1
|
Massei G, Jacob J, Hinds LA. Developing fertility control for rodents: a framework for researchers and practitioners. Integr Zool 2024; 19:87-107. [PMID: 37277987 DOI: 10.1111/1749-4877.12727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fertility control is often heralded as a humane and effective technique for management of overabundant wildlife, including rodents. The intention is to reduce the use of lethal and inhumane methods, increase farm productivity and food security as well as reduce disease transmission, particularly of zoonoses. We developed a framework to guide researchers and stakeholders planning to assess the effectiveness of a potential contraceptive agent for a particular species. Our guidelines describe the overarching research questions which must be sequentially addressed to ensure adequate data are collected so that a contraceptive can be registered for use in broad-scale rodent management. The framework indicates that studies should be undertaken iteratively and, at times, in parallel, with initial research being conducted on (1) laboratory-based captive assessments of contraceptive effects in individuals; (2) simulation of contraceptive delivery using bait markers and/or surgical sterilization of different proportions of a field-based or enclosure population to determine how population dynamics are affected; (3) development of mathematical models which predict the outcomes of different fertility control scenarios; and (4) implementation of large-scale, replicated trials to validate contraceptive efficacy under various management-scale field situations. In some circumstances, fertility control may be most effective when integrated with other methods (e.g. some culling). Assessment of non-target effects, direct and indirect, and the environmental fate of the contraceptive must also be determined. Developing fertility control for a species is a resource-intensive commitment but will likely be less costly than the ongoing environmental and economic impacts by rodents and rodenticides in many contexts.
Collapse
Affiliation(s)
- Giovanna Massei
- Botstiber Institute for Wildlife Fertility Control, Department of Environment and Geography, University of York, Heslington, York, UK
| | - Jens Jacob
- Rodent Research, Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institute (JKI) Federal Research Institute for Cultivated Plants, Münster, Germany
| | - Lyn A Hinds
- CSIRO Health and Biosecurity, Canberra, ACT, Australia
| |
Collapse
|
2
|
Helton JL, Hill JE, Bernasconi DA, Dixon WC, Chipman RB, Gilbert AT, Beasley JC, Dharmarajan G, Rhodes OE. Assessment of habitat‐specific competition for oral rabies vaccine baits between raccoons and opossums. J Wildl Manage 2023. [DOI: 10.1002/jwmg.22398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- James L. Helton
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources University of Georgia, Drawer E Aiken SC 29802 USA
| | - Jacob E. Hill
- Savannah River Ecology Laboratory University of Georgia, Drawer E Aiken SC 29802 USA
| | - David A. Bernasconi
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources University of Georgia, Drawer E Aiken SC 29802 USA
| | - Wesley C. Dixon
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources University of Georgia, Drawer E Aiken SC 29802 USA
| | - Richard B. Chipman
- National Rabies Management Program, USDA, APHIS, Wildlife Services Concord NH 03301 USA
| | - Amy T. Gilbert
- National Wildlife Research Center, USDA, APHIS, Wildlife Services Fort Collins CO 80521 USA
| | - James C. Beasley
- Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources University of Georgia, Drawer E Aiken SC 29802 USA
| | - Guha Dharmarajan
- School of Interwoven Arts and Sciences Krea University Sri City AP India
| | - Olin E. Rhodes
- Savannah River Ecology Laboratory, Odum School of Ecology University of Georgia, Drawer E Aiken SC 29802 USA
| |
Collapse
|
3
|
Measuring impact of vaccination among wildlife: The case of bait vaccine campaigns for classical swine fever epidemic among wild boar in Japan. PLoS Comput Biol 2022; 18:e1010510. [PMID: 36201410 PMCID: PMC9536577 DOI: 10.1371/journal.pcbi.1010510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/23/2022] [Indexed: 11/07/2022] Open
Abstract
Understanding the impact of vaccination in a host population is essential to control infectious diseases. However, the impact of bait vaccination against wildlife diseases is difficult to evaluate. The vaccination history of host animals is generally not observable in wildlife, and it is difficult to distinguish immunity by vaccination from that caused by disease infection. For these reasons, the impact of bait vaccination against classical swine fever (CSF) in wild boar inhabiting Japan has not been evaluated accurately. In this study, we aimed to estimate the impact of the bait vaccination campaign by modelling the dynamics of CSF and the vaccination process among a Japanese wild boar population. The model was designed to estimate the impact of bait vaccination despite lack of data regarding the demography and movement of wild boar. Using our model, we solved the theoretical relationship between the impact of vaccination, the time-series change in the proportion of infected wild boar, and that of immunised wild boar. Using this derived relationship, the increase in antibody prevalence against CSF because of vaccine campaigns in 2019 was estimated to be 12.1 percentage points (95% confidence interval: 7.8–16.5). Referring to previous reports on the basic reproduction number (R0) of CSF in wild boar living outside Japan, the amount of vaccine distribution required for CSF elimination by reducing the effective reproduction number under unity was also estimated. An approximate 1.6 (when R0 = 1.5, target vaccination coverage is 33.3% of total population) to 2.9 (when R0 = 2.5, target vaccination coverage is 60.0% of total population) times larger amount of vaccine distribution would be required than the total amount of vaccine distribution in four vaccination campaigns in 2019. Vaccination of wildlife is important to control infectious diseases in animals. However, the impact of common vaccination of wildlife, bait vaccination, is difficult to evaluate owing to difficulty in obtaining the vaccination history at the individual level. Mathematical modelling can estimate the impact of vaccination; however, the demography and movement of hosts are required to describe disease dynamics. In this study, we aimed to estimate the impact of bait vaccination by modelling the dynamics of classical swine fever (CSF) and the vaccination among Japanese wild boar. The model was designed to estimate the impact of bait vaccination despite lack of data regarding the demography and movement of wild boar. Using our model, the increase in antibody prevalence because of vaccination in 2019 was estimated to be 12 percentage points. Furthermore, we estimated the amount of vaccine distribution required for CSF elimination by reducing the effective reproduction number under unity. Referring to previous reports on the basic reproduction number of CSF in wild boar living outside Japan, it was estimated that an approximate 1.6 to 2.9 times larger amount of vaccine distribution would be required than the total amount of vaccine distribution in four vaccination campaigns in 2019.
Collapse
|
4
|
Robertson A, Palphramand KL, McDonald RA, Middleton S, Chambers MA, Delahay RJ, Carter SP. Uptake of baits by wild badgers: Influences of deployment method, badger age and activity patterns on potential delivery of an oral vaccine. Prev Vet Med 2022; 206:105702. [DOI: 10.1016/j.prevetmed.2022.105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/16/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
|
5
|
Jacoblinnert K, Imholt C, Schenke D, Jacob J. Ethyl-iophenoxic acid as a quantitative bait marker for small mammals. Integr Zool 2021; 17:981-990. [PMID: 33876888 DOI: 10.1111/1749-4877.12547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bait markers are indispensable for ecological research but in small mammals, most markers are invasive, expensive and do not enable quantitative analyses of consumption. Ethyl-iophenoxic acid (Et-IPA) is a non-toxic, quantitative bait marker, which has been used for studying bait uptake in several carnivores and ungulates. We developed a bait with Et-IPA, assessed its palatability to common voles (Microtus arvalis), and determined the dose-residue-relation for this important agricultural pest rodent species. Et-IPA concentrations of 40 to 1280 μg Et-IPA per g bait were applied to wheat using sunflower oil or polyethylene glycol 300 as potential carriers. In a laboratory study, common voles were offered the bait and blood samples were collected 1, 7, and 14 days after consumption. The samples were analyzed with LC-ESI-MS/MS for blood residues of Et-IPA. Sunflower-oil was the most suitable bait carrier. Et-IPA seemed to be palatable to common voles at all test concentrations. Dose-dependent residues could be detected in blood samples in a dose-dependent manner and up to 14 days after uptake enabling generation of a calibration curve of the dose-residue relationship. Et-IPA was present in common vole blood for at least 14 days, but there was dissipation by 33-37% depending on dose. Et-IPA meets many criteria for an "ideal" quantitative bait marker for use in future field studies on common voles and possibly other small mammal species.
Collapse
Affiliation(s)
- Kyra Jacoblinnert
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany.,Department of Behavioral Biology, University of Osnabrück, Osnabrück, Germany
| | - Christian Imholt
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| | - Detlef Schenke
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
| | - Jens Jacob
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Vertebrate Research, Münster, Germany
| |
Collapse
|
6
|
Placebo Oral Rabies Vaccine Bait Uptake by Small Indian Mongooses ( Herpestes auropunctatus) in Southwestern Puerto Rico. J Wildl Dis 2019. [PMID: 31750771 DOI: 10.7589/2019-03-077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The small Indian mongoose (Herpestes auropunctatus) is a rabies reservoir in areas of the Caribbean including Puerto Rico, but no rabies vaccination program targeting this host exists. We used two derivatives of iophenoxic acid (IPA) to evaluate placebo oral rabies vaccine bait uptake by mongooses in southwestern Puerto Rico. We hand-distributed baits at an application rate of 200 baits/km2 at three, 400 ha, sites during autumn 2016 and spring 2017. Each site contained 90-100 cage traps in a 100 ha central trapping area. We used ethyl-IPA as a biological marker during the autumn and methyl-IPA during the spring. We live captured mongooses for 10 consecutive days, beginning 1 wk following bait application. We obtained a serum sample from captured mongooses and analyzed the sera for ethyl- and methyl-IPA by liquid chromatography-mass spectrometry. During autumn 2016, 63% (55/87) mongooses sampled were positive for ethyl-IPA. In spring 2017, 69% (85/123) of mongooses were positive for methyl-IPA. Pooling seasons, accounting for recaptures between years, and disregarding marker type, 74% (133/179) unique mongooses were positive for IPA biomarker, indicating bait consumption during either the autumn, spring, or both trials. We conclude that distributing baits at an application rate of 200 baits/km2 is sufficient to reach over 60% of the target mongoose population in dry forest habitats of Puerto Rico.
Collapse
|
7
|
Tolkachev O. A new baiting scheme and simple method of rhodamine B detection could improve biomarking of small mammals. EUR J WILDLIFE RES 2019. [DOI: 10.1007/s10344-018-1243-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Sillero-Zubiri C, Marino J, Gordon CH, Bedin E, Hussein A, Regassa F, Banyard A, Fooks AR. Feasibility and efficacy of oral rabies vaccine SAG2 in endangered Ethiopian wolves. Vaccine 2016; 34:4792-8. [PMID: 27543453 DOI: 10.1016/j.vaccine.2016.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
Diseases are a major cause of population declines in endangered populations of several canid species. Parenteral vaccination efforts to protect Ethiopian wolves (Canis simensis) from rabies have targeted the domestic dog reservoir, or the wolves themselves in response to confirmed outbreaks. Oral vaccination offers a more cost-efficient, safe and proactive approach to protect Ethiopian wolves and other threatened canids from rabies. Field trials of the oral vaccine Rabigen® SAG2Dog were undertaken in the Bale Mountains of southeastern Ethiopia. Four different bait types and three delivery methods were tested in twelve Ethiopian wolf packs, and the oral vaccine (using the preferred bait) was trialled in three packs. Vaccine uptake and immunization rates were measured through direct observations and in live-trapped animals through the assessment of biomarker levels and serological status. Commercial baits were never taken by wolves; goat meat baits had the highest uptake, compared to rodent and intestine baits. Targeted delivery from horseback and nocturnal delivery within a pack's territory performed favourably compared to random bait distribution. Bait uptake by non-target species was lowest during the nocturnal blind distribution. Of 21 wolves trapped after vaccination, 14 were positive for the biomarker iophenoxic acid (i.e. ingested the bait and most likely pierced the sachet with the vaccine). Of these, 86% (n=12/14) had levels considered sufficient to provide protective immunity to wildlife (⩾0.20IU/ml), and 50% (n=7/14) demonstrated antibody titres above the universally recognised threshold (⩾0.5IU/ml) -the baseline average was 0.09IU/ml (n=12 wolves). All but one of the wolves vaccinated in 2014 were alive 14months later. Our trials confirm the potential for SAG2, delivered in a goat meat bait, to effectively protect Ethiopian wolves against rabies, supporting the initiative for a more efficient and proactive approach to manage and eventually eliminate rabies in Ethiopian wolf populations.
Collapse
Affiliation(s)
- Claudio Sillero-Zubiri
- Wildlife Conservation Research Unit, Zoology Department, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Tubney OX13 5QL, UK; Ethiopian Wolf Conservation Programme, P.O. Box 215, Bale-Robe, Ethiopia; IUCN SSC Canid Specialist Group, UK.
| | - Jorgelina Marino
- Wildlife Conservation Research Unit, Zoology Department, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Tubney OX13 5QL, UK; Ethiopian Wolf Conservation Programme, P.O. Box 215, Bale-Robe, Ethiopia.
| | - Christopher H Gordon
- Wildlife Conservation Research Unit, Zoology Department, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Tubney OX13 5QL, UK; Zoological Society of London, Kenya Country Programme, Kenya(1).
| | - Eric Bedin
- Wildlife Conservation Research Unit, Zoology Department, University of Oxford, The Recanati-Kaplan Centre, Tubney House, Tubney OX13 5QL, UK; Ethiopian Wolf Conservation Programme, P.O. Box 215, Bale-Robe, Ethiopia.
| | - Alo Hussein
- Ethiopian Wolf Conservation Programme, P.O. Box 215, Bale-Robe, Ethiopia.
| | - Fekede Regassa
- Ethiopian Wildlife Conservation Authority, Addis Ababa, Ethiopia.
| | - Ashley Banyard
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, UK
| | - Anthony R Fooks
- Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, UK; Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| |
Collapse
|
9
|
Rossi S, Staubach C, Blome S, Guberti V, Thulke HH, Vos A, Koenen F, Le Potier MF. Controlling of CSFV in European wild boar using oral vaccination: a review. Front Microbiol 2015; 6:1141. [PMID: 26557109 PMCID: PMC4615961 DOI: 10.3389/fmicb.2015.01141] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/05/2015] [Indexed: 11/24/2022] Open
Abstract
Classical swine fever (CSF) is among the most detrimental diseases for the swine industry worldwide. Infected wild boar populations can play a crucial role in CSF epidemiology and controlling wild reservoirs is of utmost importance for preventing domestic outbreaks. Oral mass vaccination (OMV) has been implemented to control CSF in wild boars and limit the spill over to domestic pigs. This retrospective overview of vaccination experiences illustrates the potential for that option. The C-strain live vaccine was confirmed to be highly efficacious and palatable baits were developed for oral delivery in free ranging wild boars. The first field trials were performed in Germany in the 1990’s and allowed deploying oral baits at a large scale. The delivery process was further improved during the 2000’s among different European countries. Optimal deployment has to be early regarding disease emergence and correctly designed regarding the landscape structure and the natural food sources that can compete with oral baits. OMV deployment is also highly dependent on a local veterinary support working closely with hunters, wildlife and forestry agencies. Vaccination has been the most efficient strategy for CSF control in free ranging wild boar when vaccination is wide spread and lasting for a sufficient period of time. Alternative disease control strategies such as intensified hunting or creating physical boundaries such as fences have been, in contrast, seldom satisfactory and reliable. However, monitoring outbreaks has been challenging during and after vaccination deployment since OMV results in a low probability to detect virus-positive animals and the live-vaccine currently available does not allow serological differentiation of infected from vaccinated animals. The development of a new marker vaccine and companion test is thus a promising option for better monitoring outbreaks during OMV deployment as well as help to better determine when to stop vaccination efforts. After rabies in red fox, the use of OMV against CSF in European wild boar can be considered as a second example of successful disease control in wildlife. The 30 years of disease control experience included in this review may provide options for improving future disease management within wild populations.
Collapse
Affiliation(s)
- Sophie Rossi
- Unité Sanitaire de la Faune, Office National de la Chasse et de la Faune Sauvage Gap, France
| | - Christoph Staubach
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health Greifswald, Germany
| | - Sandra Blome
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health Greifswald, Germany
| | - Vittorio Guberti
- Instituto Superiore per la Protezione e la Ricerca Ambientale Ozzano dell'Emilia, Italy
| | - Hans-Hermann Thulke
- Department of Ecological Modelling, Helmholtz Centre for Environmental Research-UFZ Leipzig, Germany
| | - Ad Vos
- Development Vaccines Technologies, IDT Biologika GmbH Dessau-Rosslau, Germany
| | - Frank Koenen
- Operational Direction Interactions and Surveillance, Centrum voor Onderzoek in Diergeneeskunde en Agrochemie-Centre d'Etude et de Recherches Vétérinaires et Agrochimiques Ukkel, Belgium
| | | |
Collapse
|
10
|
Chambers MA, Carter SP, Wilson GJ, Jones G, Brown E, Hewinson RG, Vordermeier M. Vaccination against tuberculosis in badgers and cattle: an overview of the challenges, developments and current research priorities in Great Britain. Vet Rec 2015; 175:90-6. [PMID: 25059963 DOI: 10.1136/vr.102581] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bovine tuberculosis (TB) is a significant threat to the cattle industry in England and Wales. It is widely acknowledged that a combination of measures targeting both cattle and wildlife will be required to eradicate bovine TB or reduce its prevalence until European official freedom status is achieved. Vaccination of cattle and/or badgers could contribute to bovine TB control in Great Britain, although there are significant gaps in our knowledge regarding the impact that vaccination would actually have on bovine TB incidence. Laboratory studies have demonstrated that vaccination with BCG can reduce the progression and severity of TB in both badgers and cattle. This is encouraging in terms of the prospect of a sustained vaccination programme achieving reductions in disease prevalence; however, developing vaccines for tackling the problem of bovine TB is challenging, time-consuming and resource-intensive, as this review article sets out to explain.
Collapse
Affiliation(s)
- M A Chambers
- School of Veterinary Medicine, University of Surrey, Surrey GU2 7XH, UK and AHVLA, Addlestone, Surrey KT15 3NB, UK
| | - S P Carter
- AHVLA, Woodchester Park, Tinkley Lane, Stonehouse, Gloucestershire GL10 3UJ
| | - G J Wilson
- AHVLA, Woodchester Park, Tinkley Lane, Stonehouse, Gloucestershire GL10 3UJ
| | - G Jones
- AHVLA, Addlestone, Surrey KT15 3NB, UK
| | - E Brown
- Veterinary and Science Policy Advice, AHVLA, c/o Defra, 17 Smith Square, Nobel House, London SW1P 3JR, UK
| | | | | |
Collapse
|
11
|
Engeman RM, Massei G, Sage M, Gentle MN. Monitoring wild pig populations: a review of methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:8077-8091. [PMID: 23881593 DOI: 10.1007/s11356-013-2002-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/10/2013] [Indexed: 06/02/2023]
Abstract
Wild pigs (Sus scrofa) are widespread across many landscapes throughout the world and are considered to be an invasive pest to agriculture and the environment, or conversely a native or desired game species and resource for hunting. Wild pig population monitoring is often required for a variety of management or research objectives, and many methods and analyses for monitoring abundance are available. Here, we describe monitoring methods that have proven or potential applications to wild pig management. We describe the advantages and disadvantages of methods so that potential users can efficiently consider and identify the option(s) best suited to their combination of objectives, circumstances, and resources. This paper offers guidance to wildlife managers, researchers, and stakeholders considering population monitoring of wild pigs and will help ensure that they can fulfill their monitoring objectives while optimizing their use of resources.
Collapse
Affiliation(s)
- R M Engeman
- National Wildlife Research Center, 4101 LaPorte Ave, Fort Collins, CO, 80521-2154, USA,
| | | | | | | |
Collapse
|
12
|
Sage M, Fourel I, Lahoreau J, Siat V, Berny P, Rossi S. Iophenoxic acid derivatives as markers of oral baits to wildlife. New tools for their detection in tissues of a game species and safety considerations for human exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2893-2904. [PMID: 23001758 DOI: 10.1007/s11356-012-1172-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/28/2012] [Indexed: 06/01/2023]
Abstract
The bait-marker iophenoxic acid (IPA) and its derivatives are increasingly used for evaluating and optimizing the cost-effectiveness of baiting campaigns on wildlife, particularly on game species such as the wild boar. We aimed to determine whether concentrations of the three main IPA derivatives ethyl, methyl and propyl-IPA measured on thoracic liquid extracts (TLE) of hunted wild boars may be representative of two exposure doses, 40 and 200 mg, from 20 to 217 days after ingestion. Then we developed a method of detection of the three IPA derivatives by LC/ESI-MS-MS in muscle and liver to evaluate the suitability of these two other tissues for monitoring the marked bait consumption and for measuring available residues in the meat of marked animals. Three semi-captive wild boars received 40 mg of each IPA derivative, three received 200 mg, and three, as controls, did not receive IPA. Blood serum was sampled 20, 197 or 217 days after IPA exposure according to animals and to the derivative. Wild boars were shot by gun after the different times of serum sampling times, and TLE, muscle and liver were sampled. Our results suggest that TLE is not a relevant tissue for quantitatively expressing IPA exposure. Due to interference, no analytical method was validated on TLE containing digestive material. On the other hand, quantifications in the muscle and particularly in the liver could discriminate wild boars that had ingested the two IPA doses from 20 days until 7 months after exposure, especially for the two long term markers ethyl and propyl-IPA. So IPA quantifications in the liver sampled on hunted animals appear to be a reliable tool for monitoring bait consumption in the field at a large scale. Nevertheless, whatever the ingested dose, ethyl- and propyl-IPA concentrations measured in the muscle and the liver of tested animals until 217 days after exposure, remained higher than 0.01 mg/kg, the Maximal Residue Limit (MRL) is recommended for molecules for which no toxicological data are available. Based on the range of IPA residues available in these two tissues, implications for humans consuming marked animals are discussed.
Collapse
Affiliation(s)
- Mickael Sage
- Game and Wildlife Agency (Office national de chasse et de faune sauvage), Wildlife Sanitary Unit (unité sanitaire de faune), 67150 St. Benoist, France.
| | | | | | | | | | | |
Collapse
|
13
|
Progress in Oral Vaccination against Tuberculosis in Its Main Wildlife Reservoir in Iberia, the Eurasian Wild Boar. Vet Med Int 2012; 2012:978501. [PMID: 22848869 PMCID: PMC3400400 DOI: 10.1155/2012/978501] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/08/2012] [Indexed: 11/17/2022] Open
Abstract
Eurasian wild boar (Sus scrofa) is the main wildlife reservoir for tuberculosis (TB) in Iberia. This review summarizes the current knowledge on wild boar vaccination including aspects of bait design, delivery and field deployment success; wild boar response to vaccination with Bacillus Calmette-Guérin (BCG) and inactivated Mycobacterium bovis; and wild boar vaccination biosafety issues as well as prospects on future research. Oral vaccination with BCG in captive wild boar has shown to be safe with significant levels of protection against challenge with virulent M. bovis. An oral vaccination with a new heat-killed M. bovis vaccine conferred a protection similar to BCG. The study of host-pathogen interactions identified biomarkers of resistance/susceptibility to tuberculosis in wild boar such as complement component 3 (C3) and methylmalonyl coenzyme A mutase (MUT) that were used for vaccine development. Finally, specific delivery systems were developed for bait-containing vaccines to target different age groups. Ongoing research includes laboratory experiments combining live and heat-killed vaccines and the first field trial for TB control in wild boar.
Collapse
|