1
|
Lengyel K, Rudra M, Berghof TVL, Leitão A, Frankl-Vilches C, Dittrich F, Duda D, Klinger R, Schleibinger S, Sid H, Trost L, Vikkula H, Schusser B, Gahr M. Unveiling the critical role of androgen receptor signaling in avian sexual development. Nat Commun 2024; 15:8970. [PMID: 39419984 PMCID: PMC11487053 DOI: 10.1038/s41467-024-52989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Gonadal hormone activities mediated by androgen and estrogen receptors, along with cell-autonomous mechanisms arising from the absence of sex-chromosome dosage compensation, are key factors in avian sexual development. In this study, we generate androgen receptor (AR) knockout chickens (AR-/-) to explore the role of androgen signaling in avian sexual development. Despite developing sex-typical gonads and gonadal hormone production, AR-/- males and females are infertile. While few somatic sex-specific traits persist (body size, spurs, and tail feathers), crucial sexual attributes such as comb, wattles and sexual behaviors remain underdeveloped in both sexes. Testosterone treatment of young AR-/- males fails to induce crow behavior, comb development, or regression of the bursa of Fabricius, which are testosterone-dependent phenotypes. These findings highlight the significance of androgen receptor mechanisms in fertility and sex-specific traits in chickens, challenging the concept of a default sex in birds and emphasizing the dominance of androgen signaling in avian sexual development.
Collapse
Affiliation(s)
- Kamila Lengyel
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Mekhla Rudra
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Tom V L Berghof
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Albertine Leitão
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Carolina Frankl-Vilches
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Falk Dittrich
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Denise Duda
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Romina Klinger
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Sabrina Schleibinger
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Hicham Sid
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Lisa Trost
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Hanna Vikkula
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Benjamin Schusser
- Reproductive Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany.
| |
Collapse
|
2
|
Morgentaler A, Hanafy HM. The testis, eunuchs, and testosterone: a historical review over the ages and around the world. Sex Med Rev 2024; 12:199-209. [PMID: 38146670 DOI: 10.1093/sxmrev/qead051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 12/27/2023]
Abstract
INTRODUCTION Testosterone therapy for men with testosterone deficiency is widely used, yet remains controversial. The rich and fascinating history of the testicles, including human castration, provides a valuable perspective on this important topic. OBJECTIVES This study reviewed the history of testosterone from antiquity to the modern day. METHODS Primary sources consisted of books and relevant articles, augmented by a MEDLINE search using the key words "testis," "testicles," "castration," "eunuchs," "testosterone," and "testicular function." RESULTS An early scientific observation was that castration reduced sexual development and activity, originating with domestication of animals approximately 10 000 years ago. Human castration appears in ancient Egyptian mythology more than 4000 years ago, in Greek mythology from 8th century BCE, and in the Bible. The history of eunuchs in China spanned 2000 years, beginning with the Hsia dynasty (2205-1766 BCE). The concept that the testicles produced some factor responsible for male sexual development and behavior was thus known throughout the world since the beginning of recorded history. Testosterone was isolated and synthesized in 1935 and was soon available as a treatment. Multiple benefits of testosterone therapy were apparent by 1940. Recent large, controlled testosterone studies have conclusively demonstrated sexual and general health benefits, with a strong safety profile. CONCLUSION Testosterone has been a known substance for <1% of the historical timeline, yet knowledge that the testes were responsible for male sexual development and behavior has been known since the beginning of recorded history. Today, modern evidence has demonstrated the importance of normal levels of testosterone for general health as well as sexual function and desire. Yet, testosterone therapy remains controversial. We believe this historical review provides a helpful perspective on this age-old issue.
Collapse
Affiliation(s)
- Abraham Morgentaler
- Division of Urology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
3
|
Gray SL, Lam EK, Henao-Diaz LF, Jalabert C, Soma KK. Effect of a Territorial Challenge on the Steroid Profile of a Juvenile Songbird. Neuroscience 2024; 541:118-132. [PMID: 38301739 DOI: 10.1016/j.neuroscience.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Aggression is a social behavior that is critical for survival and reproduction. In adults, circulating gonadal hormones, such as androgens, act on neural circuits to modulate aggressive interactions, especially in reproductive contexts. In many species, individuals also demonstrate aggression before reaching gonadal maturation. Adult male song sparrows, Melospiza melodia, breed seasonally but maintain territories year-round. Juvenile (hatch-year) males aggressively compete for territory ownership during their first winter when circulating testosterone is low. Here, we characterized the relationship between the steroid milieu and aggressive behavior in free-living juvenile male song sparrows in winter. We investigated the effect of a 10 min simulated territorial intrusion (STI) on behavior and steroid levels in blood, 10 microdissected brain regions, and four peripheral tissues (liver, pectoral muscle, adrenal glands, and testes). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we quantified 12 steroids: pregnenolone, progesterone, corticosterone, 11-dehydrocorticosterone, dehydroepiandrosterone, androstenedione, testosterone, 5α-dihydrotestosterone, 17β-estradiol, 17α-estradiol, estrone, and estriol. We found that juvenile males are robustly aggressive, like adult males. An STI increases progesterone and corticosterone levels in blood and brain and increases 11-dehydrocorticosterone levels in blood only. Pregnenolone, androgens, and estrogens are generally non-detectable and are not affected by an STI. In peripheral tissues, steroid concentrations are very high in the adrenals. These data suggest that adrenal steroids, such as progesterone and corticosterone, might promote juvenile aggression and that juvenile and adult songbirds might rely on distinct neuroendocrine mechanisms to support similar aggressive behaviors.
Collapse
Affiliation(s)
- Sofia L Gray
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | - Emma K Lam
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - L Francisco Henao-Diaz
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Cecilia Jalabert
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Valiño G, Dunlap K, Quintana L. Androgen receptors rapidly modulate non-breeding aggression in male and female weakly electric fish (Gymnotus omarorum). Horm Behav 2024; 159:105475. [PMID: 38154435 DOI: 10.1016/j.yhbeh.2023.105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
The South American weakly electric fish, Gymnotus omarorum, displays territorial aggression year-round in both sexes. To examine the role of rapid androgen modulation in non-breeding aggression, we administered acetate cyproterone (CPA), a potent inhibitor of androgen receptors, to both male and females, just before staged agonistic interactions. Wild-caught fish were injected with CPA and, 30 min later, paired in intrasexual dyads. We then recorded the agonistic behavior which encompasses both locomotor displays and emission of social electric signals. We found that CPA had no discernible impact on the levels of aggression or the motivation to engage in aggressive behavior for either sex. However, CPA specifically decreased the expression of social electric signals in both males and female dyads. The effect was status-dependent as it only affected subordinate electrocommunication behavior, the emission of brief interruptions in their electric signaling ("offs"). This study is the first demonstration of a direct and rapid androgen effect mediated via androgen receptors on non-breeding aggression. Elucidating the mechanisms involved in non-breeding aggression in this teleost model allows us to better understand potentially conserved or convergent neuroendocrine mechanisms underlying aggression in vertebrates.
Collapse
Affiliation(s)
- Guillermo Valiño
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay
| | - Kent Dunlap
- Department of Biology, Trinity College, Hartford, CT, United States
| | - Laura Quintana
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay.
| |
Collapse
|
5
|
Yazawa T, Imamichi Y, Sato T, Ida T, Umezawa A, Kitano T. Diversity of Androgens; Comparison of Their Significance and Characteristics in Vertebrate Species. Zoolog Sci 2024; 41:77-86. [PMID: 38587520 DOI: 10.2108/zs230064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/31/2023] [Indexed: 04/09/2024]
Abstract
Androgen(s) is one of the sex steroids that are involved in many physiological phenomena of vertebrate species. Although androgens were originally identified as male sex hormones, it is well known now that they are also essential in females. As in the case of other steroid hormones, androgen is produced from cholesterol through serial enzymatic reactions. Although testis is a major tissue to produce androgens in all species, androgens are also produced in ovary and adrenal (interrenal tissue). Testosterone is the most common and famous androgen. It represents a major androgen both in males and females of almost vertebrate species. In addition, testosterone is a precursor for producing significant androgens such as11-ketotestosterone, 5α-dihydrotestosterone, 11-ketodihydrotestosterones and 15α-hydroxytestosterone in a species- or sex-dependent manner for their homeostasis. In this article, we will review the significance and characteristics of these androgens, following a description of the history of testosterone discovery and its synthetic pathways.
Collapse
Affiliation(s)
- Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Hokkaido 078-8510, Japan,
| | - Yoshitaka Imamichi
- Faculty of Marine Science and Technology, Fukui Prefectural University, Fukui 917-0003, Japan,
| | - Takahiro Sato
- Division of Molecular Genetics, Institute of Life Sciences, Kurume University, Fukuoka 830-0011, Japan
| | - Takanori Ida
- Center for Animal Disease Control, Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Akihiro Umezawa
- National Center for Child Health and Development Research Institute, Tokyo 157-8535, Japan
| | - Takeshi Kitano
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
6
|
Hunter SK, S Angadi S, Bhargava A, Harper J, Hirschberg AL, D Levine B, L Moreau K, J Nokoff N, Stachenfeld NS, Bermon S. The Biological Basis of Sex Differences in Athletic Performance: Consensus Statement for the American College of Sports Medicine. Med Sci Sports Exerc 2023; 55:2328-2360. [PMID: 37772882 DOI: 10.1249/mss.0000000000003300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
ABSTRACT Biological sex is a primary determinant of athletic performance because of fundamental sex differences in anatomy and physiology dictated by sex chromosomes and sex hormones. Adult men are typically stronger, more powerful, and faster than women of similar age and training status. Thus, for athletic events and sports relying on endurance, muscle strength, speed, and power, males typically outperform females by 10%-30% depending on the requirements of the event. These sex differences in performance emerge with the onset of puberty and coincide with the increase in endogenous sex steroid hormones, in particular testosterone in males, which increases 30-fold by adulthood, but remains low in females. The primary goal of this consensus statement is to provide the latest scientific knowledge and mechanisms for the sex differences in athletic performance. This review highlights the differences in anatomy and physiology between males and females that are primary determinants of the sex differences in athletic performance and in response to exercise training, and the role of sex steroid hormones (particularly testosterone and estradiol). We also identify historical and nonphysiological factors that influence the sex differences in performance. Finally, we identify gaps in the knowledge of sex differences in athletic performance and the underlying mechanisms, providing substantial opportunities for high-impact studies. A major step toward closing the knowledge gap is to include more and equitable numbers of women to that of men in mechanistic studies that determine any of the sex differences in response to an acute bout of exercise, exercise training, and athletic performance.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, and Athletic and Human Performance Center, Marquette University, Milwaukee, WI
| | | | - Aditi Bhargava
- Department of Obstetrics and Gynecology, Center for Reproductive Sciences, University of California, San Francisco, CA
| | - Joanna Harper
- Loughborough University, Loughborough, UNITED KINGDOM
| | - Angelica Lindén Hirschberg
- Department of Women's and Children's Health, Karolinska Institutet, and Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, SWEDEN
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, and the Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kerrie L Moreau
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, and Eastern Colorado Health Care System, Geriatric Research Education and Clinical Center, Aurora, CO
| | - Natalie J Nokoff
- Department of Pediatrics, Section of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Nina S Stachenfeld
- The John B. Pierce Laboratory and Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Stéphane Bermon
- Health and Science Department, World Athletics, Monaco and the LAMHESS, University Côte d'Azur, Nice, FRANCE
| |
Collapse
|
7
|
Munley KM, Sinkiewicz DM, Szwed SM, Demas GE. Sex and seasonal differences in neural steroid sensitivity predict territorial aggression in Siberian hamsters. Horm Behav 2023; 154:105390. [PMID: 37354601 PMCID: PMC10527453 DOI: 10.1016/j.yhbeh.2023.105390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/01/2023] [Accepted: 05/28/2023] [Indexed: 06/26/2023]
Abstract
Many animals display marked changes in physiology and behavior on a seasonal timescale, including non-reproductive social behaviors (e.g., aggression). Previous studies from our lab suggest that the pineal hormone melatonin acts via steroid hormones to regulate seasonal aggression in Siberian hamsters (Phodopus sungorus), a species in which both males and females display increased non-breeding aggression. The neural actions of melatonin on steroids and aggressive behavior, however, are relatively unexplored. Here, we housed male and female hamsters in long-day photoperiods (LDs, characteristic of breeding season) or short-day photoperiods (SDs, characteristic of non-breeding season) and administered timed melatonin (M) or control injections. Following 10 weeks of treatment, we quantified aggressive behavior and neural steroid sensitivity by measuring the relative mRNA expression of two steroidogenic enzymes (aromatase and 5α-reductase 3) and estrogen receptor 1 in brain regions associated with aggression or reproduction [medial preoptic area (MPOA), anterior hypothalamus (AH), arcuate nucleus (ARC), and periaqueductal gray (PAG)] via quantitative PCR. Although LD-M and SD males and females displayed increased aggression and similar changes in gene expression in the ARC, there were sex-specific effects of treatment with melatonin and SDs on gene expression in the MPOA, AH, and PAG. Furthermore, males and females exhibited different relationships between neural gene expression and aggression in response to melatonin and SDs. Collectively, these findings support a role for melatonin in regulating seasonal variation in neural steroid sensitivity and aggression and reveal how distinct neuroendocrine responses may modulate a similar behavioral phenotype in male and female hamsters.
Collapse
Affiliation(s)
- Kathleen M Munley
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA; Department of Psychology, University of Houston, Houston, TX 77204, USA.
| | - David M Sinkiewicz
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Sydney M Szwed
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Gregory E Demas
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
8
|
Chu X, Javed A, Ashraf MF, Gao X, Jiang S. Primary culture and endocrine functional analysis of Leydig cells in ducks ( Anas platyrhynchos). Front Endocrinol (Lausanne) 2023; 14:1195618. [PMID: 37347106 PMCID: PMC10280297 DOI: 10.3389/fendo.2023.1195618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023] Open
Abstract
Testicular Leydig cells (LCs) are the primary known source of testosterone, which is necessary for maintaining spermatogenesis and male fertility. However, the isolation, identification, and functional analysis of testosterone in duck LCs are still ambiguous. The aim of the present study was to establish a feasible method for isolating highly purified primary duck LCs. The highly purified primary duck LCs were isolated from the fresh testes of 2-month-old ducks via the digestion of collagenase IV and Percoll density gradient centrifugation; hematoxylin and eosin (H&E), immunohistochemistry (IHC) staining, ELISA, and radioimmunoassay were performed. Results revealed that the LCs were prominently noticeable in the testicular interstitium of 2-month-old ducks as compared to 6-month-old and 1-year-old ducks. Furthermore, IHC demonstrated that the cultured LCs occupied 90% area of the petri dish and highly expressed 3β-HSD 24 h after culture (hac) as compared to 48 and 72 hac. Additionally, ELISA and radioimmunoassay indicate that the testosterone level in cellular supernatant was highly expressed in 24 and 48 hac, whereas the testosterone level gradually decreased in 72 and 96 hac, indicating the primary duck LCs secrete testosterone at an early stage. Based on the above results, the present study has effectively developed a technique for isolating highly purified primary duck LCs and identified its biological function in synthesizing testosterone.
Collapse
Affiliation(s)
- Xiaoya Chu
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Aiman Javed
- Department of Psychiatry & Behavioral Sciences, King Edward Medical University, Lahore, Punjab, Pakistan
| | - Muhammad Faizan Ashraf
- Department of Basic Sciences, Fatima Memorial Hospital (FMH) College of Medicine & Dentistry, Lahore, Pakistan
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shanxiang Jiang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Gouveia FV, Diwan M, Martinez RCR, Giacobbe P, Lipsman N, Hamani C. Reduction of aggressive behaviour following hypothalamic deep brain stimulation: Involvement of 5-HT 1A and testosterone. Neurobiol Dis 2023:106179. [PMID: 37276987 DOI: 10.1016/j.nbd.2023.106179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Aggressive behaviour (AB) may occur in patients with different neuropsychiatric disorders. Although most patients respond to conventional treatments, a small percentage continue to experience AB despite optimized pharmacological management and are considered to be treatment-refractory. For these patients, hypothalamic deep brain stimulation (pHyp-DBS) has been investigated. The hypothalamus is a key structure in the neurocircuitry of AB. An imbalance between serotonin (5-HT) and steroid hormones seems to exacerbate AB. OBJECTIVES To test whether pHyp-DBS reduces aggressive behaviour in mice through mechanisms involving testosterone and 5-HT. METHODS Male mice were housed with females for two weeks. These resident animals tend to become territorial and aggressive towards intruder mice placed in their cages. Residents had electrodes implanted in the pHyp. DBS was administered for 5 h/day for 8 consecutive days prior to daily encounters with the intruder. After testing, blood and brains were recovered for measuring testosterone and 5-HT receptor density, respectively. In a second experiment, residents received WAY-100635 (5-HT1A antagonist) or saline injections prior to pHyp-DBS. After the first 4 encounters, the injection allocation was crossed, and animals received the alternative treatment during the next 4 days. RESULTS DBS-treated mice showed reduced AB that was correlated with testosterone levels and an increase in 5-HT1A receptor density in the orbitofrontal cortex and amygdala. Pre-treatment with WAY-100635 blocked the anti-aggressive effect of pHyp-DBS. CONCLUSIONS This study shows that pHyp-DBS reduces AB in mice via changes in testosterone and 5-HT1A mechanisms.
Collapse
Affiliation(s)
- Flavia Venetucci Gouveia
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Canada.
| | - Mustansir Diwan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Raquel C R Martinez
- Division of Neuroscience, Hospital Sírio-Libanês, São Paulo, Brazil; LIM/23, Institute of Psychiatry, University of Sao Paulo School of Medicine, São Paulo, Brazil
| | - Peter Giacobbe
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Nir Lipsman
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, Canada; Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Clement Hamani
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, Canada; Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
10
|
Monte A, Leitão A, Frankl-Vilches C, Matos RDS, Trappschuh M, da Silva ML, Gahr M. Testosterone treatment unveils testosterone-insensitive song in an early-branched hummingbird. ETHOL ECOL EVOL 2023. [DOI: 10.1080/03949370.2023.2181873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Amanda Monte
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Albertine Leitão
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Carolina Frankl-Vilches
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | | | - Monika Trappschuh
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Maria L. da Silva
- Laboratory of Ornithology and Bioacoustics, Institute of Biological Sciences, Federal University of Pará, Belem, Brazil
| | - Manfred Gahr
- Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| |
Collapse
|
11
|
Service CA, Puri D, Hsieh TC, Patel DP. Emerging concepts in male contraception: a narrative review of novel, hormonal and non-hormonal options. Ther Adv Reprod Health 2023; 17:26334941221138323. [PMID: 36909934 PMCID: PMC9996746 DOI: 10.1177/26334941221138323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/20/2022] [Indexed: 03/14/2023] Open
Abstract
Access to reliable contraception is a pillar of modern society. The burden of unintended pregnancy has fallen disproportionately on the mother throughout human history; however, recent legal developments surrounding abortion have sparked a renewed interest in male factor contraceptives beyond surgical sterilization and condoms. Modern efforts to develop reversible male birth control date back nearly a century and initially focused on altering the hypothalamic-pituitary-testes axis. These hormonal contraceptives faced multiple barriers, including systemic side effects, challenging dosing regimens, unfavorable routes of delivery, and the public stigma surrounding steroid use. Novel hormonal agents are seeking to overcome these barriers by limiting the side effects and simplifying use. Non-hormonal contraceptives are agents that target various stages of spermatogenesis; such as inhibitors of retinoic acid, Sertoli cell-germ cell interactions, sperm ion channels, and other small molecular targets. The identification of reproductive tract-specific genes associated with male infertility has led to more targeted drug development, made possible by advances in CRISPR and proteolysis targeting chimeras (PROTACs). Despite multiple human trials, no male birth control agents have garnered regulatory approval in the United States or abroad. This narrative review examines current and emerging male contraceptives, including hormonal and non-hormonal agents.
Collapse
Affiliation(s)
- C. Austin Service
- Department of Urology, University of California
San Diego, San Diego, CA, USA
| | - Dhruv Puri
- Department of Urology, University of California
San Diego, San Diego, CA, USA
| | - Tung-Chin Hsieh
- Department of Urology, University of California
San Diego, San Diego, CA, USA
| | - Darshan P. Patel
- Department of Urology, University of California
San Diego, 9333 Genesee Avenue, Suite 320, La Jolla, CA 92121, USA
| |
Collapse
|
12
|
Zhu H, Li G, Liu J, Xu X, Zhang Z. Gut microbiota is associated with the effect of photoperiod on seasonal breeding in male Brandt's voles (Lasiopodomys brandtii). MICROBIOME 2022; 10:194. [PMID: 36376894 PMCID: PMC9664686 DOI: 10.1186/s40168-022-01381-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/27/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND Seasonal breeding in mammals has been widely recognized to be regulated by photoperiod, but the association of gut microbiota with photoperiodic regulation of seasonal breeding has never been investigated. RESULTS In this study, we investigated the association of gut microbiota with photoperiod-induced reproduction in male Brandt's voles (Lasiopodomys brandtii) through a long-day and short-day photoperiod manipulation experiment and fecal microbiota transplantation (FMT) experiment. We found photoperiod significantly altered reproductive hormone and gene expression levels, and gut microbiota of voles. Specific gut microbes were significantly associated with the reproductive hormones and genes of voles during photoperiod acclimation. Transplantation of gut microbes into recipient voles induced similar changes in three hormones (melatonin, follicle-stimulating hormone, and luteinizing hormone) and three genes (hypothalamic Kiss-1, testicular Dio3, and Dio2/Dio3 ratio) to those in long-day and short-day photoperiod donor voles and altered circadian rhythm peaks of recipient voles. CONCLUSIONS Our study firstly revealed the association of gut microbiota with photoperiodic regulation of seasonal breeding through the HPG axis, melatonin, and Kisspeptin/GPR54 system. Our results may have significant implications for pest control, livestock animal breeding, and human health management. Video Abstract.
Collapse
Affiliation(s)
- Hanyi Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoming Xu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Westrick SE, Moss JB, Fischer EK. Who cares? An integrative approach to understanding the evolution of behavioural plasticity in parental care. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Munley KM, Trinidad JC, Demas GE. Sex-specific endocrine regulation of seasonal aggression in Siberian hamsters. Proc Biol Sci 2022; 289:20220668. [PMID: 36100021 PMCID: PMC9470250 DOI: 10.1098/rspb.2022.0668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/23/2022] [Indexed: 11/12/2022] Open
Abstract
Coordinating physiological and behavioural processes across the annual cycle is essential in enabling individuals to maximize fitness. While the mechanisms underlying seasonal reproduction and its associated behaviours are well characterized, fewer studies have examined the hormonal basis of non-reproductive social behaviours (e.g. aggression) on a seasonal time scale. Our previous work suggests that the pineal hormone melatonin facilitates a 'seasonal switch' in neuroendocrine regulation of aggression in male and female Siberian hamsters (Phodopus sungorus), specifically by acting on the adrenal glands to increase the production of the androgen dehydroepiandrosterone (DHEA) during the short-day (SD) photoperiods of the non-breeding season. Here, we provide evidence that the activity of 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3β-HSD), a key enzyme within the steroidogenic pathway that mediates DHEA synthesis and metabolism, varies in a sex-specific and melatonin-dependent manner. Although both male and female hamsters displayed increased aggression in response to SDs and SD-like melatonin, only males showed an increase in adrenal 3β-HSD activity. Conversely, SD and melatonin-treated females exhibited reductions in both adrenal and neural 3β-HSD activity. Collectively, these results suggest a potential role for 3β-HSD in modulating non-breeding aggression and, more broadly, demonstrate how distinct neuroendocrine mechanisms may underlie the same behavioural phenotype in males and females.
Collapse
Affiliation(s)
- Kathleen M. Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA
| | - Jonathan C. Trinidad
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Gregory E. Demas
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA
| |
Collapse
|
15
|
Anabolic Steroids in Fattening Food-Producing Animals—A Review. Animals (Basel) 2022; 12:ani12162115. [PMID: 36009705 PMCID: PMC9405261 DOI: 10.3390/ani12162115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Anabolic steroids significantly affect animal tissues and cause morphological and histological changes, which are often irreversible. This issue is currently a very hot topic, as the answers to the questions concerning the health of endangered animals and humans vary greatly from country to country. There is a need to further investigate whether the use of anabolic steroids in animal fattening threatens consumer health and to develop new tools for the detection of anabolic steroids in meat. One possibility for detection could be to observe histological changes in the tissues, which form a typical pattern of anabolic abuse. This review gathered information on the anabolic steroids most commonly used in animal fattening, the legislation governing this issue, and the main effects of anabolics on animal tissues. Abstract Anabolic steroids are chemically synthetic derivatives of the male sex hormone testosterone. They are used in medicine for their ability to support muscle growth and healing and by athletes for esthetic purposes and to increase sports performance, but another major use is in fattening animals to increase meat production. The more people there are on Earth, the greater the need for meat production and anabolic steroids accelerate the growth of animals and, most importantly, increase the amount of muscle mass. Anabolic steroids also have proven side effects that affect all organs and tissues, such as liver and kidney parenchymal damage, heart muscle degeneration, organ growth, coagulation disorders, and increased risk of muscle and tendon rupture. Anabolic steroids also have a number of harmful effects on the developing brain, such as brain atrophy and changes in gene expression with consequent changes in the neural circuits involved in cognitive functions. Behavioral changes such as aggression, irritability, anxiety and depression are related to changes in the brain. In terms of long-term toxicity, the greatest impact is on the reproductive system, i.e., testicular shrinkage and infertility. Therefore, their abuse can be considered a public health problem. In many countries around the world, such as the United States, Canada, China, Argentina, Australia, and other large meat producers, the use of steroids is permitted but in all countries of the European Union there is a strict ban on the use of anabolic steroids in fattening animals. Meat from a lot of countries must be carefully inspected and monitored for steroids before export to Europe. Gas or liquid chromatography methods in combination with mass spectrometry detectors and immunochemical methods are most often used for the analysis of these substances. These methods have been considered the most modern for decades, but can be completely ineffective if they face new synthetic steroid derivatives and want to meet meat safety requirements. The problem of last years is the application of “cocktails” of anabolic substances with very low concentrations, which are difficult to detect and are difficult to quantify using conventional detection methods. This is the reason why scientists are trying to find new methods of detection, mainly based on changes in the structure of tissues and cells and their metabolism. This review gathered this knowledge into a coherent form and its findings could help in finding such a combination of changes in tissues that would form a typical picture for evidence of anabolic misuse.
Collapse
|
16
|
Kelly AM, Gonzalez Abreu JA, Thompson RR. Beyond sex and aggression: testosterone rapidly matches behavioural responses to social context and tries to predict the future. Proc Biol Sci 2022; 289:20220453. [PMID: 35673866 PMCID: PMC9174716 DOI: 10.1098/rspb.2022.0453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Although androgens are widely studied in the context of aggression, androgenic influences on prosocial behaviours have been less explored. We examined testosterone's (T) influence on prosocial and aggressive responses in a positively valenced social context (interacting with a pairbond partner) and a negatively valenced context (interacting with an intruder) in socially monogamous Mongolian gerbils. T increased and decreased prosocial responses in the same individuals towards a pairbond partner and an intruder, respectively, both within 30 min, but did not affect aggression. T also had persistent effects on prosocial behaviour; males in which T initially increased prosocial responses towards a partner continued to exhibit elevated prosocial responses towards an intruder male days later until a second T injection rapidly eliminated those responses. Thus, T surges can rapidly match behaviour to current social context, as well as prime animals for positive social interactions in the future. Neuroanatomically, T rapidly increased hypothalamic oxytocin, but not vasopressin, cellular responses during interactions with a partner. Together, our results indicate that T can facilitate and inhibit prosocial behaviours depending on social context, that it can influence prosocial responses across rapid and prolonged time scales, and that it affects oxytocin signalling mechanisms that could mediate its context-dependent behavioural influences.
Collapse
Affiliation(s)
- Aubrey M. Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| | | | - Richmond R. Thompson
- Division of Social Sciences, Oxford College of Emory University, 801 Emory Street, Oxford GA 30054 USA
| |
Collapse
|
17
|
Munley KM, Wade KL, Pradhan DS. Uncovering the seasonal brain: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) as a biochemical approach for studying seasonal social behaviors. Horm Behav 2022; 142:105161. [PMID: 35339904 DOI: 10.1016/j.yhbeh.2022.105161] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022]
Abstract
Many animals show pronounced changes in physiology and behavior across the annual cycle, and these adaptations enable individuals to prioritize investing in the neuroendocrine mechanisms underlying reproduction and/or survival based on the time of year. While prior research has offered valuable insight into how seasonal variation in neuroendocrine processes regulates social behavior, the majority of these studies have investigated how a single hormone influences a single behavioral phenotype. Given that hormones are synthesized and metabolized via complex biochemical pathways and often act in concert to control social behavior, these approaches provide a limited view of how hormones regulate seasonal changes in behavior. In this review, we discuss how seasonal influences on hormones, the brain, and social behavior can be studied using liquid chromatography-tandem mass spectrometry (LC-MS/MS), an analytical chemistry technique that enables researchers to simultaneously quantify the concentrations of multiple hormones and the activities of their synthetic enzymes. First, we examine studies that have investigated seasonal plasticity in brain-behavior interactions, specifically by focusing on how two groups of hormones, sex steroids and nonapeptides, regulate sexual and aggressive behavior. Then, we explain the operations of LC-MS/MS, highlight studies that have used LC-MS/MS to study the neuroendocrine mechanisms underlying social behavior, both within and outside of a seasonal context, and discuss potential applications for LC-MS/MS in the field of behavioral neuroendocrinology. We propose that this cutting-edge technology will provide a more comprehensive understanding of how the multitude of hormones that comprise complex neuroendocrine networks affect seasonal variation in the brain and behavior.
Collapse
Affiliation(s)
- Kathleen M Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Kristina L Wade
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| | - Devaleena S Pradhan
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
18
|
Boersma J, Jones JA, Enbody ED, Welklin JF, Ketaloya S, Nason D, Karubian J, Schwabl H. Male White-shouldered Fairywrens (Malurus alboscapulatus) elevate androgens greater when courting females than during territorial challenges. Horm Behav 2022; 142:105158. [PMID: 35378335 DOI: 10.1016/j.yhbeh.2022.105158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/02/2022] [Accepted: 03/11/2022] [Indexed: 11/25/2022]
Abstract
Androgens like testosterone mediate suites of physical and behavioral traits across vertebrates, and circulation varies considerably across and within taxa. However, an understanding of the causal factors of variation in circulating testosterone has proven difficult despite decades of research. According to the challenge hypothesis, agonistic interactions between males immediately prior to the breeding season produce the highest levels of testosterone measured during this period. While many studies have provided support for this hypothesis, most species do not respond to male-male competition by elevating testosterone. As a result, a recent revision of the hypothesis ('challenge hypothesis 2.0') places male-female interactions as the primary cause of rapid elevations in testosterone circulation in male vertebrates. Here, we offer a test of both iterations of the challenge hypothesis in a tropical bird species. We first illustrate that male White-shouldered Fairywrens (Malurus alboscapulatus) differ by subspecies in plasma androgen concentrations. Then we use a social network approach to find that males of the subspecies with higher androgens are characterized by greater social interaction scores, including more time aggregating to perform sexual displays. Next, we use a controlled experiment to test whether males respond to simulated territorial intrusion and/or courtship competition contexts by elevating androgens. We found that males elevated androgens during territorial intrusions relative to flushed controls, however, males sampled during courtship competitions had greater plasma androgens both relative to controls and males sampled while defending territories. Ultimately, our results are consistent with challenge hypothesis 2.0, as sexual interactions with extra-pair females were associated with greater elevation of androgens than territorial disputes.
Collapse
Affiliation(s)
- Jordan Boersma
- School of Biological Sciences, Washington State University, Pullman, WA, USA; Department of Neurobiology and Behavior, Cornell University, USA; Cornell Lab of Ornithology, Ithaca, NY, USA.
| | - John Anthony Jones
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Erik D Enbody
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Joseph F Welklin
- Department of Neurobiology and Behavior, Cornell University, USA; Cornell Lab of Ornithology, Ithaca, NY, USA
| | - Serena Ketaloya
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA; Porotona Village, Milne Bay Province, Papua New Guinea
| | - Doka Nason
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA; Porotona Village, Milne Bay Province, Papua New Guinea
| | - Jordan Karubian
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Hubert Schwabl
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
19
|
Earl AD, Kimmitt AA, Yorzinski JL. Circulating hormones and dominance status predict female behavior during courtship in a lekking species. Integr Comp Biol 2022; 62:9-20. [PMID: 35467712 DOI: 10.1093/icb/icac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Female competitive behaviors during courtship can have substantial fitness consequences yet we know little about the physiological and social mechanisms underlying these behaviors - particularly for females of polygynous lek mating species. We explored the hormonal and social drivers of female intersexual and intrasexual behavior during courtship by males in a captive population of Indian peafowl. We investigated whether (1) female non-stress induced circulating estradiol (E2) and corticosterone (CORT) levels or (2) female dominance status in a dyad predict female solicitation behavior. We also tested whether female circulating E2 and CORT predict dominant females' aggressive behaviors toward subordinate females in the courtship context. Our findings demonstrate that females with higher levels of circulating E2 as well as higher levels of circulating CORT solicit more courtships from males. Dominant females also solicit more courtships from males than subordinate females. Female intrasexual aggressive behaviors during courtship, however, were not associated with circulating levels of E2 or CORT. Overall, we conclude that circulating steroid hormones in conjunction with social dominance might play a role in mediating female behaviors associated with competition for mates. Experimental manipulation and measures of hormonal flexibility throughout the breeding season in relation to competitive and sexual behaviors will be necessary to further examine the link between hormonal mechanisms and female behavior in polygynous lekking systems.
Collapse
Affiliation(s)
- Alexis D Earl
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, 77843, USA.,Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, 10027, USA
| | - Abigail A Kimmitt
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA.,Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Jessica L Yorzinski
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, 77843, USA
| |
Collapse
|
20
|
Peng C, Chen J, Liao Y, Zhang Z, Liu Y, Wu H, Zheng X. Father-child attachment and externalizing problem behavior in early adolescence: A moderated mediation model. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-03041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Lownie TJR, Jubinville I, Williams TD, Phillips RA, Crossin GT. Varying aerobic capacity in relation to breeding stage and reproductive success in giant petrels (Macronectes spp.). Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111155. [PMID: 35051629 DOI: 10.1016/j.cbpa.2022.111155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
Reproduction, and parental care in particular, are among the most energy-demanding activities within the annual cycle of adult birds. Parents that cannot meet the metabolic demands and other physiological costs of raising offspring may opt to abandon chicks in favour of self-maintenance and future reproduction. Recent work examining reproductive trade-offs in birds revealed an important role of oxygen carrying capacity in mediating variation in parental effort. This study explores the aerobic factors underlying the success or failure of parental care in two closely-related petrel species during their breeding season on Bird Island, South Georgia: northern giant petrels (Macronectes halli) and southern giant petrels (M. giganteus). Failed breeders of both sexes and species had significantly lower hematocrit levels (by 5.48 ± 0.64%) than successful breeders, and reticulocyte counts also tended to be lower in failed males, consistent with the hypothesis that parental care and workload depend on aerobic capacity. We discuss these results in relation to differences in the foraging ecology of both species and sexes.
Collapse
Affiliation(s)
- T J R Lownie
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - I Jubinville
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - T D Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - R A Phillips
- British Antarctic Survey, National Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - G T Crossin
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
22
|
Munley KM, Dutta S, Jasnow AM, Demas GE. Adrenal MT 1 melatonin receptor expression is linked with seasonal variation in social behavior in male Siberian hamsters. Horm Behav 2022; 138:105099. [PMID: 34920297 PMCID: PMC8847318 DOI: 10.1016/j.yhbeh.2021.105099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/10/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
Many animals exhibit pronounced changes in physiology and behavior on a seasonal basis, and these adaptations have evolved to promote survival and reproductive success. While the neuroendocrine pathways mediating seasonal reproduction are well-studied, far less is known about the mechanisms underlying seasonal changes in social behavior, particularly outside of the context of the breeding season. Our previous work suggests that seasonal changes in melatonin secretion are important in regulating aggression in Siberian hamsters (Phodopus sungorus); it is unclear, however, how melatonin acts via its receptors to modulate seasonal variation in social behavior. In this study, we infused a MT1 melatonin receptor-expressing (MT1) or control (CON) lentivirus into the adrenal glands of male Siberian hamsters. We then housed hamsters in long-day (LD) or short-day (SD) photoperiods, administered timed melatonin or control injections, and quantified aggressive and non-aggressive social behaviors (e.g., investigation, self-grooming) following 10 weeks of treatment. LD hamsters infused with the MT1 lentivirus had significantly higher adrenal mt1 expression than LD CON hamsters, as determined via quantitative PCR. While melatonin administration was necessary to induce SD-like reductions in body and relative reproductive mass, only LD hamsters infused with the MT1 lentivirus displayed SD-like changes in social behavior, including increased aggression and decreased investigation and grooming. In addition, SD CON and LD hamsters infused with the MT1 lentivirus exhibited similar relationships between adrenal mt1 expression and aggressive behavior. Together, our findings suggest a role for adrenal MT1 receptor signaling in regulating behavior, but not energetics or reproduction in seasonally breeding species.
Collapse
Affiliation(s)
- Kathleen M Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Sohini Dutta
- Department of Psychological Sciences, Kent State University, Kent, OH 44240, USA; Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Aaron M Jasnow
- Department of Psychological Sciences, Kent State University, Kent, OH 44240, USA; Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Gregory E Demas
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
23
|
Goretskaia MY, Beme IR. Influence of Testosterone on Different Aspects of Bird Behavior and Physiology. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021080094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Brann DW, Lu Y, Wang J, Zhang Q, Thakkar R, Sareddy GR, Pratap UP, Tekmal RR, Vadlamudi RK. Brain-derived estrogen and neural function. Neurosci Biobehav Rev 2021; 132:793-817. [PMID: 34823913 PMCID: PMC8816863 DOI: 10.1016/j.neubiorev.2021.11.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/26/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023]
Abstract
Although classically known as an endocrine signal produced by the ovary, 17β-estradiol (E2) is also a neurosteroid produced in neurons and astrocytes in the brain of many different species. In this review, we provide a comprehensive overview of the localization, regulation, sex differences, and physiological/pathological roles of brain-derived E2 (BDE2). Much of what we know regarding the functional roles of BDE2 has come from studies using specific inhibitors of the E2 synthesis enzyme, aromatase, as well as the recent development of conditional forebrain neuron-specific and astrocyte-specific aromatase knockout mouse models. The evidence from these studies support a critical role for neuron-derived E2 (NDE2) in the regulation of synaptic plasticity, memory, socio-sexual behavior, sexual differentiation, reproduction, injury-induced reactive gliosis, and neuroprotection. Furthermore, we review evidence that astrocyte-derived E2 (ADE2) is induced following brain injury/ischemia, and plays a key role in reactive gliosis, neuroprotection, and cognitive preservation. Finally, we conclude by discussing the key controversies and challenges in this area, as well as potential future directions for the field.
Collapse
Affiliation(s)
- Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Jing Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Roshni Thakkar
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health, San Antoio TX, 78229, USA; Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
25
|
Reyes F, Quintana L, Tassino B. Association of androgens and estrogens with agonistic behavior in the annual fish Austrolebias reicherti. Horm Behav 2021; 136:105064. [PMID: 34653914 DOI: 10.1016/j.yhbeh.2021.105064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022]
Abstract
Agonistic behavior governs the settlement of conflicts among conspecifics for limiting resources. Sex steroids play a critical role in the regulation of agonistic behavior which in turn may produce modulations in hormone titres. In this study we analyzed the association of androgens and estrogens with agonistic behavior in the annual fish Austrolebias reicherti. This native species inhabits temporary ponds that dry out completely during summer, having one of the shortest lifespans among vertebrates. They are highly sexually dimorphic and have a single breeding season during which they reproduce continuously. Here we measured plasma levels of 11-ketotestosterone (11KT) and 17β-estradiol (E2) in adult males after the resolution of a social conflict and assessed the role of the aromatase conversion of testosterone (T) to E2 in male aggression. Winners had higher levels of 11KT than losers yet; winner 11KT levels did not differ from those of males not exposed to a social challenge. E2 levels did not show differences among winners, losers or control males. However, fights under the aromatase inhibitor Fadrozole were overall less aggressive than control fights. Our results suggest an androgen response to losing a conflict and that the conversion of T to E2 is involved in the regulation of aggressive behavior. Annual fish extreme life history may give new insights on hormone-behavior interactions.
Collapse
Affiliation(s)
- Federico Reyes
- Sección Etología, Facultad de Ciencias, Universidad de la República, Uruguay; Bases Neurales de la Conducta, Departamento de Neurofisiología Molecular y Celular, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Laura Quintana
- Bases Neurales de la Conducta, Departamento de Neurofisiología Molecular y Celular, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Bettina Tassino
- Sección Etología, Facultad de Ciencias, Universidad de la República, Uruguay.
| |
Collapse
|
26
|
Oliveira RF, Bshary R. Expanding the concept of social behavior to interspecific interactions. Ethology 2021. [DOI: 10.1111/eth.13194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rui F. Oliveira
- Instituto Gulbenkian de Ciência Oeiras Portugal
- ISPA – Instituto Universitário Lisboa Portugal
- Champalimaud Neuroscience Programme Lisboa Portugal
| | - Redouan Bshary
- Institute of Biology University of Neuchâtel Neuchâtel Switzerland
| |
Collapse
|
27
|
|
28
|
Loveland JL, Lank DB, Küpper C. Gene Expression Modification by an Autosomal Inversion Associated With Three Male Mating Morphs. Front Genet 2021; 12:641620. [PMID: 34149796 PMCID: PMC8213371 DOI: 10.3389/fgene.2021.641620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/22/2021] [Indexed: 11/22/2022] Open
Abstract
Chromosomal inversions are structural rearrangements that frequently provide genomic substrate for phenotypic diversity. In the ruff Philomachus pugnax, three distinct male reproductive morphs (Independents, Satellites and Faeders) are genetically determined by a 4.5 Mb autosomal inversion. Here we test how this stable inversion polymorphism affects gene expression in males during the lekking season. Gene expression may be altered through disruptions at the breakpoints and the accumulation of mutations due to suppressed recombination. We used quantitative PCR to measure expression of 11 candidate inversion genes across three different tissues (liver, adrenal glands and gonads) and tested for allelic imbalance in four inversion genes across 12 males of all three morphs (8 Independents, 2 Satellites, 2 Faeders). We quantified transcripts of CENPN, an essential gene disrupted by the inversion at the proximal breakpoint, at different exons distributed near and across the breakpoint region. Consistent with dosage dependent gene expression for the breakpoint gene CENPN, we found that expression in Independents was broadly similar for transcripts segments from inside and outside the inversion regions, whereas for Satellites and Faeders, transcript segments outside of the inversion showed at least twofold higher expression than those spanning over the breakpoint. Within the inversion, observed expression differences for inversion males across all four genes with allele-specific primers were consistent with allelic imbalance. We further analyzed gonadal expression of two inversion genes, HSD17B2 and SDR42E1, along with 12 non-inversion genes related to steroid metabolism and signaling in 25 males (13 Independents, 7 Satellites, 5 Faeders). Although we did not find clear morph differentiation for many individual genes, all three morphs could be separated based on gene expression differences when using linear discriminant analysis (LDA), regardless of genomic location (i.e., inside or outside of the inversion). This was robust to the removal of genes with the highest loadings. Pairwise correlations in the expression of genes showed significant correlations for 9–18 pairs of genes within morphs. However, between morphs, we only found a single association between genes SDR42E1 and AROM for Independents and Satellites. Our results suggest complex and wide-ranging changes in gene expression caused by structural variants.
Collapse
Affiliation(s)
- Jasmine L Loveland
- Research Group for Behavioural Genetics and Evolutionary Ecology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - David B Lank
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Clemens Küpper
- Research Group for Behavioural Genetics and Evolutionary Ecology, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
29
|
Gouveia FV, Germann J, de Morais R, Fonoff ET, Hamani C, Alho EJ, Brentani H, Martins AP, Devenyi G, Patel R, Steele C, Gramer R, Chakravarty M, Martinez RCR. Longitudinal Changes After Amygdala Surgery for Intractable Aggressive Behavior: Clinical, Imaging Genetics, and Deformation-Based Morphometry Study-A Case Series. Neurosurgery 2021; 88:E158-E169. [PMID: 33026432 DOI: 10.1093/neuros/nyaa378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 06/27/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Intractable aggressive behavior (iAB) is a devastating behavioral disorder that may affect psychiatric patients. These patients have reduced quality of life, are more challenging to treat as they impose a high caregiver burden and require specialized care. Neuromodulatory interventions targeting the amygdala, a key hub in the circuitry of aggressive behavior (AB), may provide symptom alleviation. OBJECTIVE To Report clinical and imaging findings from a case series of iAB patients treated with bilateral amygdala ablation. METHODS This series included 4 cases (3 males, 19-32 years old) who underwent bilateral amygdala radiofrequency ablation for iAB hallmarked by life-threatening self-injury and social aggression. Pre- and postassessments involved full clinical, psychiatric, and neurosurgical evaluations, including scales quantifying AB, general agitation, quality of life, and magnetic resonance imaging (MRI). RESULTS Postsurgery assessments revealed decreased aggression and agitation and improved quality of life. AB was correlated with testosterone levels and testosterone/cortisol ratio in males. No clinically significant side effects were observed. Imaging analyses showed preoperative amygdala volumes within normal populational range and confirmed lesion locations. The reductions in aggressive symptoms were accompanied by significant postsurgical volumetric reductions in brain areas classically associated with AB and increases in regions related to somatosensation. The local volumetric reductions are found in areas that in a normal brain show high expression levels of genes related to AB (eg, aminergic transmission) using gene expression data provided by the Allen brain atlas. CONCLUSION These findings provide new insight into the whole brain neurocircuitry of aggression and suggest a role of altered somatosensation and possible novel neuromodulation targets.
Collapse
Affiliation(s)
- Flavia Venetucci Gouveia
- Laboratory of Neuromodulation, Teaching and Research Institute, Hospital Sirio-Libanes, Sao Paulo, Brazil.,Sunnybrook Research Institute, Toronto, Canada
| | - Jürgen Germann
- CIC, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Rosa de Morais
- PROTEA, Department of Psychiatry, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Erich Talamoni Fonoff
- Department of Neurology, Division of Functional Neurosurgery, Institute of Psychiatry, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Clement Hamani
- Sunnybrook Research Institute, Toronto, Canada.,Department of Neurology, Division of Functional Neurosurgery, Institute of Psychiatry, Medical School, University of Sao Paulo, Sao Paulo, Brazil.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Eduardo Joaquim Alho
- Department of Neurology, Division of Functional Neurosurgery, Institute of Psychiatry, Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Helena Brentani
- Department of Psychiatry, Medical School, University of Sao Paulo, Sao Paulo, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents, CNPq, Sao Paulo, Brazil
| | - Ana Paula Martins
- PROTEA, Department of Psychiatry, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Gabriel Devenyi
- CIC, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Raihaan Patel
- CIC, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Christopher Steele
- CIC, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Robert Gramer
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Mallar Chakravarty
- CIC, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | | |
Collapse
|
30
|
Winnicki S, Strausberger B, Antonson N, Burhans D, Lock J, Kilpatrick A, Hauber M. Developmental asynchrony and host species identity predict variability in nestling growth of an obligate brood parasite: a test of the “growth-tuning” hypothesis. CAN J ZOOL 2021. [DOI: 10.1139/cjz-2020-0147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Generalist obligate brood parasites are excellent models for studies of developmental plasticity, as they experience a range of social and environmental variation when raised by one of their many hosts. Parasitic Brown-headed Cowbirds (Molothrus ater (Boddaert, 1783)) exhibit host-specific growth rates, yet Cowbird growth rates are not predicted by hosts’ incubation or brooding periods. We tested the novel “growth-tuning” hypothesis which predicts that total asynchrony between Cowbirds’ and hosts’ nesting periods results in faster parasitic growth in nests where host young fledge earlier than Cowbirds. We tested this prediction using previously published and newly added nestling mass data across diverse host species. Total nesting period asynchrony (summed across incubation and brooding stages) predicted Cowbird growth; 8-day-old Cowbirds were heavier in host nests with relatively shorter nesting periods. We further explored the drivers of variation in growth using mass measurements of Cowbirds in Song Sparrow (Melospiza melodia (A. Wilson, 1810)) and Red-winged Blackbird (Agelaius phoeniceus (Linnaeus, 1766)) nests. Our top models included host species (Cowbirds grew faster in Sparrow nests), numbers of nestmates (slowest when raised alone), and sex (males grew faster). These results confirm that multiple social and environmental factors predict directional patterns of developmental plasticity in avian generalist brood parasites.
Collapse
Affiliation(s)
- S.K. Winnicki
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, 515 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL 61801, USA
- Program in Ecology, Evolution, and Conservation, University of Illinois at Urbana-Champaign, 278 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL 61801, USA
| | - B.M. Strausberger
- Pritzker Laboratory for Molecular Systematics and Evolution, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA
| | - N.D. Antonson
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, 515 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL 61801, USA
| | - D.E. Burhans
- Division of Biological Sciences, University of Missouri, 110 Tucker Hall, Columbia, MO 65211, USA
| | - J. Lock
- School of Biological Sciences, University of Auckland, 7 Symonds Street, Auckland 1010, New Zealand
| | - A.M. Kilpatrick
- Department of Ecology and Evolutionary Biology, University of California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - M.E. Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, 515 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL 61801, USA
- Program in Ecology, Evolution, and Conservation, University of Illinois at Urbana-Champaign, 278 Morrill Hall, 505 South Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
31
|
Association between social factors and gastrointestinal parasite product excretion in a group of non-cooperatively breeding carrion crows. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-02967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Jalabert C, Ma C, Soma KK. Profiling of systemic and brain steroids in male songbirds: Seasonal changes in neurosteroids. J Neuroendocrinol 2021; 33:e12922. [PMID: 33314446 DOI: 10.1111/jne.12922] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 12/11/2022]
Abstract
Steroids are secreted by the gonads and adrenal glands into the blood to modulate neurophysiology and behaviour. In addition, the brain can metabolise circulating steroids and synthesise steroids de novo. Songbirds show high levels of neurosteroid synthesis. In the present study, we developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for the measurement of 10 steroids in whole blood, plasma and microdissected brain tissue (1-2 mg) of song sparrows. Our assay is highly accurate, precise, specific and sensitive. Moreover, the liquid-liquid extraction is fast, simple and effective. We quantified steroids in the blood and brain of wild male song sparrows in both breeding and non-breeding seasons. As expected, systemic androgen levels were higher in the breeding season than in the non-breeding season. Brain androgens were detectable only in the breeding season; androstenedione and 5α-dihydrotestosterone levels were up to 20-fold higher in specific brain regions than in blood. Oestrogens were not detectable in blood in both seasons. Oestrone and 17β-oestradiol were detectable in brain in the breeding season only (up to 1.4 ng g-1 combined). Progesterone levels in several regions were higher in the non-breeding season than the breeding season, despite the lack of seasonal changes in systemic progesterone. Corticosterone levels in the blood were higher in the breeding season than in the non-breeding season but showed few seasonal differences in the brain. In general, the steroid levels presented here are lower than those in previous reports using immunoassays, because of the higher specificity of mass spectrometry. We conclude that (i) brain steroid levels can differ greatly from circulating steroid levels and (ii) brain steroid levels show region-specific seasonal patterns that are not a simple reflection of circulating steroid levels. This approach using ultrasensitive LC-MS/MS is broadly applicable to other species and allows steroid profiling in microdissected brain regions.
Collapse
Affiliation(s)
- Cecilia Jalabert
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Chunqi Ma
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
33
|
Cope HR, Peck S, Hobbs R, Keeley T, Izzard S, Yeen-Yap W, White PJ, Hogg CJ, Herbert CA. Contraceptive efficacy and dose-response effects of the gonadotrophin-releasing hormone (GnRH) agonist deslorelin in Tasmanian devils (Sarcophilus harrisii). Reprod Fertil Dev 2020; 31:1473-1485. [PMID: 31046901 DOI: 10.1071/rd18407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/13/2019] [Indexed: 11/23/2022] Open
Abstract
Contraception is increasingly used to manage breeding opportunities in conservation-dependent species. This study aimed to determine the efficacy, duration of effect, optimal dose and potential side effects of Suprelorin contraceptive implants in Tasmanian devils, for use in the conservation breeding program. In our pilot study, Suprelorin was found to effectively suppress oestrous cycles in female devils, yet caused a paradoxical increase in testosterone in males. Therefore, we focussed on females in further trials. Females received one (n=5), two (n=5) or no (n=5) Suprelorin implants, with quarterly gonadotrophin-releasing hormone (GnRH) challenges used to test pituitary responsiveness over two breeding seasons. Both Suprelorin doses suppressed pituitary responsiveness for at least one breeding season, with a reduced effect in the second. There was a dose-response effect on duration rather than magnitude of effect, with high-dose devils remaining suppressed for longer than low-dose animals. There were no apparent negative effects on general health, yet captivity and contraception together may cause weight gain. Suprelorin contraceptive implants are now routinely used in the Save the Tasmanian Devil Program insurance metapopulation to meet the aims of maintaining genetic and behavioural integrity by controlling individual reproductive contributions in group housing situations.
Collapse
Affiliation(s)
- Holly R Cope
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, J.D. Stewart Building B01, Camperdown, NSW 2006, Australia
| | - Sarah Peck
- Wildlife Management Branch, Department of Primary Industries, Parks, Water and Environment, Hobart, Tas. 7000, Australia
| | - Rebecca Hobbs
- Taronga Institute of Science and Learning, Taronga Conservation Society, NSW 2088, Australia
| | - Tamara Keeley
- School of Agriculture and Food Sciences, Faculty of Science, The University of Queensland, Gatton, Qld 4343, Australia
| | - Stephen Izzard
- Wildlife Management Branch, Department of Primary Industries, Parks, Water and Environment, Hobart, Tas. 7000, Australia
| | | | - Peter J White
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, R.M.C. Gunn Building B19, Camperdown, NSW 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, J.D. Stewart Building B01, Camperdown, NSW 2006, Australia; and Zoo and Aquarium Association Australasia, Mosman, NSW 2088, Australia
| | - Catherine A Herbert
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, J.D. Stewart Building B01, Camperdown, NSW 2006, Australia; and Corresponding author.
| |
Collapse
|
34
|
Riddiford LM. Rhodnius, Golden Oil, and Met: A History of Juvenile Hormone Research. Front Cell Dev Biol 2020; 8:679. [PMID: 32850806 PMCID: PMC7426621 DOI: 10.3389/fcell.2020.00679] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Juvenile hormone (JH) is a unique sesquiterpenoid hormone which regulates both insect metamorphosis and insect reproduction. It also may be utilized by some insects to mediate polyphenisms and other life history events that are environmentally regulated. This article details the history of the research on this versatile hormone that began with studies by V. B. Wigglesworth on the "kissing bug" Rhodnius prolixus in 1934, through the discovery of a natural source of JH in the abdomen of male Hyalophora cecropia moths by C. M. Williams that allowed its isolation ("golden oil") and identification, to the recent research on its receptor, termed Methoprene-tolerant (Met). Our present knowledge of cellular actions of JH in metamorphosis springs primarily from studies on Rhodnius and the tobacco hornworm Manduca sexta, with recent studies on the flour beetle Tribolium castaneum, the silkworm Bombyx mori, and the fruit fly Drosophila melanogaster contributing to the molecular understanding of these actions. Many questions still need to be resolved including the molecular basis of competence to metamorphose, differential tissue responses to JH, and the interaction of nutrition and other environmental signals regulating JH synthesis and degradation.
Collapse
Affiliation(s)
- Lynn M Riddiford
- Department of Biology, Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| |
Collapse
|
35
|
Yan Z, Isobe N, Kawakami SI. Effects of Testicular and Non-Testicular Testosterone on Territorial and Isolation-induced Aggressive Behavior of Male Layer Chicks. J Poult Sci 2020; 57:236-240. [PMID: 32733158 PMCID: PMC7387941 DOI: 10.2141/jpsa.0190109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 10/15/2019] [Indexed: 12/01/2022] Open
Abstract
Testosterone (T) is known to induce aggressive behavior, particularly in male animals. However, our recent results showed that a certain kind of aggressive behavior is T-independent; moreover, the role of T in chicken territorial and isolation-induced aggressive behavior has not yet been investigated. In addition, castration alone is insufficient to evaluate the role of T in aggressive behavior because we found that non-testicular T concentration, probably derived from the adrenal gland, in the blood of castrated chicks was low, but not zero. In the present study, therefore, the role of testicular T in chicken aggressive behavior was evaluated through castration, and the role of nontesticular T was assessed using the subcutaneous implantation of flutamide, a non-steroidal antiandrogen, in the castrated male layer chicks. Resident-intruder (R-I) and social interaction (SI) tests were used to quantitatively monitor territorial and isolation-induced aggressive behavior, respectively. Castration and drug implantation of the chicks were performed at 14 days of age. The R-I test was performed at 29 and 30 days of age, and the SI test was performed at 31 and 32 days of age. The total aggression frequencies (TAFs) and aggression establishment rate (AER) were used as indices of chick aggressive behavior. In the R-I test, castration significantly decreased the TAFs but the AER was not affected by castration or flutamide implantation. In the SI test, on the other hand, there were no significant differences in the TAFs, but the AER tended to increase in the intact chicks and decrease in the flutamide-implanted, castrated male chicks. These results suggest that the role of T in chicken aggression depends on the differences in social context of the behavior, and that both testicular and non-testicular T play an important role in the occurrence of isolation-induced aggression in male layer chicks.
Collapse
Affiliation(s)
- Zhiqun Yan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Naoki Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
- The Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Shin-Ichi Kawakami
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
- Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
- The Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| |
Collapse
|
36
|
Moore IT, Hernandez J, Goymann W. Who rises to the challenge? Testing the Challenge Hypothesis in fish, amphibians, reptiles, and mammals. Horm Behav 2020; 123:104537. [PMID: 31181193 DOI: 10.1016/j.yhbeh.2019.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 01/20/2023]
Abstract
According to the Challenge Hypothesis, social interactions, particularly among males, have a strong influence on circulating androgen levels. Specifically, males should respond to social challenges from conspecific males with a rapid increase in plasma androgen levels which support and stimulate further aggression. This basic tenet of the Challenge Hypothesis, an androgen increase in response to a social challenge from another male, has been tested in all vertebrate classes. While early studies generally supported the Challenge Hypothesis, more recent work has noted numerous exceptions, particularly in birds. Here, we conduct a meta-analysis of studies in fish, amphibians, non-avian reptiles, and mammals that test the prediction that circulating androgen levels of males should increase in response to an experimental challenge from another male. We found that teleost fish often increase androgens during such challenges, but other vertebrate groups show more mixed results. Why should fish be different from the other taxa? In fish with paternal care of young, the potential conflict between mating, being aggressive towards other males, and taking care of offspring is alleviated, because females typically choose males based on their defense of an already existing nest. Hence, rather than regulating the trade-off between mating, aggression, and parenting, androgens may have been co-opted to promote all three behaviors. For other taxa, increasing androgen levels only makes sense when the increase directly enhances reproductive success. Thus, the increase in androgen levels is a response to mating opportunities rather than a response to challenge from another male. To further our understanding of the role of a change in androgen levels in mediating behavioral decision-making between mating, aggression, and parenting, we need studies that address the behavioral consequences of an increase in androgens after male-male encounters and studies that test the androgen responsiveness of species that differ in the degree of paternal care.
Collapse
Affiliation(s)
- Ignacio T Moore
- 2119 Derring Hall, Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0406, USA.
| | - Jessica Hernandez
- 2119 Derring Hall, Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0406, USA
| | - Wolfgang Goymann
- Abteilung für Verhaltensneurobiologie, Max-Planck-Institut für Ornithologie, Eberhard-Gwinner-Str. 6a, D-82319 Seewiesen, Germany
| |
Collapse
|
37
|
Wingfield JC, Goymann W, Jalabert C, Soma KK. Reprint of "Concepts derived from the Challenge Hypothesis". Horm Behav 2020; 123:104802. [PMID: 32540136 DOI: 10.1016/j.yhbeh.2020.104802] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 12/19/2022]
Abstract
The Challenge Hypothesis was developed to explain why and how regulatory mechanisms underlying patterns of testosterone secretion vary so much across species and populations as well as among and within individuals. The hypothesis has been tested many times over the past 30years in all vertebrate groups as well as some invertebrates. Some experimental tests supported the hypothesis but many did not. However, the emerging concepts and methods extend and widen the Challenge Hypothesis to potentially all endocrine systems, and not only control of secretion, but also transport mechanisms and how target cells are able to adjust their responsiveness to circulating levels of hormones independently of other tissues. The latter concept may be particularly important in explaining how tissues respond differently to the same hormone concentration. Responsiveness of the hypothalamo-pituitary-gonad (HPG) axis to environmental and social cues regulating reproductive functions may all be driven by gonadotropin-releasing hormone (GnRH) or gonadotropin-inhibiting hormone (GnIH), but the question remains as to how different contexts and social interactions result in stimulation of GnRH or GnIH release. These concepts, although suspected for many decades, continue to be explored as integral components of environmental endocrinology and underlie fundamental mechanisms by which animals, including ourselves, cope with a changing environment. Emerging mass spectrometry techniques will have a tremendous impact enabling measurement of multiple steroids in specific brain regions. Such data will provide greater spatial resolution for studying how social challenges impact multiple steroids within the brain. Potentially the Challenge Hypothesis will continue to stimulate new ways to explore hormone-behavior interactions and generate future hypotheses.
Collapse
Affiliation(s)
- John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Wolfgang Goymann
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Cecilia Jalabert
- Department of Zoology, University of British Columbia, Vancouver, Canada; Djavad Mofawaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Kiran K Soma
- Department of Zoology, University of British Columbia, Vancouver, Canada; Djavad Mofawaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Psychology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
38
|
Lipshutz SE, Rosvall KA. Testosterone secretion varies in a sex- and stage-specific manner: Insights on the regulation of competitive traits from a sex-role reversed species. Gen Comp Endocrinol 2020; 292:113444. [PMID: 32092297 DOI: 10.1016/j.ygcen.2020.113444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
Testosterone (T) mediates a variety of traits that function in competition for mates, including territorial aggression, ornaments, armaments, and gametogenesis. The link between T and mating competition has been studied mainly in males, but females also face selection pressures to compete for mates. Sex-role reversed species, in which females are the more competitive sex, provide a unique perspective on the role of T in promoting competitive traits. Here, we examine patterns of T secretion in sex-role reversed northern jacanas (Jacana spinosa) during breeding, when females are fertile and males are either seeking copulations or conducting parental care. We measured baseline levels of T in circulation along with a suite of behavioral and morphological traits putatively involved in mating competition. We evaluated hypotheses that levels of T track gonadal sex and parental role, and we begin to investigate whether T and competitive traits co-vary in a sex- and stage- specific manner. Although females had higher expression of competitive traits than males at either breeding stage, we found that females and incubating males had similar levels of T secretion, which were lower than those observed in copulating males. T was correlated with wing spur length in females and testes mass in copulating males, but was otherwise uncorrelated with other competitive traits. These findings suggest that levels of T in circulation alone do not predict variation in competitive traits across levels of analysis, including gonadal sex and parental role. Instead, our findings coupled with prior research indicate that selection for female mating competition and male care may generate different physiological regulation of competitive traits.
Collapse
Affiliation(s)
- Sara E Lipshutz
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA.
| | - Kimberly A Rosvall
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
39
|
Abstract
Synopsis
Females of some species are considered sex-role reversed, meaning that they face stronger competition for mates compared to males. While much attention has been paid to behavioral and morphological patterns associated with sex-role reversal, less is known about its physiological regulation. Here, we evaluate hypotheses relating to the neuroendocrine basis of sex-role reversal. We refute the most widely tested activational hypothesis for sex differences in androgen secretion; sex-role reversed females do not have higher levels of androgens in circulation than males. However, we find some evidence that the effects of androgens may be sex-specific; circulating androgen levels correlate with some competitive phenotypes in sex-role reversed females. We also review evidence that sex-role reversed females have higher tissue-specific sensitivity to androgens than males, at least in some species and tissues. Organizational effects may explain these relationships, considering that early exposure to sex steroids can shape later sensitivity to hormones, often in sex-specific ways. Moving forward, experimental and correlative studies on the ontogeny and expression of sex-role reversal will further clarify the mechanisms that generate sex-specific behaviors and sex roles.
Collapse
Affiliation(s)
- Sara E Lipshutz
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kimberly A Rosvall
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
- Center for the Integrated Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
40
|
Rohwer VG, Rohwer S, Wingfield JC. Despotic aggression in pre-moulting painted buntings. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191510. [PMID: 32257318 PMCID: PMC7062092 DOI: 10.1098/rsos.191510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/07/2020] [Indexed: 06/11/2023]
Abstract
Aggression in territorial social systems is easy to interpret because the benefits of territorial defence mostly accrue to the territorial holder. However, in non-territorial systems, high aggression seems puzzling and raises intriguing evolutionary questions. We describe extreme rates of despotism between age classes in a passerine bird, the painted bunting (Passerina ciris), during the pre-moulting period. Aggressive encounters were not associated with aggressors gaining immediate access to resources. Instead, conspecifics, and even other species, were pursued as though being harassed; this aggression generated an ideal despotic habitat distribution such that densities of adult males were higher in high-quality sites. Aggression was not a by-product of elevated testosterone carried over from the breeding season but, rather, appeared associated with dehydroepiandrosterone, a hormone that changes rates of aggression in non-breeding birds without generating the detrimental effects of high testosterone titres that control aggression in the breeding season. This extraordinary pre-moult aggression seems puzzling because individual buntings do not hold defined territories during their moult. We speculate that this high aggression evolved as a means of regulating the number of conspecifics that moulted in what were historically small habitat patches with limited food for supporting the extremely rapid moults of painted buntings.
Collapse
Affiliation(s)
- Vanya G. Rohwer
- Cornell University Museum of Vertebrates, Ithaca, NY 14850, USA
| | - Sievert Rohwer
- Burke Museum of Natural History and Culture and Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - John C. Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
41
|
Ren CC, Sylvia KE, Munley KM, Deyoe JE, Henderson SG, Vu MP, Demas GE. Photoperiod modulates the gut microbiome and aggressive behavior in Siberian hamsters. ACTA ACUST UNITED AC 2020; 223:jeb.212548. [PMID: 31862850 DOI: 10.1242/jeb.212548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022]
Abstract
Seasonally breeding animals undergo shifts in physiology and behavior in response to changes in photoperiod (day length). Interestingly, some species, such as Siberian hamsters (Phodopus sungorus), are more aggressive during the short-day photoperiods of the non-breeding season, despite gonadal regression. While our previous data suggest that Siberian hamsters employ a 'seasonal switch' from gonadal to adrenal regulation of aggression during short-day photoperiods, there is emerging evidence that the gut microbiome, an environment of symbiotic bacteria within the gastrointestinal tract, may also change seasonally and modulate social behaviors. The goal of this study was to compare seasonal shifts in the gut microbiome, circulating levels of adrenal dehydroepiandrosterone (DHEA) and aggression in male and female Siberian hamsters. Hamsters were housed in either long-day (LD) or short-day (SD) photoperiods for 9 weeks. Fecal samples were collected and behaviors were recorded following 3, 6 and 9 weeks of housing, and circulating DHEA was measured at week 9. SD females that were responsive to changes in photoperiod (SD-R), but not SD-R males, displayed increased aggression following 9 weeks of treatment. SD-R males and females also exhibited distinct changes in the relative abundance of gut bacterial phyla and families, yet showed no change in circulating DHEA. The relative abundance of some bacterial families (e.g. Anaeroplasmataceae in females) was associated with aggression in SD-R but not LD or SD non-responder (SD-NR) hamsters after 9 weeks of treatment. Collectively, this study provides insight into the complex role of the microbiome in regulating social behavior in seasonally breeding species.
Collapse
Affiliation(s)
- Clarissa C Ren
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Kristyn E Sylvia
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Kathleen M Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Jessica E Deyoe
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Sarah G Henderson
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Michael P Vu
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Gregory E Demas
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
42
|
Gesquiere LR, Habig B, Hansen C, Li A, Freid K, Learn NH, Alberts SC, Graham AL, Archie EA. Noninvasive measurement of mucosal immunity in a free-ranging baboon population. Am J Primatol 2020; 82:e23093. [PMID: 31930746 DOI: 10.1002/ajp.23093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 11/20/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
Ecoimmunological patterns and processes remain understudied in wild primates, in part because of the lack of noninvasive methods to measure immunity. Secretory immunoglobulin A (sIgA) is the most abundant antibody present at mammalian mucosal surfaces and provides an important first line of defense against pathogens. Recent studies show that sIgA can be measured noninvasively in feces and is a good marker of mucosal immunity. Here we validated a commercial ELISA kit to measure fecal IgA in baboons, tested the robustness of its results to variation in collection and storage conditions, and developed a cost-effective in-house ELISA for baboon fecal IgA. Using data from the custom ELISA, we assessed the relationship between fecal IgA concentrations and gastrointestinal parasite burden, and tested how sex, age, and reproductive effort predict fecal IgA in wild baboons. We find that IgA concentrations can be measured in baboon feces using an in-house ELISA and are highly correlated to the values obtained with a commercial kit. Fecal IgA concentrations are stable when extracts are stored for up to 22 months at -20°C. Fecal IgA concentrations were negatively correlated with parasite egg counts (Trichuris trichiura), but not parasite richness. Fecal IgA did not vary between the sexes, but for males, concentrations were higher in adults versus adolescents. Lactating females had significantly lower fecal IgA than pregnant females, but neither pregnant nor lactating female concentrations differed significantly from cycling females. Males who engaged in more mate-guarding exhibited similar IgA concentrations to those who engaged in little mate-guarding. These patterns may reflect the low energetic costs of mucosal immunity, or the complex dependence of IgA excretion on individual condition. Adding a noninvasive measure of mucosal immunity will promote a better understanding of how ecology modulates possible tradeoffs between the immune system and other energetically costly processes in the wild.
Collapse
Affiliation(s)
| | - Bobby Habig
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana
| | - Christina Hansen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Amanda Li
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Kimberly Freid
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Niki H Learn
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Susan C Alberts
- Department of Biology, Duke University, Durham, North Carolina.,Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya.,Department of Evolutionary Anthropology, Duke University, Durham, North Carolina
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana.,Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| |
Collapse
|
43
|
Munley KM, Deyoe JE, Ren CC, Demas GE. Melatonin mediates seasonal transitions in aggressive behavior and circulating androgen profiles in male Siberian hamsters. Horm Behav 2020; 117:104608. [PMID: 31669179 PMCID: PMC6980702 DOI: 10.1016/j.yhbeh.2019.104608] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 01/12/2023]
Abstract
Some seasonally-breeding animals are more aggressive during the short, "winter-like" days (SD) of the non-breeding season, despite gonadal regression and reduced circulating androgen levels. While the mechanisms underlying SD increases in aggression are not well understood, previous work from our lab suggests that pineal melatonin (MEL) and the adrenal androgen dehydroepiandrosterone (DHEA) are important in facilitating non-breeding aggression in Siberian hamsters (Phodopus sungorus). To characterize the role of MEL in modulating seasonal transitions in aggressive behavior, we housed male hamsters in long days (LD) or SD, treated them with timed MEL (M) or saline injections, and measured aggression after 3, 6, and 9 weeks. Furthermore, to assess whether MEL mediates seasonal shifts in gonadal and adrenal androgen synthesis, serum testosterone (T) and DHEA concentrations were quantified 36 h before and immediately following an aggressive encounter. LD-M and SD males exhibited similar physiological and behavioral responses to treatment. Specifically, both LD-M and SD males displayed higher levels of aggression than LD males and reduced circulating DHEA and T in response to an aggressive encounter, whereas LD males elevated circulating androgens. Interestingly, LD and SD males exhibited distinct relationships between circulating androgens and aggressive behavior, in which changes in serum T following an aggressive interaction (∆T) were negatively correlated with aggression in LD males, while ∆DHEA was positively correlated with aggression in SD males. Collectively, these findings suggest that SD males transition from synthesis to metabolism of circulating androgens following an aggressive encounter, a mechanism that is modulated by MEL.
Collapse
Affiliation(s)
- Kathleen M Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Jessica E Deyoe
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Clarissa C Ren
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Gregory E Demas
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
44
|
Bentz AB, Thomas GWC, Rusch DB, Rosvall KA. Tissue-specific expression profiles and positive selection analysis in the tree swallow (Tachycineta bicolor) using a de novo transcriptome assembly. Sci Rep 2019; 9:15849. [PMID: 31676844 PMCID: PMC6825141 DOI: 10.1038/s41598-019-52312-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
Tree swallows (Tachycineta bicolor) are one of the most commonly studied wild birds in North America. They have advanced numerous research areas, including life history, physiology, and organismal responses to global change; however, transcriptomic resources are scarce. To further advance the utility of this system for biologists across disciplines, we generated a transcriptome for the tree swallow using six tissues (brain, blood, ovary, spleen, liver, and muscle) collected from breeding females. We de novo assembled 207,739 transcripts, which we aligned to 14,717 high confidence protein-coding genes. We then characterized each tissue with regard to its unique genes and processes and applied this transcriptome to two fundamental questions in evolutionary biology and endocrinology. First, we analyzed 3,015 single-copy orthologs and identified 46 genes under positive selection in the tree swallow lineage, including those with putative links to adaptations in this species. Second, we analyzed tissue-specific expression patterns of genes involved in sex steroidogenesis and processing. Enzymes capable of synthesizing these behaviorally relevant hormones were largely limited to the ovary, whereas steroid binding genes were found in nearly all other tissues, highlighting the potential for local regulation of sex steroid-mediated traits. These analyses provide new insights into potential sources of phenotypic variation in a free-living female bird and advance our understanding of fundamental questions in evolutionary and organismal biology.
Collapse
Affiliation(s)
- Alexandra B Bentz
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA. .,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA.
| | - Gregg W C Thomas
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Department of Computer Science, Indiana University, Bloomington, IN, 47405, USA
| | - Douglas B Rusch
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, 47405, USA
| | - Kimberly A Rosvall
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.,Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
45
|
Wingfield JC, Goymann W, Jalabert C, Soma KK. Concepts derived from the Challenge Hypothesis. Horm Behav 2019; 115:104550. [PMID: 31265826 DOI: 10.1016/j.yhbeh.2019.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 12/25/2022]
Abstract
The Challenge Hypothesis was developed to explain why and how regulatory mechanisms underlying patterns of testosterone secretion vary so much across species and populations as well as among and within individuals. The hypothesis has been tested many times over the past 30years in all vertebrate groups as well as some invertebrates. Some experimental tests supported the hypothesis but many did not. However, the emerging concepts and methods extend and widen the Challenge Hypothesis to potentially all endocrine systems, and not only control of secretion, but also transport mechanisms and how target cells are able to adjust their responsiveness to circulating levels of hormones independently of other tissues. The latter concept may be particularly important in explaining how tissues respond differently to the same hormone concentration. Responsiveness of the hypothalamo-pituitary-gonad (HPG) axis to environmental and social cues regulating reproductive functions may all be driven by gonadotropin-releasing hormone (GnRH) or gonadotropin-inhibiting hormone (GnIH), but the question remains as to how different contexts and social interactions result in stimulation of GnRH or GnIH release. These concepts, although suspected for many decades, continue to be explored as integral components of environmental endocrinology and underlie fundamental mechanisms by which animals, including ourselves, cope with a changing environment. Emerging mass spectrometry techniques will have a tremendous impact enabling measurement of multiple steroids in specific brain regions. Such data will provide greater spatial resolution for studying how social challenges impact multiple steroids within the brain. Potentially the Challenge Hypothesis will continue to stimulate new ways to explore hormone-behavior interactions and generate future hypotheses.
Collapse
Affiliation(s)
- John C Wingfield
- Department of Neurobiology, Physiology and Behavior, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | - Wolfgang Goymann
- Department of Behavioral Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Cecilia Jalabert
- Department of Zoology, University of British Columbia, Vancouver, Canada; Djavad Mofawaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Kiran K Soma
- Department of Zoology, University of British Columbia, Vancouver, Canada; Djavad Mofawaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; Department of Psychology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
46
|
Murawska D, Gesek M, Witkowska D. Suitability of layer-type male chicks for capon production. Poult Sci 2019; 98:3345-3351. [PMID: 30941421 PMCID: PMC6615541 DOI: 10.3382/ps/pez146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 03/13/2019] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to determine the effect of age and caponization on the growth performance and carcass quality characteristics of Leghorn cockerels. The experiment was conducted on 224 Leghorn cockerels. At 8 wk of age, 112 birds were surgically castrated by a qualified veterinarian in accordance with Commission Regulation (EC) No. 543/2008. The birds were divided into 2 sex categories (with 8 replications per group and 14 birds per replication). The birds were raised to 28 wk of age, and were fed commercial diets ad libitum. From 12 wk of age, at 4-wk intervals, 8 intact cockerels and 8 capons (1 bird per replication) were selected randomly and slaughtered. Caponization had a beneficial influence on the feed conversion ratio (FCR). FCR (kg/kg) based on body weight (BW) gain, carcass weight gain, and edible weight gain was lower in capons from 24 wk of age (P < 0.05), and FCR based on lean weight gain was lower in capons from 21 wk of age (P < 0.05). The content of edible components expressed as a percentage of the total BW of cockerels and capons was similar in the corresponding age groups. Caponization had no effect on the total lean meat content of the carcass (P = 0.744), but differences were found between the weights of breast muscles and leg muscles. In week 24 and 28, the weight of breast muscles was higher in capons than in cockerels (P < 0.05). Cockerels had higher leg muscle weight than capons, and significant differences were noted in week 16 and in 28 (P < 0.05).
Collapse
Affiliation(s)
- Daria Murawska
- Department of Commodity Science and Animal Improvement, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Michał Gesek
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Dorota Witkowska
- Department of Animal and Environmental Hygiene, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
47
|
Weissman YA, Demartsev V, Ilany A, Barocas A, Bar-Ziv E, Geffen E, Koren L. Social context mediates testosterone's effect on snort acoustics in male hyrax songs. Horm Behav 2019; 114:104535. [PMID: 31129283 DOI: 10.1016/j.yhbeh.2019.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 03/25/2019] [Accepted: 05/18/2019] [Indexed: 11/20/2022]
Abstract
Testosterone affects physical and motivational states, both of which may strongly influence vocalization structure and acoustics. The loud complex calls (i.e., songs) of male rock hyraxes (Procavia capensis) are used as honest signals for advertising physical and social states. The snort, a low frequency, noisy element of the song, encodes information on the singer's age and social rank via harshness, as measured by jitter (i.e., acoustic frequency stability) and duration; suggesting that the snort concomitantly advertises both vocal stability and aggression. Our past findings revealed that testosterone levels are related to both vocal elements and social status of male hyraxes, suggesting that hormonal mechanisms mediate the motivation for aggressive and courtship behaviors. Here we examined whether long-term androgen levels are related to snort acoustics and song structure by comparing levels of testosterone in hair with acoustic and structural parameters. We found that songs performed by individuals with higher testosterone levels include more singing bouts and longer, smoother snorts, but only in those songs induced by external triggers. It is possible that hyraxes with higher levels of testosterone possess the ability to perform higher-quality singing, but only invest in situations of high social arousal and potential benefit. Surprisingly, in spontaneous songs, hyraxes with high testosterone were found to snort more harshly than low-testosterone males. The context dependent effects of high testosterone on snort acoustics suggest that the aggressive emotional arousal associated with testosterone is naturally reflected in the jittery hyrax snort, but that it can be masked by high-quality performance.
Collapse
Affiliation(s)
- Yishai A Weissman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Vlad Demartsev
- School of Zoology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Amiyaal Ilany
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Adi Barocas
- San Diego Zoo's Institute for Conservation Research, Escondido, CA 92027, USA; Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford, UK
| | - Einat Bar-Ziv
- School of Zoology, Tel Aviv University, Tel Aviv 69978, Israel; Mitrani Dept. of Desert Ecology, Ben-Gurion University of the Negev, 8499000, Israel
| | - Eli Geffen
- School of Zoology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lee Koren
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
48
|
Hunt KE, Hahn TP, Buck CL, Wingfield JC. Effect of testosterone blockers on male aggression, song and parental care in an arctic passerine, the Lapland longspur (Calcarius lapponicus). Horm Behav 2019; 110:10-18. [PMID: 30735664 DOI: 10.1016/j.yhbeh.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 01/19/2023]
Abstract
In many passerine birds, testosterone stimulates song and aggression but inhibits paternal care, but few studies have explored whether such effects can be reversed with testosterone blockers. We explored the effect of testosterone blockers on song, aggression and paternal care of Lapland longspurs (Calcarius lapponicus), an arctic passerine with a short breeding season. Twenty-one "blocker males" received implants containing an androgen receptor blocker and an aromatase inhibitor, compared to 27 control males with empty or no implants. Song, aggression and other behaviors were evaluated with simulated territorial intrusions (STI) during mate-guarding, and with focal observations (without STI) during mate-guarding and incubation. Nests were monitored and nestlings weighed as an indirect measure of paternal care. During STI, blocker males exhibited similar song rates, significantly lower aggression, and were significantly less likely to be found on territory than control males. Focal observations revealed no differences in spontaneous song, aggression, foraging, preening, or flight activity. Blocker males' nestlings had greater body mass on day 5 after hatching, but this difference disappeared by fledging, and both groups fledged similar numbers of young. Two blocker males exhibited unusual paternal care: incubation and brooding of young, or feeding of nestlings at another male's nest. In sum, testosterone blockers affected aggression but not song, contrasting with results from previously published testosterone implant studies. Effects on paternal care were concordant with testosterone implant studies. These patterns may be related to rapid behavioral changes characteristic of the short breeding season of the Arctic.
Collapse
Affiliation(s)
- Kathleen E Hunt
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA.
| | - Thomas P Hahn
- Department of Neurobiology, Physiology & Behavior, University of California, One Shields Ave., Davis, CA 95616, USA.
| | - C Loren Buck
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA.
| | - John C Wingfield
- Department of Neurobiology, Physiology & Behavior, University of California, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
49
|
Moore IT, Vernasco BJ, Escallón C, Small TW, Ryder TB, Horton BM. Tales of testosterone: Advancing our understanding of environmental endocrinology through studies of neotropical birds. Gen Comp Endocrinol 2019; 273:184-191. [PMID: 29990493 DOI: 10.1016/j.ygcen.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/21/2018] [Accepted: 07/06/2018] [Indexed: 01/29/2023]
Abstract
Studies of birds have greatly advanced our understanding of how testosterone modulates complex phenotypes, specifically its role in mediating male reproductive and associated behaviors. Yet most of the foundational studies have been limited to northern latitude breeding species despite the fact that they represent only a small fraction of worldwide avian diversity. In contrast, phylogenetic, life-history, and mating system diversity all reach their apex in neotropical avifauna and yet these birds, along with more southern latitude species, remain very poorly understood from an endocrine perspective. Despite the relatively limited previous work on taxa breeding in Central and South America, empirical findings have had a disproportionately large impact on our understanding of testosterone's role in everything from geographic variation to behavioral roles and neuroplasticity. Here, we synthesize how studies of neotropical breeding avifauna have advanced our understanding of how testosterone's actions can and are associated with the broad patterns of phenotypic diversity that we see in birds. In addition, we outline how these studies can be used individually or in a comparative context to address fundamental questions about the environmental endocrinology of testosterone and to understand the diversity of roles that testosterone plays in mediating behavioral variation, reproductive strategies, and associated life-history trade-offs.
Collapse
Affiliation(s)
- I T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | - B J Vernasco
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - C Escallón
- Departamento de Ciencias Básicas, Universidad de la Salle, Cra 2 No. 10-70, Bogotá, Colombia
| | - T W Small
- Department of Biology, University of Memphis, Memphis, TN 38152, USA
| | - T B Ryder
- Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, PO Box 37012, MRC 5503, Washington DC 20013, USA
| | - B M Horton
- Department of Biology, Millersville University of Pennsylvania, Millersville, PA 17551, USA
| |
Collapse
|
50
|
Bentz AB, Dossey EK, Rosvall KA. Tissue-specific gene regulation corresponds with seasonal plasticity in female testosterone. Gen Comp Endocrinol 2019; 270:26-34. [PMID: 30291863 DOI: 10.1016/j.ygcen.2018.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 01/01/2023]
Abstract
Testosterone (T) is a sex steroid hormone that often varies seasonally and mediates trade-offs between territorial aggression and parental care. Prior work has provided key insights into the 'top-down' hypothalamic control of this seasonal plasticity in T, yet mechanisms acting outside of the brain may also influence circulating T levels. We hypothesized that peripheral mechanisms may be especially critical for females, because peripheral regulation may mitigate the costs of systemically elevated T. Here, we begin to test this hypothesis using a seasonal comparative approach, measuring gene expression in peripheral tissues in tree swallows (Tachycineta bicolor), a songbird with intense female-female competition and T-mediated aggression. We focused on the gonad and liver for their role in T production and metabolism, respectively, and we contrasted females captured during territory establishment versus incubation. During territory establishment, when T levels are highest, we found elevated gene expression of the hepatic steroid metabolizing enzyme CYP2C19 along with several ovarian steroidogenic enzymes, including the androgenic 5α-reductase. Despite these seasonal changes in gene expression along the steroidogenic pathway, we did not observe seasonal changes in sensitivity to upstream signals, measured as ovarian mRNA abundance of luteinizing hormone receptor. Together, these data suggest that differential regulation of steroidogenic gene expression in the ovary is a potentially major contributor to seasonal changes in T levels in females. Furthermore, these data provide a unique and organismal glimpse into tissue-specific gene regulation and its potential role in hormonal plasticity in females.
Collapse
Affiliation(s)
- Alexandra B Bentz
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Emma K Dossey
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kimberly A Rosvall
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|