1
|
Abstract
Since its entry into biomedical research in the first half of the twentieth century, electron microscopy has been a valuable tool for lung researchers to explore the lung's delicate ultrastructure. Among others, it proved the existence of a continuous alveolar epithelium and demonstrated the surfactant lining layer. With the establishment of serial sectioning transmission electron microscopy, as the first "volume electron microscopic" technique, electron microscopy entered the third dimension and investigations of the lung's three-dimensional ultrastructure became possible. Over the years, further techniques, ranging from electron tomography over serial block-face and focused ion beam scanning electron microscopy to array tomography became available. All techniques cover different volumes and resolutions, and, thus, different scientific questions. This review gives an overview of these techniques and their application in lung research, focusing on their fields of application and practical implementation. Furthermore, an introduction is given how the output raw data are processed and the final three-dimensional models can be generated.
Collapse
Affiliation(s)
- Jan Philipp Schneider
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
2
|
Schneider JP, Pedersen L, Mühlfeld C, Ochs M. Staining histological lung sections with Sudan Black B or Sudan III for automated identification of alveolar epithelial type II cells. Acta Histochem 2015; 117:675-80. [PMID: 26558990 DOI: 10.1016/j.acthis.2015.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 10/14/2015] [Accepted: 10/20/2015] [Indexed: 12/28/2022]
Abstract
Alveolar epithelial type II (AE2) cells produce, store and secrete pulmonary surfactant and serve as progenitor cells for the alveolar epithelium. They are thus an interesting target in wide fields of pulmonary research. Stereological methods allow their quantification based on measurements on histological sections. A proper AE2 cell quantification, however, requires a method of tissue processing that results in little tissue shrinkage during processing. It was recently shown that a primary fixation with a mixture of glutaraldehyde and formaldehyde, postfixation with osmium tetroxide and uranyl acetate and embedding in glycol methacrylate fulfills this requirement. However, a proper quantification, furthermore, requires a secure identification of the cells under the microscope. Classical approaches using routine stainings, high magnifications and systematic uniform random sampling can result in a tedious counting procedure. In this article we show that Sudan Black B and Sudan III staining in combination with the previously described "low shrinkage method" of tissue processing result in good staining of lamellar bodies of AE2 cells (their storing organelles of surfactant) and thus provide a good signal of AE2 cells, which allows their easy and secure identification even at rather low magnifications. We further show that this signal enables automated detection of AE2 cells by image analysis, which should make this method a suitable staining method for the recently developed and more efficient proportionator sampling.
Collapse
|
3
|
Schneider JP, Ochs M. Alterations of mouse lung tissue dimensions during processing for morphometry: a comparison of methods. Am J Physiol Lung Cell Mol Physiol 2013; 306:L341-50. [PMID: 24375800 DOI: 10.1152/ajplung.00329.2013] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Preservation of original tissue dimensions is an essential prerequisite for morphometric studies. Shrinkage occurring during tissue processing for histology may severely influence the appearance of structures seen under the microscope and stereological calculations. Therefore, shrinkage has to be avoided so that estimates obtained by application of unbiased stereology are indeed unbiased. The present study investigates the alterations of tissue dimensions of mouse lung samples during processing for histology. Different fixatives as well as embedding protocols are considered. Mouse lungs were fixed by instillation of either 4% formalin or a mixture of 1.5% glutaraldehyde/1.5% formaldehyde. Tissue blocks were sampled according to principles of stereology for embedding in paraffin, glycol methacrylate without treatment with osmium tetroxide and uranyl acetate, and glycol methacrylate including treatment with osmium tetroxide and uranyl acetate before dehydration. Shrinkage was investigated by stereological measurements of dimensional changes of tissue cut faces. Results show a shrinkage of the cut face areas of roughly 40% per lung during paraffin embedding, 30% during "simple" glycol methacrylate embedding, and <3% during osmium tetroxide/uranyl acetate/glycol methacrylate embedding. Furthermore, the superiority of the glutaraldehyde-containing fixative regarding shrinkage is demonstrated. In conclusion, the use of a glutaraldehyde-containing fixative and embedding in glycol methacrylate with previous treatment of the samples with osmium tetroxide and uranyl acetate before dehydration is recommended for stereological studies of the mouse lung.
Collapse
Affiliation(s)
- Jan Philipp Schneider
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | | |
Collapse
|
4
|
Vanhecke D, Herrmann G, Graber W, Hillmann-Marti T, Mühlfeld C, Studer D, Ochs M. Lamellar body ultrastructure revisited: high-pressure freezing and cryo-electron microscopy of vitreous sections. Histochem Cell Biol 2010; 134:319-26. [DOI: 10.1007/s00418-010-0736-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2010] [Indexed: 10/19/2022]
|
5
|
Hsia CCW, Hyde DM, Ochs M, Weibel ER. An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. Am J Respir Crit Care Med 2010; 181:394-418. [PMID: 20130146 DOI: 10.1164/rccm.200809-1522st] [Citation(s) in RCA: 677] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
6
|
Woodworth BA, Smythe N, Spicer SS, Schulte BA, Schlosser RJ. Presence of surfactant lamellar bodies in normal and diseased sinus mucosa. ORL J Otorhinolaryngol Relat Spec 2005; 67:199-202. [PMID: 16024936 DOI: 10.1159/000087093] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Accepted: 04/08/2005] [Indexed: 01/12/2023]
Abstract
BACKGROUND Pulmonary surfactant originates from phospholipid lamellar bodies secreted from the type II epithelial cell of the alveolus. In the lower airway, surfactant optimizes surface tension and oxygen exchange, decreases mucus viscosity and aids in mechanical elimination of inhaled pathogens. In addition to the lung, lamellar bodies have been identified in many other cell types throughout the human body. However, no prior studies have identified lamellar bodies in human sinus mucosa. OBJECTIVES We performed ultrastructural studies to assess whether lamellar bodies are present in the human sinus in a variety of diseased and normal epithelium. METHODS We biopsied sinus mucosa from 5 subjects, 1 each with allergic fungal sinusitis, eosinophilic mucin rhinosinusitis, cystic fibrosis, frontal sinus mucocele, and cerebrospinal fluid leak (healthy control). Mouse lung served as a positive control. Specimens were prepared using ferrocyanide-reduced osmium tetroxide and thiocarbohydrazide for fixation (R-OTO method) to avoid extraction of phospholipids during dehydration and were viewed with transmission electron microscopy. RESULTS We identified lamellar bodies in the sinus mucosa of all patients. Additionally, preservation of mouse lung lamellar bodies confirms that the R-OTO method is a valid technique to preserve these structures. CONCLUSIONS We describe a simpler, faster technique for identification of cellular phospholipid components than those used previously. Definitive identification of these lamellar bodies within ciliated pseudostratified epithelium of the upper airway indicates that surfactant may have a role in sinus function and pathophysiology.
Collapse
Affiliation(s)
- Bradford A Woodworth
- Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | |
Collapse
|
7
|
Tang X, Yamanaka S, Miyagi Y, Nagashima Y, Nakatani Y. Lung pathology of pale ear mouse (model of Hermansky-Pudlak syndrome 1) and beige mouse (model of Chediak-Higashi syndrome): severity of giant lamellar body degeneration of type II pneumocytes correlates with interstitial inflammation. Pathol Int 2005; 55:137-43. [PMID: 15743322 DOI: 10.1111/j.1440-1827.2005.01811.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The authors have recently reported the presence of characteristic foamy swelling/degeneration (giant lamellar body degeneration, GLBD) of type II pneumocytes in the lungs affected by Hermansky-Pudlak syndrome (HPS)-associated interstitial pneumonia (HPSIP), and proposed the hypothesis that GLBD may be the triggering factor in the development of HPSIP (Virchows Arch 2000; 437: 304-13). The purpose of the present paper was to investigate the lung pathology of pale ear (ep) mouse, a mouse model of HPS1, and of beige (bg) mouse, a mouse model of Chediak-Higashi syndrome (CHS) with a reference to GLBD and associated pathologic changes. GLBD was found in both ep and bg mice soon after birth, and increased in severity as the mice grew older. Younger mice had only GLBD with no evidence of interstitial change. Aged bg mice showed the most prominent GLBD and patchy areas of alveolar collapse accompanied by lymphocytic infiltration and slight fibrosis. Aged ep mice with less severe GLBD than bg mice of comparable ages also had a slight tendency to develop interstitial inflammation but no fibrosis. The pneumocytes with GLBD were immunoreactive for surfactant protein B and composed of giant lamellar bodies ultrastructurally, findings which were almost identical to those of human GLBD. The results of the present study support the hypothesis that GLBD may play an important role in the development of HPSIP. Ep and bg mice, especially the latter, may be useful mouse models of HPSIP.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Department of Pathology, Tokyo Hospital, Tokai University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
8
|
Ochs M, Fehrenbach H, Richter J. Occurence of lipid bodies in canine type II pneumocytes during hypothermic lung ischemia. ACTA ACUST UNITED AC 2004; 277:287-97. [PMID: 15052656 DOI: 10.1002/ar.a.20013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Type II pneumocytes defend the pulmonary alveolus by synthesis and secretion of surfactant and by contributing to alveolar epithelial regeneration. Lipid bodies are regarded as intracellular domains for the synthesis of eicosanoid mediators that can be induced by inflammatory stimuli. The aim of the present study was to establish whether hypothermic ischemic lung storage without further preservation measures leads to an induction of lipid body formation in canine type II pneumocytes. The lungs of 18 dogs were fixed for transmission electron microscopy (TEM) immediately after cardiac arrest (six double lungs) and after ischemic storage in Tutofusin solution at 4 degrees C for 20 min, 4 hr, 8 hr, and 12 hr (six single lungs, respectively). Type II pneumocytes were analyzed qualitatively by conventional TEM (CTEM) and quantitatively by stereology. The relative phosphorus content of surfactant containing lamellar bodies, lipid bodies, and intermediate forms was investigated by energy-filtering TEM (EFTEM). By CTEM, lipid bodies as well as forms intermediate between lipid bodies and lamellar bodies were already noted in the control group but were more pronounced in the ischemia groups. Beginning at 20 min of ischemic storage, a significant increase in the volume density of lipid bodies was noted in the ischemic groups as compared to the control group. By EFTEM, the highest intracellular phosphorus signals were recorded over lamellar bodies and lamellar areas of intermediate forms in all experimental groups, while lipid bodies and homogeneous areas of intermediate forms did not show a clear phosphorus signal. These results indicate that the formation of lipid bodies in canine type II pneumocytes is induced early during ischemic lung storage.
Collapse
Affiliation(s)
- Matthias Ochs
- Department of Anatomy, Division of Electron Microscopy, Georg August University, Göttingen, Germany.
| | | | | |
Collapse
|
9
|
Brasch F, Ten Brinke A, Johnen G, Ochs M, Kapp N, Müller KM, Beers MF, Fehrenbach H, Richter J, Batenburg JJ, Bühling F. Involvement of cathepsin H in the processing of the hydrophobic surfactant-associated protein C in type II pneumocytes. Am J Respir Cell Mol Biol 2002; 26:659-70. [PMID: 12034564 DOI: 10.1165/ajrcmb.26.6.4744] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Surfactant protein C (SP-C) is synthesized by type II pneumocytes as a 21-kD propeptide (proSP-C) which is proteolytically processed to a 4.2-kD dipalmitoylated protein. To characterize the processing of proSP-C and the role of the cysteine protease cathepsin H, we studied the localization of proSP-C and cathepsin H in human as well as proSP-C in rat lungs, the enzymatic cathepsin H activity in isolated rat lamellar bodies, and the cleavage of human proSP-C by purified cathepsin H. Using antisera directed against the N-terminal E(11)-R(23) (NPROSP-C(11-23)), the C-terminal G(162)-G(174) domain (CPROSP-C(162-174)) of proSP-C, and against cathepsin H, immunogold labeling identified all three in electron-dense multivesicular bodies, but only NPROSP-C(11-23) and cathepsin H in composite as well as lamellar bodies of type II pneumocytes. Immuno double-labeling further distinguished electron-dense vesicles containing cathepsin H or electron light vesicles/multivesicular bodies containing proSP-C. Isolated lamellar bodies contained enzymatically active cathepsin H, a 6-kD proSP-C processing intermediate detected only by NPROSP-C(11-23), and mature SP-C. Using enzyme activities comparable to those in isolated lamellar bodies, purified cathepsin H generated a partially N-terminal processed proSP-C intermediate in vitro. In conclusion, our results indicate that after the fusion of electron-dense vesicles containing cathepsin H and electron-light vesicles or multivesicular bodies containing proSP-C, cathepsin H is involved in the first N-terminal processing step of proSP-C in electron-dense multivesicular bodies of type II pneumocytes.
Collapse
Affiliation(s)
- Frank Brasch
- Division of Electron Microscopy, Department of Anatomy, University of Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fehrenbach H, Brasch F, Uhlig S, Weisser M, Stamme C, Wendel A, Richter J. Early alterations in intracellular and alveolar surfactant of the rat lung in response to endotoxin. Am J Respir Crit Care Med 1998; 157:1630-9. [PMID: 9603148 DOI: 10.1164/ajrccm.157.5.9611070] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to characterize early ultrastructural, biochemical, and functional alterations of the pulmonary surfactant system induced by Salmonella minnesota lipopolysaccharide (LPS) in rat lungs. Experimental groups were: (1) control in vitro, 150 min perfusion; (2) LPS in vitro, 150 min perfusion, infusion of 50 microg/ml LPS after 40 min; (3) control ex vivo, 10 min perfusion; (4) LPS ex vivo, lungs perfused for 10 min from rats treated for 110 min with 20 mg/kg LPS intraperitoneally. Morphometry of type II pneumocytes showed that LPS increased stored surfactant. Lamellar bodies were increased in size, but decreased in numerical density, suggesting that giant lamellar bodies observed in LPS-treated lungs may result from fusion of normal bodies. Structural analysis of alveolar surfactant composition showed that LPS elicited an increase in lamellar body-like and multilamellar forms. Bronchoalveolar lavage (BAL) material from LPS-treated lungs was decreased in phospholipids. BAL bubble surfactometer analysis showed a reduction in hysteresis area caused by LPS. We conclude that LPS leads to alterations of intracellular and alveolar surfactant within 2 h: fusion of lamellar bodies, reduction in surfactant secretion, and changes in alveolar surfactant transformation, composition, and function, which may contribute to the development of respiratory distress.
Collapse
Affiliation(s)
- H Fehrenbach
- Division of Electron Microscopy, Centre of Anatomy, University of Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Akinbi HT, Breslin JS, Ikegami M, Iwamoto HS, Clark JC, Whitsett JA, Jobe AH, Weaver TE. Rescue of SP-B knockout mice with a truncated SP-B proprotein. Function of the C-terminal propeptide. J Biol Chem 1997; 272:9640-7. [PMID: 9092492 DOI: 10.1074/jbc.272.15.9640] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The function of the 102-amino acid C-terminal propeptide of surfactant protein B (SP-B) was analyzed by characterizing the phenotype associated with loss of expression of this peptide domain in transgenic mice. A construct encoding the signal peptide, N-terminal propeptide, and mature peptide of human SP-B (hSP-BDeltac) was cloned under the control of the 3.7-kilobase human SP-C promoter and injected into fertilized eggs of the FVB/N mouse strain. Founder mice expressing the hSP-BDeltac transgene were bred with heterozygous SP-B knockout mice (SP-B +/-). Offspring containing the transgene and one allele of mouse SP-B were identified and subsequently crossed to generate a transgenic line that expressed SP-BDeltac in a null background (SP-B(-/-)/hSP-BDeltac(+/+)). Expression of hSP-BDeltac in SP-B(-/-) mice was restricted to type II cells and resulted in a 2-fold increase in mature SP-B relative to wild type littermates. These mice survived without any evidence of respiratory problems and had normal lung function, normal alveolar surfactant phospholipid pool sizes, and typical tubular myelin indicating that the 102-residue C-terminal propeptide of SP-B is not required for normal structure and function of extracellular surfactant. However, proteolytic processing of the SP-C proprotein was perturbed resulting in the accumulation of a processing intermediate, Mr = 11,000, similar to the phenotype detected in SP-B(-/-) mice; furthermore, lamellar bodies in type II cells of SP-B(-/-)/hSP-BDeltac(+/+) mice were much larger than in the wild type animal and saturated phosphatidylcholine content in lung tissue was significantly increased although the incorporation of choline into saturated phosphatidylcholine was normal. Collectively, these results demonstrate a role for the C-terminal propeptide of SP-B in SP-C proprotein processing and the maintenance of lamellar body size. The C-terminal propeptide may be an important determinant of intracellular surfactant pool size.
Collapse
Affiliation(s)
- H T Akinbi
- Division of Pulmonary Biology, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Stolte N, Fehrenbach H, Ochs M, Schmiedl A, Hirt SW, Wahlers T, Richter J. Effects of ischaemia and preservation on the ultrastructure of the bronchiolar epithelium. A quantitative electron microscopic study of human and canine lungs. Virchows Arch 1996; 429:109-18. [PMID: 8917712 DOI: 10.1007/bf00192433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In ten cases of clinical human single-lung transplantation, the nontransplanted Euro-Collins-preserved contralateral lungs were examined using electron microscopy to determine the effects of ischaemia on the bronchiolar epithelium. Existing structural damage at the time of transplantation was characterized using this approach, and nine nonpreserved canine single lungs were also investigated to identify the impact of ischaemia. The study revealed a significant correlation between the duration of ischaemia and the mitochondrial surface-to-volume ratio, which can serve as a morphometric criterion for mitochondrial damage, in canine lungs. However, this correlation was not found in the human donor lungs. Further examination of human donor lungs showed slight to moderate damage to the endoplasmic reticulum and nuclear chromatin. In addition, various degrees of damage to mitochondrial structure, ranging from inconspicuous to severe, were found. The mitochondrial surface-to-volume ratio can be considered to be a suitable criterion for the quantification of ischaemic damage of the bronchiolar epithelium under experimental conditions. Ultrastructural analysis of human donor lungs revealed intact bronchiolar epithelial cell structures at the time of transplantation, reflecting adequate organ preservation with Euro-Collins solution.
Collapse
Affiliation(s)
- N Stolte
- Division of Electron Microscopy, Georg August University, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Fehrenbach H, Schmiedl A, Wahlers T, Hirt SW, Brasch F, Riemann D, Richter J. Morphometric characterisation of the fine structure of human type II pneumocytes. Anat Rec (Hoboken) 1995; 243:49-62. [PMID: 8540632 DOI: 10.1002/ar.1092430107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Pulmonary type II pneumocytes have been examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and morphometry in numerous mammals. Until now, the fine structure of the human type II pneumocyte has not been studied by means of morphometry. METHODS Eleven human donor lungs, which could not be made available for a suitable recipient, were preserved with Euro Collins solution (ECS) according to clinical organ preservation techniques. The lungs were fixed via the airways. Systematic random samples were analyzed by SEM, TEM, and classical stereological methods. RESULTS Type II pneumocytes showed normal fine structural characteristics. Morphometry revealed that although inter-individual variation due to some oedematous swelling was present, the cells were in a normal size range as indicated by an estimated mean volume of 763 +/- 64 microns 3. The volume densities were: nucleus 21.9 +/- 2.2%, mitochondria 5.8 +/- 0.9%, lamellar bodies 9.8 +/- 3.6%, and remaining cytoplasmic components 62.4 +/- 2.9% of the cell volume. Since the inter-individual variations in the volume densities referred to the cell may, to variable degrees, reflect the variation in the reference space, the volume densities referred to the constant test point system and the respective volume-to-surface ratios were used for inter-individual comparisons. These parameters indicate that lamellar bodies were independent of cellular swelling, while mitochondria < nucleus < remaining cytoplasmic components increased in size with increasing cell size. CONCLUSIONS Two to 7.5 hours of cold ischemia following ECS preservation do not deteriorate the fine structure of type II pneumocytes of human donor lungs. For reliable assessment of fine structural variations, morphometric parameters are required that are independent of variations in cell size.
Collapse
Affiliation(s)
- H Fehrenbach
- Abteilung Elektronenmikroskopie, Universität Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Fehrenbach H, Richter J, Schnabel PA. Electron spectroscopic study (ESI, EELS) of Nanoplast-embedded mammalian lung. J Microsc 1992; 166:401-16. [PMID: 1495094 DOI: 10.1111/j.1365-2818.1992.tb01538.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The potential of Nanoplast melamine resin embedding for the study of mammalian lung parenchyma was examined by means of electron spectroscopic imaging (ESI) and electron energy-loss spectroscopy (EELS). Samples were either fixed with glutaraldehyde-paraformaldehyde or glutaraldehyde-tannic acid, or were directly transferred to the embedding medium without prior fixation. Organic dehydrants, as well as fixatives containing heavy metals and stains, were omitted. A very high level of ultrastructural detail of chromatin, ribosomes, mitochondria and plasma membranes was achieved by ESI from the Nanoplast-embedded samples. The most prominent gain in ultrastructural detail was achieved when moving from an energy loss just below the L2,3 edge of phosphorus at 132 eV to an energy loss just beyond this edge. This reflects the prominent P L2,3 edge observed by EELS of Nanoplast-embedded samples in comparison with conventionally processed samples. Thus, taking into account possible sectioning artefacts, excellent heterochromatin images which rely on the phosphorus distribution can be obtained from Nanoplast-embedded samples by computer-assisted analysis of electron spectroscopic images. In this respect glutaraldehyde-paraformaldehyde fixation is preferable to glutaraldehyde-tannic acid fixation because the presence of silicon, revealed by EELS, in tannic-acid-fixed samples may introduce artefacts in phosphorus distribution images obtained by the three-window method because of the close proximity of the L2,3 edges of silicon and phosphorus.
Collapse
Affiliation(s)
- H Fehrenbach
- Abt. Elektronenmikroskopie, Zentrum Anatomie, Göttingen, Germany
| | | | | |
Collapse
|