1
|
Estrada-Meza J, Videlo J, Bron C, Saint-Béat C, Silva M, Duboeuf F, Peyruchaud O, Rajas F, Mithieux G, Gautier-Stein A. Tamoxifen Treatment in the Neonatal Period Affects Glucose Homeostasis in Adult Mice in a Sex-Dependent Manner. Endocrinology 2021; 162:6277101. [PMID: 33999998 DOI: 10.1210/endocr/bqab098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 12/11/2022]
Abstract
Tamoxifen is a selective estrogen receptor modulator used to activate the CREERT2 recombinase, allowing tissue-specific and temporal control of the somatic mutagenesis to generate transgenic mice. Studies integrating development and metabolism require a genetic modification induced by a neonatal tamoxifen administration. Here, we investigate the effects of a neonatal tamoxifen administration on energy homeostasis in adult male and female C57BL/6J mice. C57BL/6J male and female mouse pups received a single injection of tamoxifen 1 day after birth (NTT) and were fed a high-fat/high-sucrose diet at 6 weeks of age. We measured weight, body composition, glucose and insulin tolerance, basal metabolism, and tibia length and weight in adult mice. The neonatal tamoxifen administration exerted long-term, sex-dependent effects on energy homeostasis. NTT female mice became overweight and developed impaired glucose control in comparison to vehicle-treated littermates. NTT females exhibited 60% increased fat mass, increased food intake, decreased physical activity and energy expenditure, impaired glucose and insulin tolerance, and fasting hyperglycemia and hyperinsulinemia. In contrast, NTT male mice exhibited a modest amelioration of glucose and insulin tolerance and long-term decreased lean mass linked to decreased bone weight. These results suggest that the neonatal tamoxifen administration exerted a marked and sex-dependent influence on adult energy homeostasis and bone weight and must therefore be used with caution for the development of transgenic mouse models regarding studies on energy homeostasis and bone biology.
Collapse
Affiliation(s)
- Judith Estrada-Meza
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | - Jasmine Videlo
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | - Clara Bron
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | - Cécile Saint-Béat
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | - Marine Silva
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | - François Duboeuf
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1033, Lyon, France
| | - Olivier Peyruchaud
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1033, Lyon, France
| | - Fabienne Rajas
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | - Gilles Mithieux
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | | |
Collapse
|
2
|
Kight KE, McCarthy MM. Sex differences and estrogen regulation of BDNF gene expression, but not propeptide content, in the developing hippocampus. J Neurosci Res 2017; 95:345-354. [PMID: 27870444 DOI: 10.1002/jnr.23920] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/10/2016] [Accepted: 08/22/2016] [Indexed: 01/29/2023]
Abstract
Sex differences in adult brain function are frequently determined developmentally through the actions of steroid hormones during sensitive periods of prenatal and early postnatal life. In rodents, various cellular end points of the developing brain are affected by estradiol that is derived from the aromatization of circulating testosterone and/or synthesized within the brain. We have previously described a sex difference in neurogenesis in the hippocampus of neonatal rats that is modulated by estradiol. In this report, we examined a potential downstream regulator of the effects of estradiol on hippocampal cell proliferation by measuring gene expression of brain-derived neurotrophin (BDNF) in male and female neonatal rats in response to estradiol. Males had higher baseline BDNF gene expression in dentate gyrus and CA1 regions of the hippocampus compared with females. Neonatal administration of exogenous estradiol resulted in opposite effects on BDNF expression in these areas of the neonatal hippocampus, such that BDNF transcripts increased in CA1 but decreased in dentate. Blocking endogenous estradiol signaling by antagonizing estrogen receptors decreased BDNF expression in the dentate of males, but not females, and had no effect in CA1. Interestingly, this sex difference and response to estradiol was not mirrored by translational output, as no differences in BDNF precursor peptide were observed. The sex- and region-specific effects of estradiol on BDNF expression in the neonatal hippocampus suggest a complex functional relationship between these pleiotropic factors in regulating developmental neurogenesis. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Katherine E Kight
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Margaret M McCarthy
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
3
|
Vázquez-Martínez ER, Camacho-Arroyo I, Zarain-Herzberg A, Rodríguez MC, Mendoza-Garcés L, Ostrosky-Wegman P, Cerbón M. Estradiol differentially induces progesterone receptor isoforms expression through alternative promoter regulation in a mouse embryonic hypothalamic cell line. Endocrine 2016; 52:618-31. [PMID: 26676302 DOI: 10.1007/s12020-015-0825-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/29/2015] [Indexed: 10/22/2022]
Abstract
Progesterone receptor (PR) presents two main isoforms (PR-A and PR-B) that are regulated by two specific promoters and transcribed from alternative transcriptional start sites. The molecular regulation of PR isoforms expression in embryonic hypothalamus is poorly understood. The aim of the present study was to assess estradiol regulation of PR isoforms in a mouse embryonic hypothalamic cell line (mHypoE-N42), as well as the transcriptional status of their promoters. MHypoE-N42 cells were treated with estradiol for 6 and 12 h. Then, Western blot, real-time quantitative reverse transcription polymerase chain reaction, and chromatin and DNA immunoprecipitation experiments were performed. PR-B expression was transiently induced by estradiol after 6 h of treatment in an estrogen receptor alpha (ERα)-dependent manner. This induction was associated with an increase in ERα phosphorylation (serine 118) and its recruitment to PR-B promoter. After 12 h of estradiol exposure, a downregulation of this PR isoform was associated with a decrease of specific protein 1, histone 3 lysine 4 trimethylation, and RNA polymerase II occupancy on PR-B promoter, without changes in DNA methylation and hydroxymethylation. In contrast, there were no estradiol-dependent changes in PR-A expression that could be related with the epigenetic marks or the transcription factors evaluated. We demonstrate that PR isoforms are differentially regulated by estradiol and that the induction of PR-B expression is associated to specific transcription factors interactions and epigenetic changes in its promoter in embryonic hypothalamic cells.
Collapse
Affiliation(s)
- Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Av. Universidad 3000, Coyoacán, 04510, Mexico, DF, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Av. Universidad 3000, Coyoacán, 04510, Mexico, DF, Mexico
| | | | | | | | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Mexico, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Av. Universidad 3000, Coyoacán, 04510, Mexico, DF, Mexico.
| |
Collapse
|
4
|
van-Hover C, Li C. Stress-activated afferent inputs into the anterior parvicellular part of the paraventricular nucleus of the hypothalamus: Insights into urocortin 3 neuron activation. Brain Res 2015; 1611:29-43. [PMID: 25779038 PMCID: PMC4441854 DOI: 10.1016/j.brainres.2015.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/06/2015] [Accepted: 03/05/2015] [Indexed: 01/03/2023]
Abstract
Urocortin 3 (Ucn 3) is a member of the corticotropin-releasing factor family, which plays a major role in coordinating stress responses. Ucn 3 neurons in the anterior parvicellular part of the paraventricular nucleus of the hypothalamus (PVHap) provide prominent input into the ventromedial nucleus of the hypothalamus (VMH), a well known satiety center, where Ucn 3 acts to suppress feeding and modulate blood glucose levels. In the present study, we first determined that Ucn 3 expression in the PVHap was stimulated by acute restraint stress. We then performed retrograde tracing with fluorogold (FG) combined with immunohistochemistry for Fos as a marker for neuronal activation after restraint stress to determine the stress-activated afferent inputs into the PVHap. Substantial numbers of FG/Fos double labeled cells were found in the bed nucleus of the stria terminalis, the lateral septal nucleus, the medial amygdala, and a number of nuclei in the hypothalamus including the VMH, the arcuate nucleus, the posterior nucleus, and the ventral premammillary nucleus. In the brainstem, FG/Fos positive cells were found in the periaqueductal gray, the nucleus of the solitary tract, and the ventrolateral medulla. In conclusion, the present study showed that acute stress rapidly stimulates Ucn 3 expression in the PVHap and identified specific stress-sensitive brain areas that project to the PVHap. These areas are potentially important in mediating the stress-induced activation of Ucn 3 neurons in the PVHap.
Collapse
Affiliation(s)
- Christine van-Hover
- Department of Pharmacology and Neuroscience, University of Virginia Health System, P.O. Box 800735 1300 Jefferson Park Avenue, Charlottesville, VA 22908, United States
| | - Chien Li
- Department of Pharmacology and Neuroscience, University of Virginia Health System, P.O. Box 800735 1300 Jefferson Park Avenue, Charlottesville, VA 22908, United States.
| |
Collapse
|
5
|
Dietrich AK, Humphreys GI, Nardulli AM. Expression of estrogen receptor α in the mouse cerebral cortex. Mol Cell Endocrinol 2015; 406:19-26. [PMID: 25700604 PMCID: PMC4773199 DOI: 10.1016/j.mce.2015.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/15/2022]
Abstract
Although estrogen receptor alpha (ERα) and 17β-estradiol play critical roles in protecting the cerebral cortex from ischemia-induced damage, there has been some controversy about the expression of ERα in this region of the brain. We have examined ERα mRNA and protein levels in the cerebral cortices of female mice at postnatal days 5 and 17 and at 4, 13, and 18 months of age. We found that although ERα transcript levels declined from postnatal day 5 through 18 months of age, ERα protein levels remained stable. Importantly, expression of the E2-regulated progesterone receptor gene was sustained in younger and in older females suggesting that age-related changes in estrogen responsiveness in the cerebral cortex are not due to the absence of ERα protein.
Collapse
Affiliation(s)
- Alicia K Dietrich
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Gwendolyn I Humphreys
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ann M Nardulli
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
6
|
Gagnidze K, Weil ZM, Faustino LC, Schaafsma SM, Pfaff DW. Early histone modifications in the ventromedial hypothalamus and preoptic area following oestradiol administration. J Neuroendocrinol 2013; 25:939-55. [PMID: 23927378 PMCID: PMC3896307 DOI: 10.1111/jne.12085] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/08/2013] [Accepted: 08/04/2013] [Indexed: 12/29/2022]
Abstract
Expression of the primary female sex behaviour, lordosis, in laboratory animals depends on oestrogen-induced expression of progesterone receptor (PgR) within a defined cell group in the ventrolateral portion of the ventromedial nucleus of the hypothalamus (VMH). The minimal latency from oestradiol administration to lordosis is 18 h. During that time, ligand-bound oestrogen receptors (ER), members of a nuclear receptor superfamily, recruit transcriptional coregulators, which induce covalent modifications of histone proteins, thus leading to transcriptional activation or repression of target genes. The present study aimed to investigate the early molecular epigenetic events underlying oestrogen-regulated transcriptional activation of the Pgr gene in the VMH of female mice. Oestradiol (E₂) administration induced rapid and transient global histone modifications in the VMH of ovariectomised female mice. Histone H3 N-terminus phosphorylation (H3S10phK14Ac), acetylation (H3Ac) and methylation (H3K4me3) exhibited distinct temporal patterns facilitative to the induction of transcription. A transcriptional repressive (H3K9me3) modification showed a different temporal pattern. Collectively, this should create a permissive environment for the transcriptional activity necessary for lordosis, within 3-6 h after E₂ treatment. In the VMH, changes in the H3Ac and H3K4me3 levels of histone H3 were also detected at the promoter region of the Pgr gene within the same time window, although they were delayed in the preoptic area. Moreover, examination of histone modifications associated with the promoter of another ER-target gene, oxytocin receptor (Oxtr), revealed gene- and brain-region specific effects of E₂ treatment. In the VMH of female mice, E₂ treatment resulted in the recruitment of ERα to the oestrogen-response-elements-containing putative enhancer site of Pgr gene, approximately 200 kb upstream of the transcription start site, although it failed to increase ERα association with the more proximal promoter region. Finally, E₂ administration led to significant changes in the mRNA expression of several ER coregulators in a brain-region dependent manner. Taken together, these data indicate that, in the hypothalamus and preoptic area of female mice, early responses to E₂ treatment involve highly specific changes in chromatin structure, dependent on cell group, gene, histone modification studied, promoter/enhancer site and time following E₂.
Collapse
Affiliation(s)
- K Gagnidze
- Laboratory of Neurobiology and Behaviour, The Rockefeller University, New York, NY, USA
| | | | | | | | | |
Collapse
|
7
|
Swithers SE, Sample CH, Katz DP. Influence of ovarian and non-ovarian estrogens on weight gain in response to disruption of sweet taste--calorie relations in female rats. Horm Behav 2013; 63:40-8. [PMID: 23146838 PMCID: PMC3540164 DOI: 10.1016/j.yhbeh.2012.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 10/26/2012] [Accepted: 11/02/2012] [Indexed: 12/23/2022]
Abstract
Regulation of energy balance in female rats is known to differ along a number of dimensions compared to male rats. Previous work from our lab has demonstrated that in female rats fed dietary supplements containing high-intensity sweeteners that may disrupt a predictive relation between sweet tastes and calories, excess weight gain is demonstrated only when females are also fed a diet high in fat and sugar, and is evidenced primarily in animals already prone to gain excess weight. In contrast, male rats show excess weight gain when fed saccharin-sweetened yogurt supplements when fed both standard chow diets and diets high in fat and sugar, and regardless of their proneness to excess weight gain. The goal of the present experiments was to determine whether ovarian, or other sources of estrogens, contributes to the resistance to excess weight gain in female rats fed standard chow diets along with dietary supplements sweetened with yogurt. Results of the first experiment indicated that when the ovaries were removed surgically in adult female rats, patterns of weight gain were similar in animals fed saccharin-sweetened compared to glucose-sweetened yogurt supplements. In the second experiment, when the ovaries were surgically removed in adult female rats, and local production of estrogens was suppressed with the aromatase inhibitor anastrozole, females fed the saccharin-sweetened yogurt consumed more energy and gained more weight than females fed the glucose-sweetened yogurt. However, when the ovaries were surgically removed prior to the onset of puberty (at 24-25 days of age), females given saccharin-sweetened yogurt along with vehicle gained excess weight. In contrast, weight gain was similar in those given saccharin-sweetened and glucose-sweetened yogurt along with anastrozole. The results suggest that behavioral differences between males and females in response to disruption of sweet→calorie relations may result from differences in patterns of local estrogen production. These differences may be established developmentally during the pubertal period in females.
Collapse
Affiliation(s)
- Susan E Swithers
- Department of Psychological Sciences and Ingestive Behavior Research Center, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|