1
|
Cavicchioli Azevedo V, Johnston CU, Kennedy CJ. Ivermectin Toxicokinetics in Rainbow Trout (Oncorhynchus mykiss) following P-glycoprotein Induction. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 86:58-72. [PMID: 38103085 DOI: 10.1007/s00244-023-01045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Alterations in ivermectin (IVM, 22,23-dihydro avermectin B1a+22,23-dihydro avermectin B1b) toxicokinetics following P-glycoprotein (P-gp) induction by clotrimazole (CTZ) were examined in rainbow trout (Oncorhynchus mykiss) to assess the potential importance of P-gp activity levels in xenobiotic distribution and kinetics in fish. Control and fish pretreated with CTZ (30 µmol/kg) were administered 175 µg/kg 3H-IVM into the caudal vasculature. At various time points (0.25, 0.5, 1, 3, 24, 48, 96, and 168 h) following injection, tissues (blood, liver, kidney, gill, intestines, brain [5 regions], eye, gonad and fat) were removed analyzed for IVM-derived radioactivity. IVM concentration declined in blood, liver, kidney and gill, and concentrations in other tissues remained constant over the sampling period. The highest measured concentrations were found in kidney, followed by liver, with the lowest values found in brain, eye and gonad. The highest % of the administered dose was found in the liver and kidney in the immediate hours post-administration, and in the intestines and fat at 24 h post-administration. P-gp induction by CTZ did not alter IVM distribution or any calculated toxicokinetic parameter (AUC, mean residence time, T1/2, clearance rate, volume of distribution), suggesting that P-gp induction may be limited or that P-gp plays a lesser role in xenobiotic kinetics in fish compared to mammals.
Collapse
Affiliation(s)
| | - Christina U Johnston
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada.
| |
Collapse
|
2
|
Guéniche N, Lakehal Z, Habauzit D, Bruyère A, Fardel O, Le Hégarat L, Huguet A. Combined in silico and in vitro approaches to identify P-glycoprotein-inhibiting pesticides. J Biochem Mol Toxicol 2024; 38:e23588. [PMID: 37985955 DOI: 10.1002/jbt.23588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/04/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
The P-glycoprotein (P-gp) efflux pump plays a major role in xenobiotic detoxification. The inhibition of its activity by environmental contaminants remains however rather little characterised. The present study was designed to develop a combination of different approaches to identify P-gp inhibitors among a large number of pesticides using in silico and in vitro models. First, the prediction performance of four web tools was evaluated alone or in combination using a set of recently marketed drugs. The best combination of web tools-AdmetSAR2.0/PgpRules/pkCSM-was next used to predict P-gp activity inhibition by 762 pesticides. Among the 187 pesticides predicted to be P-gp inhibitors, 11 were tested in vitro for their ability to inhibit the efflux of reference substrates (rhodamine 123 and Hoechst 33342) in P-gp overexpressing MCF7R cells and to inhibit the efflux of the reference substrate rhodamine 123 in the Caco-2 cell monolayer. In MCF7R cell assays, ivermectin B1a, emamectin B1 benzoate, spinosad, dimethomorph and tralkoxydim inhibited P-gp activity; ivermectin B1a, emamectin B1 benzoate and spinosad were determined to be stronger inhibitors (half-maximal inhibitory concentration [IC50 ] of 3 ± 1, 5 ± 1 and 7 ± 1 µM, respectively) than dimethomorph and tralkoxydim (IC50 of 102 ± 7 and 88 ± 7 µM, respectively). Ivermectin B1a, emamectin B1 benzoate, spinosad and dimethomorph also inhibited P-gp activity in Caco-2 cell monolayer assays, with dimethomorph being a weaker P-gp inhibitor. These combined approaches could be used to identify P-gp inhibitors among food contaminants, but need to be optimised and adapted for high-throughput screening.
Collapse
Affiliation(s)
- Nelly Guéniche
- Xenobiotics and Barriers team, Research Institut for Environmental and Occupational Health (IRSET), Rennes, France
- Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Cedex, France
| | - Zeineb Lakehal
- Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Cedex, France
| | - Denis Habauzit
- Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Cedex, France
| | - Arnaud Bruyère
- Xenobiotics and Barriers team, Research Institut for Environmental and Occupational Health (IRSET), Rennes, France
| | - Olivier Fardel
- University hospital center of Rennes, Xenobiotics and Barriers team, Research Institut for Environmental and Occupational Health (IRSET), Rennes, France
| | - Ludovic Le Hégarat
- Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Cedex, France
| | - Antoine Huguet
- Fougères Laboratory, Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Cedex, France
| |
Collapse
|
3
|
Laber L, Eichberg C, Zimmerbeutel A, Düring RA, Donath TW. Effects of macrocyclic lactone anthelmintics on seed germination of temperate grassland species. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1046-1057. [PMID: 37703534 DOI: 10.1111/plb.13577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
Macrocyclic lactone anthelmintics are widely used to control invertebrate pests in livestock, such as sheep. While anthelmintic effects on non-target animals, such as dung-dwelling insects, are well studied, effects on seed germination are largely unknown. Seeds can come into contact with anthelmintics either during passage through the gastro-intestinal tract of grazing animals or when anthelmintics are excreted with their dung into the environment, which may result in changed germination patterns. We used four commonly applied macrocyclic lactones to assess their effects on germination: moxidectin, ivermectin, abamectin and doramectin as pure substances; moxidectin and ivermectin also in formulated form. We tested these pharmaceuticals on 17 different temperate grassland species from five plant families. Seeds were exposed to three concentrations of macrocyclic lactones (0.1, 1.0 and 10.0 mg·l-1 ) under controlled conditions, and germination was assessed over a 6-week period. From these data, we calculated germination percentage, mean germination time and germination synchrony. Most of the tested species were significantly affected in germination percentage and/or mean germination time by at least one of the tested pharmaceuticals, with formulated moxidectin having the largest impact. In general, the effects found were species- and pharmaceutical-specific. While formulated substances generally reduced germination percentage and increased mean germination time, pure substances increased germination percentage. Synchrony showed less clear patterns in all pharmaceuticals. Although effect size and sign varied between species, our study shows that non-target effects of macrocyclic lactones commonly occur in terrestrial plants. This may impede successful seed exchange between habitats via sheep, and even translate into profound changes to grazed ecosystems.
Collapse
Affiliation(s)
- L Laber
- Department of Landscape Ecology, Institute for Natural Resource Conservation, Kiel University, Kiel, Germany
| | - C Eichberg
- Geobotany, Spatial and Environmental Sciences, Trier University, Trier, Germany
| | - A Zimmerbeutel
- Department of Landscape Ecology, Institute for Natural Resource Conservation, Kiel University, Kiel, Germany
| | - R-A Düring
- Institute of Soil Science and Soil Conservation, Justus Liebig University, Gießen, Germany
| | - T W Donath
- Department of Landscape Ecology, Institute for Natural Resource Conservation, Kiel University, Kiel, Germany
| |
Collapse
|
4
|
Mealey KL, Owens JG, Freeman E. Canine and feline P-glycoprotein deficiency: What we know and where we need to go. J Vet Pharmacol Ther 2023; 46:1-16. [PMID: 36326478 PMCID: PMC10092536 DOI: 10.1111/jvp.13102] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/09/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
Abstract
In 2001 the molecular genetic basis of so-called "ivermectin sensitivity" in herding breed dogs was determined to be a P-glycoprotein deficiency caused by a genetic variant of the MDR1 (ABCB1) gene often called "the MDR1 mutation." We have learned a great deal about P-glycoprotein's role in drug disposition since that discovery, namely that P-glycoprotein transports many more drugs than just macrocyclic lactones that P-glycoprotein mediated drug transport is present in more places than just the blood brain barrier, that some cats have a genetic variant of MDR1 that results in P-glycoprotein deficiency, that P-glycoprotein dysfunction can occur as a result of drug-drug interactions in any dog or cat, and that the concept of P-glycoprotein "inhibitors" versus P-glycoprotein substrates is somewhat arbitrary and artificial. This paper will review these discoveries and discuss how they impact drug selection and dosing in dogs and cats with genetically mediated P-glycoprotein deficiency or P-glycoprotein dysfunction resulting from drug-drug interactions.
Collapse
Affiliation(s)
- Katrina L Mealey
- Program in Individualized Medicine, Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, USA
| | | | | |
Collapse
|
5
|
Chary MA, Barbuto AF, Izadmehr S, Tarsillo M, Fleischer E, Burns MM. COVID-19 Therapeutics: Use, Mechanism of Action, and Toxicity (Xenobiotics). J Med Toxicol 2023; 19:26-36. [PMID: 36525217 PMCID: PMC9756926 DOI: 10.1007/s13181-022-00918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 emerged in 2019 and led to the COVID-19 pandemic. Efforts to develop therapeutics against SARS-Cov-2 led to both new treatments and attempts to repurpose existing medications. Here, we provide a narrative review of the xenobiotics and alternative remedies used or proposed to treat COVID-19. Most repositioned xenobiotics have had neither the feared toxicity nor the anticipated efficacy. Repurposed viral replication inhibitors are not efficacious and frequently associated with nausea, vomiting, and diarrhea. Antiviral medications designed specifically against SARS-CoV-2 may prevent progression to severe disease in at-risk individuals and appear to have a wide therapeutic index. Colloidal silver, zinc, and ivermectin have no demonstrated efficacy. Ivermectin has a wide therapeutic index but is not efficacious and acquiring it from veterinary sources poses additional danger. Chloroquine has a narrow therapeutic index and no efficacy. A companion review covers vaccines, monoclonal antibodies, and immunotherapies. Together, these two reviews form an update to our 2020 review.
Collapse
Affiliation(s)
- Michael A Chary
- Division of Medical Toxicology, Department of Emergency Medicine, Boston Children's Hospital, Boston, MA, USA.
- Regional Center for Poison Control and Prevention Serving Massachusetts and Rhode Island, Boston, MA, USA.
- Division of Medical Toxicology, Department of Emergency Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Alexander F Barbuto
- Division of Medical Toxicology, Department of Emergency Medicine, Boston Children's Hospital, Boston, MA, USA
- Regional Center for Poison Control and Prevention Serving Massachusetts and Rhode Island, Boston, MA, USA
- Department of Emergency Medicine, Carl R. Darnall Army Medical Center, Fort Hood, TX, USA
| | - Sudeh Izadmehr
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marc Tarsillo
- Division of Medical Toxicology, Department of Emergency Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Eduardo Fleischer
- Division of Medical Toxicology, Department of Emergency Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Michele M Burns
- Division of Medical Toxicology, Department of Emergency Medicine, Boston Children's Hospital, Boston, MA, USA
- Regional Center for Poison Control and Prevention Serving Massachusetts and Rhode Island, Boston, MA, USA
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Metabolism and interactions of Ivermectin with human cytochrome P450 enzymes and drug transporters, possible adverse and toxic effects. Arch Toxicol 2021; 95:1535-1546. [PMID: 33719007 PMCID: PMC7956433 DOI: 10.1007/s00204-021-03025-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022]
Abstract
The review presents metabolic properties of Ivermectin (IVM) as substrate and inhibitor of human P450 (P450, CYP) enzymes and drug transporters. IVM is metabolized, both in vivo and in vitro, by C-hydroxylation and O-demethylation reactions catalyzed by P450 3A4 as the major enzyme, with a contribution of P450 3A5 and 2C9. In samples from both in vitro and in vivo metabolism, a number of metabolites were detected and as major identified metabolites were 3″-O-demethylated, C4-methyl hydroxylated, C25 isobutyl-/isopropyl-hydroxylated, and products of oxidation reactions. Ivermectin inhibited P450 2C9, 2C19, 2D6, and CYP3A4 with IC50 values ranging from 5.3 μM to no inhibition suggesting that it is no or weak inhibitor of the enzymes. It is suggested that P-gp (MDR1) transporter participate in IVM efflux at low drug concentration with a slow transport rate. At the higher, micromolar concentration range, which saturates MDR1 (P-gp), MRP1, and to a lesser extent, MRP2 and MRP3 participate in IVM transport across physiological barriers. IVM exerts a potent inhibition of P-gp (ABCB1), MRP1 (ABCC1), MRP2 (ABCC2), and BCRP1 (ABCG2), and medium to weak inhibition of OATP1B1 (SLC21A6) and OATP1B3 (SLCOB3) transport activity. The metabolic and transport properties of IVM indicate that when IVM is co-administered with other drugs/chemicals that are potent inhibitors/inducers P4503A4 enzyme and of MDR1 (P-gp), BCRP or MRP transporters, or when polymorphisms of the drug transporters and P450 3A4 exist, drug–drug or drug–toxic chemical interactions might result in suboptimal response to the therapy or to toxic effects.
Collapse
|
7
|
Nicklisch SC, Hamdoun A. Disruption of small molecule transporter systems by Transporter-Interfering Chemicals (TICs). FEBS Lett 2020; 594:4158-4185. [PMID: 33222203 PMCID: PMC8112642 DOI: 10.1002/1873-3468.14005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
Small molecule transporters (SMTs) in the ABC and SLC families are important players in disposition of diverse endo- and xenobiotics. Interactions of environmental chemicals with these transporters were first postulated in the 1990s, and since validated in numerous in vitro and in vivo scenarios. Recent results on the co-crystal structure of ABCB1 with the flame-retardant BDE-100 demonstrate that a diverse range of man-made and natural toxic molecules, hereafter termed transporter-interfering chemicals (TICs), can directly bind to SMTs and interfere with their function. TIC-binding modes mimic those of substrates, inhibitors, modulators, inducers, and possibly stimulants through direct and allosteric mechanisms. Similarly, the effects could directly or indirectly agonize, antagonize or perhaps even prime the SMT system to alter transport function. Importantly, TICs are distinguished from drugs and pharmaceuticals that interact with transporters in that exposure is unintended and inherently variant. Here, we review the molecular mechanisms of environmental chemical interaction with SMTs, the methodological considerations for their evaluation, and the future directions for TIC discovery.
Collapse
Affiliation(s)
- Sascha C.T. Nicklisch
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202
| |
Collapse
|
8
|
Milton P, Hamley JID, Walker M, Basáñez MG. Moxidectin: an oral treatment for human onchocerciasis. Expert Rev Anti Infect Ther 2020; 18:1067-1081. [PMID: 32715787 DOI: 10.1080/14787210.2020.1792772] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION Moxidectin is a milbemycin endectocide recently approved for the treatment of human onchocerciasis. Onchocerciasis, earmarked for elimination of transmission, is a filarial infection endemic in Africa, Yemen, and the Amazonian focus straddling Venezuela and Brazil. Concerns over whether the predominant treatment strategy (yearly mass drug administration (MDA) of ivermectin) is sufficient to achieve elimination in all endemic foci have refocussed attention upon alternative treatments. Moxidectin's stronger and longer microfilarial suppression compared to ivermectin in both phase II and III clinical trials indicates its potential as a novel powerful drug for onchocerciasis elimination. AREAS COVERED This work summarizes the chemistry and pharmacology of moxidectin, reviews the phase II and III clinical trials evidence on tolerability, safety, and efficacy of moxidectin versus ivermectin, and discusses the implications of moxidectin's current regulatory status. EXPERT OPINION Moxidectin's superior clinical performance has the potential to substantially reduce times to elimination compared to ivermectin. If donated, moxidectin could mitigate the additional programmatic costs of biannual ivermectin distribution because, unlike other alternatives, it can use the existing community-directed treatment infrastructure. A pediatric indication (for children <12 years) and determination of its usefulness in onchocerciasis-loiasis co-endemic areas will greatly help fulfill the potential of moxidectin for the treatment and elimination of onchocerciasis.
Collapse
Affiliation(s)
- Philip Milton
- London Centre for Neglected Tropical Disease Research and MRC Centre for Global Infectious Disease Analysis (MRC GIDA), Department of Infectious Disease Epidemiology, Imperial College London , London, UK
| | - Jonathan I D Hamley
- London Centre for Neglected Tropical Disease Research and MRC Centre for Global Infectious Disease Analysis (MRC GIDA), Department of Infectious Disease Epidemiology, Imperial College London , London, UK
| | - Martin Walker
- London Centre for Neglected Tropical Disease Research and MRC Centre for Global Infectious Disease Analysis (MRC GIDA), Department of Infectious Disease Epidemiology, Imperial College London , London, UK.,London Centre for Neglected Tropical Disease Research, Department of Pathobiology and Population Sciences, Royal Veterinary College , Hatfield, UK
| | - María-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research and MRC Centre for Global Infectious Disease Analysis (MRC GIDA), Department of Infectious Disease Epidemiology, Imperial College London , London, UK
| |
Collapse
|
9
|
Guéniche N, Bruyere A, Ringeval M, Jouan E, Huguet A, Le Hégarat L, Fardel O. Differential interactions of carbamate pesticides with drug transporters. Xenobiotica 2020; 50:1380-1392. [PMID: 32421406 DOI: 10.1080/00498254.2020.1771473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pesticides are now recognised to interact with drug transporters, but only few data are available on this issue for carbamate pesticides, a widely used class of agrochemicals, to which humans are highly exposed. The present study was therefore designed to determine whether four representative carbamate pesticides, i.e. the insecticides aminocarb and carbofuran, the herbicide chlorpropham and the fungicide propamocarb, may impair activities of main drug transporters implicated in pharmacokinetics. The interactions of carbamates with solute carrier and ATP-binding cassette transporters were investigated using cultured transporter-overexpressing cells, reference substrates and spectrofluorimetry-, liquid chomatography/tandem mass spectrometry- or radioactivity-based methods. Aminocarb and carbofuran exerted no or minimal effects on transporter activities, whereas chlorpropham inhibited BCRP and OAT3 activities and propamocarb decreased those of OCT1 and OCT2, but cis-stimulated that of MATE2-K. Such alterations of transporters however required chlorpropham/propamocarb concentrations in the 5-50 µM range, likely not relevant to environmental exposure. Trans-stimulation assays and propamocarb accumulation experiments additionally suggested that propamocarb is not a substrate for OCT1, OCT2 and MATE2-K. These data indicate that some carbamate pesticides can interact in vitro with some drug transporters, but only when used at concentrations higher than those expected to occur in environmentally exposed humans.
Collapse
Affiliation(s)
- Nelly Guéniche
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France.,ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Fougères Laboratory, Toxicology of Contaminant Unit, Fougères, France
| | - Arnaud Bruyere
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Mélanie Ringeval
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Antoine Huguet
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Fougères Laboratory, Toxicology of Contaminant Unit, Fougères, France
| | - Ludovic Le Hégarat
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Fougères Laboratory, Toxicology of Contaminant Unit, Fougères, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S1085, Rennes, France
| |
Collapse
|
10
|
Ferreira Bulhosa L, Estrela-Lima A, da Silva Solcà M, Diniz Gonçalves GS, Larangeira DF, de Pinho FA, Barrouin-Melo SM. Vincristine and ivermectin combination chemotherapy in dogs with natural transmissible venereal tumor of different cyto-morphological patterns: A prospective outcome evaluation. Anim Reprod Sci 2020; 216:106358. [PMID: 32414469 DOI: 10.1016/j.anireprosci.2020.106358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/27/2022]
Abstract
Vincristine is the first-line drug for the chemotherapy of canine transmissible venereal tumor (CTVT). Drug resistance is related to tumor cyto-morphological patterns of CTVT. There are anti-cancer properties of ivermectin, thus, a combination of ivermectin and vincristine could be an effective chemo-therapeutic treatment regimen for CTVT. Study aims, therefore, were to (1) assess the frequency of CTVT cyto-morphologies, and (2) evaluate treatment efficacy and possible adverse reactions to vincristine compared with a combination vincristine and ivermectin. Dogs (n = 41) with CTVT were characterized by tumor cyto-morphology and disease severity and of those, 20 were randomly allocated into two groups. There was a control group (G-Vin; n = 10) in which there was treatment with vincristine; and an experimental group (G-Iv/Vin; n = 10) in which there was treatment with the ivermectin/vincristine combination. Although dogs in the G-Iv/Vin group had more severe disease at the beginning of the study (P = 0.0031), the number of weeks and chemotherapy sessions until tumor remission were similar among dogs of the two groups, indicating both treatments were effective. There was a decrease in the leukocyte counts (P = 0.0020), related to neutropenia (P = 0.0371) in the G-Vin but not the G-Iv/Vin treatment group. There was no tumor resistance that developed during the study regardless of the treatment regimen used or tumor cytomorphology. In summary, the use of the vincristine/ivermectin combination was well tolerated and efficacious for CTVT treatment.
Collapse
Affiliation(s)
- Laiane Ferreira Bulhosa
- Teaching Hospital of Veterinary Medicine, Federal University of Bahia (UFBA), Salvador, Bahia, 40170-110, Brazil
| | - Alessandra Estrela-Lima
- Teaching Hospital of Veterinary Medicine, Federal University of Bahia (UFBA), Salvador, Bahia, 40170-110, Brazil; Department of Veterinary Anatomy, Pathology and Clinics of the School of Veterinary Medicine and Zootechny, UFBA, Salvador, Bahia, 40170-110, Brazil
| | - Manuela da Silva Solcà
- Department of Preventive Veterinary Medicine and Animal Production of the School of Veterinary Medicine and Zootechny, UFBA, Salvador, Bahia, 40170-110, Brazil
| | | | - Daniela Farias Larangeira
- Teaching Hospital of Veterinary Medicine, Federal University of Bahia (UFBA), Salvador, Bahia, 40170-110, Brazil; Department of Veterinary Anatomy, Pathology and Clinics of the School of Veterinary Medicine and Zootechny, UFBA, Salvador, Bahia, 40170-110, Brazil
| | - Flaviane Alves de Pinho
- Teaching Hospital of Veterinary Medicine, Federal University of Bahia (UFBA), Salvador, Bahia, 40170-110, Brazil; Department of Veterinary Anatomy, Pathology and Clinics of the School of Veterinary Medicine and Zootechny, UFBA, Salvador, Bahia, 40170-110, Brazil
| | - Stella Maria Barrouin-Melo
- Teaching Hospital of Veterinary Medicine, Federal University of Bahia (UFBA), Salvador, Bahia, 40170-110, Brazil; Department of Veterinary Anatomy, Pathology and Clinics of the School of Veterinary Medicine and Zootechny, UFBA, Salvador, Bahia, 40170-110, Brazil.
| |
Collapse
|
11
|
Exploring a Kinetic Model Approach in Biopharmaceutics: Estimating the Fraction Absorbed of Orally Administered Drugs in Humans. J Pharm Sci 2018; 107:1798-1805. [DOI: 10.1016/j.xphs.2018.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/23/2018] [Accepted: 03/14/2018] [Indexed: 11/23/2022]
|
12
|
Abstract
Drug-drug interactions (DDIs) occur commonly and may lead to severe adverse drug reactions if not handled appropriately. Considerable information to support clinical decision making regarding potential DDIs is available in the literature and through various systems providing electronic decision support for healthcare providers. The challenge for the prescribing physician lies in sorting out the evidence and identifying those drugs for which potential interactions are likely to become clinically manifest. P-glycoprotein (P-gp) is a drug transporting protein that is found in the plasma membranes in cells of barrier and elimination organs, and plays a role in drug absorption and excretion. Increasingly, P-gp has been acknowledged as an important player in potential DDIs and a growing body of information on the role of this transporter in DDIs has become available from research and from the drug approval process. This has led to a clear need for a comprehensive review of P-gp-mediated DDIs with a focus on highlighting the drugs that are likely to lead to clinically relevant DDIs. The objective of this review is to provide information for identifying and interpreting evidence of P-gp-mediated DDIs and to suggest a classification for individual drugs based on both in vitro and in vivo evidence (substrates, inhibitors and inducers). Further, various ways of handling potential DDIs in clinical practice are described and exemplified in relation to drugs interfering with P-gp.
Collapse
|
13
|
Zhou B, Zhang D, Pei SM, Zhang H, Du HC, Jin YP, Lin DG. Establishment of 5-Fluorouracil-resistant canine mammary tumor cell line. Pol J Vet Sci 2017; 20:103-110. [DOI: 10.1515/pjvs-2017-0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Canine mammary tumors are the most common neoplasms in intact female dogs. The surgery cannot always solve the problem, chemotherapy are recommend to these patients. However, chemotherapy could always fail because of multidrug resistance (MDR). Through stepwise increasing 5-Fluorouracil (5-FU) concentration in the culture medium, a 5-FU-resistant canine mammary tumor cell line CMT7364/5-FU was established to disclose the molecular mechanism of the drug resistance. Cell morphology, cell sensitivity to drugs, growth curves, expression of proteins, and chemo-sensitivity in vivo were compared between the parental cell line and resistant cell line. As compared it to its parental cell line (CMT7364), CMT7364/5-FU showed different morphology, cross-resistant to other chemo-drugs and a prolonged population doubling time (PDT). The drug efflux pump proteins (ABCB1 and ABCG2) in CMT7364/5-FU were up-regulated. In vivo, the similar result revealed that CMT7364/5-FU cell line was more resistant to 5-FU. In conclusion, a 5-FU-resistant canine mammary tumor cell line (CMT7364/5-FU) was successfully established, it can serve as a good model for researching the mechanism of MDR and screening effective agents to reverse drug resistance.
Collapse
|
14
|
Alout H, Foy BD. Ivermectin: a complimentary weapon against the spread of malaria? Expert Rev Anti Infect Ther 2016; 15:231-240. [PMID: 27960597 DOI: 10.1080/14787210.2017.1271713] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Ivermectin has transformed the treatment of parasitic diseases and led to incommensurable benefits to humans and animals. Ivermectin is effective in treating several neglected infectious diseases and recently it has been shown to reduce malaria parasite transmission. Areas covered: Malaria control strategies could benefit from the addition of ivermectin to interrupt the transmission cycle if it is a long lasting formulation or repeatedly administered. In turn, this will help also to control neglected infectious diseases where the elimination goal has been slower to achieve. Despite the relevance of using ivermectin for integrated and sustained disease control, there are still essential questions that remain to be addressed about safety and practicality. The efficacy in various malaria ecologies and the interaction between control tools, either drugs or insecticides, are also important to assess. Expert commentary: Overlapping distribution of several infectious diseases reveals the benefit of integrating control programs against several infectious diseases into one strategy for cost effectiveness and to reach the elimination goals. The use of ivermectin to control malaria transmission will necessitate development and testing of long-lasting formulations or repeated treatments, and implementation of these treatments with other disease control tools may increase the chance of successful and sustained control.
Collapse
Affiliation(s)
- Haoues Alout
- a Microbiology, Immunology and Pathology & Arthropod-borne Infectious Diseases Laboratory , Colorado State University , Fort Collins , CO , USA
| | - Brian D Foy
- a Microbiology, Immunology and Pathology & Arthropod-borne Infectious Diseases Laboratory , Colorado State University , Fort Collins , CO , USA
| |
Collapse
|
15
|
Mani T, Bourguinat C, Keller K, Ashraf S, Blagburn B, Prichard RK. Interaction of macrocyclic lactones with a Dirofilaria immitis P-glycoprotein. Int J Parasitol 2016; 46:631-40. [DOI: 10.1016/j.ijpara.2016.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/04/2016] [Accepted: 04/11/2016] [Indexed: 12/31/2022]
|
16
|
ABC-B transporter genes in Dirofilaria immitis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:116-24. [PMID: 27164440 PMCID: PMC4919315 DOI: 10.1016/j.ijpddr.2016.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 11/21/2022]
Abstract
Dirofilaria immitis is a filarial nematode causing infection and heartworm disease in dogs and other canids, cats, and occasionally in humans. Prevention with macrocyclic lactones (ML) is recommended during the mosquito transmission season. Recently, ML resistance has been reported. ABC-B transporter genes are thought to be involved in the mechanism of ML resistance in other nematodes. This study aimed to identify all the ABC-B transporter genes in D. immitis using as a reference the nDi.2.2 D. immitis whole genome, which is not completely annotated. Using bioinformatic tools and PCR amplification on pooled D. immitis genomic DNA and on pooled cDNA, nine ABC transporter genes including one pseudogene were characterized. Bioinformatic and phylogenetic analyses allowed identification of three P-glycoproteins (Pgps) (Dim-pgp-3 Dim-pgp-10, Dim-pgp-11), of two ABC-B half transporter genes (one ortholog of Cel-haf-4 and Cel-haf-9; and one ortholog of Cel-haf-1 and Cel-haf-3), of one ABC half transporter gene (ortholog of Cel-haf-5) that contained an ABC-C motif, and of one additional half transporter that would require functional study for characterization. The number of ABC-B transporter genes identified was lower than in Caenorhabditis elegans and Haemonchuscontortus. Further studies are needed to understand their possible role in ML resistance in D. immitis. These ABC transporters constitute a base for ML resistance investigation in D. immitis and advance our understanding of the molecular biology of this parasite. Identification of ABC-B full and half transporter genes in Dirofilaria immitis. Phylogenetic analysis of the D. immitis ABC-B transporter genes. Lower number of ABC-B transporter genes in D. immitis compared with Clade V nematodes.
Collapse
|
17
|
Lanusse CE, Alvarez LI, Lifschitz AL. Gaining Insights Into the Pharmacology of Anthelmintics Using Haemonchus contortus as a Model Nematode. ADVANCES IN PARASITOLOGY 2016; 93:465-518. [PMID: 27238011 DOI: 10.1016/bs.apar.2016.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Progress made in understanding pharmacokinetic behaviour and pharmacodynamic mechanisms of drug action/resistance has allowed deep insights into the pharmacology of the main chemical classes, including some of the few recently discovered anthelmintics. The integration of pharmaco-parasitological research approaches has contributed considerably to the optimization of drug activity, which is relevant to preserve existing and novel active compounds for parasite control in livestock. A remarkable amount of pharmacology-based knowledge has been generated using the sheep abomasal nematode Haemonchus contortus as a model. Relevant fundamental information on the relationship among drug influx/efflux balance (accumulation), biotransformation/detoxification and pharmacological effects in parasitic nematodes for the most traditional anthelmintic chemical families has been obtained by exploiting the advantages of working with H. contortus under in vitro, ex vivo and in vivo experimental conditions. The scientific contributions to the pharmacology of anthelmintic drugs based on the use of H. contortus as a model nematode are summarized in the present chapter.
Collapse
Affiliation(s)
- C E Lanusse
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CICPBA-UNCPBA, Campus Universitario, Tandil, Argentina
| | - L I Alvarez
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CICPBA-UNCPBA, Campus Universitario, Tandil, Argentina
| | - A L Lifschitz
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CICPBA-UNCPBA, Campus Universitario, Tandil, Argentina
| |
Collapse
|
18
|
Kwon YJ, Petrie K, Leibovitch BA, Zeng L, Mezei M, Howell L, Gil V, Christova R, Bansal N, Yang S, Sharma R, Ariztia EV, Frankum J, Brough R, Sbirkov Y, Ashworth A, Lord CJ, Zelent A, Farias E, Zhou MM, Waxman S. Selective Inhibition of SIN3 Corepressor with Avermectins as a Novel Therapeutic Strategy in Triple-Negative Breast Cancer. Mol Cancer Ther 2015; 14:1824-36. [PMID: 26078298 PMCID: PMC4529816 DOI: 10.1158/1535-7163.mct-14-0980-t] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 06/02/2015] [Indexed: 12/25/2022]
Abstract
Triple-negative breast cancers (TNBC) lacking estrogen, progesterone, and HER2 receptors account for 10% to 20% of breast cancer and are indicative of poor prognosis. The development of effective treatment strategies therefore represents a pressing unmet clinical need. We previously identified a molecularly targeted approach to target aberrant epigenetics of TNBC using a peptide corresponding to the SIN3 interaction domain (SID) of MAD. SID peptide selectively blocked binding of SID-containing proteins to the paired α-helix (PAH2) domain of SIN3, resulting in epigenetic and transcriptional modulation of genes associated with epithelial-mesenchymal transition (EMT). To find small molecule inhibitor (SMI) mimetics of SID peptide, we performed an in silico screen for PAH2 domain-binding compounds. This led to the identification of the avermectin macrocyclic lactone derivatives selamectin and ivermectin (Mectizan) as candidate compounds. Both selamectin and ivermectin phenocopied the effects of SID peptide to block SIN3-PAH2 interaction with MAD, induce expression of CDH1 and ESR1, and restore tamoxifen sensitivity in MDA-MB-231 human and MMTV-Myc mouse TNBC cells in vitro. Treatment with selamectin or ivermectin led to transcriptional modulation of genes associated with EMT and maintenance of a cancer stem cell phenotype in TNBC cells. This resulted in impairment of clonogenic self-renewal in vitro and inhibition of tumor growth and metastasis in vivo. Underlining the potential of avermectins in TNBC, pathway analysis revealed that selamectin also modulated the expression of therapeutically targetable genes. Consistent with this, an unbiased drug screen in TNBC cells identified selamectin-induced sensitization to a number of drugs, including those targeting modulated genes.
Collapse
Affiliation(s)
- Yeon-Jin Kwon
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kevin Petrie
- The Institute of Cancer Research, London, United Kingdom
| | - Boris A Leibovitch
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lei Zeng
- Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mihaly Mezei
- Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Louise Howell
- The Institute of Cancer Research, London, United Kingdom
| | - Veronica Gil
- The Institute of Cancer Research, London, United Kingdom
| | | | - Nidhi Bansal
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Shuai Yang
- Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rajal Sharma
- Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Edgardo V Ariztia
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Rachel Brough
- The Institute of Cancer Research, London, United Kingdom
| | - Yordan Sbirkov
- The Institute of Cancer Research, London, United Kingdom
| | - Alan Ashworth
- The Institute of Cancer Research, London, United Kingdom
| | | | - Arthur Zelent
- The Institute of Cancer Research, London, United Kingdom. Division of Hemato-Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida
| | - Eduardo Farias
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ming-Ming Zhou
- Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Samuel Waxman
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
19
|
Macrocyclic lactones differ in interaction with recombinant P-glycoprotein 9 of the parasitic nematode Cylicocylus elongatus and ketoconazole in a yeast growth assay. PLoS Pathog 2015; 11:e1004781. [PMID: 25849454 PMCID: PMC4388562 DOI: 10.1371/journal.ppat.1004781] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 03/03/2015] [Indexed: 11/19/2022] Open
Abstract
Macrocyclic lactones (MLs) are widely used parasiticides against nematodes and arthropods, but resistance is frequently observed in parasitic nematodes of horses and livestock. Reports claiming resistance or decreased susceptibility in human nematodes are increasing. Since no target site directed ML resistance mechanisms have been identified, non-specific mechanisms were frequently implicated in ML resistance, including P-glycoproteins (Pgps, designated ABCB1 in vertebrates). Nematode genomes encode many different Pgps (e.g. 10 in the sheep parasite Haemonchus contortus). ML transport was shown for mammalian Pgps, Pgps on nematode egg shells, and very recently for Pgp-2 of H. contortus. Here, Pgp-9 from the equine parasite Cylicocyclus elongatus (Cyathostominae) was expressed in a Saccharomyces cerevisiae strain lacking seven endogenous efflux transporters. Pgp was detected on these yeasts by flow cytometry and chemiluminescence using the monoclonal antibody UIC2, which is specific for the active Pgp conformation. In a growth assay, Pgp-9 increased resistance to the fungicides ketoconazole, actinomycin D, valinomycin and daunorubicin, but not to the anthelmintic fungicide thiabendazole. Since no fungicidal activity has been described for MLs, their interaction with Pgp-9 was investigated in an assay involving two drugs: Yeasts were incubated with the highest ketoconazole concentration not affecting growth plus increasing concentrations of MLs to determine competition between or modulation of transport of both drugs. Already equimolar concentrations of ivermectin and eprinomectin inhibited growth, and at fourfold higher ML concentrations growth was virtually abolished. Selamectin and doramectin did not increase susceptibility to ketoconazole at all, although doramectin has been shown previously to strongly interact with human and canine Pgp. An intermediate interaction was observed for moxidectin. This was substantiated by increased binding of UIC2 antibodies in the presence of ivermectin, moxidectin, daunorubicin and ketoconazole but not selamectin. These results demonstrate direct effects of MLs on a recombinant nematode Pgp in an ML-specific manner. Macrocyclic lactones (MLs) are widely used drugs against parasitic nematodes, but drug resistance is rapidly increasing in prevalence and spatial distribution in parasites of ruminants and horses, and is suspected in human nematodes after mass drug applications. Changes in expression levels or the amino acid sequences of P-glycoprotein (Pgp) transporters have frequently been implicated in ML resistance, but direct evidence for transport of MLs by nematode Pgps is still missing. Here, cloning of pgp-9 of the equine parasite Cylicocyclus elongatus and its functional recombinant expression in a Saccharomyces cerevisiae yeast strain deficient in seven endogenous ABC transporters is described. Expression decreased susceptibility to several fungicidal mammalian Pgp substrates including e.g. actinomycin D and ketoconazole, but had no influence on susceptibility to the benzimidazole thiabendazole, which is active against both, yeasts and nematodes. Addition of some MLs strongly increased ketoconazole susceptibility in yeasts expressing C. elongatus Pgp-9, while other MLs had no effect. These interactions are a strong hint that some MLs act as substrates or at least as inhibitors of Pgp-9 mediated drug transport.
Collapse
|
20
|
Doak B, Over B, Giordanetto F, Kihlberg J. Oral Druggable Space beyond the Rule of 5: Insights from Drugs and Clinical Candidates. ACTA ACUST UNITED AC 2014; 21:1115-42. [DOI: 10.1016/j.chembiol.2014.08.013] [Citation(s) in RCA: 282] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Ballent M, Maté L, Virkel G, Sallovitz J, Viviani P, Lanusse C, Lifschitz A. Intestinal drug transport: ex vivo evaluation of the interactions between ABC transporters and anthelmintic molecules. J Vet Pharmacol Ther 2014; 37:332-7. [PMID: 24611483 DOI: 10.1111/jvp.12112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 01/14/2014] [Indexed: 11/29/2022]
Abstract
The family of ATP-binding cassette (ABC) transporters is composed of several transmembrane proteins that are involved in the efflux of a large number of drugs including ivermectin, a macrocyclic lactone (ML) endectocide, widely used in human and livestock antiparasitic therapy. The aim of the work reported here was to assess the interaction between three different anthelmintic drugs with substrates of the P-glycoprotein (P-gp) and the breast cancer resistance protein (BCRP). The ability of ivermectin (IVM), moxidectin (MOX) and closantel (CST) to modulate the intestinal transport of both rhodamine 123 (Rho 123), a P-gp substrate, and danofloxacin (DFX), a BCRP substrate, across rat ileum was studied by performing the Ussing chamber technique. Compared to the controls, Rho 123 efflux was significantly reduced by IVM (69%), CST (51%) and the positive control PSC833 (65%), whereas no significant differences were observed in the presence of MOX (30%). In addition, DFX efflux was reduced between 59% and 72% by all the assayed drug molecules, showing a higher potency than that observed in the presence of the specific BCRP inhibitor pantoprazole (PTZ) (52%). An ex vivo intestinal transport approach based on the diffusion chambers technique may offer a complementary tool to study potential drug interactions with efflux transporters such as P-gp and BCRP.
Collapse
Affiliation(s)
- M Ballent
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina
| | | | | | | | | | | | | |
Collapse
|
22
|
Igboeli OO, Burka JF, Fast MD. Lepeophtheirus salmonis: a persisting challenge for salmon aquaculture. Anim Front 2014. [DOI: 10.2527/af.2014-0004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Okechukwu O. Igboeli
- Hoplite Research Group, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - John F. Burka
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Mark D. Fast
- Hoplite Research Group, Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
23
|
Kennedy CJ, Tierney KB, Mittelstadt M. Inhibition of P-glycoprotein in the blood-brain barrier alters avermectin neurotoxicity and swimming performance in rainbow trout. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 146:176-185. [PMID: 24316435 DOI: 10.1016/j.aquatox.2013.10.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 06/02/2023]
Abstract
The importance of the blood brain barrier (BBB) and the contribution to its function by the efflux transporter P-glycoprotein (P-gp) in teleosts were examined using the P-gp substrates and central nervous system neurotoxins ivermectin (22,23-dihydroavermectin B1a+22,23-dihydroavermectin B1b) [IVM]) and emamectin benzoate (4″-deoxy-49″epimethylaminoavermectin B1 benzoate [EB]). Trout were injected intraperitoneally with 0.01-1.0 and 1-50mg/kg of IVM or EB, respectively either alone or in combination with cyclosporin A (CsA: a P-gp substrate) at 1mg/kg. IVM affected the swimming performance (critical swimming speed, burst swimming distance, and schooling) at significantly lower concentrations than EB. When fish were exposed to IVM or EB in the presence of CsA, alterations to swimming were increased, suggesting that competition for P-gp in the BBB by CsA increased IVM and EB penetration into the CNS and decreased swimming capabilities. The effect of co-administration of CsA on swimming-related toxicity was different between IVM and EB-treated fish; EB toxicity was increased to a greater extent than IVM toxicity. The greater chemosensitization effect of EB vs. IVM was examined using a P-gp competitive inhibition assay in isolated trout hepatocytes with rhodamine 123 as a substrate. At the cellular level, IVM was a more potent inhibitor of P-gp than EB, which allowed for a greater accumulation of R123 in hepatocytes. These results provide evidence for a role of P-gp in the BBB of fish, and suggest that this protein protects fish from environmental neurotoxins.
Collapse
Affiliation(s)
- Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6.
| | - Keith B Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Matthew Mittelstadt
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| |
Collapse
|
24
|
Lanusse C, Alvarez L, Lifschitz A. Pharmacological knowledge and sustainable anthelmintic therapy in ruminants. Vet Parasitol 2013; 204:18-33. [PMID: 24315694 DOI: 10.1016/j.vetpar.2013.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/25/2013] [Accepted: 11/05/2013] [Indexed: 12/27/2022]
Abstract
Considering the increasing concern for the development of anthelmintic resistance, the use of pharmacology-based information is critical to design successful strategies for the future of parasite control in livestock. Integrated evaluation of the available knowledge on pharmacological features is required to optimize the activity and to achieve sustainable use of the existing anthelmintic drugs. The assessment of the drug disposition in the host and the comprehension of the mechanisms of drug influx/efflux/detoxification in different target helminths, has signified a relevant progress on the understanding of the pharmacology of anthelmintic drugs in ruminant species. However, additional scientific knowledge on how to improve the use of available and novel molecules is required to avoid/delay resistance development. Different pharmacokinetic-based approaches to enhance parasite exposure and the use of mixtures of drugs from different chemical families have been proposed as valid strategies to delay the development of anthelmintic resistance. The rationale behind using drug combinations is based on the fact that individual worms may have a lower degree of resistance to a multiple component formulation (each chemical with different mode of action/resistance) compared to that observed when a single anthelmintic is used. However, the limited available information is unclear on the potential additive or synergistic effects occurring after co-administration of two (or more) drugs with different mode of action. This review article contributes to the topic with some pharmacology-based data emerging from the assessment of combined anthelmintic preparations. The activity against multi-drug-resistant isolates based on novel modes of action is a highly favorable element to judge the future of some of the recently developed anthelmintic compounds. More specific knowledge on the basic host-parasite kinetic behavior as well as a highly responsible use of those novel compounds will be necessary to secure their maximum lifespans. Overall, the outcome from integrated pharmaco-parasitological research approaches has greatly contributed to optimize drug activity, which seems relevant to preserve existing and particularly novel active ingredients as useful tools for parasite control in livestock animals.
Collapse
Affiliation(s)
- Carlos Lanusse
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Campus Universitario, 7000 Tandil, Argentina.
| | - Luis Alvarez
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Campus Universitario, 7000 Tandil, Argentina
| | - Adrian Lifschitz
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, Facultad de Ciencias Veterinarias, UNCPBA, Campus Universitario, 7000 Tandil, Argentina
| |
Collapse
|
25
|
Animal Health Markets and Opportunities: Companion Animal Landscape. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2013. [DOI: 10.1007/978-1-4614-4439-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
26
|
JANKO C, GEYER J. Moxidectin has a lower neurotoxic potential but comparable brain penetration in P-glycoprotein-deficient CF-1 mice compared to ivermectin. J Vet Pharmacol Ther 2012; 36:275-84. [DOI: 10.1111/j.1365-2885.2012.01424.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
CriticalSorb™ Promotes Permeation of Flux Markers Across Isolated Rat Intestinal Mucosae and Caco-2 Monolayers. Pharm Res 2012; 29:2543-54. [DOI: 10.1007/s11095-012-0785-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/14/2012] [Indexed: 01/06/2023]
|
28
|
Geyer J, Janko C. Treatment of MDR1 mutant dogs with macrocyclic lactones. Curr Pharm Biotechnol 2012; 13:969-86. [PMID: 22039792 PMCID: PMC3419875 DOI: 10.2174/138920112800399301] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 11/06/2010] [Indexed: 01/03/2023]
Abstract
P-glycoprotein, encoded by the multidrug resistance gene MDR1, is an ATP-driven drug efflux pump which is highly expressed at the blood-brain barrier of vertebrates. Drug efflux of macrocyclic lactones by P-glycoprotein is highly relevant for the therapeutic safety of macrocyclic lactones, as thereby GABA-gated chloride channels, which are confined to the central nervous system in vertebrates, are protected from high drug concentrations that otherwise would induce neurological toxicity. A 4-bp deletion mutation exists in the MDR1 gene of many dog breeds such as the Collie and the Australian Shepherd, which results in the expression of a non-functional P-glycoprotein and is associated with multiple drug sensitivity. Accordingly, dogs with homozygous MDR1 mutation are in general prone to neurotoxicity by macrocyclic lactones due to their increased brain penetration. Nevertheless, treatment of these dogs with macrocyclic lactones does not inevitably result in neurological symptoms, since, the safety of treatment highly depends on the treatment indication, dosage, route of application, and the individual compound used as outlined in this review. Whereas all available macrocyclic lactones can safely be administered to MDR1 mutant dogs at doses usually used for heartworm prevention, these dogs will experience neurological toxicity following a high dose regimen which is common for mange treatment in dogs. Here, we review and discuss the neurotoxicological potential of different macrocyclic lactones as well as their treatment options in MDR1 mutant dogs.
Collapse
Affiliation(s)
- Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University of Giessen, Frankfurter Str. 107, 35392 Giessen, Germany.
| | | |
Collapse
|
29
|
Prichard R, Ménez C, Lespine A. Moxidectin and the avermectins: Consanguinity but not identity. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2012; 2:134-53. [PMID: 24533275 DOI: 10.1016/j.ijpddr.2012.04.001] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/29/2012] [Accepted: 04/01/2012] [Indexed: 01/16/2023]
Abstract
The avermectins and milbemycins contain a common macrocyclic lactone (ML) ring, but are fermentation products of different organisms. The principal structural difference is that avermectins have sugar groups at C13 of the macrocyclic ring, whereas the milbemycins are protonated at C13. Moxidectin (MOX), belonging to the milbemycin family, has other differences, including a methoxime at C23. The avermectins and MOX have broad-spectrum activity against nematodes and arthropods. They have similar but not identical, spectral ranges of activity and some avermectins and MOX have diverse formulations for great user flexibility. The longer half-life of MOX and its safety profile, allow MOX to be used in long-acting formulations. Some important differences between MOX and avermectins in interaction with various invertebrate ligand-gated ion channels are known and could be the basis of different efficacy and safety profiles. Modelling of IVM interaction with glutamate-gated ion channels suggest different interactions will occur with MOX. Similarly, profound differences between MOX and the avermectins are seen in interactions with ABC transporters in mammals and nematodes. These differences are important for pharmacokinetics, toxicity in animals with defective transporter expression, and probable mechanisms of resistance. Resistance to the avermectins has become widespread in parasites of some hosts and MOX resistance also exists and is increasing. There is some degree of cross-resistance between the avermectins and MOX, but avermectin resistance and MOX resistance are not identical. In many cases when resistance to avermectins is noticed, MOX produces a higher efficacy and quite often is fully effective at recommended dose rates. These similarities and differences should be appreciated for optimal decisions about parasite control, delaying, managing or reversing resistances, and also for appropriate anthelmintic combination.
Collapse
Affiliation(s)
- Roger Prichard
- Institute of Parasitology, McGill University, Montreal, Canada
| | - Cécile Ménez
- INRA, UMR 1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France ; Université de Toulouse, INP, UMR 1331, Toxalim, F-31000 Toulouse, France
| | - Anne Lespine
- INRA, UMR 1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France ; Université de Toulouse, INP, UMR 1331, Toxalim, F-31000 Toulouse, France
| |
Collapse
|
30
|
Lespine A, Ménez C, Bourguinat C, Prichard RK. P-glycoproteins and other multidrug resistance transporters in the pharmacology of anthelmintics: Prospects for reversing transport-dependent anthelmintic resistance. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2011; 2:58-75. [PMID: 24533264 DOI: 10.1016/j.ijpddr.2011.10.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 10/11/2011] [Accepted: 10/13/2011] [Indexed: 12/24/2022]
Abstract
Parasitic helminths cause significant disease in animals and humans. In the absence of alternative treatments, anthelmintics remain the principal agents for their control. Resistance extends to the most important class of anthelmintics, the macrocyclic lactone endectocides (MLs), such as ivermectin, and presents serious problems for the livestock industries and threatens to severely limit current parasite control strategies in humans. Understanding drug resistance is important for optimizing and monitoring control, and reducing further selection for resistance. Multidrug resistance (MDR) ABC transporters have been implicated in ML resistance and contribute to resistance to a number of other anthelmintics. MDR transporters, such as P-glycoproteins, are essential for many cellular processes that require the transport of substrates across cell membranes. Being overexpressed in response to chemotherapy in tumour cells and to ML-based treatment in nematodes, they lead to therapy failure by decreasing drug concentration at the target. Several anthelmintics are inhibitors of these efflux pumps and appropriate combinations can result in higher treatment efficacy against parasites and reversal of resistance. However, this needs to be balanced against possible increased toxicity to the host, or the components of the combination selecting on the same genes involved in the resistance. Increased efficacy could result from modifying anthelmintic pharmacokinetics in the host or by blocking parasite transporters involved in resistance. Combination of anthelmintics can be beneficial for delaying selection for resistance. However, it should be based on knowledge of resistance mechanisms and not simply on mode of action classes, and is best started before resistance has been selected to any member of the combination. Increasing knowledge of the MDR transporters involved in anthelmintic resistance in helminths will play an important role in allowing for the identification of markers to monitor the spread of resistance and to evaluate new tools and management practices aimed at delaying its spread.
Collapse
Affiliation(s)
- Anne Lespine
- INRA UMR1331, Université de Toulouse, INP, TOXALIM, F-31027 Toulouse, France
| | - Cécile Ménez
- INRA UMR1331, Université de Toulouse, INP, TOXALIM, F-31027 Toulouse, France
| | | | | |
Collapse
|
31
|
Mariana B, Adrián L, Guillermo V, Juan S, Laura M, Carlos L. Gender-related differences on P-glycoprotein-mediated drug intestinal transport in rats. J Pharm Pharmacol 2011; 63:619-26. [DOI: 10.1111/j.2042-7158.2010.01230.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
Evidence of sex-related differences on drug pharmacokinetics and pharmacodynamics are markedly increasing. The aim of this study was to characterize the influence of gender on P-glycoprotein (P-gp)-mediated drug intestinal transport using two ex-vivo methodological approaches.
Methods
To study the comparative tissue uptake of ivermectin, intestinal sacs (distal jejunum/ileum) of male and female Wistar rats were incubated with ivermectin (0.5 µm) (a P-gp substrate) in the presence or absence of PSC833 (10 µm) (a P-gp inhibitor). Additionally, sex-based differences in the bidirectional transport of Rhodamine 123 (Rho 123; 5 µm) incubated either alone or with PSC833 (10 µm) were examined in diffusion chambers.
Key findings
The ivermectin accumulation in the everted gut sacs was higher in female compared with male intestine. The presence of PSC833 increased ivermectin accumulation profiles both in male and female rats. However, a greater response to transport modulation was observed in male compared with female animals. Similar results were obtained for Rho 123, where a higher absorption was measured in the intestine of females. PSC833 decreased Rho 123 intestinal secretion in animals of both sexes with a greater inhibition in male.
Conclusions
Substantial sex-related differences were observed on the ivermectin and Rho 123 active intestinal transport. Likewise, the PSC833-mediated modulation had a differential impact between male and female animals. Further work is needed to clarify the mechanisms underlying this phenomenon, which may have considerable pharmacological and clinical relevance.
Collapse
Affiliation(s)
- Ballent Mariana
- Laboratorio de Farmacología Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Campus Universitario, Tandil, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tandil, Argentina
| | - Lifschitz Adrián
- Laboratorio de Farmacología Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Campus Universitario, Tandil, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tandil, Argentina
| | - Virkel Guillermo
- Laboratorio de Farmacología Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Campus Universitario, Tandil, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tandil, Argentina
| | - Sallovitz Juan
- Laboratorio de Farmacología Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Campus Universitario, Tandil, Argentina
| | - Maté Laura
- Laboratorio de Farmacología Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Campus Universitario, Tandil, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tandil, Argentina
| | - Lanusse Carlos
- Laboratorio de Farmacología Veterinaria, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Campus Universitario, Tandil, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Tandil, Argentina
| |
Collapse
|
32
|
Broccatelli F, Carosati E, Neri A, Frosini M, Goracci L, Oprea TI, Cruciani G. A novel approach for predicting P-glycoprotein (ABCB1) inhibition using molecular interaction fields. J Med Chem 2011; 54:1740-51. [PMID: 21341745 DOI: 10.1021/jm101421d] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
P-glycoprotein (Pgp or ABCB1) is an ABC transporter protein involved in intestinal absorption, drug metabolism, and brain penetration, and its inhibition can seriously alter a drug's bioavailability and safety. In addition, inhibitors of Pgp can be used to overcome multidrug resistance. Given this dual purpose, reliable in silico procedures to predict Pgp inhibition are of great interest. A large and accurate literature collection yielded more than 1200 structures; a model was then constructed using various molecular interaction field-based technologies, considering pharmacophoric features and those physicochemical properties related to membrane partitioning. High accuracy was demonstrated internally with two different validation sets and, moreover, using a number of molecules, for which Pgp inhibition was not experimentally available but was evaluated in-house. All of the validations confirmed the robustness of the model and its suitability to help medicinal chemists in drug discovery. The information derived from the model was rationalized as a pharmacophore for competitive Pgp inhibition.
Collapse
Affiliation(s)
- Fabio Broccatelli
- Laboratory of Chemometrics, Department of Chemistry, University of Perugia, Via Elce di Sotto 10, I-06123 Perugia, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Anthelmintics are substrates and activators of nematode P glycoprotein. Antimicrob Agents Chemother 2011; 55:2224-32. [PMID: 21300828 DOI: 10.1128/aac.01477-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
P glycoproteins (Pgp), members of the ABC transporter superfamily, play a major role in chemoresistance. In nematodes, Pgp are responsible for resistance to anthelmintics, suggesting that they are Pgp substrates, as they are in mammalian cells. However, their binding to nematode Pgp and the functional consequences of this interaction have not been investigated. Our study showed that levamisole and most of the macrocyclic lactones (MLs) are Pgp substrates in nematodes. Ivermectin, although a very good substrate in mammalian cells, is poorly transported. In contrast to their inhibitory effect on mammalian Pgp, these drugs had a stimulatory effect on the transport activity of the reference Pgp substrate rhodamine 123 (R123) in the nematode. This may be due to a specific sequence of nematode Pgp, which shares only 44% identity with mammalian Pgp. Other factors, such as the affinity of anthelmintics for Pgp and their concentration in the Pgp microenvironment, could also differ in nematodes, as suggested by the specific relationship observed between the octanol-water partition coefficient (log P) of MLs and R123 efflux. Nevertheless, some similarities were also observed in the functional activities of the mammalian and nematode Pgp. As in mammalian cells, substrates known to bind the H site (Hoechst 33342 and colchicine) activated the R site, resulting in an increased R123 efflux. Our findings thus show that ML anthelmintics, which inhibit Pgp-mediated efflux in mammals, activate transport activity in nematodes and suggest that several substituents in the ML structure are involved in modulating the stimulatory effect.
Collapse
|
34
|
Teratogenic and cytogenetic effects of ivermectin and its interaction with P-glycoprotein inhibitor. Res Vet Sci 2011; 90:116-23. [DOI: 10.1016/j.rvsc.2010.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 04/30/2010] [Accepted: 05/14/2010] [Indexed: 12/11/2022]
|
35
|
Lynagh T, Lynch JW. An improved ivermectin-activated chloride channel receptor for inhibiting electrical activity in defined neuronal populations. J Biol Chem 2010; 285:14890-14897. [PMID: 20308070 PMCID: PMC2865309 DOI: 10.1074/jbc.m110.107789] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/02/2010] [Indexed: 11/06/2022] Open
Abstract
The ability to silence the electrical activity of defined neuronal populations in vivo is dramatically advancing our understanding of brain function. This technology may eventually be useful clinically for treating a variety of neuropathological disorders caused by excessive neuronal activity. Several neuronal silencing methods have been developed, with the bacterial light-activated halorhodopsin and the invertebrate allatostatin-activated G protein-coupled receptor proving the most successful to date. However, both techniques may be difficult to implement clinically due to their requirement for surgically implanted stimulus delivery methods and their use of nonhuman receptors. A third silencing method, an invertebrate glutamate-gated chloride channel receptor (GluClR) activated by ivermectin, solves the stimulus delivery problem as ivermectin is a safe, well tolerated drug that reaches the brain following systemic administration. However, the limitations of this method include poor functional expression, possibly due to the requirement to coexpress two different subunits in individual neurons, and the nonhuman origin of GluClR. Here, we describe the development of a modified human alpha1 glycine receptor as an improved ivermectin-gated silencing receptor. The crucial development was the identification of a mutation, A288G, which increased ivermectin sensitivity almost 100-fold, rendering it similar to that of GluClR. Glycine sensitivity was eliminated via the F207A mutation. Its large unitary conductance, homomeric expression, and human origin may render the F207A/A288G alpha1 glycine receptor an improved silencing receptor for neuroscientific and clinical purposes. As all known highly ivermectin-sensitive GluClRs contain an endogenous glycine residue at the corresponding location, this residue appears essential for exquisite ivermectin sensitivity.
Collapse
Affiliation(s)
- Timothy Lynagh
- Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Joseph W Lynch
- Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia.
| |
Collapse
|
36
|
Sherman JG, Paul AJ, Firkins LD. Evaluation of the safety of spinosad and milbemycin 5-oxime orally administered to Collies with the MDR1 gene mutation. Am J Vet Res 2010; 71:115-9. [PMID: 20043790 DOI: 10.2460/ajvr.71.1.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether signs of avermectin (AVM)-milbemycin (MB) toxicosis would be evident in AVM-MB-sensitive Collies after treatment with an experimental formulation of spinosad alone or spinosad combined with MB 5-oxime (MBO) at doses up to 5 and 10 times the MBO maximum label dose. ANIMALS 20 adult Collies homozygous or heterozygous for the MDR1 gene mutation that had signs of toxicosis after oral administration of ivermectin. PROCEDURES On the basis of AVM-MB sensitivity score, each dog was assigned in a randomized block design to 1 of 5 treatment groups (control group, 300 mg of spinosad/kg [5 times maximum label dose], 180 mg of spinosad/kg with 3 mg of MBO/kg [3 times maximum MBO label dose], 300 mg of spinosad/kg with 5 mg of MBO/kg, and 300 mg of spinosad/kg with 10 mg of MBO/kg). Treatments were administered orally as a sequence of single doses during 5 consecutive days. After a 28-day washout period, treatment sequences were repeated. Posttreatment observation and scoring by blinded observers were conducted to specifically include neurologic abnormalities typical of AVM-MB toxicosis, such as signs of depression, ataxia, mydriasis, and hypersalivation. RESULTS No signs of AVM-MB toxicosis were attributed to treatment in any dog during the study. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that oral administration of spinosad at 300 mg/kg alone or in combination with MBO at doses up to 10 mg/kg did not cause signs of AVM-MB toxicosis in AVM-MB-sensitive dogs with the MDR1 gene mutation.
Collapse
|
37
|
Kiki-Mvouaka S, Ménez C, Borin C, Lyazrhi F, Foucaud-Vignault M, Dupuy J, Collet X, Alvinerie M, Lespine A. Role of P-glycoprotein in the disposition of macrocyclic lactones: A comparison between ivermectin, eprinomectin, and moxidectin in mice. Drug Metab Dispos 2010; 38:573-80. [PMID: 20089736 DOI: 10.1124/dmd.109.030700] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Macrocyclic lactones (MLs) are lipophilic anthelmintics and substrates for P-glycoprotein (P-gp), an ATP-binding cassette transporter involved in drug efflux out of both host and parasites. To evaluate the contribution of P-gp to the in vivo kinetic disposition of MLs, the plasma kinetics, brain concentration, and intestinal excretion of three structurally different MLs (ivermectin, eprinomectin, and moxidectin) were compared in wild-type and P-gp-deficient [mdr1ab(-/-)] mice. Each drug (0.2 mg/kg) was administered orally, intravenously, or subcutaneously to the mice. Plasma, brain, and intestinal tissue concentrations were measured by high-performance liquid chromatography. The intestinal excretion rate after intravenous administration was determined at different levels of the small intestine by using an in situ intestinal perfusion model. P-gp deficiency led to a significant increase in the area under the plasma concentration-time curve (AUC) of ivermectin (1.5-fold) and eprinomectin (3.3-fold), whereas the moxidectin AUC was unchanged. Ivermectin and to a greater extent eprinomectin were both excreted by the intestine via a P-gp-dependent pathway, whereas moxidectin excretion was weaker and mostly P-gp-independent. The three drugs accumulated in the brains of the mdr1ab(-/-) mice, but eprinomectin concentrations were significantly lower. We concluded that eprinomectin disposition in mice is controlled mainly by P-gp efflux, more so than that of ivermectin, whereas moxidectin disposition appears to be mostly P-gp-independent. Given that eprinomectin and ivermectin have higher affinity for P-gp than moxidectin, these findings demonstrated that the relative affinity of MLs for P-gp could be predictive of the in vivo kinetic behavior of these drugs.
Collapse
|
38
|
Abstract
Delivery of biologically active agents to animals is often perceived to be the poor relation of human drug delivery. Yet this field has a long and successful history of species-specific device and formulation development, ranging from simple approaches and devices used in production animals to more sophisticated formulations and approaches for a wide range of species. While several technologies using biodegradable polymers have been successfully marketed in a range of veterinary and human products, the transfer of delivery technologies has not been similarly applied across species. This may be due to a combination of specific technical requirements for use of devices in different species, inter-species pharmacokinetic, pharmacodynamic and physiological differences, and distinct market drivers for drug classes used in companion and food-producing animals. This chapter reviews selected commercialised and research-based parenteral and non-parenteral veterinary drug delivery technologies in selected domestic species. Emphasis is also placed on the impact of endogenous drug transporters on drug distribution characteristics in different species. In vitro models used to investigate carrier-dependent transport are reviewed. Species-specific expression of transporters in several tissues can account for inter-animal or inter-species pharmacokinetic variability, lack of predictability of drug efficacy, and potential drug-drug interactions.
Collapse
Affiliation(s)
- David J Brayden
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin (UCD) and UCD Conway Institute, Belfield, Dublin 4, Ireland.
| | | | | |
Collapse
|
39
|
Crandell DE, Weinberg GL. Moxidectin toxicosis in a puppy successfully treated with intravenous lipids. J Vet Emerg Crit Care (San Antonio) 2009; 19:181-6. [PMID: 19691569 DOI: 10.1111/j.1476-4431.2009.00402.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To describe successful treatment of canine moxidectin toxicosis with the novel therapy of IV lipid administration. CASE SUMMARY A 16-week-old female Jack Russell Terrier was presented with acute onset of seizures followed by paralysis and coma shortly following suspected exposure to an equine formulation of moxidectin. Moxidectin toxicity was later confirmed. Initial therapy consisted of diazepam, glycopyrrolate, and IV fluids. Mechanical ventilation and supportive nursing care were provided as needed. An emulsion of 20% soybean oil in water, commonly used as the fat component of parenteral nutrition, was administered intravenously as a bolus of 2 mL/kg followed by 4 mL/kg/h for 4 hours beginning 10 hours after exposure and was administered again at a rate of 0.5 mL/kg/min for 30 minutes beginning 25.5 hours post-exposure. Mild improvement was seen after the first dose, and dramatic improvement was noted within 30 minutes of the second dose. The puppy's neurologic status returned to normal within 6 hours of the second administration, with no relapses. UNIQUE INFORMATION PROVIDED IV lipid therapy is a novel treatment approach for moxidectin toxicity. Its use is supported by recent research and case studies involving IV lipid administration for bupivacaine and other fat-soluble toxins. Lipid administration appeared to reverse the signs of toxicity and may prove to be a highly effective therapy for moxidectin and other fat-soluble toxins.
Collapse
Affiliation(s)
- Dawn E Crandell
- Veterinary Emergency Clinic and Referral Center, 920 Yonge Street, Toronto, ON M4W 3C7, Canada.
| | | |
Collapse
|
40
|
Cobb R, Boeckh A. Moxidectin: a review of chemistry, pharmacokinetics and use in horses. Parasit Vectors 2009; 2 Suppl 2:S5. [PMID: 19778466 PMCID: PMC2751841 DOI: 10.1186/1756-3305-2-s2-s5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This article reviews the current knowledge of the use of moxidectin (MOX) in horses, including its mode of action, pharmacokinetic and pharmacodynamic properties, efficacy, safety and resistance profile.Moxidectin is a second generation macrocyclic lactone (ML) with potent endectocide activity. It is used for parasite control in horses in an oral gel formulation. The principal mode of action of MOX and of other MLs is binding to gamma-aminobutyric (GABA) and glutamate-gated chloride channels. Moxidectin is different from other MLs in that it is a poor substrate for P-glycoproteins (P-gps) and therefore less susceptible to elimination from parasite cells through this mechanism. Due to its unique physicochemical and pharmacokinetic characteristics, MOX provides broad distribution into tissues, long half-life, significant residual antiparasitic activity, and high efficacy against encysted cyathostomin larvae. These characteristics allow for high efficacy and longer treatment interval against all important nematodes, when compared to other equine anthelmintics. A combination of MOX with praziquantel provides expanded spectrum of activity by adding activity against cestodes. Appropriate use of MOX allows for the development of strategic anthelmintic programmes that are different from those with conventional anthelmintics. Fewer treatments are required over a period of time, and therefore impose less frequent selection pressure for resistance.
Collapse
Affiliation(s)
- Rami Cobb
- Fort Dodge Animal Health, Pharmaceutical Research and Development, Princeton, NJ, USA.
| | | |
Collapse
|
41
|
Geyer J, Gavrilova O, Petzinger E. Brain penetration of ivermectin and selamectin in mdr1a,b P-glycoprotein- and bcrp- deficient knockout mice. J Vet Pharmacol Ther 2009; 32:87-96. [PMID: 19161460 DOI: 10.1111/j.1365-2885.2008.01007.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
P-glycoprotein, which is encoded by the multi-drug resistance gene (MDR1), highly restricts the entry of ivermectin into the brain by an ATP-driven efflux mechanism at the blood-brain barrier. In dogs with a homozygous MDR1 mutation though, ivermectin accumulates in the brain and provokes severe signs of neurotoxicosis and even death. In contrast to ivermectin, selamectin is safer in the treatment of MDR1 mutant dogs, suggesting that selamectin is transported differently by P-glycoprotein across the blood-brain barrier. To test this, we applied selamectin to mdr1-deficient mdr1a,b(-/-) knockout mice and wild-type mice. Brain penetration, organ distribution, and plasma kinetics were analyzed after intravenous, oral, and dermal spot-on application in comparison with ivermectin. We found that in vivo both macrocyclic lactone compounds are substrates of P-glycoprotein and that these strongly accumulate in the brain of mdr1a,b(-/-) knockout mice compared with wild-type mice at therapeutic doses of 12 mg/kg selamectin and 0.2 mg/kg ivermectin. However, selamectin accumulates to a much lesser degree (5-10 times) than ivermectin (36-60 times) in the absence of P-glycoprotein. This could explain the broader margin of safety of selamectin in MDR1 mutant dogs. In liver, kidney, and testes, ivermectin and selamectin accumulated less than four times as much in mdr1a,b mutant mice as in wild-type mice. Breast cancer resistance protein (Bcrp)-deficient bcrp(-/-) knockout mice were also included in the application studies, but showed no differences in brain concentrations or organ distribution of either ivermectin or selamectin compared with wild-type mice. This indicates that Bcrp is not a relevant efflux carrier for these macrocyclic lactone compounds in vivo at the blood-brain barrier.
Collapse
Affiliation(s)
- J Geyer
- Institute of Pharmacology and Toxicology, Justus Liebig University of Giessen, Giessen, Germany.
| | | | | |
Collapse
|
42
|
In vitro and in vivo interaction of moxidectin with BCRP/ABCG2. Chem Biol Interact 2009; 180:106-12. [PMID: 19428349 DOI: 10.1016/j.cbi.2009.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 01/27/2009] [Accepted: 02/17/2009] [Indexed: 12/21/2022]
Abstract
The study characterizes the interaction between BCRP/ABCG2 and moxidectin by means of cellular transport, and pharmacokinetic studies in Bcrp1 (-/-) and wild-type mice. Milbemycin moxidectin ([(3)H]-moxidectin) was tested for its ability to be transported across MCDK-II epithelial monolayer cultures transfected with BCRP. In a second approach, accumulation assays by BCRP-expressing Xenopus laevis oocytes were carried out. Finally, pharmacokinetic studies were performed in order to establish the role of the transporter in milk secretion and tissue distribution. The efflux was negligible in polarized cells but moxidectin was efficiently transported in BCRP-expressing X. laevis oocytes. The transport was blocked by an acridone derivative, a novel BCRP inhibitor. Moxidectin secretion into breast milk was decreased in Bcrp1-knockout mice and the milk to plasma ratio was 2-fold higher in wild-type mice after i.v. administration. Drug accumulation in intestinal content, bile, and intestine was higher in wild-type mice but the plasma concentration was not different. Moxidectin is identified as a BCRP substrate since its Bcrp1-mediated secretion into breast milk and the involvement of Bcrp1 in intestinal and bile secretion has been demonstrated. This interaction has pharmacokinetic and toxicological consequences. The most important toxicological consequences of the interaction between BCRP and moxidectin may be related with the presence of drug residues in milk.
Collapse
|
43
|
Bissonnette S, Paradis M, Daneau I, Silversides DW. TheABCB1-1Δmutation is not responsible for subchronic neurotoxicity seen in dogs of non-collie breeds following macrocyclic lactone treatment for generalized demodicosis. Vet Dermatol 2009; 20:60-6. [DOI: 10.1111/j.1365-3164.2008.00731.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Mealey KL. Canine ABCB1 and macrocyclic lactones: Heartworm prevention and pharmacogenetics. Vet Parasitol 2008; 158:215-22. [DOI: 10.1016/j.vetpar.2008.09.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
45
|
Merino G, Real R, Baro MF, Gonzalez-Lobato L, Prieto JG, Alvarez AI, Marques MM. Natural allelic variants of bovine ATP-binding cassette transporter ABCG2: increased activity of the Ser581 variant and development of tools for the discovery of new ABCG2 inhibitors. Drug Metab Dispos 2008; 37:5-9. [PMID: 18824523 DOI: 10.1124/dmd.108.022715] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
ATP-binding cassette transporter ABCG2 [breast cancer resistance protein (BCRP)] is a member of the ABC transporter superfamily that actively extrudes xenotoxins from cells and is a major determinant of the bioavailability of many compounds. ABCG2 expression is strongly induced during lactation in the mammary gland and is related to the active secretion of drugs into the milk. The presence of drug residues and environmental pollutants in milk is an outstanding problem for human milk consumption and milk industrial processes, involving important risks to public health and the dairy industry. In cows, a single nucleotide polymorphism (SNP) in this protein has been described previously (Tyr581) and is associated with higher fat and protein percentages and lower milk yield. However, whether this amino acid substitution affects ABCG2-mediated drug transport in cows, including milk secretion, required further exploration. We cloned the two variants of bovine ABCG2 and evaluated the effect of this SNP on mitoxantrone accumulation assays performed in ovine primary fibroblasts transiently expressing either of the variants. It is interesting to note that statistically significant differences in activity between both variants were observed, and the Ser581 variant was related with an increased efflux activity. In addition, we demonstrated that genistein is a very good inhibitor of bovine ABCG2 and identified new inhibitors of the transporter, such as the macrocyclic lactones, ivermectin, and selamectin. Moreover, the inhibitory effect of these compounds on human and murine ABCG2 homologs was confirmed using transduced Marbin-Dabin canine kidney II cells. These findings may have important implications regarding the presence of drug residues in milk and drug interactions affecting the pharmacological behavior of ABCG2 substrates.
Collapse
Affiliation(s)
- Gracia Merino
- Instituto de Desarrollo Ganadero y Sanidad Animal, Universidad de León, Campus de Vegazana, 24071 León, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
El-Nahas AF, El-Ashmawy IM. Effect of ivermectin on male fertility and its interaction with P-glycoprotein inhibitor (verapamil) in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2008; 26:206-211. [PMID: 21783912 DOI: 10.1016/j.etap.2008.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/20/2008] [Accepted: 03/24/2008] [Indexed: 05/31/2023]
Abstract
Administration of permeability-glycoprotein (Pgp) inhibitors can modify the pharmacological properties or induce toxic effects of Pgp substrates. The effects of administration of ivermectin (anthelmentic drug, Pgp substrate), either alone or simultaneously with verapamil (Pgp inhibitor) on male fertility were studied by determining mounting behavior, epididymal spermatozoal analysis, weight and histopathological examination of male reproductive organs and cytogenetic evaluation of meiotic chromosome. The results revealed that administration of ivermectin once weekly for 8 weeks induced slight fertility disturbances. While, pre-treatment with verapamil disturbed male fertility through altering different sperm parameters and histological structure of reproductive organs. Cytogenetic study revealed partial effect of ivermectin on meiosis. Meanwhile, the combined treatment of ivermectin and verapamil induced stronger effects on germ cells, increased frequency of meiotic structural chromosomal aberrations and increased X-Y chromosomal dissociation, raising the attention to the genetic quality of mature sperm. We concluded that ivermectin has slight effects on male fertility, but when taken with verapamil induced adverse effects on meiosis and fertility.
Collapse
Affiliation(s)
- Abeer F El-Nahas
- Departments of Genetics and Pharmacology, Faculty of Veterinary Medicine, Alexandria University, Edfina, Behera, P.O. 22758, Egypt
| | | |
Collapse
|
47
|
MARTINEZ M, MODRIC S, SHARKEY M, TROUTMAN L, WALKER L, MEALEY K. The pharmacogenomics of P-glycoprotein and its role in veterinary medicine. J Vet Pharmacol Ther 2008; 31:285-300. [DOI: 10.1111/j.1365-2885.2008.00964.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Alvinerie M, Dupuy J, Kiki-Mvouaka S, Sutra JF, Lespine A. Ketoconazole increases the plasma levels of ivermectin in sheep. Vet Parasitol 2008; 157:117-22. [PMID: 18657366 DOI: 10.1016/j.vetpar.2008.06.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 06/12/2008] [Accepted: 06/16/2008] [Indexed: 11/16/2022]
Abstract
The parasiticide ivermectin and the antifungal drug ketoconazole are drugs that interact with P-glycoprotein. We have tested the ability of ketoconazole at a clinical dose to modify the pharmacokinetics of ivermectin in sheep. Lacaune lambs were administered with a single oral dose of ivermectin alone at 0.2 mg/kg (n=5) or in combination with a daily oral dose of ketoconazole (10 mg/kg) given for 3 days before and 2 days after the ivermectin (n=5). The plasma kinetics of ivermectin and its metabolite were followed over 15 days by HPLC analysis. Co-administration of ketoconazole induced higher plasma concentrations of ivermectin, leading to a substantial increase in the overall exposure of the animals to the drug. Ketoconazole did not reduce the production of the main ivermectin metabolite but it may rather act by inhibiting P-glycoprotein, and thus increasing the absorption of ivermectin. The use of a P-gp reversing agent such as ketoconazole could be useful tool to optimize antiparasitic therapy in the face of the worldwide development of anthelmintic resistance.
Collapse
Affiliation(s)
- Michel Alvinerie
- INRA-Toulouse, UR66 Laboratoire de Pharmacologie-Toxicologie, 180 chemin de Tournefeuille, BP 3, F-31931 Toulouse Cedex 9, France
| | | | | | | | | |
Collapse
|
49
|
Implications of ABC transporters on the disposition of typical veterinary medicinal products. Eur J Pharmacol 2008; 585:510-9. [PMID: 18417119 DOI: 10.1016/j.ejphar.2008.03.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 02/21/2008] [Accepted: 03/03/2008] [Indexed: 01/16/2023]
Abstract
The ATP-Binding Cassette (ABC) transporters ABCB1, ABCC2 and ABCG2 are efflux transporters that facilitate the excretion of drugs, contribute to the function of biological barriers and maintain low cytoplasmic substrate concentrations in cells. ABC transporters modulate drug absorption, distribution and elimination according to the level of expression in the intestine, liver, kidney, and at biological barriers such as the blood-brain barrier. Moreover individual transporters are known to convey multi-drug resistance to tumour cells. While these diverse functions have been described in laboratory animal studies and in humans, the available information is very limited in animal species that are typical veterinary patients. This brief review summarizes the available data on organ distribution and expression levels in animals, genetic defects in dogs resulting in a non-functional P-gp expression, and describes examples of kinetic investigations directed to assess the clinical relevance of species differences in ABC-transporter expression.
Collapse
|
50
|
West CL, Mealey KL. Assessment of antiepileptic drugs as substrates for canine P-glycoprotein. Am J Vet Res 2007; 68:1106-10. [DOI: 10.2460/ajvr.68.10.1106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|