endogenous proteins difficult. We have used Drosophila to generate knock-in YFP-fusions for two of the NCL membrane proteins: CLN7 and CLN3. The YFP-fusions are expressed at endogenous levels and the proteins can be visualized live without the need for overexpression. Unexpectedly, both CLN7 and CLN3 have restricted expression in the CNS of Drosophila larva and are predominantly expressed in the glia that form the insect blood-brain-barrier. CLN7 is also expressed in neurons in the developing visual system. Analogous with murine CLN3, Drosophila CLN3 is strongly expressed in the excretory and osmoregulatory Malpighian tubules, but the knock-in also reveals unexpected localization of the protein to the apical domain adjacent to the lumen. In addition, some CLN3 protein in the tubules is localized within mitochondria. Our in vivo imaging of CLN7 and CLN3 suggests new possibilities for function and promotes new ideas about the cell biology of the NCLs.
Collapse
Affiliation(s)
- Alamin Mohammed
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Megan B O'Hare
- Department of Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Alice Warley
- Centre for Ultrastructural Imaging, King's College London, London, SE1 1UL, UK
| | - Guy Tear
- Department of Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Department of Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| |
Collapse
|
22
|
Exosome secretion affects social motility in Trypanosoma brucei. PLoS Pathog 2017; 13:e1006245. [PMID: 28257521 PMCID: PMC5352147 DOI: 10.1371/journal.ppat.1006245] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/15/2017] [Accepted: 02/16/2017] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EV) secreted by pathogens function in a variety of biological processes. Here, we demonstrate that in the protozoan parasite Trypanosoma brucei, exosome secretion is induced by stress that affects trans-splicing. Following perturbations in biogenesis of spliced leader RNA, which donates its spliced leader (SL) exon to all mRNAs, or after heat-shock, the SL RNA is exported to the cytoplasm and forms distinct granules, which are then secreted by exosomes. The exosomes are formed in multivesicular bodies (MVB) utilizing the endosomal sorting complexes required for transport (ESCRT), through a mechanism similar to microRNA secretion in mammalian cells. Silencing of the ESCRT factor, Vps36, compromised exosome secretion but not the secretion of vesicles derived from nanotubes. The exosomes enter recipient trypanosome cells. Time-lapse microscopy demonstrated that cells secreting exosomes or purified intact exosomes affect social motility (SoMo). This study demonstrates that exosomes are delivered to trypanosome cells and can change their migration. Exosomes are used to transmit stress signals for communication between parasites. Trypanosomes are the causative agent of major parasitic diseases such as African sleeping sickness, leishmaniosis and Chagas' disease that affect millions of people. These parasites cycle between an insect and a mammalian host. Communication between the parasites and the host must be essential for executing a productive infection and for cycling of the parasite between its hosts. Exosomes are 40-100nm vesicles of endocytic origin, and were shown to affect a variety of biological processes and human diseases. Exosomes were also shown to help pathogens evade the immune system. In this study, we demonstrate that exosomes are secreted from Trypanosoma brucei parasites when trans-splicing is inhibited. These exosomes contain, among many other constituents, a type of RNA known as spliced leader RNA (SL RNA), which is essential in these parasites for formation of all mature mRNA. These exosomes are able to enter neighboring trypanosomes, and only intact exosomes affect the social motility of these parasites. We propose that exosomes can potentially control parasite migration in the insect host by acting as a repellent that drives the fit parasites away from either damaged cells or an unfavorable environment. This mechanism could secure a productive infection.
Collapse
|
23
|
Nedredal GI, Elvevold K, Chedid MF, Ytrebø LM, Rose CF, Sen S, Smedsrød B, Jalan R, Revhaug A. Pulmonary vascular clearance of harmful endogenous macromolecules in a porcine model of acute liver failure. Ann Hepatol 2017; 15:427-35. [PMID: 27049497 DOI: 10.5604/16652681.1198821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Pulmonary complications are common in acute liver failure (ALF). The role of the lungs in the uptake of harmful soluble endogenous macromolecules was evaluated in a porcine model of ALF induced by hepatic devascularization (n = 8) vs. controls (n = 8). In additional experiments, pulmonary uptake was investigated in healthy pigs. Fluorochrome-labeled modified albumin (MA) was applied to investigate the cellular uptake. RESULTS As compared to controls, the ALF group displayed a 4-fold net increased lung uptake of hyaluronan, and 5-fold net increased uptake of both tissue plasminogen activator and lysosomal enzymes. Anatomical distribution experiments in healthy animals revealed that radiolabeled MA uptake (taken up by the same receptor as hyaluronan) was 53% by the liver, and 24% by the lungs. The lung uptake of LPS was 14% whereas 60% remained in the blood. Both fluorescence and electron microscopy revealed initial uptake of MA by pulmonary endothelial cells (PECs) with later translocation to pulmonary intravascular macrophages (PIMs). Moreover, the presence of PIMs was evident 10 min after injection. Systemic inflammatory markers such as leukopenia and increased serum TNF-α levels were evident after 20 min in the MA and LPS groups. CONCLUSION Significant lung uptake of harmful soluble macromolecules compensated for the defect liver scavenger function in the ALF-group. Infusion of MA induced increased TNF-α serum levels and leukopenia, similar to the effect of the known inflammatory mediator LPS. These observations suggest a potential mechanism that may contribute to lung damage secondary to liver disease.
Collapse
Affiliation(s)
- Geir I Nedredal
- Department of Digestive Surgery, University Hospital Northern Norway
| | - Kjetil Elvevold
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø
| | - Marcio F Chedid
- Liver and Pancreas Transplant and Hepatobiliary Surgery Unit, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Lars M Ytrebø
- Department of Anesthesia and Intensive Care, University Hospital Northern Norway
| | | | - Sambit Sen
- Department of Gastroenterology, Luton & Dunstable University Hospital, Luton, UK
| | - Bård Smedsrød
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø
| | - Rajiv Jalan
- Institute of Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Arthur Revhaug
- Department of Digestive Surgery, University Hospital Northern Norway
| |
Collapse
|
24
|
Hauser M, Wojcik M, Kim D, Mahmoudi M, Li W, Xu K. Correlative Super-Resolution Microscopy: New Dimensions and New Opportunities. Chem Rev 2017; 117:7428-7456. [PMID: 28045508 DOI: 10.1021/acs.chemrev.6b00604] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Correlative microscopy, the integration of two or more microscopy techniques performed on the same sample, produces results that emphasize the strengths of each technique while offsetting their individual weaknesses. Light microscopy has historically been a central method in correlative microscopy due to its widespread availability, compatibility with hydrated and live biological samples, and excellent molecular specificity through fluorescence labeling. However, conventional light microscopy can only achieve a resolution of ∼300 nm, undercutting its advantages in correlations with higher-resolution methods. The rise of super-resolution microscopy (SRM) over the past decade has drastically improved the resolution of light microscopy to ∼10 nm, thus creating exciting new opportunities and challenges for correlative microscopy. Here we review how these challenges are addressed to effectively correlate SRM with other microscopy techniques, including light microscopy, electron microscopy, cryomicroscopy, atomic force microscopy, and various forms of spectroscopy. Though we emphasize biological studies, we also discuss the application of correlative SRM to materials characterization and single-molecule reactions. Finally, we point out current limitations and discuss possible future improvements and advances. We thus demonstrate how a correlative approach adds new dimensions of information and provides new opportunities in the fast-growing field of SRM.
Collapse
Affiliation(s)
- Meghan Hauser
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Michal Wojcik
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Doory Kim
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Morteza Mahmoudi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Wan Li
- Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Ke Xu
- Department of Chemistry, University of California , Berkeley, California 94720, United States.,Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|
25
|
Elkis Y, Bel S, Rahimi R, Lerer-Goldstein T, Levin-Zaidman S, Babushkin T, Shpungin S, Nir U. TMF/ARA160 Governs the Dynamic Spatial Orientation of the Golgi Apparatus during Sperm Development. PLoS One 2015; 10:e0145277. [PMID: 26701263 PMCID: PMC4689540 DOI: 10.1371/journal.pone.0145277] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 12/02/2015] [Indexed: 12/20/2022] Open
Abstract
TMF/ARA160 is known to be a TATA element Modulatory Factor (TMF). It was initially identified as a DNA-binding factor and a coactivator of the Androgen receptor. It was also characterized as a Golgi-associated protein, which is essential for acrosome formation during functional sperm development. However, the molecular roles of TMF in this intricate process have not been revealed. Here, we show that during spermiogenesis, TMF undergoes a dynamic change of localization throughout the Golgi apparatus. Specifically, TMF translocates from the cis-Golgi to the trans-Golgi network and to the emerging vesicles surface, as the round spermatids develop. Notably, lack of TMF led to an abnormal spatial orientation of the Golgi and to the deviation of the trans-Golgi surface away from the nucleus of the developing round spermatids. Concomitantly, pro-acrosomal vesicles derived from the TMF-/- Golgi lacked targeting properties and did not tether to the spermatid nuclear membrane thereby failing to form the acrosome anchoring scaffold, the acroplaxome, around the cell-nucleus. Absence of TMF also perturbed the positioning of microtubules, which normally lie in proximity to the Golgi and are important for maintaining Golgi spatial orientation and dynamics and for chromatoid body formation, which is impaired in TMF-/- spermatids. In-silico evaluation combined with molecular and electron microscopic analyses revealed the presence of a microtubule interacting domain (MIT) in TMF, and confirmed the association of TMF with microtubules in spermatogenic cells. Furthermore, the MIT domain in TMF, along with microtubules integrity, are required for stable association of TMF with the Golgi apparatus. Collectively, we show here for the first time that a Golgi and microtubules associated protein is crucial for maintaining proper Golgi orientation during a cell developmental process.
Collapse
Affiliation(s)
- Yoav Elkis
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Shai Bel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Roni Rahimi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Tali Lerer-Goldstein
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Smadar Levin-Zaidman
- Electron Microscopy Unit, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Tatiana Babushkin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Sally Shpungin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Uri Nir
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900, Israel
| |
Collapse
|
26
|
Ariotti N, Hall TE, Rae J, Ferguson C, McMahon KA, Martel N, Webb RE, Webb RI, Teasdale RD, Parton RG. Modular Detection of GFP-Labeled Proteins for Rapid Screening by Electron Microscopy in Cells and Organisms. Dev Cell 2015; 35:513-25. [PMID: 26585296 DOI: 10.1016/j.devcel.2015.10.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/16/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
Abstract
Reliable and quantifiable high-resolution protein localization is critical for understanding protein function. However, the time required to clone and characterize any protein of interest is a significant bottleneck, especially for electron microscopy (EM). We present a modular system for enzyme-based protein tagging that allows for improved speed and sampling for analysis of subcellular protein distributions using existing clone libraries to EM-resolution. We demonstrate that we can target a modified soybean ascorbate peroxidase (APEX) to any GFP-tagged protein of interest by engineering a GFP-binding peptide (GBP) directly to the APEX-tag. We demonstrate that APEX-GBP (1) significantly reduces the time required to characterize subcellular protein distributions of whole libraries to less than 3 days, (2) provides remarkable high-resolution localization of proteins to organelle subdomains, and (3) allows EM localization of GFP-tagged proteins, including proteins expressed at endogenous levels, in vivo by crossing existing GFP-tagged transgenic zebrafish lines with APEX-GBP transgenic lines.
Collapse
Affiliation(s)
- Nicholas Ariotti
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Thomas E Hall
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - James Rae
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Charles Ferguson
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Kerrie-Ann McMahon
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Nick Martel
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Robyn E Webb
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard I Webb
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072, Australia
| | - Rohan D Teasdale
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, QLD 4072, Australia; Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
27
|
Grippa A, Buxó L, Mora G, Funaya C, Idrissi FZ, Mancuso F, Gomez R, Muntanyà J, Sabidó E, Carvalho P. The seipin complex Fld1/Ldb16 stabilizes ER-lipid droplet contact sites. J Cell Biol 2015; 211:829-44. [PMID: 26572621 PMCID: PMC4657162 DOI: 10.1083/jcb.201502070] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 10/16/2015] [Indexed: 01/11/2023] Open
Abstract
Mutations in the seipin complex components Fld1 and Ldb16 result in the loss of lipid droplet identity and phospholipid packing defects, revealing a role of this complex in the stabilization of ER–lipid droplet contact sites. Lipid droplets (LDs) are storage organelles consisting of a neutral lipid core surrounded by a phospholipid monolayer and a set of LD-specific proteins. Most LD components are synthesized in the endoplasmic reticulum (ER), an organelle that is often physically connected with LDs. How LD identity is established while maintaining biochemical and physical connections with the ER is not known. Here, we show that the yeast seipin Fld1, in complex with the ER membrane protein Ldb16, prevents equilibration of ER and LD surface components by stabilizing the contact sites between the two organelles. In the absence of the Fld1/Ldb16 complex, assembly of LDs results in phospholipid packing defects leading to aberrant distribution of lipid-binding proteins and abnormal LDs. We propose that the Fld1/Ldb16 complex facilitates the establishment of LD identity by acting as a diffusion barrier at the ER–LD contact sites.
Collapse
Affiliation(s)
- Alexandra Grippa
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Laura Buxó
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Gabriel Mora
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Charlotta Funaya
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Fatima-Zahra Idrissi
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Francesco Mancuso
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Raul Gomez
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Júlia Muntanyà
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Eduard Sabidó
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Pedro Carvalho
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| |
Collapse
|
28
|
Koga D, Kusumi S, Bochimoto H, Watanabe T, Ushiki T. Correlative Light and Scanning Electron Microscopy for Observing the Three-Dimensional Ultrastructure of Membranous Cell Organelles in Relation to Their Molecular Components. J Histochem Cytochem 2015; 63:968-79. [PMID: 26374827 DOI: 10.1369/0022155415609099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/06/2015] [Indexed: 11/22/2022] Open
Abstract
Although the osmium maceration method has been used to observe three-dimensional (3D) structures of membranous cell organelles with scanning electron microscopy (SEM), the use of osmium tetroxide for membrane fixation and the removal of cytosolic soluble proteins largely impairs the antigenicity of molecules in the specimens. In the present study, we developed a novel method to combine cryosectioning with the maceration method for correlative immunocytochemical analysis. We first immunocytochemically stained a semi-thin cryosection cut from a pituitary tissue block with a cryo-ultramicrotome, according to the Tokuyasu method, before preparing an osmium-macerated specimen from the remaining tissue block. Correlative microscopy was performed by observing the same area between the immunostained section and the adjacent face of the tissue block. Using this correlative method, we could accurately identify the gonadotropes of pituitary glands in various experimental conditions with SEM. At 4 weeks after castration, dilated cisternae of rough endoplasmic reticulum (RER) were distributed throughout the cytoplasm. On the other hand, an extremely dilated cisterna of the RER occupied the large region of the cytoplasm at 12 weeks after castration. This novel method has the potential to analyze the relationship between the distribution of functional molecules and the 3D ultrastructure in different composite tissues.
Collapse
Affiliation(s)
- Daisuke Koga
- Division of Microscopic Anatomy and Bio-imaging, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan (DK, TU)
| | - Satoshi Kusumi
- )Division of Morphological Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan (SK)
| | - Hiroki Bochimoto
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Japan (HB, TW
| | - Tsuyoshi Watanabe
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Japan (HB, TW
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy and Bio-imaging, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan (DK, TU)
| |
Collapse
|
29
|
Elbaz-Alon Y, Eisenberg-Bord M, Shinder V, Stiller SB, Shimoni E, Wiedemann N, Geiger T, Schuldiner M. Lam6 Regulates the Extent of Contacts between Organelles. Cell Rep 2015; 12:7-14. [PMID: 26119743 PMCID: PMC4518459 DOI: 10.1016/j.celrep.2015.06.022] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/10/2015] [Accepted: 06/08/2015] [Indexed: 11/16/2022] Open
Abstract
Communication between organelles is crucial for eukaryotic cells to function as one coherent unit. An important means of communication is through membrane contact sites, where two organelles come into close proximity allowing the transport of lipids and small solutes between them. Contact sites are dynamic in size and can change in response to environmental or cellular stimuli; however, how this is regulated has been unclear. Here, we show that Saccharomyces cerevisiae Lam6 resides in several central contact sites: ERMES (ER/mitochondria encounter structure), vCLAMP (vacuole and mitochondria patch), and NVJ (nuclear vacuolar junction). We show that Lam6 is sufficient for expansion of contact sites under physiological conditions and necessary for coordination of contact site size. Given that Lam6 is part of a large protein family and is conserved in vertebrates, our work opens avenues for investigating the underlying principles of organelle communication. Lam6 is localized to three major cellular contacts: ERMES, vCLAMP, and NVJ Lam6 is a GRAM domain protein conserved from yeast to humans Overexpression of Lam6 results in the expansion of all three contact sites Lam6 is essential for the cross-talk between ERMES and vCLAMP
Collapse
Affiliation(s)
- Yael Elbaz-Alon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Eisenberg-Bord
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Vera Shinder
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sebastian Berthold Stiller
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Universität Freiburg, Freiburg 79104, Germany; Fakultät für Biologie, Universität Freiburg, Freiburg 79104, Germany
| | - Eyal Shimoni
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nils Wiedemann
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Universität Freiburg, Freiburg 79104, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, Freiburg 79104, Germany
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
30
|
Dewey M, Evans D, Coleman J, Priestley R, Hull R, Horsley D, Hawes C. Antibodies in plant science. ACTA ACUST UNITED AC 2015. [DOI: 10.1111/j.1438-8677.1991.tb01510.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Dewey
- Department of Plant Sciences; University of Oxford; South Parks Road Oxford OX1 3RA UK
| | - D. Evans
- Department of Plant Sciences; University of Oxford; South Parks Road Oxford OX1 3RA UK
| | - J. Coleman
- Department of Plant Sciences; University of Oxford; South Parks Road Oxford OX1 3RA UK
| | - R. Priestley
- Department of Plant Sciences; University of Oxford; South Parks Road Oxford OX1 3RA UK
| | - R. Hull
- Department of Plant Sciences; University of Oxford; South Parks Road Oxford OX1 3RA UK
| | - D. Horsley
- Department of Plant Sciences; University of Oxford; South Parks Road Oxford OX1 3RA UK
| | - C. Hawes
- Department of Plant Sciences; University of Oxford; South Parks Road Oxford OX1 3RA UK
- School of Biological and Molecular Sciences, Oxford Polytechnic; Gipsy Lane Headington Oxford OX3 0BP UK
| |
Collapse
|
31
|
Biazik J, Vihinen H, Anwar T, Jokitalo E, Eskelinen EL. The versatile electron microscope: An ultrastructural overview of autophagy. Methods 2015; 75:44-53. [DOI: 10.1016/j.ymeth.2014.11.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 01/08/2023] Open
|
32
|
Hansen AK, Indrevik JT, Figenschau Y, Martinez-Zubiaurre I, Sveinbjörnsson B. Human articular chondrocytes express functional leukotriene B4 receptors. J Anat 2015; 226:268-77. [PMID: 25677035 DOI: 10.1111/joa.12275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2014] [Indexed: 12/11/2022] Open
Abstract
Leukotriene B4 (LTB4) is a potent chemoattractant associated with the development of osteoarthritis (OA), while its receptors BLT1 and BLT2 have been found in synovium and subchondral bone. In this study, we have investigated whether these receptors are also expressed by human cartilage cells and their potential effects on cartilage cells. The expression of LTB4 receptors in native tissue and cultured cells was assessed by immunohistochemistry, immunocytochemistry, polymerase chain reaction (PCR) and electron microscopy. The functional significance of the LTB4 receptor expression was studied by Western blotting, using phospho-specific antibodies in the presence or absence of receptor antagonists. In further studies, the secretion of pro-inflammatory cytokines, growth factors and metalloproteinases by LTB4-stimulated chondrocytes was measured by multiplex protein assays. The effects of LTB4 in cartilage signature gene expression in cultured cells were assessed by quantitative PCR, whereas the LTB4-promoted matrix synthesis was determined using 3D pellet cultures. Both receptors were present in cultured chondrocytes, as was confirmed by immunolabelling and PCR. The relative quantification by PCR demonstrated a higher expression of the receptors in cells from healthy joints compared with OA cases. The stimulation of cultured chondrocytes with LTB4 resulted in a phosphorylation of downstream transcription factor Erk 1/2, which was reduced after blocking BLT1 signalling. No alteration in the secretion of cytokine and metalloproteinases was recorded after challenging cultured cells with LTB4; likewise, cartilage matrix gene expression and 3D tissue synthesis were unaffected. Chondrocytes express BLT1 and BLT2 receptors, and LTB4 activates the downstream Erk 1/2 pathway by engaging the high-affinity receptor BLT1. However, any putative role in cartilage biology could not be revealed, and remains to be clarified.
Collapse
Affiliation(s)
- Ann Kristin Hansen
- Department of Orthopaedic and Plastic Surgery, University Hospital of North Norway, Tromsø, Norway; Bone and Joint Research Group, Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | | | | | | | | |
Collapse
|
33
|
Microscopy of membrane lipids: how precisely can we define their distribution? Essays Biochem 2015; 57:81-91. [DOI: 10.1042/bse0570081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Membrane lipids form the basic framework of biological membranes by forming the lipid bilayer, but it is becoming increasingly clear that individual lipid species play different functional roles. However, in comparison with proteins, relatively little is known about how lipids are distributed in the membrane. Several microscopic methods are available to study membrane lipid dynamics in living cells, but defining the distribution of lipids at the submicrometre scale is difficult, because lipids diffuse quickly in the membrane and most lipids do not react with aldehydes that are commonly used as fixatives. Quick-freezing appears to be the only practical method by which to stop the lipid movement instantaneously and capture the molecular localization at the moment of interest. Electron microscopic methods, using cryosections, resin sections, and freeze-fracture replicas are used to visualize lipids in quick-frozen samples. The method that employs the freeze-fracture replica is unique in that it requires no chemical treatment and provides a two-dimensional view of the membrane.
Collapse
|
34
|
Schatz D, Shemi A, Rosenwasser S, Sabanay H, Wolf SG, Ben-Dor S, Vardi A. Hijacking of an autophagy-like process is critical for the life cycle of a DNA virus infecting oceanic algal blooms. THE NEW PHYTOLOGIST 2014; 204:854-63. [PMID: 25195618 PMCID: PMC4233938 DOI: 10.1111/nph.13008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/27/2014] [Indexed: 05/04/2023]
Abstract
Marine photosynthetic microorganisms are the basis of marine food webs and are responsible for nearly 50% of the global primary production. Emiliania huxleyi forms massive oceanic blooms that are routinely terminated by large double-stranded DNA coccolithoviruses. The cellular mechanisms that govern the replication cycle of these giant viruses are largely unknown. We used diverse techniques, including fluorescence microscopy, transmission electron microscopy, cryoelectron tomography, immunolabeling and biochemical methodologies to investigate the role of autophagy in host-virus interactions. Hallmarks of autophagy are induced during the lytic phase of E. huxleyi viral infection, concomitant with up-regulation of autophagy-related genes (ATG genes). Pretreatment of the infected cells with an autophagy inhibitor causes a major reduction in the production of extracellular viral particles, without reducing viral DNA replication within the cell. The host-encoded Atg8 protein was detected within purified virions, demonstrating the pivotal role of the autophagy-like process in viral assembly and egress. We show that autophagy, which is classically considered as a defense mechanism, is essential for viral propagation and for facilitating a high burst size. This cellular mechanism may have a major impact on the fate of the viral-infected blooms, and therefore on the cycling of nutrients within the marine ecosystem.
Collapse
Affiliation(s)
- Daniella Schatz
- Department of Plant Sciences, Weizmann Institute of ScienceRehovot, 76100, Israel
| | - Adva Shemi
- Department of Plant Sciences, Weizmann Institute of ScienceRehovot, 76100, Israel
| | - Shilo Rosenwasser
- Department of Plant Sciences, Weizmann Institute of ScienceRehovot, 76100, Israel
| | - Helena Sabanay
- Department of Chemical Research Support, Weizmann Institute of ScienceRehovot, 76100, Israel
| | - Sharon G Wolf
- Department of Chemical Research Support, Weizmann Institute of ScienceRehovot, 76100, Israel
| | - Shifra Ben-Dor
- Department of Biological Services, Weizmann Institute of ScienceRehovot, 76100, Israel
| | - Assaf Vardi
- Department of Plant Sciences, Weizmann Institute of ScienceRehovot, 76100, Israel
- Author for correspondence: Assaf Vardi, Tel: +972 8 934 2914,
| |
Collapse
|
35
|
Blumberg A, Sri Sailaja B, Kundaje A, Levin L, Dadon S, Shmorak S, Shaulian E, Meshorer E, Mishmar D. Transcription factors bind negatively selected sites within human mtDNA genes. Genome Biol Evol 2014; 6:2634-46. [PMID: 25245407 PMCID: PMC4224337 DOI: 10.1093/gbe/evu210] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transcription of mitochondrial DNA (mtDNA)-encoded genes is thought to be regulated by a handful of dedicated transcription factors (TFs), suggesting that mtDNA genes are separately regulated from the nucleus. However, several TFs, with known nuclear activities, were found to bind mtDNA and regulate mitochondrial transcription. Additionally, mtDNA transcriptional regulatory elements, which were proved important in vitro, were harbored by a deletion that normally segregated among healthy individuals. Hence, mtDNA transcriptional regulation is more complex than once thought. Here, by analyzing ENCODE chromatin immunoprecipitation sequencing (ChIP-seq) data, we identified strong binding sites of three bona fide nuclear TFs (c-Jun, Jun-D, and CEBPb) within human mtDNA protein-coding genes. We validated the binding of two TFs by ChIP-quantitative polymerase chain reaction (c-Jun and Jun-D) and showed their mitochondrial localization by electron microscopy and subcellular fractionation. As a step toward investigating the functionality of these TF-binding sites (TFBS), we assessed signatures of selection. By analyzing 9,868 human mtDNA sequences encompassing all major global populations, we recorded genetic variants in tips and nodes of mtDNA phylogeny within the TFBS. We next calculated the effects of variants on binding motif prediction scores. Finally, the mtDNA variation pattern in predicted TFBS, occurring within ChIP-seq negative-binding sites, was compared with ChIP-seq positive-TFBS (CPR). Motifs within CPRs of c-Jun, Jun-D, and CEBPb harbored either only tip variants or their nodal variants retained high motif prediction scores. This reflects negative selection within mtDNA CPRs, thus supporting their functionality. Hence, human mtDNA-coding sequences may have dual roles, namely coding for genes yet possibly also possessing regulatory potential.
Collapse
Affiliation(s)
- Amit Blumberg
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Badi Sri Sailaja
- Department of Genetics, The Institute of Life Sciences, and The Edmond Lily Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Israel
| | - Anshul Kundaje
- Department of Genetics, Stanford University Department of Computer Science, Stanford University
| | - Liron Levin
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Sara Dadon
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shimrit Shmorak
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University Medical School, Ein Karem, Jerusalem, Israel
| | - Eitan Shaulian
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University Medical School, Ein Karem, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, The Institute of Life Sciences, and The Edmond Lily Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
36
|
Elbaz-Alon Y, Rosenfeld-Gur E, Shinder V, Futerman AH, Geiger T, Schuldiner M. A dynamic interface between vacuoles and mitochondria in yeast. Dev Cell 2014; 30:95-102. [PMID: 25026036 DOI: 10.1016/j.devcel.2014.06.007] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 04/14/2014] [Accepted: 06/09/2014] [Indexed: 12/18/2022]
Abstract
Cellular life depends on continuous transport of lipids and small molecules between mitochondria and the endomembrane system. Recently, endoplasmic reticulum-mitochondrial encounter structure (ERMES) was identified as an important yet nonessential contact for such transport. Using a high-content screen in yeast, we found a contact site, marked by Vam6/Vps39, between vacuoles (the yeast lysosomal compartment) and mitochondria, named vCLAMP (vacuole and mitochondria patch). vCLAMP is enriched with ion and amino-acid transporters and has a role in lipid relay between the endomembrane system and mitochondria. Critically, we show that mitochondria are dependent on having one of two contact sites, ERMES or vCLAMP. The absence of one causes expansion of the other, and elimination of both is lethal. Identification of vCLAMP adds to our ability to understand the complexity of interorganellar crosstalk.
Collapse
Affiliation(s)
- Yael Elbaz-Alon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eden Rosenfeld-Gur
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Vera Shinder
- Electron Microscopy Unit, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
37
|
Possidonio ACB, Soares CP, Portilho DM, Midlej V, Benchimol M, Butler-Browne G, Costa ML, Mermelstein C. Differences in the expression and distribution of flotillin-2 in chick, mice and human muscle cells. PLoS One 2014; 9:e103990. [PMID: 25105415 PMCID: PMC4126691 DOI: 10.1371/journal.pone.0103990] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 07/08/2014] [Indexed: 11/19/2022] Open
Abstract
Myoblasts undergo a series of changes in the composition and dynamics of their plasma membranes during the initial steps of skeletal muscle differentiation. These changes are crucial requirements for myoblast fusion and allow the formation of striated muscle fibers. Membrane microdomains, or lipid rafts, have been implicated in myoblast fusion. Flotillins are scaffold proteins that are essential for the formation and dynamics of lipid rafts. Flotillins have been widely studied over the last few years, but still little is known about their role during skeletal muscle differentiation. In the present study, we analyzed the expression and distribution of flotillin-2 in chick, mice and human muscle cells grown in vitro. Primary cultures of chick myogenic cells showed a decrease in the expression of flotillin-2 during the first 72 hours of muscle differentiation. Interestingly, flotillin-2 was found to be highly expressed in chick myogenic fibroblasts and weakly expressed in chick myoblasts and multinucleated myotubes. Flotillin-2 was distributed in vesicle-like structures within the cytoplasm of chick myogenic fibroblasts, in the mouse C2C12 myogenic cell line, and in neonatal human muscle cells. Cryo-immunogold labeling revealed the presence of flotillin-2 in vesicles and in Golgi stacks in chick myogenic fibroblasts. Further, brefeldin A induced a major reduction in the number of flotillin-2 containing vesicles which correlates to a decrease in myoblast fusion. These results suggest the involvement of flotillin-2 during the initial steps of skeletal myogenesis.
Collapse
Affiliation(s)
- Ana Claudia Batista Possidonio
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Pontes Soares
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Victor Midlej
- Laboratório de Ultraestrutura Celular, Universidade Santa Úrsula, Rio de Janeiro, Brazil
| | - Marlene Benchimol
- Laboratório de Ultraestrutura Celular, Universidade Santa Úrsula, Rio de Janeiro, Brazil
| | | | - Manoel Luis Costa
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Mermelstein
- Laboratório de Diferenciação Muscular e Citoesqueleto, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
38
|
Human endogenous retrovirus W activity in cartilage of osteoarthritis patients. BIOMED RESEARCH INTERNATIONAL 2014; 2014:698609. [PMID: 25136615 PMCID: PMC4130134 DOI: 10.1155/2014/698609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/25/2014] [Indexed: 11/18/2022]
Abstract
The etiology of viruses in osteoarthritis remains controversial because the prevalence of viral nucleic acid sequences in peripheral blood or synovial fluid from osteoarthritis patients and that in healthy control subjects are similar. Until now the presence of virus has not been analyzed in cartilage. We screened cartilage and chondrocytes from advanced and non-/early osteoarthritis patients for parvovirus B19, herpes simplex virus-1, Epstein Barr virus, cytomegalovirus, human herpes virus-6, hepatitis C virus, and human endogenous retroviruses transcripts. Endogenous retroviruses transcripts, but none of the other viruses, were detected in 15 out the 17 patients. Sequencing identified the virus as HERV-WE1 and E2. HERV-W activity was confirmed by high expression levels of syncytin, dsRNA, virus budding, and the presence of virus-like particles in all advanced osteoarthritis cartilages examined. Low levels of HERV-WE1, but not E2 envelope RNA, were observed in 3 out of 8 non-/early osteoarthritis patients, while only 3 out of 7 chondrocytes cultures displayed low levels of syncytin, and just one was positive for virus-like particles. This study demonstrates for the first time activation of HERV-W in cartilage of osteoarthritis patients; however, a causative role for HERV-W in development or deterioration of the disease remains to be proven.
Collapse
|
39
|
Karlsson R, Karlsson A, Bäckman O, Johansson BR, Hulth S. Subcellular localization of an ATPase in anammox bacteria using proteomics and immunogold electron microscopy. FEMS Microbiol Lett 2014; 354:10-8. [PMID: 24635406 DOI: 10.1111/1574-6968.12425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/14/2014] [Accepted: 03/11/2014] [Indexed: 11/27/2022] Open
Abstract
Anaerobic ammonium oxidation (anammox) has received significant attention during optimization of waste-water treatment and constitutes an important pathway for the removal of bioavailable nitrogen from natural environments. Studies of key catabolic enzymes indicate that the anammox reaction takes place inside the anammoxosome, an organelle-like membranous compartment of anammox bacteria. The anammoxosome has also been suggested as a site for ATP synthesis. A lipid-based protein immobilization technique, previously used to identify proteins essential for the anammox reaction, was in this study used to select linear epitopes for antibodies specifically targeted against an identified ATPase. The approach of using proteomics and bioinformatics as tools for selecting antibody targets for immunolocalization provides an important alternative to traditional methods for selection of specific antibodies. Immunogold electron microscopy and statistical evaluations indicated that the antibodies against the ATPase were exclusively found associated with the anammoxosome membrane. This provides strong evidence for ATP synthesis by an intracellular proton motive force in anammox bacteria. Within prokaryotes, an ATP synthase associated with an intracellular compartment is a feature unique for anammox bacteria.
Collapse
|
40
|
Takatori S, Mesman R, Fujimoto T. Microscopic methods to observe the distribution of lipids in the cellular membrane. Biochemistry 2014; 53:639-53. [PMID: 24460209 DOI: 10.1021/bi401598v] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Membrane lipids not only provide the structural framework of cellular membranes but also influence protein functions in several different ways. In comparison to proteins, however, relatively little is known about distribution of membrane lipids because of the insufficiency of microscopic methods. The difficulty in studying lipid distribution results from several factors, including their unresponsiveness to chemical fixation, fast translational movement, small molecular size, and high packing density. In this Current Topic, we consider the major microscopic methods and discuss whether and to what degree of precision these methods can reveal membrane lipid distribution in situ. We highlight two fixation methods, chemical and physical, and compare the theoretical limitations to their spatial resolution. Recognizing the strengths and weaknesses of each method should help researchers interpret their microscopic results and increase our understanding of the physiological functions of lipids.
Collapse
Affiliation(s)
- Sho Takatori
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine , Nagoya 466-8550, Japan
| | | | | |
Collapse
|
41
|
Abstract
In correlative microscopy, light microscopy provides the overview and orientation of the complex cells and tissue, while electron microscopy offers the detailed localization and correlation of subcellular structures. In this chapter we offer detailed high-quality electron microscopical preparation methods for optimum preservation of the cellular ultrastructure. From such preparations serial thin sections are collected and used for comparative histochemical, immunofluorescence, and immunogold staining.In light microscopy histological stains identify the orientation of the sample and immunofluorescence labeling facilitates to find the region of interest, namely, the labeled cells expressing the macromolecule under investigation. Sections, labeled with immunogold are analyzed by electron microscopy in order to identify the label within the cellular architecture at high resolution.
Collapse
Affiliation(s)
- Heinz Schwarz
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | |
Collapse
|
42
|
Torisu T, Torisu K, Lee IH, Liu J, Malide D, Combs CA, Wu XS, Rovira II, Fergusson MM, Weigert R, Connelly PS, Daniels MP, Komatsu M, Cao L, Finkel T. Autophagy regulates endothelial cell processing, maturation and secretion of von Willebrand factor. Nat Med 2013; 19:1281-7. [PMID: 24056772 PMCID: PMC3795899 DOI: 10.1038/nm.3288] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/28/2013] [Indexed: 02/06/2023]
Abstract
Endothelial secretion of von Willebrand factor (VWF) from intracellular organelles known as Weibel-Palade bodies (WPBs) is required for platelet adhesion to the injured vessel wall. Here we demonstrate that WPBs are often found near or within autophagosomes and that endothelial autophagosomes contain abundant VWF protein. Pharmacological inhibitors of autophagy or knockdown of the essential autophagy genes Atg5 or Atg7 inhibits the in vitro secretion of VWF. Furthermore, although mice with endothelial-specific deletion of Atg7 have normal vessel architecture and capillary density, they exhibit impaired epinephrine-stimulated VWF release, reduced levels of high-molecular weight VWF multimers and a corresponding prolongation of bleeding times. Endothelial-specific deletion of Atg5 or pharmacological inhibition of autophagic flux results in a similar in vivo alteration of hemostasis. Thus, autophagy regulates endothelial VWF secretion, and transient pharmacological inhibition of autophagic flux may be a useful strategy to prevent thrombotic events.
Collapse
Affiliation(s)
- Takehiro Torisu
- Center for Molecular Medicine, NHLBI, NIH Bethesda, MD 20892
| | - Kumiko Torisu
- Center for Molecular Medicine, NHLBI, NIH Bethesda, MD 20892
| | - In Hye Lee
- Center for Molecular Medicine, NHLBI, NIH Bethesda, MD 20892
| | - Jie Liu
- Center for Molecular Medicine, NHLBI, NIH Bethesda, MD 20892
| | | | | | - Xufeng S. Wu
- Cell Biology and Physiology Center, NHLBI, NIH Bethesda, MD 20892
| | - Ilsa I. Rovira
- Center for Molecular Medicine, NHLBI, NIH Bethesda, MD 20892
| | | | - Roberto Weigert
- Intracellular Membrane Trafficking Unit, NIDCR, NIH Bethesda, MD 20892
| | | | - Mathew P Daniels
- Electron Microscopy Core Facility, NHLBI, NIH , Bethesda, MD 20892, USA
| | - Masaaki Komatsu
- Laboratory of Frontier Science, Tokyo Metropolitan Institute of Medical Sciences, Tokyo, Japan
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, China Medical University, Shengyang, 110001, China
| | - Toren Finkel
- Center for Molecular Medicine, NHLBI, NIH Bethesda, MD 20892
| |
Collapse
|
43
|
Trepiccione F, Capasso G, Nielsen S, Christensen BM. Evaluation of cellular plasticity in the collecting duct during recovery from lithium-induced nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 2013; 305:F919-29. [DOI: 10.1152/ajprenal.00152.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cellular morphology of the collecting duct is altered by chronic lithium treatment. We have previously shown that lithium increases the fraction of type-A intercalated cells and lowers the fraction of principal cells along the collecting duct. Moreover, type-A intercalated cells acquire a long-row distribution pattern along the tubules. In the present study, we show that these morphological changes reverse progressively after discontinuation of lithium and finally disappear after 19 days from lithium suspension. In this time frame we have identified for the first time, in vivo, a novel cellular type positive for both intercalated and principal cells functional markers, as recognized by colabeling with H+-ATPase/aquaporin-4 (AQP4) and anion exchanger-1 (AE-1)/AQP2 and Foxi1/AQP4. This cell type is mainly present after 6 days of lithium washout, and it disappears in parallel with the long-row pattern of the type-A intercalated cells. It usually localizes either in the middle or at the edge of the long-row pattern. Its ultrastructure resembles the intercalated cells as shown both by differential interference contrast and by electron microscopy. The time course of appearance, the localization along the collecting duct, and the ultrastructure suggest that the cells double labeled for principal and intercalated cells markers could represent a transition element driving the conversion of intercalated cells into principal cells.
Collapse
Affiliation(s)
- Francesco Trepiccione
- The Water and Salt Research Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Cardiothoracic and Respiratory Science, Second University of Naples, Naples, Italy
| | - Giovambattista Capasso
- Department of Cardiothoracic and Respiratory Science, Second University of Naples, Naples, Italy
| | - Søren Nielsen
- The Water and Salt Research Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
44
|
Yu SM. Paraformaldehyde-Lysine-Periodate (PLP) and Osmium Fixation for Correlating Light and Electron Irnmunolabeling of Prolactin Cells. J Histotechnol 2013. [DOI: 10.1179/his.1993.16.2.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
45
|
Yu SM. Prolactin Immunoreactivity in the Rat Pituitary Glands: Comparison of immunofluorescence, immunoperoxidase, and Immunogold Techniques. J Histotechnol 2013. [DOI: 10.1179/his.1993.16.4.323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
46
|
Crunk AE, Monks J, Murakami A, Jackman M, MacLean PS, Ladinsky M, Bales ES, Cain S, Orlicky DJ, McManaman JL. Dynamic regulation of hepatic lipid droplet properties by diet. PLoS One 2013; 8:e67631. [PMID: 23874434 PMCID: PMC3708958 DOI: 10.1371/journal.pone.0067631] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/20/2013] [Indexed: 12/21/2022] Open
Abstract
Cytoplasmic lipid droplets (CLD) are organelle-like structures that function in neutral lipid storage, transport and metabolism through the actions of specific surface-associated proteins. Although diet and metabolism influence hepatic CLD levels, how they affect CLD protein composition is largely unknown. We used non-biased, shotgun, proteomics in combination with metabolic analysis, quantitative immunoblotting, electron microscopy and confocal imaging to define the effects of low- and high-fat diets on CLD properties in fasted-refed mice. We found that the hepatic CLD proteome is distinct from that of CLD from other mammalian tissues, containing enzymes from multiple metabolic pathways. The hepatic CLD proteome is also differentially affected by dietary fat content and hepatic metabolic status. High fat feeding markedly increased the CLD surface density of perilipin-2, a critical regulator of hepatic neutral lipid storage, whereas it reduced CLD levels of betaine-homocysteine S-methyltransferase, an enzyme regulator of homocysteine levels linked to fatty liver disease and hepatocellular carcinoma. Collectively our data demonstrate that the hepatic CLD proteome is enriched in metabolic enzymes, and that it is qualitatively and quantitatively regulated by diet and metabolism. These findings implicate CLD in the regulation of hepatic metabolic processes, and suggest that their properties undergo reorganization in response to hepatic metabolic demands.
Collapse
Affiliation(s)
- Amanda E. Crunk
- Graduate Program of Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Division of Basic Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jenifer Monks
- Division of Basic Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Aya Murakami
- Graduate Program of Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Matthew Jackman
- Division of Endocrinology and Metabolism, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Center for Human Nutrition, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Colorado Obesity Research Initiative, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Paul S. MacLean
- Division of Endocrinology and Metabolism, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Center for Human Nutrition, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Colorado Obesity Research Initiative, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Mark Ladinsky
- The Boulder Laboratory for 3D Electron Microscopy, University of Colorado Boulder, Boulder Colorado, United States of America
| | - Elise S. Bales
- Division of Basic Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Shannon Cain
- The Colorado Obesity Research Initiative, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - David J. Orlicky
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - James L. McManaman
- Graduate Program of Molecular Biology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Division of Basic Reproductive Sciences, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Center for Human Nutrition, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- The Colorado Obesity Research Initiative, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
47
|
Iliev DB, Thim H, Lagos L, Olsen R, Jørgensen JB. Homing of Antigen-Presenting Cells in Head Kidney and Spleen - Salmon Head Kidney Hosts Diverse APC Types. Front Immunol 2013; 4:137. [PMID: 23761795 PMCID: PMC3674399 DOI: 10.3389/fimmu.2013.00137] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 05/22/2013] [Indexed: 01/07/2023] Open
Abstract
Lymph nodes and spleen are major organs where mammalian antigen-presenting cells (APCs) initiate and orchestrate Ag-specific immune responses. Unlike mammals, teleosts lack lymph nodes and an interesting question is whether alternative organs may serve as sites for antigen presentation in teleosts. In the current study, fluorescent ovalbumin (Ova) and CpG oligonucleotides (ODNs) injected intra-abdominally were detected in significant numbers of salmon head kidney (HK) MHCII+ cells over a period of 2 weeks while in spleen the percentage of these was transient and declined from day 1 post injection. In vitro studies further shed light on the properties of the diverse MHCII+ cell types found in HK. The ultrastructure of a subpopulation of MHCII+ cells with a high capacity to endocytose and process Ova indicated that these were able to perform constitutive macropinocytosis. Upon stimulation with CpG ODNs these cells upregulated CD86 and gave very high levels of TNF mRNA indicating that these are professional APCs, related to macrophages and dendritic cells (DCs). A subpopulation of HK granulocytes expressed high levels of surface MHCII and upon CpG stimulation upregulated most of the tested APC marker genes. Although these granulocytes expressed TNF weakly, they had relatively high basal levels of IL-1β mRNA and the CpG stimulation upregulated IL-1β, along with its signaling and decoy receptors, to the highest levels as compared to other HK cell types. Interestingly, the high expression of IL-1β mRNA in the granulocytes correlated with a high autophagy flux as demonstrated by LC3-II conversion. Autophagy has recently been found to be implicated in IL-1β processing and secretion and the presented data suggests that granulocytes of salmon, and perhaps other teleost species, may serve as a valuable model to study the involvement of autophagy in regulation of the vertebrate immune response.
Collapse
Affiliation(s)
- Dimitar B Iliev
- Norwegian College of Fisheries Science, University of Tromsø , Tromsø , Norway
| | | | | | | | | |
Collapse
|
48
|
Dahan-Pasternak N, Nasereddin A, Kolevzon N, Pe'er M, Wong W, Shinder V, Turnbull L, Whitchurch CB, Elbaum M, Gilberger TW, Yavin E, Baum J, Dzikowski R. PfSec13 is an unusual chromatin-associated nucleoporin of Plasmodium falciparum that is essential for parasite proliferation in human erythrocytes. J Cell Sci 2013; 126:3055-69. [PMID: 23687383 DOI: 10.1242/jcs.122119] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Plasmodium falciparum, the deadliest form of human malaria, the nuclear periphery has drawn much attention due to its role as a sub-nuclear compartment involved in virulence gene expression. Recent data have implicated components of the nuclear envelope in regulating gene expression in several eukaryotes. Special attention has been given to nucleoporins that compose the nuclear pore complex (NPC). However, very little is known about components of the nuclear envelope in Plasmodium parasites. Here we characterize PfSec13, an unusual nucleoporin of P. falciparum, which shows unique structural similarities suggesting that it is a fusion between Sec13 and Nup145C of yeast. Using super resolution fluorescence microscopy (3D-SIM) and in vivo imaging, we show that the dynamic localization of PfSec13 during parasites' intra-erythrocytic development corresponds with that of the NPCs and that these dynamics are associated with microtubules rather than with F-actin. In addition, PfSec13 does not co-localize with the heterochormatin markers HP1 and H3K9me3, suggesting euchromatic location of the NPCs. The proteins associated with PfSec13 indicate that this unusual Nup is involved in several cellular processes. Indeed, ultrastructural and chromatin immunoprecipitation analyses revealed that, in addition to the NPCs, PfSec13 is found in the nucleoplasm where it is associated with chromatin. Finally, we used peptide nucleic acids (PNA) to downregulate PfSec13 and show that it is essential for parasite proliferation in human erythrocytes.
Collapse
Affiliation(s)
- Noa Dahan-Pasternak
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Witkiewicz H, Oh P, Schnitzer JE. II. Capsular vaso-mimicry formed by transgenic mammary tumor spheroids implanted ectopically into mouse dorsal skin fold: implications for cellular mechanisms of metastasis. F1000Res 2013; 2:9. [PMID: 24555024 PMCID: PMC3869488 DOI: 10.12688/f1000research.2-9.v2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2013] [Indexed: 12/12/2022] Open
Abstract
Most cancer patients die of metastatic disease, not primary tumors, while biological mechanisms leading to metastases remain unclear and effective therapies are missing. Using a mouse dorsal skin chamber model we had observed that tumor growth and vasculature formation could be influenced by the way in vitro cultured (avascular) spheroids of N202 breast tumor cells were implanted; co-implantation of lactating breast tissue created stimulating microenvironment, whereas the absence of the graft resulted in temporary tumor dormancy. This report addressed the issue of cellular mechanisms of the vasculogenic switch that ended the dormancy. In situ ultrastructural analysis revealed that the tumors survived in ectopic microenvironment until some of host and tumor stem cells evolved independently into cells initiating the vasculogenic switch. The tumor cells that survived and proliferated under hypoxic conditions for three weeks were supported by erythrogenic autophagy of others. However, the host microenvironment first responded as it would to non-immunogenic foreign bodies, i.e., by encapsulating the tumor spheroids with collagen-producing fibroblasts. That led to a form of vaso-mimicry consisting of tumor cells amid tumor-derived erythrosomes (synonym of erythrocytes), megakaryocytes and platelets, and encapsulating them all, the host fibroblasts. Such capsular vaso-mimicry could potentially facilitate metastasis by fusing with morphologically similar lymphatic vessels or veins. Once incorporated into the host circulatory system, tumor cells could be carried away passively by blood flow, regardless of their genetic heterogeneity. The fake vascular segment would have permeability properties different from genuine vascular endothelium. The capsular vaso-mimicry was different from vasculogenic mimicry earlier observed in metastases-associated malignant tumors where channels formed by tumor cells were said to contain circulating blood. Structures similar to the vasculogenic mimicry were seen here as well but contained non-circulating erythrosomes formed between tumor nodules. The host's response to the implantation included coordinated formation of new vessels and peripheral nerves.
Collapse
Affiliation(s)
- Halina Witkiewicz
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| | - Phil Oh
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| |
Collapse
|
50
|
Witkiewicz H, Oh P, Schnitzer JE. II. Capsular vaso-mimicry formed by transgenic mammary tumor spheroids implanted ectopically into mouse dorsal skin fold: cellular mechanisms of metastasis. F1000Res 2013; 2:9. [PMID: 24555024 PMCID: PMC3869488 DOI: 10.12688/f1000research.2-9.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/02/2013] [Indexed: 03/22/2024] Open
Abstract
Most cancer patients die of metastatic disease, not primary tumors, while biological mechanisms leading to metastases remain unclear and effective therapies are missing. Using a mouse dorsal skin chamber model we had observed that tumor growth and vasculature formation could be influenced by the way in vitro cultured (avascular) spheroids of N202 breast tumor cells were implanted; co-implantation of lactating breast tissue created stimulating microenvironment, whereas the absence of the graft resulted in temporary tumor dormancy. This report addressed the issue of cellular mechanisms of the vasculogenic switch that ended the dormancy. In situ ultrastructural analysis revealed that the tumors survived in ectopic microenvironment until some of host and tumor stem cells evolved independently into cells initiating the vasculogenic switch. The tumor cells that survived and proliferated under hypoxic conditions for three weeks were supported by erythrogenic autophagy of others. However, the host microenvironment first responded as it would to non-immunogenic foreign bodies, i.e., by encapsulating the tumor spheroids with collagen-producing fibroblasts. That led to a form of vaso-mimicry consisting of tumor cells amid tumor-derived erythrosomes (synonym of erythrocytes), megakaryocytes and platelets, and encapsulating them all, the host fibroblasts. Such capsular vaso-mimicry could potentially facilitate metastasis by fusing with morphologically similar lymphatic vessels or veins. Once incorporated into the host circulatory system, tumor cells could be carried away passively by blood flow, regardless of their genetic heterogeneity. The fake vascular segment would have permeability properties different from genuine vascular endothelium. The capsular vaso-mimicry was different from vasculogenic mimicry earlier observed in metastases-associated malignant tumors where channels formed by tumor cells were said to contain circulating blood. Structures similar to the vasculogenic mimicry were seen here as well but contained non-circulating erythrosomes formed between tumor nodules. The host's response to the implantation included coordinated formation of new vessels and peripheral nerves.
Collapse
Affiliation(s)
- Halina Witkiewicz
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| | - Phil Oh
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| | - Jan E Schnitzer
- Proteogenomics Research Institute for Systems Medicine, San Diego, CA, 92121, USA
| |
Collapse
|