1
|
Sharma S, Rawal P, Kaur S, Puria R. Liver organoids as a primary human model to study HBV-mediated Hepatocellular carcinoma. A review. Exp Cell Res 2023; 428:113618. [PMID: 37142202 DOI: 10.1016/j.yexcr.2023.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Hepatitis B Virus (HBV) is the prevailing cause of chronic liver disease, which progresses to Hepatocellular carcinoma (HCC) in 75% of cases. It represents a serious health concern being the fourth leading cause of cancer-related mortality worldwide. Treatments available to date fail to provide a complete cure with high chances of recurrence and related side effects. The lack of reliable, reproducible, and scalable in vitro modeling systems that could recapitulate the viral life cycle and represent virus-host interactions has hindered the development of effective treatments so far. The present review provides insights into the current in-vivo and in-vitro models used for studying HBV and their major limitations. We highlight the use of three-dimensional liver organoids as a novel and suitable platform for modeling HBV infection and HBV-mediated HCC. HBV organoids can be expanded, genetically altered, patient-derived, tested for drug discovery, and biobanked. This review also provides the general guidelines for culturing HBV organoids and highlights their several prospects for HBV drug discovery and screening.
Collapse
Affiliation(s)
- Simran Sharma
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Preety Rawal
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Savneet Kaur
- Institute of Liver and Biliary Sciences, Delhi, India.
| | - Rekha Puria
- School of Biotechnology, Gautam Buddha University, Greater Noida, India.
| |
Collapse
|
2
|
Kukla DA, Khetani SR. Bioengineered Liver Models for Investigating Disease Pathogenesis and Regenerative Medicine. Semin Liver Dis 2021; 41:368-392. [PMID: 34139785 DOI: 10.1055/s-0041-1731016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Owing to species-specific differences in liver pathways, in vitro human liver models are utilized for elucidating mechanisms underlying disease pathogenesis, drug development, and regenerative medicine. To mitigate limitations with de-differentiated cultures, bioengineers have developed advanced techniques/platforms, including micropatterned cocultures, spheroids/organoids, bioprinting, and microfluidic devices, for perfusing cell cultures and liver slices. Such techniques improve mature functions and culture lifetime of primary and stem-cell human liver cells. Furthermore, bioengineered liver models display several features of liver diseases including infections with pathogens (e.g., malaria, hepatitis C/B viruses, Zika, dengue, yellow fever), alcoholic/nonalcoholic fatty liver disease, and cancer. Here, we discuss features of bioengineered human liver models, their uses for modeling aforementioned diseases, and how such models are being augmented/adapted for fabricating implantable human liver tissues for clinical therapy. Ultimately, continued advances in bioengineered human liver models have the potential to aid the development of novel, safe, and efficacious therapies for liver disease.
Collapse
Affiliation(s)
- David A Kukla
- Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R Khetani
- Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
3
|
Hu J, Lin YY, Chen PJ, Watashi K, Wakita T. Cell and Animal Models for Studying Hepatitis B Virus Infection and Drug Development. Gastroenterology 2019; 156:338-354. [PMID: 30243619 PMCID: PMC6649672 DOI: 10.1053/j.gastro.2018.06.093] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
Many cell culture and animal models have been used to study hepatitis B virus (HBV) replication and its effects in the liver; these have facilitated development of strategies to control and clear chronic HBV infection. We discuss the advantages and limitations of systems for studying HBV and developing antiviral agents, along with recent advances. New and improved model systems are needed. Cell culture systems should be convenient, support efficient HBV infection, and reproduce responses of hepatocytes in the human body. We also need animals that are fully permissive to HBV infection, convenient for study, and recapitulate human immune responses to HBV and effects in the liver. High-throughput screening technologies could facilitate drug development based on findings from cell and animal models.
Collapse
Affiliation(s)
- Jianming Hu
- The Pennsylvania State University College of Medicine, Hershey, Pennsylvania.
| | - You-Yu Lin
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, National Taiwan University.
| | | | - Takaji Wakita
- National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
4
|
Identification of an Intermediate in Hepatitis B Virus Covalently Closed Circular (CCC) DNA Formation and Sensitive and Selective CCC DNA Detection. J Virol 2017. [PMID: 28637752 DOI: 10.1128/jvi.00539-17] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatitis B virus (HBV) covalently closed circular (CCC) DNA functions as the only viral template capable of coding for all the viral RNA species and is thus essential to initiate and sustain viral replication. CCC DNA is converted, in a multistep and ill-understood process, from a relaxed circular (RC) DNA, in which neither of the two DNA strands is covalently closed. To detect putative intermediates during RC DNA to CCC DNA conversion, two 3' exonucleases, exonuclease I (Exo I) and Exo III, were used in combination to degrade all DNA strands with a free 3' end, which would nevertheless preserve closed circular DNA in either single-stranded (SS) or double-stranded (DS) form. Indeed, an RC DNA species with a covalently closed minus strand but an open plus strand (closed minus-strand RC DNA [cM-RC DNA]) was detected by this approach. Further analyses indicated that at least some of the plus strands in such a putative intermediate likely still retained the RNA primer that is attached to the 5' end of the plus strand in RC DNA, suggesting that minus-strand closing can occur before plus-strand processing. Furthermore, the same nuclease treatment proved to be useful for sensitive and specific detection of CCC DNA by removing all DNA species other than closed circular DNA. Application of these and similar approaches may allow the identification of additional intermediates during CCC DNA formation and facilitate specific and sensitive detection of CCC DNA, which should help elucidate the pathways of CCC DNA formation and the factors involved.IMPORTANCE The hepatitis B virus (HBV) covalently closed circular (CCC) DNA, by serving as the viral transcriptional template, is the molecular basis of viral persistence. CCC DNA is converted, in a multistep and ill-understood process, from relaxed circular (RC) DNA. Little is currently understood about the pathways or factors involved in CCC DNA formation. We have now detected a likely intermediate during the conversion of RC DNA to CCC DNA, thus providing important clues to the pathways of CCC DNA formation. Furthermore, the same experimental approach that led to the detection of the intermediate could also facilitate specific and sensitive detection of CCC DNA, which has remained challenging. This and similar approaches will help identify additional intermediates during CCC DNA formation and elucidate the pathways and factors involved.
Collapse
|
5
|
Baumert TF, Verrier ER, Nassal M, Chung RT, Zeisel MB. Host-targeting agents for treatment of hepatitis B virus infection. Curr Opin Virol 2015; 14:41-6. [PMID: 26262886 DOI: 10.1016/j.coviro.2015.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/16/2015] [Accepted: 07/20/2015] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) infection is a major cause of chronic liver disease, including liver cirrhosis, liver failure and hepatocellular carcinoma (HCC)-the second leading and fastest rising cause of cancer death world-wide. While de novo infection can be efficiently prevented by vaccination and chronic infection can be controlled using antivirals targeting the viral polymerase, the development of efficient antiviral strategies to eliminate the virus and thus to cure infection remains a key unmet medical need. The recent progress in the development of robust infectious HBV cell culture models now enables the investigation of the full viral life cycle, including a more detailed study of the molecular mechanisms of virus-host interactions responsible for viral persistence. The understanding of these virus-host interactions will be instrumental for the development of curative treatments. Host-dependency factors have recently emerged as promising candidates to treat and prevent infection by various pathogens. This review focuses on the potential of host-targeting agents (HTAs) as novel antivirals to treat and cure HBV infection. These include HTAs that inhibit de novo and re-infection, synthesis and spread of cccDNA as well as development of immune-based approaches eliminating or curing infected hepatocytes, including the eradication of viral cccDNA.
Collapse
Affiliation(s)
- Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France; Liver Center and Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States.
| | - Eloi R Verrier
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| | - Michael Nassal
- Department of Internal Medicine 2/Molecular Biology, University Hospital Freiburg, D-79106 Freiburg, Germany
| | - Raymond T Chung
- Liver Center and Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Mirjam B Zeisel
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
6
|
Hu J, Seeger C. Hepadnavirus Genome Replication and Persistence. Cold Spring Harb Perspect Med 2015; 5:a021386. [PMID: 26134841 DOI: 10.1101/cshperspect.a021386] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hallmarks of the hepadnavirus replication cycle are the formation of covalently closed circular DNA (cccDNA) and the reverse transcription of a pregenomic RNA (pgRNA) in core particles leading to synthesis of the relaxed circular DNA (rcDNA) genome. cccDNA, the template for viral RNA transcription, is the basis for the persistence of these viruses in infected hepatocytes. In this review, we summarize the current state of knowledge on the mechanisms of hepadnavirus reverse transcription and the biochemical and structural properties of the viral reverse transcriptase (RT). We highlight important gaps in knowledge regarding cccDNA biosynthesis and stability. In addition, we discuss the impact of current antiviral therapies on viral persistence, particularly on cccDNA.
Collapse
Affiliation(s)
- Jianming Hu
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, Pennsylvania 17033
| | | |
Collapse
|
7
|
Oshiro Y, Yasue H, Takahashi K, Hattori S, Ideno S, Urayama T, Chiba M, Osari S, Naito T, Takeuchi K, Nagata K, Ohkohchi N. Mode of swine hepatitis E virus infection and replication in primary human hepatocytes. J Gen Virol 2014; 95:2677-2682. [DOI: 10.1099/vir.0.068452-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
The aim of this study was to investigate the infection and replication of swine-derived hepatitis E virus (HEV) in primary cultured human hepatocytes (PHCs). Hepatocytes were cultured from the resected normal livers of patients with metastatic tumours. These cultured hepatocytes were infected with swine-derived genotype 3 or 4 HEV. Viral replication was monitored using reverse transcriptase-quantitative PCR. The amount of HEV RNA increased in the culture media and cells following infection. Immunofluorescence staining implied that the spread of HEV infection in hepatocytes was attributed mainly to cell-to-cell transmission via the cell membrane. The sequences of the inoculated and propagated HEV were determined to examine whether sequence variation occurred during infection. Sequence analysis showed that there were no differences between inoculated and propagated HEV, demonstrating that in vitro infection and replication of swine HEV in PHCs occurred without sequence variation.
Collapse
Affiliation(s)
- Yukio Oshiro
- Division of Gastroenterological and Hepatobiliary Surgery and Organ Transplantation, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Yasue
- Animal Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Kazuhiro Takahashi
- Division of Gastroenterological and Hepatobiliary Surgery and Organ Transplantation, University of Tsukuba, Tsukuba, Japan
| | | | - Shoji Ideno
- Japan Blood Products Organization, Kobe, Japan
| | | | - Mitsuru Chiba
- Division of Gastroenterological and Hepatobiliary Surgery and Organ Transplantation, University of Tsukuba, Tsukuba, Japan
| | - Suguru Osari
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | | | - Kaoru Takeuchi
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kyosuke Nagata
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Nobuhiro Ohkohchi
- Division of Gastroenterological and Hepatobiliary Surgery and Organ Transplantation, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
8
|
Zhou M, Zhao F, Li J, Cheng Z, Tian X, Zhi X, Huang Y, Hu K. Long-term maintenance of human fetal hepatocytes and prolonged susceptibility to HBV infection by co-culture with non-parenchymal cells. J Virol Methods 2013; 195:185-93. [PMID: 24134944 DOI: 10.1016/j.jviromet.2013.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 09/25/2013] [Accepted: 10/01/2013] [Indexed: 12/12/2022]
Abstract
Within a few days of being isolated, primary human hepatocytes undergo a rapid dedifferentiation process and lose susceptibility to hepatitis B virus (HBV) infection in vitro. This fact has limited their further application. In this study, a convenient and feasible method of preventing this dedifferentiation was established, by co-culturing human fetal hepatocytes with hepatic non-parenchymal cells to maintain the differentiation features of human fetal hepatocytes. Isolated hepatic cells were seeded at a low density, and cultured in dimethyl sulfoxide-free medium for a month to allow rapid proliferation of non-parenchymal cells. Subsequently, 2% dimethyl sulfoxide was added to induce formation of typical hepatic islands, in which hepatocytic features could be further maintained for up to an additional 3 months. These hepatic islands, formed of piled-up hepatocytes, were surrounded and invaded by non-parenchymal cells. Protein expression profiles showed that the human fetal hepatocytes underwent a rapid maturation process, and the hepatocytic features were well preserved. Most importantly, these human fetal hepatocytes still exhibited susceptibility to HBV infection after long-term maintenance, for as long as 10 weeks. This co-culture method has overcome the pre-existing disadvantages of primary human hepatocytes for virological studies, and provides a valuable approach to long-term maintenance of primary human hepatocytes for studies of HBV infection for prolonged periods.
Collapse
Affiliation(s)
- Ming Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Meier A, Mehrle S, Weiss TS, Mier W, Urban S. Myristoylated PreS1-domain of the hepatitis B virus L-protein mediates specific binding to differentiated hepatocytes. Hepatology 2013; 58:31-42. [PMID: 23213046 DOI: 10.1002/hep.26181] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/06/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED Chronic infection with the human hepatitis B virus (HBV) is a global health problem and a main cause of progressive liver diseases. HBV exhibits a narrow host range, replicating primarily in hepatocytes. Both host and hepatocyte specificity presumably involve specific receptor interactions on the target cell; however, direct evidence for this hypothesis is missing. Following the observation that HBV entry is specifically blocked by L-protein-derived preS1-lipopeptides, we visualized specific HBV receptor/ligand complexes on hepatic cells and quantified the turnover kinetics. Using fluorescein isothiocyanate-labeled, myristoylated HBV preS1-peptides we demonstrate (1) the presence of a highly specific HBV receptor on the plasma membrane of HBV-susceptible primary human and tupaia hepatocytes and HepaRG cells but also on hepatocytes from the nonsusceptible species mouse, rat, rabbit and dog; (2) the requirement of a differentiated state of the hepatocyte for specific preS1-binding; (3) the lack of detectable amounts of the receptor on HepG2 and HuH7 cells; (4) a slow receptor turnover at the hepatocyte membrane; and (5) an association of the receptor with actin microfilaments. The presence of the preS1-receptor in primary hepatocytes from some non-HBV-susceptible species indicates that the lack of susceptibility of these cells is owed to a postbinding step. CONCLUSION These findings suggest that HBV hepatotropism is mediated by the highly selective expression of a yet unknown receptor* on differentiated hepatocytes, while species specificity of the HBV infection requires selective downstream events, e.g., the presence of host dependency or the absence of host restriction factors. The criteria defined here will allow narrowing down reasonable receptor candidates and provide a binding assay for HBV-receptor expression screens in hepatic cells.
Collapse
Affiliation(s)
- Anja Meier
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
10
|
Hantz O, Parent R, Durantel D, Gripon P, Guguen-Guillouzo C, Zoulim F. Persistence of the hepatitis B virus covalently closed circular DNA in HepaRG human hepatocyte-like cells. J Gen Virol 2009; 90:127-35. [PMID: 19088281 DOI: 10.1099/vir.0.004861-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The recently described hepatic cell line HepaRG is the sole hepatoma cell line susceptible to hepatitis B virus (HBV) infection. It provides a unique tool for investigating some unresolved issues of the virus' biology, particularly the formation of the viral mini-chromosome believed to be responsible for the persistence of infection. In this study, we characterized the main features of HBV infection: it is restricted to a subpopulation of differentiated hepatocyte-like cells that express albumin as a functional marker and represents around 10 % of all differentiated HepaRG cells. Infection may persist for more than 100 days in cells maintained at the differentiated state. Even though infected cells continued to produce infectious viral particles, very limited or no spreading of infection was observed. Low genetic variation was also observed in the viral DNA from viruses found in the supernatant of infected cells, although this cannot explain the lack of reinfection. HBV infection of HepaRG cells appears to be a very slow process: viral replication starts at around day 8 post-infection and reaches a maximum at day 13. Analysis of viral DNA showed slow and inefficient conversion of the input relaxed circular DNA into covalently closed circular (CCC) DNA, but no further amplification. Continuous lamivudine treatment inhibited viral replication, but neither prevented viral infection nor initial formation of CCC DNA. In conclusion, HBV infection in differentiated HepaRG cells is characterized by long-term persistence without a key feature of hepadnaviruses, the so-called 'CCC DNA amplification' described in the duck hepatitis B model.
Collapse
Affiliation(s)
- O Hantz
- INSERM, U871, 69003 Lyon, France.
| | | | | | | | | | | |
Collapse
|
11
|
Régeard M, Lepère C, Trotard M, Gripon P, Le Seyec J. Recent contributions of in vitro models to our understanding of hepatitis C virus life cycle. FEBS J 2007; 274:4705-18. [PMID: 17824957 DOI: 10.1111/j.1742-4658.2007.06017.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus is a human pathogen responsible for liver diseases including acute and chronic hepatitis, cirrhosis and hepatocellular carcinoma. Its high prevalence, the absence of a prophylactic vaccine and the poor efficiency of current therapies are huge medical problems. Since the discovery of the hepatitis C virus, our knowledge of its biology has been largely punctuated by the development of original models of research. At the end of the 1980s, the chimpanzee model led to cloning of the viral genome and the definition of infectious molecular clones. In 1999, a breakthrough was achieved with the development of a robust in vitro replication model named 'replicon'. This system allowed intensive research into replication mechanisms and drug discovery. Later, in 2003, pseudotyped retroviruses harbouring surface proteins of hepatitis C virus were produced to specifically investigate the viral entry process. It was only in 2005 that infectious viruses were produced in vitro, enabling intensive investigations into the entire life cycle of the hepatitis C virus. This review describes the different in vitro models developed to study hepatitis C virus, their contribution to current knowledge of the virus biology and their future research applications.
Collapse
Affiliation(s)
- Morgane Régeard
- INSERM, U522, IFR 140, Hôpital de Pontchaillou, Rennes, France
| | | | | | | | | |
Collapse
|
12
|
Ding XR, Yang J, Sun DC, Lou SK, Wang SQ. Whole genome expression profiling of hepatitis B virus-transfected cell line reveals the potential targets of anti-HBV drugs. THE PHARMACOGENOMICS JOURNAL 2007; 8:61-70. [PMID: 17505500 DOI: 10.1038/sj.tpj.6500459] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hepatitis B virus (HBV) infection is a major health concern world wide, and few effective treatments have been developed. It has recently been reported that inhibiting host-cell proteins can prevent viral infection. The human genome may contain more genes required for HBV infection and replication than the viral genome. A systematic approach to find these potential antiviral targets is by host gene expression analysis using DNA microarrays. The aim of this study was to identify and validate novel cellular anti-HBV targets. The Human Whole Genome Bioarray was used to analyze differentially expressed genes in HepG2.2.15 cells and HepG2 cells. Altered gene expression in HepG2.2.15 cells was studied following treatment with the anti-HBV drug, lamivudine. Genes that were differentially expressed during HBV infection and reversed with anti-HBV drugs were validated by semiquantitative reverse transcription-PCR. Bioinformatics analysis revealed ABHD2, EREG, ACVR2B, CDC34, KHDRBS3 and RORA as potential cellular anti-HBV targets. Antisense oligodeoxynucleotides were used to test the antiviral activity of these potential targets. Results strongly suggested that inhibition of ABHD2 or EREG significantly blocked HBV propagation in HepG2.2.15 cells. This study demonstrates that ABHD2 and EREG are essential for HBV propagation and provides strong evidence that these proteins could be used as potential targets for anti-HBV drugs.
Collapse
Affiliation(s)
- X R Ding
- Department of Biotechnology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing, P.R. China
| | | | | | | | | |
Collapse
|
13
|
Pan XB, Wei L, Chen HS, Liu F, Gao Y. Liver-derived cell lines QSG-7701 and HepG2 support different HBV replication patterns. Arch Virol 2007; 152:1159-73. [PMID: 17308979 DOI: 10.1007/s00705-006-0927-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 12/12/2006] [Indexed: 01/10/2023]
Abstract
Hepatitis B virus (HBV) infection is currently still a worldwide heath concern. In our study, we compared HBV replication patterns in two liver-derived cell lines, QSG-7701 and HepG2. Viral markers of HBV replication in culture medium and cells were analyzed after transfection of these cells with plasmid pUC18-HBV1.2 into. We showed that QSG-7701 cells could support more stable and a higher level of HBV replication than HepG2 cells. Gene expression profiles of QSG-7701 and HepG2 cells by microarray analysis showed that many genes were differentially expressed between these two cell lines, including those that are related to the HBV life cycle. The global gene expression profile of these two cell types provides some clues to explain how different HBV replication is achieved. QSG-7701 cells offer a new opportunity for basic research on HBV virus-host interactions.
Collapse
Affiliation(s)
- X B Pan
- Peking University Hepatology Institute, Peking University People's Hospital, Beijing, P.R. China
| | | | | | | | | |
Collapse
|
14
|
Guitart A, Riezu-Boj JI, Elizalde E, Larrea E, Berasain C, Aldabe R, Civeira MP, Prieto J. Hepatitis C virus infection of primary tupaia hepatocytes leads to selection of quasispecies variants, induction of interferon-stimulated genes and NF-κB nuclear translocation. J Gen Virol 2005; 86:3065-3074. [PMID: 16227229 DOI: 10.1099/vir.0.81273-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Systems for in vitro culture of Hepatitis C virus (HCV) are essential tools to analyse virus–cell interactions and to investigate relevant pathophysiological aspects of HCV infection. Although the HCV replicon methodology has increased our understanding of HCV biology, this system does not reproduce the natural infection. Recently, tupaia (Tupaia belangeri chinensis) hepatocytes have been utilized for in vitro culture of HCV. In the present work, primary tupaia hepatocytes infected in vitro with HCV were used to analyse the evolution of HCV quasispecies in infected cells and the ability of the virus to influence antiviral and proinflammatory responses in cells sustaining virus replication. The results confirmed the potential of tupaia hepatocytes as a model for HCV infection, although this system is limited by rapid loss of differentiated cell phenotype in culture. These findings revealed an extraordinary plasticity of HCV quasispecies, which underwent rapid evolution to tupaia-tropic variants as early as 24 h after infection. It was also shown that HCV could activate interferon-sensitive genes, albeit modestly in comparison with other viruses such as Semliki Forest virus. Importantly, HCV activated NF-κB in primary hepatocytes and upregulated NF-κB-responsive genes including the chemokines MCP-1 and CXCL2 (MIP-2). This effect may play a role in induction of the hepatic inflammatory reaction in vivo. In summary, HCV quasispecies adapt rapidly to the specific biology of the host and HCV stimulates a blunted interferon response while inducing a proinflammatory phenotype in the infected cell.
Collapse
Affiliation(s)
- Anunciata Guitart
- Division of Hepatology and Gene Therapy, Clinica Universitaria and School of Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - José-Ignacio Riezu-Boj
- Division of Hepatology and Gene Therapy, Clinica Universitaria and School of Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Edurne Elizalde
- Division of Hepatology and Gene Therapy, Clinica Universitaria and School of Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Esther Larrea
- Division of Hepatology and Gene Therapy, Clinica Universitaria and School of Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Carmen Berasain
- Division of Hepatology and Gene Therapy, Clinica Universitaria and School of Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Rafael Aldabe
- Division of Hepatology and Gene Therapy, Clinica Universitaria and School of Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Maria Pilar Civeira
- Division of Hepatology and Gene Therapy, Clinica Universitaria and School of Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Jesús Prieto
- Division of Hepatology and Gene Therapy, Clinica Universitaria and School of Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| |
Collapse
|
15
|
Friedrich B, Wollersheim M, Brandenburg B, Foerste R, Will H, Hildt E. Induction of anti-proliferative mechanisms in hepatitis B virus producing cells. J Hepatol 2005; 43:696-703. [PMID: 15922479 DOI: 10.1016/j.jhep.2005.02.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 12/10/2004] [Accepted: 02/02/2005] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Hepatitis B virus (HBV) preferentially replicates in quiescent cells. It was analyzed whether HBV affects cell cycle control. METHODS The amount of EGF-receptor (EGFR) and the binding capacity for 125I-EGF was determined. Expression of mdm2 and p21 and relevance of p53 for it were analyzed by reporter gene assays and western blotting. Cyclin A/E associated cdk2 activities were determined by immunocomplex assays. Cell proliferation was quantified by measurement of BrdU incorporation. RESULTS In HBV producing cells a significant reduction of EGFR expression, diminished 125I-EGF-binding capacity and insensitivity to EGF-stimulation were observed as compared to the control. Moreover, c-Raf-1-dependent induction of mdm2-P2 and p21cip1/waf1-promoter and elevated amounts of the respective proteins were observed in HBV producing cells. Whereas activation of mdm2-P2-promoter requires p53, activation of p21cip1/waf1-promoter is mediated partially by a p53-independent process. Induction of p21cip1/waf1 is reflected by a reduction of cyclin A associated cdk2 activity and an increase of cyclin E associated cdk2 activity. In accordance with this proliferation rate of HBV-producing hepatocytes is reduced as compared to control cells. CONCLUSIONS These results describe novel cell-cycle inhibitory functions of HBV that correlate well with the general concept of enhanced HBV replication in quiescent cells.
Collapse
|
16
|
Ruvoletto MG, Tono N, Carollo D, Vilei T, Trentin L, Muraca M, Marino M, Gatta A, Fassina G, Pontisso P. Surface expression of squamous cell carcinoma antigen (SCCA) can be increased by the preS1(21-47) sequence of hepatitis B virus. J Gen Virol 2004; 85:621-624. [PMID: 14993646 DOI: 10.1099/vir.0.19130-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A variant of the serpin squamous cell carcinoma antigen (SCCA) has been identified as a hepatitis B virus binding protein and high expression of SCCA has recently been found in hepatocarcinoma. Since HBV is involved in liver carcinogenesis, experiments were carried out to examine the effect of HBV preS1 envelope protein on SCCA expression. Surface and intracellular staining for SCCA was assessed by FACS analysis. Preincubation of HepG2 cells and primary human hepatocytes with preS1 protein or with preS1(21-47) tetrameric peptide significantly increased the surface expression of SCCA, without modification of its overall cellular burden, suggesting a surface redistribution of the serpin. An increase in HBV binding and internalization was observed after pre-incubation of the cells with preS1 preparations, compared to cells preincubated with medium alone. Pretreatment of cells with DMSO, while not influencing SCCA basal expression, was responsible for an increase in the efficiency of HBV internalization and this effect was additive to that obtained after incubation with preS1 preparations. In conclusion, the HBV preS1(21-47) sequence is able to induce overexpression of SCCA at the cell surface facilitating virus internalization, while the increased efficiency of HBV entry following DMSO addition is not mediated by SCCA.
Collapse
Affiliation(s)
- M G Ruvoletto
- Clinica Medica 5, Università di Padova, via Giustiniani 2, 35128 Padova, Italy
| | - N Tono
- Clinica Medica 5, Università di Padova, via Giustiniani 2, 35128 Padova, Italy
| | - D Carollo
- Immunologia Clinica, Dipartimento di Medicina Clinica e Sperimentale, Università di Padova, via Giustiniani 2, 35128 Padova, Italy
| | - T Vilei
- Clinica Medica 1, Università di Padova, via Giustiniani 2, 35128 Padova, Italy
| | - L Trentin
- Immunologia Clinica, Dipartimento di Medicina Clinica e Sperimentale, Università di Padova, via Giustiniani 2, 35128 Padova, Italy
| | - M Muraca
- Dipartimento di Scienze Mediche e Chirurgiche, Università di Padova, via Giustiniani 2, 35128 Padova, Italy
| | - M Marino
- Xeptagen Spa, via Olivetti, 1 Pozzuoli (Na), Italy
| | - A Gatta
- Clinica Medica 5, Università di Padova, via Giustiniani 2, 35128 Padova, Italy
| | - G Fassina
- Xeptagen Spa, via Olivetti, 1 Pozzuoli (Na), Italy
| | - P Pontisso
- Clinica Medica 5, Università di Padova, via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
17
|
Schulze-Bergkamen H, Untergasser A, Dax A, Vogel H, Büchler P, Klar E, Lehnert T, Friess H, Büchler MW, Kirschfink M, Stremmel W, Krammer PH, Müller M, Protzer U. Primary human hepatocytes--a valuable tool for investigation of apoptosis and hepatitis B virus infection. J Hepatol 2003; 38:736-44. [PMID: 12763365 DOI: 10.1016/s0168-8278(03)00120-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND/AIMS Apoptosis is a key event in the pathophysiology of many liver diseases. Primary human hepatocytes (PHH) provide a useful model to study physiological and pathophysiological processes in the liver. Our aim was to optimize PHH cultures to allow studies on induction of apoptosis and of hepatitis B virus (HBV) infection. METHODS PHH were isolated from human liver tissue by two-step collagenase perfusion. PHH and hepatoma cells were treated with different apoptosis-inducing agents in parallel. PHH cultures were infected with wild type HBV and transduced with HBV genomes using adenoviral vectors. RESULTS PHH were successfully isolated from 40 different tissue samples with high viability and purity. Perfusion time and seeding density turned out to be critical parameters for optimal cell yield and culture conditions, respectively. Serum addition to the medium reduced viability of PHH. PHH allowed reproducible studies of CD95-dependent and -independent apoptosis. Sensitivity towards CD95-mediated apoptosis was markedly higher than in hepatoma cells. PHH could efficiently be infected with HBV, but infection did neither induce apoptosis nor prevent CD95-induced cell death. CONCLUSIONS Our data show that PHH provide an excellent tool for the investigation of apoptosis induced by agents like death receptor-ligands and hepatotropic viruses.
Collapse
|
18
|
Paran N, Geiger B, Shaul Y. HBV infection of cell culture: evidence for multivalent and cooperative attachment. EMBO J 2001; 20:4443-53. [PMID: 11500372 PMCID: PMC125578 DOI: 10.1093/emboj/20.16.4443] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hepadnaviruses do not infect cultured cells, therefore our knowledge of the mechanism of the early stages of virus-cell interaction is rather poor. In this study, we show that dimethylsulfoxide (DMSO)-treated HepG2 hepatoblastoma cells are infected efficiently by serum-derived hepatitis B virus (HBV) as monitored by viral gene expression and replication markers. To measure virus attachment, a variety of HBV surface proteins (HBsAgs) were conjugated to polystyrene beads and their capacity to attach cells was visualized and quantified by light microscopy at a single-cell resolution. Remarkably, DMSO increases the attachment efficiency by >200-fold. We further identify the QLDPAF sequence within preS1 as the receptor-binding viral domain epitope. Interestingly, a similar sequence is shared by several cellular, bacterial and viral proteins involved in cell adhesion, attachment and fusion. We also found that the small HBsAg contains a secondary attachment site that recognizes a distinct receptor on the cell membrane. Furthermore, we provide evidence in support of multivalent HBV attachment with synergistic interplay. Our data depict a mechanistic view of virus attachment and ingestion.
Collapse
Affiliation(s)
- Nir Paran
- Departments of
Molecular Genetics and Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
| | - Benjamin Geiger
- Departments of
Molecular Genetics and Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
| | - Yosef Shaul
- Departments of
Molecular Genetics and Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel Corresponding author e-mail:
| |
Collapse
|
19
|
Rumin S, Berthillon P, Tanaka E, Kiyosawa K, Trabaud MA, Bizollon T, Gouillat C, Gripon P, Guguen-Guillouzo C, Inchauspé G, Trépo C. Dynamic analysis of hepatitis C virus replication and quasispecies selection in long-term cultures of adult human hepatocytes infected in vitro. J Gen Virol 1999; 80 ( Pt 11):3007-3018. [PMID: 10580063 DOI: 10.1099/0022-1317-80-11-3007] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Primary human hepatocytes were used to develop a culture model for in vitro propagation of hepatitis C virus (HCV). Production of positive- strand full-length viral RNA in cells and culture supernatants was monitored by PCR methods targeting three regions of the viral genome: the 5' NCR, the 3' X-tail and the envelope glycoprotein E2. De novo synthesis of negative-strand RNA was also demonstrated. Evidence for a gradual increase in viral components over a 3 month period was obtained by two quantitative assays: one for evaluation of genomic titre (quantitative PCR) and one for detection of the core antigen. Production of infectious viral particles was indicated by passage of infection to naive hepatocyte cultures. Reproducibility of the experiments was assessed using cultures from three liver donors and eleven sera. Neither the genotype, nor the genomic titre, nor the anti-HCV antibody content, were reliable predictive factors of serum infectivity, while the liver donor appeared to play a role in the establishment of HCV replication. Quasispecies present in hepatocyte cultures established from three different liver donors were analysed by sequencing hypervariable region 1 of the E2 protein. In all three cases, the complexity of viral quasispecies decreased after in vitro infection, but the major sequences recovered were different. These data strongly suggest that human primary hepatocytes are a valuable model for study of persistent and complete HCV replication in vitro and for identification of the factors (viral and/or cellular) associated with successful infection.
Collapse
Affiliation(s)
- Sylvie Rumin
- INSERM U271, 151 cours Albert Thomas, 69424 Lyon Cedex 03, France1
| | | | - Eiji Tanaka
- Second Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan2
| | - Kendo Kiyosawa
- Second Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan2
| | | | - Thierry Bizollon
- Service d'Hépato-Gastroent érologie and Département de Chirurgie, Hô tel Dieu, 1 place de l'Hôpital, 69288 Lyon Cedex 02, France3
| | - Christian Gouillat
- Service d'Hépato-Gastroent érologie and Département de Chirurgie, Hô tel Dieu, 1 place de l'Hôpital, 69288 Lyon Cedex 02, France3
| | - Philippe Gripon
- INSERM U522, Hôpital Pontchaillou, 35033 Rennes Cedex, France4
| | | | | | - Christian Trépo
- INSERM U271, 151 cours Albert Thomas, 69424 Lyon Cedex 03, France1
| |
Collapse
|
20
|
Ilan E, Burakova T, Dagan S, Nussbaum O, Lubin I, Eren R, Ben-Moshe O, Arazi J, Berr S, Neville L, Yuen L, Mansour TS, Gillard J, Eid A, Jurim O, Shouval D, Reisner Y, Galun E. The hepatitis B virus-trimera mouse: a model for human HBV infection and evaluation of anti-HBV therapeutic agents. Hepatology 1999; 29:553-62. [PMID: 9918935 DOI: 10.1002/hep.510290228] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Previous studies have demonstrated the feasibility of implantation of human blood cells or tissues in lethally irradiated mice or rats, radioprotected with SCID mouse bone marrow cells: The Trimera system. In the present study, we describe the development of a mouse Trimera model for human hepatitis B virus (HBV) infection. In this model, viremia is induced by transplantation of ex vivo HBV-infected human liver fragments. Engraftment of the human liver fragments, evaluated by hematoxylin-eosin staining and human serum albumin mRNA expression, was observed in 85% of the transplanted animals 1 month postimplantation. Viremia levels were determined in these mice by measuring serum HBV DNA using polymerase chain reaction (PCR), followed by dot-blot hybridization. HBV DNA is first detected 8 days after liver transplantation. Viremia attains a peak between days 18 and 25 when HBV infection is observed in 85% of the transplanted animals. The HBV-Trimera model was used to evaluate the therapeutic effects of human polyclonal anti-HBs antibodies (Hepatect) and of two reverse-transcriptase inhibitors, lamivudine (3TC) and beta-L-5-fluoro-2',3'-dideoxycytidine (beta-L-5FddC). Treatment of HBV-Trimera mice with these drugs effectively reduced both the percentage of infected animals and the viral load in their sera. Treatment cessation resulted in rebound of viral load, indicating HBV replication upon drug withdrawal. These results show that the HBV-Trimera model represents a novel experimental tool for simulating human HBV infection and evaluating potential anti-HBV therapeutic agents.
Collapse
Affiliation(s)
- E Ilan
- XTL Biopharmaceuticals Ltd., Kiryat Weizmann, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gong ZJ, De Meyer S, Roskams T, van Pelt JF, Soumillion A, Crabbé T, Yap SH. Hepatitis B virus infection in microcarrier-attached immortalized human hepatocytes cultured in molecularporous membrane bags: a model for long-term episomal replication of HBV. J Viral Hepat 1998; 5:377-87. [PMID: 9857347 DOI: 10.1046/j.1365-2893.1998.00125.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Studies on the pathobiology of chronic (long-term) hepatitis B virus (HBV) infection and in vitro drug testing have been hampered by the lack of appropriate systems for culturing susceptible cells chronically infected with HBV. Most of the in vitro studies of HBV replication have been performed with HBV genome-transduced cell lines. In this system, viral production is mainly the result of chromosomal replication. In an in vitro infection system, owing to medium refreshment (which leads to the removal of infectious particles necessary for the perpetuation of infection) and to trypsinization for cell passages, it is difficult, if not impossible, to maintain chronic HBV infection, despite the use of susceptible cells. To circumvent these unfavourable factors for chronic HBV infection in vitro, we cultured microcarrier-attached immortalized human hepatocytes, infected with HBV, in molecularporous (MW 12,000-14,000) membrane (dialysis) bags for a duration of 2 months. HBV covalently-closed-circular (ccc) DNA, HBV precore/core and X mRNAs were detected in the cells cultured in this system following infection until the end of the experiment (day 58), while in classical culture conditions (monolayer), markers of HBV replication were also detected. Production of hepatitis B surface antigen (HBsAg) and HBV DNA was detected and their levels in culture medium (collected at the end of experiments from the molecularporous membrane bags) were increased 2.86- and 3.28-fold respectively. Using Southern blot analysis, HBV replicative intermediates could also be demonstrated throughout the experiments. However, integrated HBV DNA was not present. In contrast, HBV ccc DNA, HBV precore/core and X mRNAs, and replicative intermediates were not demonstrable in FTO 2B rat hepatoma cells infected in the same manner in parallel experiments. This in vitro infection system, using susceptible, immortalized human hepatocytes, therefore provides a new tool for studying the long-term effect of HBV infection, mainly involving episomal replication in hepatocytes, and for drug testing.
Collapse
Affiliation(s)
- Z J Gong
- Department of Liver and Pancreatic Diseases, University Hospital Gasthuisberg, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
22
|
Le Seyec J, Chouteau P, Cannie I, Guguen-Guillouzo C, Gripon P. Role of the pre-S2 domain of the large envelope protein in hepatitis B virus assembly and infectivity. J Virol 1998; 72:5573-8. [PMID: 9621015 PMCID: PMC110210 DOI: 10.1128/jvi.72.7.5573-5578.1998] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Among the three viral proteins present in the hepatitis B virus (HBV) envelope, both the small and large polypeptides, but not the middle polypeptide, are necessary for the production of complete viral particles. Whereas it has been established that the C-terminal extremity of the pre-S1 region is required for HBV morphogenesis, whether the pre-S2 region of the large surface protein plays a critical role remains questionable. In the present study, we have analyzed the role of the large-polypeptide pre-S2 region in viral maturation and infectivity. For this purpose, mutants bearing contiguous deletions covering the entire pre-S2 domain were generated. First, the efficient expression of all the mutant large envelope proteins was verified and their ability to substitute for the wild-type form in virion secretion was tested. We found that distinct deletions covering the domain between amino acids 114 and 163 still allowed virion production. In contrast, the polypeptide lacking the first 5 amino acids of pre-S2 (amino acids 109 to 113) was unable to support viral secretion. This result shows that the domain of the large surface protein, required for this process, must be extended to the N-terminal extremity of pre-S2. We then demonstrated that all the mutants competent for virion release were able to infect normal human hepatocytes in primary culture. Taken together, these results indicate that only 10% of the large-protein pre-S2 region at its N-terminal extremity is essential for virion export and that the remaining part, dispensable for viral secretion, is also dispensable for infectivity.
Collapse
Affiliation(s)
- J Le Seyec
- Unité de Recherches Hépatologiques U 49, Institut National de la Santé et de la Recherche Médicale, Hôpital de Pontchaillou, 35033 Rennes Cedex, France.
| | | | | | | | | |
Collapse
|