1
|
Lee A, Balcar VJ, McCombe P, Pow DV. Human brain neurons express a novel splice variant of excitatory amino acid transporter 5 (hEAAT5v). J Comp Neurol 2020; 528:3134-3142. [PMID: 32173860 DOI: 10.1002/cne.24907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/08/2022]
Abstract
Excitatory amino acid transporter 5 (EAAT5) is a protein that is known to be alternately spliced and to be abundantly expressed in the retina by populations of neurons including photoreceptors and bipolar cells. EAAT5 acts as a slow glutamate transporter and also as glutamate-gated chloride channel, the chloride conductance being large enough for EAAT5 to serve functionally as an "inhibitory" glutamate receptor. However, there has been a long-standing view that the classically spliced form of EAAT5 is not abundant or widespread in the brain and so it has not been extensively investigated in the literature. We recently identified a human-specific splicing form of EAAT5 that was not expressed by rodents but was shown to be a functional glutamate transporter. We have examined the expression of this form of EAAT5, hEAAT5v at the mRNA, and protein level in human brain, and show that populations of human cortical pyramidal neurons and cerebellar Purkinje cells show significant expression of hEAAT5v. Accordingly, we infer that EAAT5 may well be a player in modulating neuronal function in the human brain and propose that its localization in both glutamatergic and GABAergic neurons could be compatible with a role in influencing intracellular chloride and thereby neuronal parameters such as membrane potential rather than acting as a presynaptic glutamate transporter.
Collapse
Affiliation(s)
- Aven Lee
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Vladimir J Balcar
- Discipline of Anatomy and Histology, School of Medical Sciences and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Pamela McCombe
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - David V Pow
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Lee A, Stevens MG, Anderson AR, Kwan A, Balcar VJ, Pow DV. A novel splice variant of the Excitatory Amino Acid Transporter 5: Cloning, immunolocalization and functional characterization of hEAAT5v in human retina. Neurochem Int 2016; 101:S0197-0186(16)30404-1. [PMID: 27984169 DOI: 10.1016/j.neuint.2016.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 11/15/2022]
Abstract
Excitatory Amino Acid Transporter 5 (EAAT5) is abundantly expressed by retinal photoreceptors and bipolar cells, where it acts as a slow glutamate transporter and a glutamate-gated chloride channel. The chloride conductance is large enough for EAAT5 to serve as an "inhibitory" glutamate receptor. Our recent work in rodents has shown that EAAT5 is differentially spliced and exists in many variant forms. The chief aim of the present study was to examine whether EAAT5 is also alternately spliced in human retina and, if so, what significance this might have for retinal function in health and disease. Retinal tissues from human donor eyes were used in RT-PCR to amplify the entire coding region of EAAT5. Amplicons of differing sizes were sub-cloned and analysis of sequenced data revealed the identification of wild-type human EAAT5 (hEAAT5) and an abundant alternately spliced form, referred to as hEAAT5v, where the open reading frame is expanded by insertion of an additional exon. hEAAT5v encodes a protein of 619 amino acids and when expressed in COS7 cells, the protein functioned as a glutamate transporter. We raised antibodies that selectively recognized the hEAAT5v protein and have performed immunocytochemistry to demonstrate expression in photoreceptors in human retina. We noted that in retinas afflicted by dry aged-related macular degeneration (AMD), there was a loss of hEAAT5v from the lesioned area and from photoreceptors adjacent to the lesion. We conclude that hEAAT5v protein expression may be perturbed in peri-lesional areas of AMD-afflicted retinas that do not otherwise exhibit evidence of damage. The loss of hEAAT5v could, therefore, represent an early pathological change in the development of AMD and might be involved in its aetiology.
Collapse
Affiliation(s)
- A Lee
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia.
| | - M G Stevens
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia
| | - A R Anderson
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia
| | - A Kwan
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia
| | - V J Balcar
- Laboratory of Neurochemistry, School of Medical Sciences (Discipline of Anatomy and Neurochemistry) and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - D V Pow
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; School of Medical Sciences, RMIT University, Melbourne, Australia
| |
Collapse
|
3
|
Lee A, Anderson AR, Stevens M, Beasley S, Barnett NL, Pow DV. Excitatory amino acid transporter 5 is widely expressed in peripheral tissues. Eur J Histochem 2013; 57:e11. [PMID: 23549460 PMCID: PMC3683608 DOI: 10.4081/ejh.2013.e11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/15/2013] [Accepted: 01/15/2013] [Indexed: 11/24/2022] Open
Abstract
It is routinely stated in the literature that Excitatory Amino Acid Transporter 5 (EAAT5) is a retina-specific glutamate transporter. EAAT5 is expressed by retinal photoreceptors and bipolar cells, where it serves as a slow transporter and as an inhibitory glutamate receptor, the latter role is due to the gating of a large chloride conductance. The dogma of an exclusively retinal distribution has arisen because Northern blot analyses have previously shown only modest hybridisation in non-retinal tissues. Others have re-interpreted this as indicating that EAAT5 was only present in retinal tissues. However, this view appears to be erroneous; recent evidence demonstrating abundant expression of EAAT5 in rat testis prompted us to re-examine this dogma. A new antibody was developed to an intracellular loop region of rat EAAT5. This new tool, in concert with RT-PCR and sequencing, demonstrated that EAAT5 is widely distributed at the mRNA and protein levels in many non-nervous tissues including liver, kidney, intestine, heart, lung, and skeletal muscle. We conclude that EAAT5 is a widely distributed protein. Whether it functions in all locations as a glutamate transporter, or mainly as a glutamate-gated chloride conductance, remains to be determined.
Collapse
Affiliation(s)
- A Lee
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
4
|
Wang YF, Sun MY, Hou Q, Parpura V. Hyposmolality differentially and spatiotemporally modulates levels of glutamine synthetase and serine racemase in rat supraoptic nucleus. Glia 2013; 61:529-38. [PMID: 23361961 DOI: 10.1002/glia.22453] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/09/2012] [Indexed: 01/22/2023]
Abstract
Prolonged hyposmotic challenge (HOC) has a dual effect on vasopressin (VP) secretion [Yagil and Sladek (1990) Am J Physiol 258(2 Pt 2):R492-R500]. We describe an electrophysiological correlate of this phenomenon, whereby in vitro HOC transiently reduced the firing activity of VP neurons within the supraoptic nucleus of brain slices, which was followed by a rebound increase of their activity; this was paralleled by changes in the level of proteins relevant to astroglia-neuronal interactions. Hence, in vitro HOC transiently (at 5 min) increased the level of astrocyte-specific glial fibrillary acidic protein (GFAP), which then declined to control or base level (at 20 min); this was blocked by the gliotoxin L-aminoadipic acid, but not by tetanus toxin, which was used to inhibit neurotransmission. Similarly, in vivo HOC led to changes in GFAP level, which after an early increase (10 min) returned to normal (30 min). Immunoassays revealed that neuronal, but not astrocytic, expression of serine racemase (SR) was increased at the late stage of HOC in vivo, whereas at an early stage there was a transient increase in level of the astrocyte-specific glutamine synthetase (GS). Furthermore, there was an increased molecular association between GFAP and GS at 10 min, whereas SR increased its association with the neuronal nuclear antigen NeuN at 30 min. These results suggest that the dual effect of HOC on VP neuronal secretion/activity could be related to metabolic/signaling changes in astrocytes (glutamate-glutamine conversion) and neurons (D-serine synthesis/ammonia production), which may account for the rebound in VP neuronal activity, presumably by promoting the activation of neuronal glutamate receptors.
Collapse
Affiliation(s)
- Yu-Feng Wang
- Department of Cell Biology and Neuroscience, University of California, Riverside, California, USA.
| | | | | | | |
Collapse
|
5
|
Lee A, Anderson AR, Barnett NL, Stevens MG, Pow DV. Alternate splicing and expression of the glutamate transporter EAAT5 in the rat retina. Gene 2012; 506:283-8. [PMID: 22820393 DOI: 10.1016/j.gene.2012.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/02/2012] [Accepted: 07/09/2012] [Indexed: 11/27/2022]
Abstract
Excitatory amino acid transporter 5 (EAAT5) is an unusual glutamate transporter that is expressed in the retina, where it is localised to two populations of glutamatergic neurons, namely the bipolar neurons and photoreceptors. EAAT5 exhibits two distinct properties, acting both as a slow glutamate transporter and as a glutamate-gated inhibitory receptor. The latter property is attributable to a co-associated chloride conductance. EAAT5 has previously been thought to exist only as a full-length form. We now demonstrate by PCR cloning and sequencing, the presence of five novel splice variant forms of EAAT5 which skip either partial or complete exons in the rat retina. Furthermore, we demonstrate that each of these variants is expressed at the protein level as assessed by Western blotting using splice-specific antibodies that we have generated. We conclude that EAAT5 exists in multiple spliced forms, and propose, based upon retention or absence of key structural features, that these variant forms may potentially exhibit distinct properties relative to the originally described form of EAAT5.
Collapse
Affiliation(s)
- Aven Lee
- The University of Queensland, UQ Centre for Clinical Research, Queensland 4029, Australia.
| | | | | | | | | |
Collapse
|
6
|
Le-Corronc H, Rigo JM, Branchereau P, Legendre P. GABA(A) receptor and glycine receptor activation by paracrine/autocrine release of endogenous agonists: more than a simple communication pathway. Mol Neurobiol 2011; 44:28-52. [PMID: 21547557 DOI: 10.1007/s12035-011-8185-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 04/14/2011] [Indexed: 02/04/2023]
Abstract
It is a common and widely accepted assumption that glycine and GABA are the main inhibitory transmitters in the central nervous system (CNS). But, in the past 20 years, several studies have clearly demonstrated that these amino acids can also be excitatory in the immature central nervous system. In addition, it is now established that both GABA receptors (GABARs) and glycine receptors (GlyRs) can be located extrasynaptically and can be activated by paracrine release of endogenous agonists, such as GABA, glycine, and taurine. Recently, non-synaptic release of GABA, glycine, and taurine gained further attention with increasing evidence suggesting a developmental role of these neurotransmitters in neuronal network formation before and during synaptogenesis. This review summarizes recent knowledge about the non-synaptic activation of GABA(A)Rs and GlyRs, both in developing and adult CNS. We first present studies that reveal the functional specialization of both non-synaptic GABA(A)Rs and GlyRs and we discuss the neuronal versus non-neuronal origin of the paracrine release of GABA(A)R and GlyR agonists. We then discuss the proposed non-synaptic release mechanisms and/or pathways for GABA, glycine, and taurine. Finally, we summarize recent data about the various roles of non-synaptic GABAergic and glycinergic systems during the development of neuronal networks and in the adult.
Collapse
Affiliation(s)
- Herve Le-Corronc
- Institut National de la Santé et de la Recherche Médicale, U952, Centre National de la Recherche Scientifique, UMR 7224, Université Pierre et Marie Curie, 9 quai Saint Bernard, Paris, Ile de France, France
| | | | | | | |
Collapse
|
7
|
KUWAHARA S, MAEDA S, ARDILES Y, JUN JG, TANAKA K, HAYAKAWA T, SEKI M. Immunohistochemical Localization of Aquaporin-4 in the Rat Pituitary Gland. J Vet Med Sci 2010; 72:1307-12. [DOI: 10.1292/jvms.10-0087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Sachi KUWAHARA
- Department of Anatomy and Cell Biology, Hyogo College of Medicine
| | - Seishi MAEDA
- Department of Anatomy and Cell Biology, Hyogo College of Medicine
| | - Yona ARDILES
- Department of Anatomy and Cell Biology, Hyogo College of Medicine
| | - Jin Gon JUN
- Department of Anatomy and Cell Biology, Hyogo College of Medicine
| | - Koichi TANAKA
- Department of Anatomy and Cell Biology, Hyogo College of Medicine
| | - Tetsu HAYAKAWA
- Department of Anatomy and Cell Biology, Hyogo College of Medicine
| | - Makoto SEKI
- Department of Anatomy and Cell Biology, Hyogo College of Medicine
| |
Collapse
|
8
|
Wilson YM, Murphy M. A discrete population of neurons in the lateral amygdala is specifically activated by contextual fear conditioning. Learn Mem 2009; 16:357-61. [DOI: 10.1101/lm.1361509] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
|
10
|
Abstract
Folliculo-stellate cells (FS-cells) are star-shaped and follicle-forming cells in the anterior pituitary gland that were first identified by electron microscopy as non-endocrine agranular cells. Light microscopy has revealed many of their cytophysiological features and the FS-cell is known to be positive for S-100 protein, a marker for FS-cells. So far, functions ascribed to FS-cells include the formation of an extensive and complex tridimentional network, scavenger activity by engulfing degenerated cells, paracrine regulation of endocrine cells by producing various growth factors and cytokines, such as interleukin-6, leukemia inhibitory factor, basic fibroblastic growth factor, vascular endothelial cell growth factor and follistatin, and large-scale inter-cellular communication by means of their long cytoplasmic processes and gap junctions. Moreover, their multi-potential characteristics and other cytological features support the possibility of them becoming organ-specific stem cells. This concept is yet to be resolved, however. In this review, we focus on these features of FS-cells along with some futuristic approaches.
Collapse
Affiliation(s)
- S Devnath
- Department of Regulation Biology, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | | |
Collapse
|
11
|
Deleuze C, Alonso G, Lefevre IA, Duvoid-Guillou A, Hussy N. Extrasynaptic localization of glycine receptors in the rat supraoptic nucleus: further evidence for their involvement in glia-to-neuron communication. Neuroscience 2005; 133:175-83. [PMID: 15893641 DOI: 10.1016/j.neuroscience.2005.01.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 01/26/2005] [Accepted: 01/31/2005] [Indexed: 11/17/2022]
Abstract
Neurons of the rat supraoptic nucleus (SON) express glycine receptors (GlyRs), which are implicated in the osmoregulation of neuronal activity. The endogenous agonist of the receptors has been postulated to be taurine, shown to be released from astrocytes. We here provide additional pieces of evidence supporting the absence of functional glycinergic synapses in the SON. First, we show that blockade of GlyRs with strychnine has no effect on either the amplitude or frequency of miniature inhibitory postsynaptic currents recorded in SON neurons, whereas they were all suppressed by the GABA(A) antagonist gabazine. Then, double immunostaining of sections with presynaptic markers and either GlyR or GABA(A) receptor (GABA(A)R) antibodies indicates that, in contrast with GABA(A)Rs, most GlyR membrane clusters are not localized facing presynaptic terminals, indicative of their extrasynaptic localization. Moreover, we found a striking anatomical association between SON GlyR clusters and glial fibrillary acidic protein (GFAP)-positive astroglial processes, which contain high levels of taurine. This type of correlation is specific to GlyRs, since GABA(A)R clusters show no association with GFAP-positive structures. These results substantiate and strengthen the concept of extrasynaptic GlyRs mediating a paracrine communication between astrocytes and neurons in the SON.
Collapse
Affiliation(s)
- C Deleuze
- Biologie des Neurones Endocrines, CNRS-UMR5101 CCIPE, 141 rue de la Cardonille, 34094 Montpellier, Cedex 5, France
| | | | | | | | | |
Collapse
|
12
|
Rosso L, Peteri-Brunbäck B, Poujeol P, Hussy N, Mienville JM. Vasopressin-induced taurine efflux from rat pituicytes: a potential negative feedback for hormone secretion. J Physiol 2003; 554:731-42. [PMID: 14617676 PMCID: PMC1664805 DOI: 10.1113/jphysiol.2003.056267] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Previous work on the whole neurohypophysis has shown that hypotonic conditions increase release of taurine from neurohypophysial astrocytes (pituicytes). The present work confirms that taurine is present in cultured pituicytes, and that its specific release increases in response to a hypotonic shock. We next show that vasopressin (VP) and oxytocin (OT) also specifically release taurine from pituicytes. With an EC(50) of approximately 2 nm, VP is much more potent than OT, and the effects of both hormones are blocked by SR 49059, a V(1a) receptor antagonist. This pharmacological profile matches the one for VP- and OT-evoked calcium signals in pituicytes, consistent with the fact that VP-induced taurine efflux is blocked by BAPTA-AM. However, BAPTA-AM also blocks the taurine efflux induced by a 270 mosmol l(-1) challenge, which per se does not evoke any calcium signal, suggesting a permissive role for calcium in this case. Nevertheless, the fact that structurally unrelated calcium-mobilizing agents and ionomycin are able to induce taurine efflux suggests that calcium may also play a signalling role in this event. It is widely accepted that in hypotonic conditions taurine exits cells through anionic channels. Antagonism by the chloride channel inhibitors 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) and 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) suggests the same pathway for VP-induced taurine efflux, which is also blocked in hypertonic conditions (330 mosmol l(-1)). Moreover, it is likely that the osmosensitivity of the taurine channel is up-regulated by calcium. These results, together with our in situ experiments showing stimulation of taurine release by endogenous VP, strengthen the concept of a glial control of neurohormone output.
Collapse
Affiliation(s)
- Lia Rosso
- Laboratoire de Physiologie Cellulaire et Moléculaire, UMR 6548, Parc Valrose, Université de Nice-Sophia Antipolis, 06108 Nice cedex 2
| | | | | | | | | |
Collapse
|
13
|
Hussy N. Glial cells in the hypothalamo-neurohypophysial system: key elements of the regulation of neuronal electrical and secretory activity. PROGRESS IN BRAIN RESEARCH 2002; 139:95-112. [PMID: 12436929 DOI: 10.1016/s0079-6123(02)39010-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Nicolas Hussy
- CNRS-UMR 5101, CCIPE, 141 rue de la Cardonille, 34094 Montpellier, France.
| |
Collapse
|
14
|
Ozawa H, Miyachi M, Ochiai I, Tsuchiya S, Morris JF, Kawata M. Annexin-1 (lipocortin-1)-immunoreactivity in the folliculo-stellate cells of rat anterior pituitary: the effect of adrenalectomy and corticosterone treatment on its subcellular distribution. J Neuroendocrinol 2002; 14:621-8. [PMID: 12153464 DOI: 10.1046/j.1365-2826.2002.00814.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the pituitary gland, annexin-1 (lipocortin-1) located in folliculo-stellate (FS) cells has been advocated as one of the candidates for paracrine agents produced by FS cells that modulate the release of pituitary hormones. However, the expression and distribution pattern of annexin-1 in FS cells under different circulating corticosteroid conditions has not been examined. Thus, by means of pre-embedding immunoelectron microscopy, we investigated the expression of annexin-1 in FS cells under different corticosteroid conditions. Annexin-1-immunoreactivity was observed in the cytoplasm; especially intense immunoreactivity was detected in the follicle surface of FS cells under control conditions. After adrenalectomy, annexin-1-immunoreactivity almost disappeared, but the immunoreactivity recovered with corticosterone replacement. The expression of glucocorticoid receptor immunoreactivity in the nucleus of FS cells also showed a similar pattern to annexin-1 associated with the changes in the corticosteroid conditions. However, S-100 immunoreactivity, a marker for FS cells, was not changed whatever the corticosteroid conditions. These results confirm that glucocorticoids regulate the annexin-1 expression and demonstrate the translocation of annexin-1 from intracellular to pericellular sites in the FS cells of the rat anterior pituitary gland.
Collapse
Affiliation(s)
- H Ozawa
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Pow DV, Sullivan R, Reye P, Hermanussen S. Localization of taurine transporters, taurine, and (3)H taurine accumulation in the rat retina, pituitary, and brain. Glia 2002; 37:153-68. [PMID: 11754213 DOI: 10.1002/glia.10026] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The nervous system contains an abundance of taurine, a neuroactive sulfonic acid. Antibodies were generated against two cloned high-affinity taurine transporters, referred to in this study as TAUT-1 and TAUT-2. The distribution of such was compared with the distribution of taurine in the rat brain, pituitary, and retina. The cellular pattern of [(3)H] taurine uptake in brain slices, pituitary slices, and retinas was examined by autoradiography. TAUT-2 was predominantly associated with glial cells, including the Bergmann glial cells of the cerebellum and astrocytes in brain areas such as hippocampus. Low-level labeling for TAUT-2 was also observed in some neurones such as CA1 pyramidal cells. TAUT-1 distribution was more limited; in the posterior pituitary TAUT-1 was associated with the pituicytes but was absent from glial cells in the intermediate and anterior lobes. Conversely, in the brain TAUT-1 was associated with cerebellar Purkinje cells and, in the retina, with photoreceptors and bipolar cells. Our data suggest that intracellular taurine levels in glial cells and neurons may be regulated in part by specific high-affinity taurine transporters. The heterogeneous distribution of taurine and its transporters in the brain does not reconcile well with the possibility that taurine acts solely as a ubiquitous osmolyte in nervous tissues.
Collapse
Affiliation(s)
- David V Pow
- Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, Australia.
| | | | | | | |
Collapse
|
16
|
Hussy N, Deleuze C, Brès V, Moos FC. New role of taurine as an osmomediator between glial cells and neurons in the rat supraoptic nucleus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 483:227-37. [PMID: 11787602 DOI: 10.1007/0-306-46838-7_25] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- N Hussy
- Biologie des Neurones Endocrines, CNRS-UMR5101, Montpellier, France
| | | | | | | |
Collapse
|
17
|
Osmoregulation of vasopressin secretion via activation of neurohypophysial nerve terminals glycine receptors by glial taurine. J Neurosci 2001. [PMID: 11549721 DOI: 10.1523/jneurosci.21-18-07110.2001] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Osmotic regulation of supraoptic nucleus (SON) neuron activity depends in part on activation of neuronal glycine receptors (GlyRs), most probably by taurine released from adjacent astrocytes. In the neurohypophysis in which the axons of SON neurons terminate, taurine is also concentrated in and osmo-dependently released by pituicytes, the specialized glial cells ensheathing nerve terminals. We now show that taurine release from isolated neurohypophyses is enhanced by hypo-osmotic and decreased by hyper-osmotic stimulation. The high osmosensitivity is shown by the significant increase on only 3.3% reduction in osmolarity. Inhibition of taurine release by 5-nitro-2-(3-phenylpropylamino)benzoic acid, niflumic acid, and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid suggests the involvement of volume-sensitive anion channels. On purified neurohypophysial nerve endings, activation of strychnine-sensitive GlyRs by taurine or glycine primarily inhibits the high K(+)-induced rise in [Ca(2+)](i) and subsequent release of vasopressin. Expression of GlyRs in vasopressin and oxytocin terminals is confirmed by immunohistochemistry. Their implication in the osmoregulation of neurohormone secretion was assessed on isolated whole neurohypophyses. A 6.6% hypo-osmotic stimulus reduces by half the depolarization-evoked vasopressin secretion, an inhibition totally prevented by strychnine. Most importantly, depletion of taurine by a taurine transport inhibitor also abolishes the osmo-dependent inhibition of vasopressin release. Therefore, in the neurohypophysis, an osmoregulatory system involving pituicytes, taurine, and GlyRs is operating to control Ca(2+) influx in and neurohormone release from nerve terminals. This elucidates the functional role of glial taurine in the neurohypophysis, reveals the expression of GlyRs on axon terminals, and further defines the role of glial cells in the regulation of neuroendocrine function.
Collapse
|
18
|
Engelmann M, Ludwig M, Singewald N, Ebner K, Sabatier N, Lubec G, Landgraf R, Wotjak CT. Taurine selectively modulates the secretory activity of vasopressin neurons in conscious rats. Eur J Neurosci 2001; 14:1047-55. [PMID: 11683896 DOI: 10.1046/j.0953-816x.2001.01729.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous experiments have shown that a 10-min forced swimming session triggers the release of vasopressin from somata and dendrites, but not axon terminals, of neurons of the hypothalamic-neurohypophysial system. To further investigate regulatory mechanisms underlying this dissociated release, we forced male Wistar rats to swim in warm (20 degrees C) water and monitored release of the potentially inhibitory amino acids gamma amino butyric acid (GABA) and taurine into the hypothalamic supraoptic nucleus using microdialysis. Forced swimming caused a significant increase in the release of taurine (up to 350%; P < 0.05 vs. prestress release), but not GABA. To reveal the physiological significance of centrally released taurine, the specific taurine antagonist 6-aminomethyl-3-methyl-4H-1,2,4-benzothiadiazine-1,1-dioxide was administered into the supraoptic nucleus via retrodialysis. Administration of this antagonist caused a significant increase in the release of vasopressin within the supraoptic nucleus and into the blood both under basal conditions and during stress (up to 800%; P < 0.05 vs. basal values), without affecting hypothalamic or plasma oxytocin. Local administration of the GABA(A) receptor antagonist bicuculline, in contrast, failed to influence vasopressin secretion at either time point. In a separate series of in vivo electrophysiological experiments, administration of the same dosage of the taurine antagonist into the supraoptic nucleus via microdialysis resulted in an increased electrical activity of identified vasopressinergic, but not oxytocinergic, neurons. Taken together our data demonstrate that taurine is released within the supraoptic nucleus during physical/emotional stress. Furthermore, at the level of the supraoptic nucleus, taurine inhibits not only the electrical activity of vasopressin neurons but also acts as an inhibitor of both central and peripheral vasopressin secretion during different physiological states.
Collapse
Affiliation(s)
- M Engelmann
- Institut für Medizinische Neurobiologie, Otto-von-Guericke-Universität Magdeburg, Leipziger Str. 44. D-39120 Magdeburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Pow DV. Visualising the activity of the cystine-glutamate antiporter in glial cells using antibodies to aminoadipic acid, a selectively transported substrate. Glia 2001; 34:27-38. [PMID: 11284017 DOI: 10.1002/glia.1037] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cystine-glutamate antiporter is a transport system that facilitates the uptake of cystine, concomitant with the release of glutamate. The cystine accumulated by this transporter is generally considered for use in the formation of the cysteine-containing antioxidant glutathione, which is abundant in many glial cells. This study used the simple strategy of generating an antibody to aminoadipic acid, a selective substrate for the cystine-glutamate antiporter. Stereospecific accumulation of aminoadipic acid into specific cell types in rat brain slice preparations was detected immunocytochemically. Strong accumulation was detected in astroglial cells in all brain regions studied including those in white matter tracts. Strong accumulation into radial glial cells, including the retinal Müller cells and the Bergmann glial cells was also observed. Glial accumulation was observed not only in cells within the blood brain barrier, but also outside such; anterior pituitary folliculostellate cell and intermediate lobe pituitary glial cells exhibited strong accumulation of aminoadipic acid. Interestingly, some glial cells such as the posterior pituitary glial cells (pituicytes) exhibited very little if any accumulation of aminoadipic acid. Within the brain labelling was not uniform. Particularly strong labelling was noted in some regions, such as the glial cells surrounding the CA1 pyramidal cells. By contrast, neurons never exhibited uptake of aminoadipic acid. Because cystine uptake is associated with glutamate release, it is suggested that this antiporter might contribute to release of glutamate from glial cells under some pathophysiological conditions.
Collapse
Affiliation(s)
- D V Pow
- Department of Physiology and Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
20
|
Hussy N, Deleuze C, Desarménien MG, Moos FC. Osmotic regulation of neuronal activity: a new role for taurine and glial cells in a hypothalamic neuroendocrine structure. Prog Neurobiol 2000; 62:113-34. [PMID: 10828380 DOI: 10.1016/s0301-0082(99)00071-4] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Maintenance of osmotic pressure is a primary regulatory process essential for normal cell function. The osmolarity of extracellular fluids is regulated by modifying the intake and excretion of salts and water. A major component of this regulatory process is the neuroendocrine hypothalamo-neurohypophysial system, which consists of neurons located in the paraventricular and supraoptic nuclei. These neurons synthesize the neurohormones vasopressin and oxytocin and release them in the blood circulation. We here review the mechanisms responsible for the osmoregulation of the activity of these neurons. Notably, the osmosensitivity of the supraoptic nucleus is described including the recent data that suggests an important participation of taurine in the transmission of the osmotic information. Taurine is an amino acid mainly known for its involvement in cell volume regulation, as it is one of the major inorganic osmolytes used by cells to compensate for changes in extracellular osmolarity. In the supraoptic nucleus, taurine is highly concentrated in astrocytes, and released in an osmodependent manner through volume-sensitive anion channels. Via its agonist action on neuronal glycine receptors, taurine is likely to contribute to the inhibition of neuronal activity induced by hypotonic stimuli. This inhibitory influence would complement the intrinsic osmosensitivity of supraoptic neurons, mediated by excitatory mechanoreceptors activated under hypertonic conditions. These observations extend the role of taurine from the regulation of cell volume to that of the whole body fluid balance. They also point to a new role of supraoptic glial cells as active components in a neuroendocrine regulatory loop.
Collapse
Affiliation(s)
- N Hussy
- Biologie des Neurones Endocrines CNRS-UPR 9055 CCIPE, 141 rue de la Cardonille 34094 Cedex 5, Montpellier, France.
| | | | | | | |
Collapse
|
21
|
Duvilanski BH, Pérez R, Seilicovich A, Lasaga M, Díaz MC, Debeljuk L. Intracellular distribution of GABA in the rat anterior pituitary. An electron microscopic autoradiographic study. Tissue Cell 2000; 32:284-92. [PMID: 11145011 DOI: 10.1054/tice.2000.0116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We studied the internalization and intracellular distribution of [3H] GABA in rat anterior pituitary cells. Electron microscopic autoradiography of anterior pituitary fragments or dispersed pituitary cells incubated with [3H] GABA showed that lactotrophs and, to a lesser extent, somatotrophs were the only cells that contained radioactive grains. Grain density analysis performed on dispersed pituitary cells after a pulse-chase experiment (10 min pulse and then change to a medium without radioactive GABA for various periods up to 2 h) revealed that GABA internalized by lactotrophs was distributed in various intracellular membranous organelles. Of the cell compartments examined, plasma membrane, Golgi apparatus, mitochondria and secretory granules had different time-dependent labeling patterns. The highest grain density values were associated with plasma membrane (at the first chase time) and the Golgi apparatus. Mitochondria and secretory granules also showed significant grain density values. A similar pattern of distribution was observed when fragments of prolactin-secreting pituitary adenomas were incubated with [3H] GABA. These results provide morphological data on the cellular specificity and intracellular distribution of GABA in anterior pituitary cells.
Collapse
Affiliation(s)
- B H Duvilanski
- Centro de Investigaciones en Reproducción, Facultad de Medicina, Universidad de Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
22
|
Shirasawa N, Yamanouchi H. Glucocorticoids induce glutamine synthetase in folliculostellate cells of rat pituitary glands in vivo and in vitro. J Anat 1999; 194 ( Pt 4):567-77. [PMID: 10445824 PMCID: PMC1467955 DOI: 10.1046/j.1469-7580.1999.19440567.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glutamine synthetase (GS) is a glucocorticoid-inducible enzyme that has a key role for glutamate metabolism in the central and peripheral nervous system. In this study GS activity was measured and the amount of immunoreactive GS (ir-GS) cells in the rat anterior pituitary gland was quantified as a function of age. In addition, the effects of GS inhibitors, glucocorticoid administration, and adrenalectomy on GS activity were examined. Some of the ir-GS cells were also immunoreactive for S100 protein (ir-S100) which is a known marker for folliculostellate cells (FS) in the anterior pituitary. FS cells expressing GS were first detected in 3-d-old rats, and this cell population, expressed as the immunostained cell area divided by a standard unit area, increased as a function of age. The percentages of FS cells also expressing GS were 0.2, 6.4, 25 and 74% at 3 d, 30 d, 60 d and 2 y of age, respectively. GS enzyme activity also increased in parallel with the increase of ir-GS cell population maturation. The subcutaneous injection of methionine sulphoximine, a GS and gamma-glutamylcysteine synthetase inhibitor, reduced pituitary GS activity by 83%, but increased the population of ir-GS cells 3.5-fold in 30-d-old rats. Buthionine sulphoximine, a specific inhibitor of y-glutamylcysteine synthetase, had little effect on GS activity or the ir-GS cell population. Neither methionine sulphoximine nor buthionine sulphoximine changed the population of ir-S100 protein cells (FS cells). Dexamethasone and hydrocortisone increased the population of ir-GS cells by 3.1 and 4.2-fold, respectively, within 12 h after administration. A significant increase of GS activity due to the injection of glucocorticoids was observed in the anterior pituitary, but not in the brain, retina or liver of immature rats. Adrenalectomy did not cause decrease of pituitary GS activity, and dexamethasone administration increased GS activity in both adrenalectomised and intact rats. In the monolayer culture of anterior pituitary cells, glucocorticoids increased GS activity by x 1.5, and methionine sulphoximine reduced the activity by over 94%. These results demonstrate that GS in folliculostellate cells is a glucocorticoid-inducible enzyme in vivo and in vitro, and that the age-dependent increase of GS activity is independent of endogenous adrenal glucocorticoids.
Collapse
Affiliation(s)
- N Shirasawa
- Department of Anatomy, Wakayama Medical College, Japan.
| | | |
Collapse
|
23
|
Chronwall BM, Sands SA, Cummings KC, Hagler KE, Norberg M, Morris SJ, Gary KA. Differential innervation of individual melanotropes suggests a role for nonsynaptic inhibitory regulation of the developing and adult rat pituitary intermediate lobe. Synapse 1998; 28:227-43. [PMID: 9488508 DOI: 10.1002/(sici)1098-2396(199803)28:3<227::aid-syn6>3.0.co;2-c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dopamine and GABA were detected in intermediate lobe axons around birth, and early axons were closely apposed to glial cells and processes, possibly using them for guidance. In the adult, axons containing colocalized dopamine and GABA were distributed in a distinct pattern within the lobe, with plexuses located dorsally and ventrally. Axons preferentially followed glial processes in interlobular septa, yet were also interspersed between melanotropes. Individual melanotropes were contacted by varying numbers of axon terminals, with some devoid of contacts. Boutons contained both small clear vesicles and large dense-cored vesicles; membrane specializations were not well-developed. From these findings we concluded that in addition to direct synaptic inhibition, dopamine and GABA could stimulate their receptors by mechanisms similar to "parasynaptic" [Schmitt (1984) Neuroscience, 13:991-1001] or "volume" [Agnati et al. (1995) Neuroscience, 69:711-726] transmission as proposed for the CNS. Humoral agents passing into the intermediate lobe from portal vessels, thus acting as classical hormones, further regulate the melanotropes. Moreover, approximately 50% of the axonal elements were closely apposed to glia, suggesting that glia could have regulatory roles. Previous studies from our laboratory [Chronwall et al. (1987) Endocrinology, 120:1201-1211; Chronwall et al. (1988) Endocrinology, 123:1992:1202] demonstrated heterogeneity in proopiomelanocortin (POMC) biosynthesis among individual melanotropes, prompting the hypothesis that the degree of innervation could govern the expression of certain molecules. We combined immunohistochemistry and in situ hybridization histochemistry to evaluate whether melanotrope molecular heterogenity is spatially correlated with axons and terminals. Tentatively, melanotropes expressing low levels of POMC and alpha1A subunit P/Q type Ca2+ channel mRNAs often were apposed to axons, whereas those with low levels of D2L receptor mRNA rarely were contacted by axons, suggesting that innervation could be one of the factors inducing and maintaining heterogeneity.
Collapse
Affiliation(s)
- B M Chronwall
- School of Biological Sciences, University of Missouri-Kansas City 64108, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Miyata S, Matsushima O, Hatton GI. Taurine in rat posterior pituitary: Localization in astrocytes and selective release by hypoosmotic stimulation. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970519)381:4<513::aid-cne10>3.0.co;2-j] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Abstract
Research in the hypothalamus and pituitary has provided compelling evidence that neurone-glia interactions are important in regulating the activity of both neurones and glia. These interactions involve receptor-mediated signalling, intracellular Ca2+ signalling, growth factor-steroid actions and activity-dependent modifications in neurone-glia anatomical relationships. This review focuses on neuroendocrine systems, such as the intermediate lobe of the pituitary and the hypothalamo-neurohypophysial system, which exemplify some of these activities. Although their functional significance has not been fully elucidated, the synaptic responses, release of bioactive factors and changing morphology of certain glia highlight their integral role in hypothalamic function.
Collapse
|
26
|
Abstract
While the presence of post-synaptic NMDA receptors in the CNS is well-established, the present study addressed the question of whether NMDA receptors may also be present on secretory nerve endings. Using microspectrofluorometry of fura-2 loaded isolated neurohypophysial nerve endings of the rat, we found that both glutamate (EC50 = 50 microM) and NMDA (EC50 = 30 microM) induced a rapid rise in (Ca2+]i. These responses were glycine-dependent and abolished by 1 mM Mg2+, 1 microM dizocilpine, and removal of extracellular Ca2+. Responses were not significantly affected by treatment with Ca2+ channel blockers or 10 microM CNQX.
Collapse
Affiliation(s)
- D R Giovannucci
- Department of Physiology, University of Michigan Medical School, Ann Arber 48109, USA
| | | |
Collapse
|
27
|
Pow DV, Wright LL, Vaney DI. The immunocytochemical detection of amino-acid neurotransmitters in paraformaldehyde-fixed tissues. J Neurosci Methods 1995; 56:115-23. [PMID: 7752677 DOI: 10.1016/0165-0270(94)00113-u] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this study, we show that specific antibodies can be raised against paraformaldehyde conjugates of amino acids, including the neurotransmitters glycine, gamma-amino-butyric acid and glutamate, and a non-neuroactive amino acid, glutamine. These antibodies against paraformaldehyde conjugates specifically detect the above amino acids in paraformaldehyde-fixed tissues. The penetration of antibodies into paraformaldehyde-fixed tissues is much superior to the penetration of antibodies into glutaraldehyde-fixed tissues; hence good labeling can be observed through the depth of the tissues. Unlike glutaraldehyde, fixation with paraformaldehyde does not give rise to high levels of tissue autofluorescence and, thus, these antibodies are very effective for immunofluorescence studies. Furthermore we suggest that the ability of these antibodies to detect amino acids in paraformaldehyde-fixed tissues will permit their use in situations where it is necessary to detect other other fixation-sensitive antigens, such as neurotransmitter receptors and transporters.
Collapse
Affiliation(s)
- D V Pow
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
28
|
Vanhatalo S, Soinila S. Pharmacological characterization of serotonin synthesis and uptake suggest a false transmitter role for serotonin in the pituitary intermediate lobe. Neurosci Res 1994; 21:143-9. [PMID: 7724065 DOI: 10.1016/0168-0102(94)90156-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A subpopulation of nerve fibers in the rat pituitary intermediate lobe (IL) have been shown to exhibit colocalization of serotonin (5-HT-IR) and tyrosine hydroxylase immunoreactivities and they are sensitive to neurotoxins specific to catecholamine neurons. This study was set out to examine the uptake and synthesis mechanisms of serotonin in these fibers. We developed an in vitro technique in which the neurointermediate lobe explants were incubated (14 and 48 h) in the presence of various drugs and serotonin was subsequently visualized by immunohistochemistry. Control incubation in the presence of serotonin (10(-6) M) resulted in a rich plexus of 5-HT-IR fibers in both posterior and intermediate lobes. Fluoxetine and citalopram (10(-6) M and 10(-5) M), inhibitors of 5-HT transporter, did not affect 5-HT-IR in the IL fibers, unless they were used in concentrations high enough (10(-4) M and 10(-3) M) to block unspecifically a number of monoamine transporters. The same applied for desipramine (10(-5)-10(-7) M), an inhibitor of the noradrenaline transporter. However, cocaine (10(-5)-10(-6) M) blocked serotonin uptake into these terminals, suggesting that serotonin uptake occurs through a dopamine transporter. Incubation of the IL in presence of L-tryptophan (10(-4) M) did not result in 5-HT-IR in the IL fibers showing colocalization of 5-HT-IR and tyrosine hydroxylase, which suggests that these fibers do not synthesize serotonin. The present results suggest that serotonin is taken up into the IL terminals by a dopamine transporter and is not synthesized in them, at least in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Vanhatalo
- Department of Anatomy, University of Helsinki, Finland
| | | |
Collapse
|
29
|
Kononen J, Soinila S, Persson H, Honkaniemi J, Hökfelt T, Pelto-Huikko M. Neurotrophins and their receptors in the rat pituitary gland: regulation of BDNF and trkB mRNA levels by adrenal hormones. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1994; 27:347-54. [PMID: 7898323 DOI: 10.1016/0169-328x(94)90022-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We studied the expression of messenger ribonucleic acids (mRNAs) for neurotrophins and neurotrophin receptors in the rat pituitary gland and examined the influence of adrenal hormones on their mRNA levels, using in situ hybridization and Northern blot analysis. The only neurotrophin present at detectable levels in the pituitary was brain-derived neurotrophic factor (BDNF), which was observed in the anterior and intermediate lobes. Several transcripts of the putative receptor for BDNF, trkB, were present in the anterior and posterior lobes of the pituitary. A low amount of trkC mRNA was found in both the anterior and the intermediate lobe. Dexamethasone treatment decreased both BDNF and trkB mRNA levels in the anterior lobe of the pituitary. Adrenalectomy had no effect on trkB expression, but it decreased BDNF mRNA levels in comparison to the control animals. This effect could not be reversed by dexamethasone substitution, suggesting that BDNF, mRNA levels may be regulated not only by glucocorticoids but also by other adrenal hormones. These results demonstrate that BDNF, trkB and trkC are expressed in the pituitary gland and that glucocorticoids and possibly other adrenal hormones may modulate pituitary functions by regulating the expression of neurotrophic factors and their receptors. Whether BDNF acts as a secreted hormone, a trophic factor, or has autocrine/paracrine functions within the pituitary through its receptor, trkB, remains to be studied.
Collapse
Affiliation(s)
- J Kononen
- Department of Biomedical Sciences, University of Tampere, Finland
| | | | | | | | | | | |
Collapse
|
30
|
Pow DV. Immunocytochemical evidence for a glial localisation of arginine, and a neuronal localisation of citrulline in the rat neurohypophysis: implications for nitrergic transmission. Neurosci Lett 1994; 181:141-4. [PMID: 7898755 DOI: 10.1016/0304-3940(94)90579-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nitric oxide (NO) is used as a neurochemical mediator in the rodent hypothalamo-neurohypophysial system. Nitric oxide synthase uses arginine to form both NO and citrulline. In this study immunocytochemistry was used to determine the distributions of arginine and citrulline in the neurohypophysis. Arginine was localised within glia whilst citrulline was present in the nitrergic neurones. Aspartate, an amino acid involved in the recycling of citrulline back to arginine, was localised only in the glia. These findings suggest that nitrergic transmission may be dependent on a cyclical process (analogous to the glutamate-glutamine cycle) based on the transfer of arginine from glia to neurones and the subsequent return of citrulline from nerve terminals to glia for aspartate-dependent conversion back into arginine.
Collapse
Affiliation(s)
- D V Pow
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia
| |
Collapse
|
31
|
Pow DV, Crook DK, Wong RO. Early appearance and transient expression of putative amino acid neurotransmitters and related molecules in the developing rabbit retina: an immunocytochemical study. Vis Neurosci 1994; 11:1115-34. [PMID: 7841121 DOI: 10.1017/s0952523800006933] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have studied, by immunocytochemistry, the ontogeny of GABA, glycine, glutamate, glutamine, and taurine-containing cells in the rabbit retina. Amacrine cells show GABA immunoreactivity by embryonic day 25 (E25) and throughout postnatal life. By contrast, ganglion cells and horizontal cells are only transiently GABA-immunoreactive (-IR); few appear GABA-IR by the third postnatal week. At maturity, glycine is present in amacrine cells and in some bipolar cells. During development, putative ganglion cells transiently contained glycine between E25 and postnatal day 3 (P3), whereas immunolabelling in presumed amacrine cells and bipolar cells persists after birth. Ganglion cells, bipolar cells, photoreceptors, and some amacrine cells are glutamate-IR in the adult retina. Glutamate immunoreactivity first appears in the somata and processes of cytoblastic cells by E20 and is prominent by E25. Surprisingly, ganglion cells are not strongly glutamate-IR until just before eye-opening, at postnatal day 10 (P10), coincident with the appearance of glutamine in their somata and in Müller glial cells. Bipolar cells are glutamate-IR before they or Müller cells contain high levels of glutamine (at P10). Glutamate immunoreactivity in photoreceptors is progressively restricted to the inner segments by eye-opening. At no stage are presumed horizontal cells glutamate-IR or glutamine-IR, but some amacrine cells show glutamate- and glutamine-IR by P10. Taurine is localized to photoreceptors and Müller glial in the adult retina. Some cytoblasts are taurine-IR at E20; with ensuing development, taurine labelling becomes restricted primarily to Müller cells and photoreceptors; some putative bipolar cells may also be labelled. However, for a few days around birth, cells resembling horizontal cells, also show taurine immunoreactivity. The early appearance and often transient expression of these amino acids in retinal cells suggests that these neuroactive molecules may be involved in the structural and functional development of the retina.
Collapse
Affiliation(s)
- D V Pow
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
32
|
Pow DV. Taurine, amino acid transmitters, and related molecules in the retina of the Australian lungfish Neoceratodus forsteri: a light-microscopic immunocytochemical and electron-microscopic study. Cell Tissue Res 1994; 278:311-26. [PMID: 8001086 DOI: 10.1007/bf00414175] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The morphology of the retina of the Australian lungfish Neoceratodus forsteri was investigated by means of light- and electron microscopy, whilst immunocytochemical studies were performed to determine the cellular distributions of the major amino acid neurotransmitters and other amino acids. The distributions of glycine and GABA were similar to those previously described for teleost, amphibian and mammalian retinae. Labelling was abundant in amacrine cells, whilst GABA was also present in one layer of horizontal cells and some bipolar cells. Taurine was present in both rods and cones, but, unlike the mammalian or avian retina, was absent from other cellular structures, including glial elements. Unexpectedly, the photoreceptor terminals lacked an apparent content of the excitatory amino acid transmitter glutamate. The glutamate that was present in the rods and cones occupied a crescentic arc corresponding to the location of glycogen-rich paraboloids. Asparagine was also present in rods, albeit in the modified mitochondria that formed the elipsoids of the rod inner segments. Arginine, the precursor for formation of nitric oxide, was present in glial cells, and in the paraboloids of both rods and cones.
Collapse
Affiliation(s)
- D V Pow
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia
| |
Collapse
|
33
|
Abstract
Glutamate is the most abundant excitatory neurotransmitter in the vertebrate central nervous system. It is widely assumed that neurons using this transmitter derive it from several sources: (i) synthesizing it themselves from alpha-ketoglutarate or aspartate, (ii) synthesize it from glial-derived glutamine, or (iii) take up glutamate from the extracellular space. By use of immunocytochemistry we show that glutamate is abundant in the retinal ganglion and bipolar cells of the rabbit, but that immunoreactivity for glutamate in these neurons is reduced below immunocytochemical detection limits after the specific inhibition of glutamine synthesis in glial cells by D,L-methionine D,L-sulphoximine. GABA immunoreactivity in retinal amacrine cells was also reduced after inhibition of glutamine synthetase but the patterns and densities of immunoreactivity for taurine and glycine were unaffected. Therefore, this experimental paradigm does not induce generalized metabolic changes in neurons or glia. This study demonstrates that some glutamatergic neurons are dependent on the synthetic processes in glia for their neurotransmitter content.
Collapse
Affiliation(s)
- D V Pow
- Department of Physiology and Pharmacology, University of Queensland, Brisbane, Australia
| | | |
Collapse
|