1
|
Kock A, Pheiffer W, Wepener V, Smit NJ, Taylor JC. Using Confocal Microscopy and Pigment Analyses to Detect Adverse Insecticide Effects in non-target Freshwater Diatom species - a proof-of-concept Using Nitzschia palea. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:107. [PMID: 37284912 DOI: 10.1007/s00128-023-03741-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/17/2023] [Indexed: 06/08/2023]
Abstract
The persistence of insecticides in aquatic environments is a cause of concern and to date hardly any studies have focused on the effects that DDT and deltamethrin have on non-target freshwater diatom communities. The application of diatoms in ecotoxicological studies is well acknowledged and therefore this study used laboratory bioassays to determine the effects that DDT and deltamethrin have on a monoculture of a diatom indicator species, Nitzschia palea. The insecticides affected the morphology of chloroplasts at all exposure concentrations. These effects were a maximum reduction in chlorophyll concentrations (4.8% and 2.3%), cell viability (51% and 42%), and increases in cell deformities (3.6% and 1.6%) following exposure to DDT and deltamethrin respectively. Based on the results we propose that methods, such as confocal microscopy, chlorophyll-α analysis and cell deformities are useful tools in assessing the effects of insecticides on diatoms.
Collapse
Affiliation(s)
- Anrich Kock
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private bag X6001, Potchefstroom, 2520, South Africa.
- North-West University, 11 Hoffman Street, Potchefstroom Campus, Building F20, Room 63, Potchefstroom, 2531, South Africa.
| | - Wihan Pheiffer
- DSI/NWU Preclinical Drug Development Platform, North-West University, Private bag X6001, Potchefstroom, 2520, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private bag X6001, Potchefstroom, 2520, South Africa
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private bag X6001, Potchefstroom, 2520, South Africa
| | - Jonathan C Taylor
- Unit for Environmental Sciences and Management, North-West University, Private bag X6001, Potchefstroom, 2520, South Africa
- South African Institute for Aquatic Bioaffiliationersity (SAIAB), Private Bag 1015, Grahamstown, 6140, South Africa
| |
Collapse
|
2
|
Tungu P, Kabula B, Nkya T, Machafuko P, Sambu E, Batengana B, Sudi W, Derua YA, Mwingira V, Masue D, Malima R, Kitojo C, Serbantez N, Reaves EJ, Mwalimu C, Nhiga SL, Ally M, Mkali HR, Joseph JJ, Chan A, Ngondi J, Lalji S, Nyinondi S, Eckert E, Reithinger R, Magesa S, Kisinza WN. Trends of insecticide resistance monitoring in mainland Tanzania, 2004-2020. Malar J 2023; 22:100. [PMID: 36932400 PMCID: PMC10024418 DOI: 10.1186/s12936-023-04508-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Insecticide resistance is a serious threat to the continued effectiveness of insecticide-based malaria vector control measures, such as long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). This paper describes trends and dynamics of insecticide resistance and its underlying mechanisms from annual resistance monitoring surveys on Anopheles gambiae sensu lato (s.l.) populations conducted across mainland Tanzania from 2004 to 2020. METHODS The World Health Organization (WHO) standard protocols were used to assess susceptibility of the wild female An. gambiae s.l. mosquitoes to insecticides, with mosquitoes exposed to diagnostic concentrations of permethrin, deltamethrin, lambdacyhalothrin, bendiocarb, and pirimiphos-methyl. WHO test papers at 5× and 10× the diagnostic concentrations were used to assess the intensity of resistance to pyrethroids; synergist tests using piperonyl butoxide (PBO) were carried out in sites where mosquitoes were found to be resistant to pyrethroids. To estimate insecticide resistance trends from 2004 to 2020, percentage mortalities from each site and time point were aggregated and regression analysis of mortality versus the Julian dates of bioassays was performed. RESULTS Percentage of sites with pyrethroid resistance increased from 0% in 2004 to more than 80% in the 2020, suggesting resistance has been spreading geographically. Results indicate a strong negative association (p = 0.0001) between pyrethroids susceptibility status and survey year. The regression model shows that by 2020 over 40% of An. gambiae mosquitoes survived exposure to pyrethroids at their respective diagnostic doses. A decreasing trend of An. gambiae susceptibility to bendiocarb was observed over time, but this was not statistically significant (p = 0.8413). Anopheles gambiae exhibited high level of susceptibility to the pirimiphos-methyl in sampled sites. CONCLUSIONS Anopheles gambiae Tanzania's major malaria vector, is now resistant to pyrethroids across the country with resistance increasing in prevalence and intensity and has been spreading geographically. This calls for urgent action for efficient malaria vector control tools to sustain the gains obtained in malaria control. Strengthening insecticide resistance monitoring is important for its management through evidence generation for effective malaria vector control decision.
Collapse
Affiliation(s)
- Patrick Tungu
- National Institute for Medical Research, Amani Medical Research Centre, Muheza, Tanzania.
| | - Bilali Kabula
- National Institute for Medical Research, Amani Medical Research Centre, Muheza, Tanzania
- USAID-Okoa Maisha Dhibiti Malaria Project, RTI International, Dar es Salaam, Tanzania
| | - Theresia Nkya
- University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Pendael Machafuko
- National Institute for Medical Research, Amani Medical Research Centre, Muheza, Tanzania
| | - Edward Sambu
- National Institute for Medical Research, Amani Medical Research Centre, Muheza, Tanzania
| | - Bernard Batengana
- National Institute for Medical Research, Amani Medical Research Centre, Muheza, Tanzania
| | - Wema Sudi
- National Institute for Medical Research, Amani Medical Research Centre, Muheza, Tanzania
| | - Yahaya A Derua
- National Institute for Medical Research, Amani Medical Research Centre, Muheza, Tanzania
| | - Victor Mwingira
- National Institute for Medical Research, Amani Medical Research Centre, Muheza, Tanzania
| | - Denis Masue
- University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Robert Malima
- University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Chonge Kitojo
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Dar es Salaam, Tanzania
| | - Naomi Serbantez
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Dar es Salaam, Tanzania
| | - Erik J Reaves
- U.S. President's Malaria Initiative, U.S. Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - Charles Mwalimu
- National Malaria Control Programme, Ministry of Health, Community Development, Gender, Elderly and Children, Dodoma, Tanzania
| | - Samwel L Nhiga
- National Malaria Control Programme, Ministry of Health, Community Development, Gender, Elderly and Children, Dodoma, Tanzania
| | - Mohamed Ally
- National Malaria Control Programme, Ministry of Health, Community Development, Gender, Elderly and Children, Dodoma, Tanzania
| | - Humphrey R Mkali
- USAID-Okoa Maisha Dhibiti Malaria Project, RTI International, Dar es Salaam, Tanzania
| | - Joseph J Joseph
- USAID-Okoa Maisha Dhibiti Malaria Project, RTI International, Dar es Salaam, Tanzania
| | - Adeline Chan
- U.S. President's Malaria Initiative, U.S. Centers for Disease Control and Prevention, Atlanta, USA
| | | | - Shabbir Lalji
- USAID-Okoa Maisha Dhibiti Malaria Project, RTI International, Dar es Salaam, Tanzania
| | - Ssanyu Nyinondi
- USAID-Okoa Maisha Dhibiti Malaria Project, RTI International, Dar es Salaam, Tanzania
| | | | | | - Stephen Magesa
- National Institute for Medical Research, Amani Medical Research Centre, Muheza, Tanzania
| | - William N Kisinza
- National Institute for Medical Research, Amani Medical Research Centre, Muheza, Tanzania
| |
Collapse
|
3
|
Tungu PK, Rowland MW, Messenger LA, Small GJ, Bradley J, Snetselaar J, Kirby MJ, Mbewe NJ. Large-scale (Phase III) evaluation of broflanilide 50WP (VECTRON™ T500) for indoor residual spraying for malaria vector control in Northeast Tanzania: study protocol for a two-arm, non-inferiority, cluster-randomised community trial. BMC Infect Dis 2022; 22:171. [PMID: 35189830 PMCID: PMC8862469 DOI: 10.1186/s12879-022-07138-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Indoor residual spraying (IRS) is a major method of malaria vector control across sub-Saharan Africa. Effective control is being undermined by the rapid spread of insecticide resistance. There is major investment in development of new insecticides for IRS that possess novel modes of action, long residual activity, low mammalian toxicity and minimal cross-resistance. VECTRON™ T500, a new IRS product containing the active ingredient broflanilide as a 50% wettable powder (WP), has been shown to be efficacious against pyrethroid susceptible and resistant vector species on mud and concrete substrates in experimental hut (Phase II) trials. METHODS A two-arm non-inferiority cluster randomized controlled trial (Phase III) will be undertaken in Muheza District, Tanga Region, Tanzania. VECTRON™ T500 will be compared to the IRS product Fludora® Fusion (clothianidin 50% WP + deltamethrin 6.25% WP). The predominant malaria vectors in the study area are pyrethroid-resistant Anopheles gambiae s.s., An. arabiensis and An. funestus s.s. Sixteen village clusters will be pair-matched on baseline vector densities and allocated to reference and intervention arms. Consenting households in the intervention arm will be sprayed with VECTRON™ T500 and those in the reference arm will be sprayed with Fludora® Fusion. Each month, CDC light traps will collect mosquitoes to estimate changes in vector density, indoor biting, sporozoite and entomological inoculation rates (EIR). Susceptibility to IRS active ingredients will be assessed using World Health Organisation (WHO) bottle bioassays. Target site and metabolic resistance mechanisms will be characterised among Anopheles field populations from both trial arms. Residual efficacy of both IRS products will be monitored for 12 months post intervention. Questionnaire and focus group discussions will explore factors that influence adherence, adverse effects and benefits of IRS. DISCUSSION This protocol describes a large-scale non-inferiority evaluation of a novel IRS product to reduce the density and EIR of pyrethroid-resistant Anopheles vectors. If VECTRON™ T500 proves non-inferior to Fludora® Fusion, it will be considered as an additional vector control product for malaria prevention and insecticide resistance management. TRIAL REGISTRATION ClinicalTrials.gov, NCT05150808, registered on 26 November 2021. Retrospectively registered.
Collapse
Affiliation(s)
- Patrick K Tungu
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.,National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Mark W Rowland
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.
| | - Louisa A Messenger
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | | | - John Bradley
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Janneke Snetselaar
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.,Innovative Vector Control Consortium, Liverpool, UK
| | - Matthew J Kirby
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.,Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Njelembo J Mbewe
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.,Kilimanjaro Christian Medical University College, Moshi, Tanzania
| |
Collapse
|
4
|
Rashkov P. Modeling repellent-based interventions for control of vector-borne diseases with constraints on extent and duration. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:4038-4061. [PMID: 35341285 DOI: 10.3934/mbe.2022185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We study a simple model for a vector-borne disease with control intervention based on clothes and household items treated with mosquito repellents, which has constraints on the extent (population coverage) and on the time duration reflecting technological and physical properties. We compute first, the viability kernel of initial data of the model for which exists an optimal control that maintains the infected host population below a given cap for all future times. Second, we use the viability kernel to compute the set of initial data of the model for which exists an optimal control that brings this population below the cap in a time period not exceeding the intervention's duration. We discuss applications of this framework in predicting and evaluating the performance of control interventions under the given type of constraints.
Collapse
Affiliation(s)
- Peter Rashkov
- Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Akademik Georgi Bonchev, blok 8, 1113 Sofia, Bulgaria
| |
Collapse
|
5
|
Aongola M, Kaonga P, Michelo C, Zgambo J, Lupenga J, Jacobs C. Acceptability and associated factors of indoor residual spraying for malaria control by households in Luangwa district of Zambia: A multilevel analysis. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000368. [PMID: 36962710 PMCID: PMC10021563 DOI: 10.1371/journal.pgph.0000368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022]
Abstract
The global burden of malaria has increased from 227 million cases in 2019 to 247 million cases in 2020. Indoor residual spraying (IRS) remains one of the most effective control strategies for malaria. The current study sought to measure the acceptability level and associated factors of indoor residual spraying. A cross sectional study was conducted from October to November 2020 in sixteen urban and rural communities of Luangwa district using a cluster sampling method, Multilevel analysis was used to account for the hierarchical structure of the data. The acceptability level of indoor residual spraying among household heads was relatively high at 87%. Individuals who felt the timing was not appropriate were associated with decreased odds of accepting IRS (AOR = 0.55, 95% CI: 0.20-0.86). Positive attitude was associated with increased odds of accepting IRS (AOR = 29.34, 95% CI: 11.14-77.30). High acceptability level was associated with unemployment (AOR = 1.92, 95% CI: 1.07-3.44). There were no associations found between acceptability levels and community-level factors such as information, education, communication dissemination, awareness achieved through door-to-door sensitization, and public address system. Acceptability level of indoor residual spraying was relatively high among households of Luangwa District suggesting that the interventions are more acceptable which is essential in reaching malaria elimination by 2030. Finding that community factors known to influence acceptability such as information, education and communication as well as awareness were not important to influencing acceptability suggests need for reinforcing messages related to indoor residual spraying and redefining the community sensitization approaches to make indoor residual spraying more acceptable.
Collapse
Affiliation(s)
- Maureen Aongola
- Department of Epidemiology & Biostatistics, School of Public Health, University of Zambia, Lusaka, Zambia
| | - Patrick Kaonga
- Department of Epidemiology & Biostatistics, School of Public Health, University of Zambia, Lusaka, Zambia
| | - Charles Michelo
- Strategic Centre for Health Systems Metrics & Evaluation, School of Public Health, University of Zambia, Lusaka, Zambia
- Harvest Research Institute, Harvest University, Lusaka, Zambia
| | - Jessy Zgambo
- Department of Epidemiology & Biostatistics, School of Public Health, University of Zambia, Lusaka, Zambia
| | - Joseph Lupenga
- Department of Epidemiology & Biostatistics, School of Public Health, University of Zambia, Lusaka, Zambia
| | - Choolwe Jacobs
- Department of Epidemiology & Biostatistics, School of Public Health, University of Zambia, Lusaka, Zambia
- Strategic Centre for Health Systems Metrics & Evaluation, School of Public Health, University of Zambia, Lusaka, Zambia
| |
Collapse
|
6
|
Zhao N, Sesay I, Tu H, Yamba F, Lu L, Guo Y, Song X, Wang J, Liu X, Yue Y, Wu H, Liu Q. Entomological and Molecular Surveillance of Anopheles Mosquitoes in Freetown, Sierra Leone, 2019. Front Public Health 2021; 9:649672. [PMID: 34222167 PMCID: PMC8247763 DOI: 10.3389/fpubh.2021.649672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Malaria is endemic in Sierra Leone, with stable and perennial transmission in all parts of the country. At present, the main prevention and control measures for mosquito vectors here involve insecticide treated nets (ITN) and indoor residual spraying (IRS). The most recent entomological surveillance was conducted prior to the civil war, between 1990 and 1994. Therefore, a new entomological surveillance required to support targeted malaria control strategies. Methods:Anopheles mosquitoes were collected between June and December 2019 using the light trap method. On these, we conducted species identification, analyzed seasonal fluctuation and Plasmodium infection rate, and monitored insecticide resistance. Results: Surveillance of seasonal fluctuation showed that there were two peak of Anopheles density in July (mean 13.67 mosquitoes/trap/night) and October (mean 13.00 mosquitoes/trap/night). Meanwhile, the lowest Anopheles density was seen in early September. Ninety-one representatives of Anopheles gambiae s.l. were selected and identified as An. coluzzii (n = 35) and An. gambiae s.s. (n = 56) using PCR. An. coluzzii and An. gambiae s.s. were found to be heterozygous resistant to the knockdown resistance (kdr) L1014F mutation (100%). Meanwhile, the East African mutation (kdr L1014S) was absent in the tested mosquitoes. Three mosquitoes that tested positive for the parasite, had an individual Plasmodium falciparum infection rate of 12.50, 16.67, and 14.29%. The sampling dates of positive mosquitoes were distributed in the two periods of peak Anopheles mosquito density. Conclusion: This study identified the dominant Anopheles species in Freetown as An. gambiae while the predominant species within the An. gambiae complex was An. gambiae sensu stricto. Surveillance of seasonal fluctuations and high P. falciparum infection rates in Anopheles indicate that the alternation of drought and rainy seasons from June to July, and from October to November, are the key periods for malaria control and prevention in Freetown, Sierra Leone. The high frequency of kdr allele mutations in An. gambiae calls for close monitoring of vector susceptibility to insecticides and tracing of resistance mechanisms in order to develop more effective vector control measures and strategies.
Collapse
Affiliation(s)
- Ning Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.,Sierra Leone-China Friendship Biosafety Laboratory, Freetown, Sierra Leone
| | - Ishaq Sesay
- Sierra Leone-China Friendship Biosafety Laboratory, Freetown, Sierra Leone
| | - Hong Tu
- Sierra Leone-China Friendship Biosafety Laboratory, Freetown, Sierra Leone.,Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China
| | - Frederick Yamba
- Ministry of Health and Sanitation of Sierra Leone, Freetown, Sierra Leone
| | - Liang Lu
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China.,Sierra Leone-China Friendship Biosafety Laboratory, Freetown, Sierra Leone
| | - Yuhong Guo
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xiuping Song
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Jun Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xiaobo Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Yujuan Yue
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Haixia Wu
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| |
Collapse
|
7
|
E Silva B, Matsena Zingoni Z, Koekemoer LL, Dahan-Moss YL. Microbiota identified from preserved Anopheles. Malar J 2021; 20:230. [PMID: 34022891 PMCID: PMC8141131 DOI: 10.1186/s12936-021-03754-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background Mosquito species from the Anopheles gambiae complex and the Anopheles funestus group are dominant African malaria vectors. Mosquito microbiota play vital roles in physiology and vector competence. Recent research has focused on investigating the mosquito microbiota, especially in wild populations. Wild mosquitoes are preserved and transported to a laboratory for analyses. Thus far, microbial characterization post-preservation has been investigated in only Aedes vexans and Culex pipiens. Investigating the efficacy of cost-effective preservatives has also been limited to AllProtect reagent, ethanol and nucleic acid preservation buffer. This study characterized the microbiota of African Anopheles vectors: Anopheles arabiensis (member of the An. gambiae complex) and An. funestus (member of the An. funestus group), preserved on silica desiccant and RNAlater® solution. Methods Microbial composition and diversity were characterized using culture-dependent (midgut dissections, culturomics, MALDI-TOF MS) and culture-independent techniques (abdominal dissections, DNA extraction, next-generation sequencing) from laboratory (colonized) and field-collected mosquitoes. Colonized mosquitoes were either fresh (non-preserved) or preserved for 4 and 12 weeks on silica or in RNAlater®. Microbiota were also characterized from field-collected An. arabiensis preserved on silica for 8, 12 and 16 weeks. Results Elizabethkingia anophelis and Serratia oryzae were common between both vector species, while Enterobacter cloacae and Staphylococcus epidermidis were specific to females and males, respectively. Microbial diversity was not influenced by sex, condition (fresh or preserved), preservative, or preservation time-period; however, the type of bacterial identification technique affected all microbial diversity indices. Conclusions This study broadly characterized the microbiota of An. arabiensis and An. funestus. Silica- and RNAlater®-preservation were appropriate when paired with culture-dependent and culture-independent techniques, respectively. These results broaden the selection of cost-effective methods available for handling vector samples for downstream microbial analyses. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03754-7.
Collapse
Affiliation(s)
- Bianca E Silva
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Zvifadzo Matsena Zingoni
- Division of Epidemiology and Biostatistics, School of Public Health, University of the Witwatersrand, Parktown, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Yael L Dahan-Moss
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa.
| |
Collapse
|
8
|
Additional evidence on the efficacy of different Akirin vaccines assessed on Anopheles arabiensis (Diptera: Culicidae). Parasit Vectors 2021; 14:209. [PMID: 33879250 PMCID: PMC8056099 DOI: 10.1186/s13071-021-04711-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022] Open
Abstract
Background Anopheles arabiensis is an opportunistic malaria vector that rests and feeds outdoors, circumventing current indoor vector control methods. Furthermore, this vector will readily feed on both animals and humans. Targeting this vector while feeding on animals can provide an additional intervention for the current vector control activities. Previous results have displayed the efficacy of using Subolesin/Akirin ortholog vaccines for the control of multiple ectoparasite infestations. This made Akirin a potential antigen for vaccine development against An. arabiensis. Methods The efficacy of three antigens, namely recombinant Akirin from An. arabiensis, recombinant Akirin from Aedes albopictus, and recombinant Q38 (Akirin/Subolesin chimera) were evaluated as novel interventions for An. arabiensis vector control. Immunisation trials were conducted based on the concept that mosquitoes feeding on vaccinated balb/c mice would ingest antibodies specific to the target antigen. The antibodies would interact with the target antigen in the arthropod vector, subsequently disrupting its function. Results All three antigens successfully reduced An. arabiensis survival and reproductive capacities, with a vaccine efficacy of 68–73%. Conclusions These results were the first to show that hosts vaccinated with recombinant Akirin vaccines could develop a protective response against this outdoor malaria transmission vector, thus providing a step towards the development of a novel intervention for An. arabiensis vector control. Graphic Abstract Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04711-8.
Collapse
|
9
|
Korti MY, Ageep TB, Adam AI, Shitta KB, Hassan AA, Algadam AA, Baleela RM, Saad HA, Abuelmaali SA. Status of insecticide susceptibility in Anopheles arabiensis and detection of the knockdown resistance mutation (kdr) concerning agricultural practices from Northern Sudan state, Sudan. J Genet Eng Biotechnol 2021; 19:49. [PMID: 33779858 PMCID: PMC8006520 DOI: 10.1186/s43141-021-00142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 03/11/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Chemical control has been the most efficient method in mosquito control, the development of insecticide resistance in target populations has a significant impact on vector control. The use of agricultural pesticides may have a profound impact on the development of resistance in the field populations of malaria vectors. Our study focused on insecticide resistance and knockdown resistance (kdr) of Anopheles arabiensis populations from Northern Sudan, related to agricultural pesticide usage. RESULTS Anopheles arabiensis from urban and rural localities (Merowe and Al-hamadab) were fully susceptible to bendiocarb 0.1% and permethrin 0.75% insecticides while resistant to DDT 4% and malathion 5%. The population of laboratory reference colony F189 from Dongola showed a mortality of 91% to DDT (4%) and fully susceptible to others. GLM analysis indicated that insecticides, sites, site type, and their interaction were determinant factors on mortality rates (P < 0.01). Except for malathion, mortality rates of all insecticides were not significant (P > 0.05) according to sites. Mortality rates of malathion and DDT were varied significantly (P < 0.0001 and P < 0.05 respectively) by site types, while mortality rates of bendiocarb and permethrin were not significant (P >0.05). The West African kdr mutation (L1014F) was found in urban and rural sites. Even though, the low-moderate frequency of kdr (L1014F) mutation was observed. The findings presented here for An. arabiensis showed no correlation between the resistant phenotype as ascertained by bioassay and the presence of the kdr mutation, with all individuals tested except the Merowe site which showed a moderate association with DDT (OR= 6 in allelic test), suggesting that kdr genotype would be a poor indicator of phenotypic resistance. CONCLUSION The results provide critical pieces of information regarding the insecticide susceptibility status of An. arabiensis in northern Sudan. The usage of the same pesticides in agricultural areas seemed to affect the Anopheles susceptibility when they are exposed to those insecticides in the field. The kdr mutation might have a less role than normally expected in pyrethroids resistance; however, other resistance genes should be in focus. These pieces of information will help to improve the surveillance system and The implication of different vector control programs employing any of these insecticides either in the treatment of bed nets or for indoor residual spraying would achieve satisfactory success rates.
Collapse
Affiliation(s)
- M Y Korti
- Tropical Medicine Research Institute, National Center for Research, Khartoum, Sudan
| | - T B Ageep
- Tropical Medicine Research Institute, National Center for Research, Khartoum, Sudan
| | - A I Adam
- Tropical Medicine Research Institute, National Center for Research, Khartoum, Sudan
| | - K B Shitta
- Department of Biological Sciences, Federal University Lokoja, Lokoja, Kogi State, Nigeria
| | - A A Hassan
- Tropical Medicine Research Institute, National Center for Research, Khartoum, Sudan
| | - A A Algadam
- Tropical Medicine Research Institute, National Center for Research, Khartoum, Sudan
| | - R M Baleela
- Department of Zoology, Faculty of Sciences, University of Khartoum, Khartoum, Sudan
| | - H A Saad
- Department of Zoology, Faculty of Sciences, University of Khartoum, Khartoum, Sudan
| | - S A Abuelmaali
- Department of Medical Entomology, National Public Health Laboratory, Federal Ministry of Health, Khartoum, Sudan.
| |
Collapse
|
10
|
Bartilol B, Omedo I, Mbogo C, Mwangangi J, Rono MK. Bionomics and ecology of Anopheles merus along the East and Southern Africa coast. Parasit Vectors 2021; 14:84. [PMID: 33509262 PMCID: PMC7842043 DOI: 10.1186/s13071-021-04582-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/05/2021] [Indexed: 11/25/2022] Open
Abstract
Malaria transmission persists despite the scale-up of interventions such as long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS). Understanding the entomological drivers of transmission is key for the design of effective and sustainable tools to address the challenge. Recent research findings indicate a shift in vector populations from the notorious Anopheles gambiae (s.s.) as a dominant vector to other species as one of the factors contributing to the persistence of malaria transmission. However, there are gaps in the literature regarding the minor vector species which are increasingly taking a lead role in malaria transmission. Currently, minor malaria vectors have behavioural plasticity, which allows their evasion of vector control tools currently in use. To address this, we have reviewed the role of Anopheles merus, a saltwater mosquito species that is becoming an important vector of malaria transmission along the East and Southern African coast. We performed a literature review from PubMed and Google Scholar and reviewed over 50 publications relating to An. merus's bionomics, taxonomy, spatial-temporal distribution and role in malaria transmission. We found that An. merus is an important vector of malaria and that it contributes to residual malaria transmission because of its exophilic tendencies, insecticide resistance and densities that peak during the dry seasons as the freshwater mosquitoes decline. Spatial and temporal studies have also shown that this species has increased its geographical range, densities and vectorial capacity over time. In this review, we highlight the resting behaviour and breeding habitats of this mosquito, which could be targeted for surveillance studies and control interventions.
Collapse
Affiliation(s)
- Brian Bartilol
- Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya.
| | - Irene Omedo
- Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
- Big Data Institute, University of Oxford, Oxford, UK
| | - Charles Mbogo
- Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Joseph Mwangangi
- Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
- Kenya Medical Research Institute, Centre for Vector Disease Control, Kwale, Kenya
| | - Martin K Rono
- Kenya Medical Research Institute, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya.
| |
Collapse
|
11
|
Ezemuoka LC, Akorli EA, Aboagye-Antwi F, Akorli J. Mosquito midgut Enterobacter cloacae and Serratia marcescens affect the fitness of adult female Anopheles gambiae s.l. PLoS One 2020; 15:e0238931. [PMID: 32946471 PMCID: PMC7500640 DOI: 10.1371/journal.pone.0238931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 08/26/2020] [Indexed: 01/03/2023] Open
Abstract
Some bacteria species found in the mosquito midgut have demonstrated their role in interrupting the development of Plasmodium within the midgut of the Anopheles mosquito and have been identified as potential candidates for novel bacteria-mediated disease control. However, to use these bacteria successfully in biocontrol mechanisms their effect on the fitness of the vector into which they have been introduced has to be evaluated. This study investigated the effect of two such bacteria candidates, Enterobacter cloacae and Serratia marcescens, on Anopheles gambiae s.l. fitness. Pupae and larvae of Anopheles gambiae s.l. mosquitoes were collected by dipping method and reared to adults. The effect of these bacteria on mosquito fitness was assessed by reintroducing isolates of each bacteria separately into antibiotic-treated female adult mosquitoes through sugar meal. Wild type (non-antibiotic-treated) mosquitoes and those antibiotic-treated with no bacteria reintroduction were used as controls. The mosquitoes were monitored on longevity/survival, fecundity, hatch rate, and larval survival. The antibiotic-treated adult mosquitoes had reduced life span with median survival of 14 days while the bacteria-reintroduced groups and the wild type survived to day 22 (p< 0.0001). Treatment with Enterobacter and Serratia did not affect the average egg deposition (p>0.05) but they affected hatch rates positively (p = 0.008). There was, however, some evidence that suggests Enterobacter could have a positive effect on larval development (p < 0.0001). With no observed negative effect on survival/longevity of Anopheles gambiae, introducing E. cloacae and S. marcescens in future bacteria-associated control strategies is unlikely to result in mosquitoes that will be outlived by the wild population. This, however, requires evaluations under field conditions.
Collapse
Affiliation(s)
- Lilian Chiamaka Ezemuoka
- African Regional Postgraduate Programme in Insect Science (ARPPIS), University of Ghana, Legon, Accra, Ghana
| | - Esinam Abla Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Fred Aboagye-Antwi
- Department of Animal Biology and Conservation Science, University of Ghana, Legon, Accra, Ghana
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
- West African Centre for Cell Biology of Infectious Diseases, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
12
|
Yang X, Leng X, Qi Y, Zhang J, Jiang R, Li W, Zhong H. Monitoring of adsorption and transfer of organochlorines in soybean seeds and sprouts with mass spectrometric imaging. Anal Chim Acta 2020; 1130:10-19. [PMID: 32892928 DOI: 10.1016/j.aca.2020.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 11/29/2022]
Abstract
Development of analytical techniques that can monitor the adsorption, transfer and in-situ distribution of environmental pollutants in agricultural products is essential to ensure the implementation of stringent food safety standards for consumer protection. A mass spectrometric imaging approach is described herein to investigate the dynamic changes and spatial distributions of 4, 4'-DDT (dichlorodiphenyltrichloroethane) in soybean seeds and sprouts during the growth. Soy beans seeds incubated in DDT containing water were sliced in every 20 μm and directly blotted on the surface of a compressed thin film of (Bi2O3)0.07(CoO)0.03(ZnO)0.9 nanoparticles. Endogenous molecules and exogenous DDT compounds in soy bean seeds were ionized and dissociated by photoelectrons that are generated on surfaces of semiconductor nanoparticles upon the irradiation of the 3rd harmonic (355 nm) of Nd3+:YAG laser. Structural identification is achieved by the interpretation of fragment ions resulting from electron-initiated specific bond cleavages or hole oxidization. Mass spectrometric images reveal increased quantities of DDT residues in soy bean seeds and sprouts during the growth. It provides an in situ way without extensive sample preparation to monitor the transfer and distribution of exogenous pollutants as well as the possible impacts on plant growth.
Collapse
Affiliation(s)
- Xiaojie Yang
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, PR China; Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, PR China
| | - Xiebin Leng
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, PR China; Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, PR China
| | - Yinghua Qi
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, PR China; Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, PR China
| | - Juan Zhang
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, PR China; Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, PR China
| | - Ruowei Jiang
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, PR China; Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, PR China
| | - Weidan Li
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, PR China; Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, PR China
| | - Hongying Zhong
- Laboratory of Mass Spectrometry, College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, PR China; Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, PR China.
| |
Collapse
|
13
|
Letinić BD, Dahan-Moss Y, Koekemoer LL. Characterising the effect of Akirin knockdown on Anopheles arabiensis (Diptera: Culicidae) reproduction and survival, using RNA-mediated interference. PLoS One 2020; 15:e0228576. [PMID: 32049962 PMCID: PMC7015393 DOI: 10.1371/journal.pone.0228576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/17/2020] [Indexed: 11/18/2022] Open
Abstract
Anopheles arabiensis is an opportunistic malaria vector that rests and feeds outdoors, circumventing current vector control methods. Furthermore, this vector will readily feed on animal as well as human hosts. Targeting the vector, while feeding on animals, can provide an additional intervention for the current vector control activities. Agricultural animals are regularly vaccinated with recombinant proteins for the control of multiple endo- and ecto-parasitic infestations. The use of a Subolesin-vaccine showed a mark reduction in tick reproductive fitness. The orthologous gene of Subolesin, called Akirin in insects, might provide a valuable species-specific intervention against outdoor biting An. arabiensis. However, the biological function of this nuclear protein has not yet been investigated in this mosquito. The effects on An. arabiensis lifetable parameters were evaluated after Akirin was knocked down using commercial small-interfering RNA (siRNA) and in vitro transcribed double-stranded RNA (dsRNA). The siRNA mediated interference of Akirin significantly reduced fecundity by 17%, fertility by 23% and longevity by 32% when compared to the controls in the female mosquitoes tested. Similarly, dsRNA treatment had a 25% decrease in fecundity, 29% decrease in fertility, and 48% decrease in longevity, when compared to the control treatments. Mosquitoes treated with Akirin dsRNA had a mean survival time of 15-days post-inoculation, which would impact on their ability to transmit malaria parasites. These results strongly suggest that Akirin has a pleiotropic function in An. arabiensis longevity and reproductive fitness.
Collapse
Affiliation(s)
- Blaženka D. Letinić
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Yael Dahan-Moss
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Lizette L. Koekemoer
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- * E-mail:
| |
Collapse
|
14
|
Tan WL, Li CX, Lv RC, Dong YD, Guo XX, Xing D, Zhou MH, Xu Y, Chu HL, Wang G, Zhu CQ, Sun J, Zhao TY. The polymorphism and geographical distribution of knockdown resistance of adult Anopheles sinensis populations in eastern China. Malar J 2019; 18:164. [PMID: 31064367 PMCID: PMC6505223 DOI: 10.1186/s12936-019-2793-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/25/2019] [Indexed: 12/03/2022] Open
Abstract
Background Anopheles sinensis is one of the major malaria vectors in China and other southeast Asian countries, including Vietnam, Cambodia, Thailand. Vector control is considered to be the critical measure for malaria control, while the increasing prevalence of insecticide resistance caused by long-term use of insecticides, especially pyrethroids, is threatening the successful control of An. sinensis. In order to understand the underlying resistance mechanisms involved and molecular basis, the principal malaria vector, An. sinensis from Jiangsu and Anhui provinces, Southeast China, was investigated. Methods The adult Anopheles mosquitoes were sampled from multiple sites across Jiangsu and Anhui provinces, and sufficient mosquitoes collected from eleven sites for insecticide susceptibility bioassays. The DIIS4–DIIS6 region of the para-type sodium channel gene was amplified and sequenced, then multiple PCR and Taqman assays were used to assess the frequencies of kdr mutations at the target gene. Results In the present study, most of the adult An. sinensis populations were pyrethroids resistant, which indicated the presence of kdr resistance mutations in the para-type sodium channel gene. Sequence analyses demonstrated the kdr mutation existed at codon 1014 in Jiangsu and Anhui provinces. In adult An. sinensis, three mutant types (TTT L1014F, TTC L1014F, and TGT L1014C) of kdr alleles were detected, while no wild type (TTG L1014) was observed. The TTC L1014F mutation was first reported in Anhui province. Conclusions The highly polymorphic kdr alleles were observed in all the adult An. sinensis populations, which suggested that in-depth studies are required for carrying on insecticide resistance monitoring and specific resistance mechanisms studying into establish effective long-term malaria vector control program in eastern China.
Collapse
Affiliation(s)
- Wei-Long Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.,Department of Vector Control, Huadong Research Institute for Medicine and Biotechnics, Nanjing, 210002, Jiangsu, China
| | - Chun-Xiao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Rui-Chen Lv
- Department of Vector Control, Huadong Research Institute for Medicine and Biotechnics, Nanjing, 210002, Jiangsu, China
| | - Yan-De Dong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xiao-Xia Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Ming-Hao Zhou
- Department of Vector Control, Jiangsu Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| | - Yan Xu
- Department of Vector Control, Jiangsu Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| | - Hong-Liang Chu
- Department of Vector Control, Jiangsu Center for Disease Prevention and Control, Nanjing, Jiangsu, China
| | - Gang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Chang-Qiang Zhu
- Department of Vector Control, Huadong Research Institute for Medicine and Biotechnics, Nanjing, 210002, Jiangsu, China
| | - Jun Sun
- Department of Vector Control, Jiangsu Center for Disease Prevention and Control, Nanjing, Jiangsu, China.
| | - Tong-Yan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
15
|
Jeanrenaud ACSN, Brooke BD, Oliver SV. The effects of larval organic fertiliser exposure on the larval development, adult longevity and insecticide tolerance of zoophilic members of the Anopheles gambiae complex (Diptera: Culicidae). PLoS One 2019; 14:e0215552. [PMID: 30998732 PMCID: PMC6472872 DOI: 10.1371/journal.pone.0215552] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/03/2019] [Indexed: 12/23/2022] Open
Abstract
Zoophilic members of the Anopheles gambiae complex are often associated with cattle. As such, it is likely that the immature aquatic stages will be exposed to cattle faeces as a pollutant. This study aimed to examine the effect of cattle manure on members of the An. gambiae complex found in South Africa. In this study, a commercial organic fertiliser originating from cattle manure was used as a proxy for cattle faeces. Laboratory strains of An. merus, An. quadriannulatus as well as four An. arabiensis strains (SENN and MBN: insecticide susceptible, MBN-DDT: insecticide resistant, unselected, SENN-DDT: insecticide resistant: selected for resistance) were used in this study. The effect of larval fertiliser exposure on larval development rate and adult longevity was assessed in all three species. The effect of larval fertiliser exposure on subsequent adult size, insecticide tolerance and detoxification enzyme activity of the four strains of the malaria vector An. arabiensis was also assessed. Following fertiliser treatment, all strains and species showed a significantly increased rate of larval development, with insecticide susceptible strains gaining the greatest advantage. The adult longevities of An. merus, An. quadriannulatus, insecticide susceptible and resistant An. arabiensis were significantly increased following fertiliser treatment. Insecticide susceptible and resistant An. arabiensis adults were significantly larger after larval organic fertiliser exposure. Larval fertiliser exposure also increased insecticide tolerance in adult An. arabiensis, particularly in the insecticide resistant, selected strain. This 4.7 fold increase in deltamethrin tolerance translated to an increase in pyrethroid resistance intensity, which could exert operational effects. In general, larval exposure to cattle faeces significantly affects the life histories of members of the An. gambiae complex.
Collapse
Affiliation(s)
- Alexander C. S. N. Jeanrenaud
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Basil D. Brooke
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shüné V. Oliver
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Wits Research Institute for Malaria, MRC Collaborating Centre for Multi-disciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| |
Collapse
|
16
|
Cornel AJ, Lee Y, Almeida APG, Johnson T, Mouatcho J, Venter M, de Jager C, Braack L. Mosquito community composition in South Africa and some neighboring countries. Parasit Vectors 2018; 11:331. [PMID: 29859109 PMCID: PMC5984792 DOI: 10.1186/s13071-018-2824-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/28/2018] [Indexed: 11/25/2022] Open
Abstract
Background A century of studies have described particular aspects of relatively few mosquito species in southern Africa, mostly those species involved with disease transmission, specifically malaria and arboviruses. Patterns of community composition such as mosquito abundance and species diversity are often useful measures for medical entomologists to guide broader insights and projections regarding disease dynamics and potential introduction, spread or maintenance of globally spreading pathogens. However, little research has addressed these indicators in southern Africa. Results We collected 7882 mosquitoes from net and light traps at 11 localities comprising 66 species in 8 genera. We collected an additional 8 species using supplementary collection techniques such as larval sampling, sweep-netting and indoor pyrethrum knockdown catches. Highest diversity and species richness was found in the Okavango Delta of Botswana and in South Africa’s Kruger National Park, while the lowest diversity and abundances were in the extreme southern tip of South Africa and in semi-desert Kalahari close to the South Africa border with Botswana. Species composition was more similar between proximal localities than distant ones (Linear model P-value = 0.005). Multiple arbovirus vector species were detected in all localities we surveyed (proportion of vector mosquito numbers were > 0.5 in all locations except Shingwedzi). Their proportions were highest (> 90%) in Vilankulo and Kogelberg. Conclusions Multiple known arbovirus vector species were found in all study sites, whereas anopheline human malaria vector species in only some sites. The combination of net traps and light traps effectively sampled mosquito species attracted to carbon-dioxide or light, accounting for 89% of the 74 species collected. The 11% remaining species were collected using supplementary collection techniques mentioned above. The diversity of species weas highest in savanna type habitats, whereas low diversities were found in the drier Kalahari sands regions and the southern Cape fynbos regions. Electronic supplementary material The online version of this article (10.1186/s13071-018-2824-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anthony J Cornel
- Department of Entomology & Nematology, University of California, Davis, USA. .,UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| | - Yoosook Lee
- Department of Entomology & Nematology, University of California, Davis, USA
| | - António Paulo Gouveia Almeida
- Global Health and Tropical Medicine, GHTM, Institute for Hygiene and Tropical Medicine, IHMT, Universidade Nova de Lisboa, UNL, Lisbon, Portugal.,Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Todd Johnson
- Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Joel Mouatcho
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Marietjie Venter
- Centre for Viral Zoonoses, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Christiaan de Jager
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Leo Braack
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
17
|
Wangdi K, Furuya-Kanamori L, Clark J, Barendregt JJ, Gatton ML, Banwell C, Kelly GC, Doi SAR, Clements ACA. Comparative effectiveness of malaria prevention measures: a systematic review and network meta-analysis. Parasit Vectors 2018; 11:210. [PMID: 29587882 PMCID: PMC5869791 DOI: 10.1186/s13071-018-2783-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/06/2018] [Indexed: 11/24/2022] Open
Abstract
Background Malaria causes significant morbidity and mortality worldwide. There are several preventive measures that are currently employed, including insecticide-treated nets (ITNs, including long-lasting insecticidal nets and insecticidal-treated bed nets), indoor residual spraying (IRS), prophylactic drugs (PD), and untreated nets (UN). However, it is unclear which measure is the most effective for malaria prevention. We therefore undertook a network meta-analysis to compare the efficacy of different preventive measures on incidence of malaria infection. Methods A systematic literature review was undertaken across four medical and life sciences databases (PubMed, Cochrane Central, Embase, and Web of Science) from their inception to July 2016 to compare the effectiveness of different preventive measures on malaria incidence. Data from the included studies were analysed for the effectiveness of several measures against no intervention (NI). This was carried out using an automated generalized pairwise modeling (GPM) framework for network meta-analysis to generate mixed treatment effects against a common comparator of no intervention (NI). Results There were 30 studies that met the inclusion criteria from 1998–2016. The GPM framework led to a final ranking of effectiveness of measures in the following order from best to worst: PD, ITN, IRS and UN, in comparison with NI. However, only ITN (RR: 0.49, 95% CI: 0.32–0.74) showed precision while other methods [PD (RR: 0.24, 95% CI: 0.004–15.43), IRS (RR: 0.55, 95% CI: 0.20–1.56) and UN (RR: 0.73, 95% CI: 0.28–1.90)] demonstrating considerable uncertainty associated with their point estimates. Conclusion Current evidence is strong for the protective effect of ITN interventions in malaria prevention. Even though ITNs were found to be the only preventive measure with statistical support for their effectiveness, the role of other malaria control measures may be important adjuncts in the global drive to eliminate malaria. Electronic supplementary material The online version of this article (10.1186/s13071-018-2783-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kinley Wangdi
- Research School of Population Health, College of Health and Medicine, The Australian National University, ACT, Canberra, Australia.
| | - Luis Furuya-Kanamori
- Research School of Population Health, College of Health and Medicine, The Australian National University, ACT, Canberra, Australia.,Department of Population Medicine, College of Medicine, Qatar University, Doha, Qatar
| | - Justin Clark
- Centre for Research in Evidence-Based Practice (CREBP), Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Jan J Barendregt
- School of Public Health, The University of Queensland, Brisbane, Queensland, Australia.,Epigear International Pty Ltd, Sunrise Beach, Queensland, Australia
| | - Michelle L Gatton
- School of Public Health & Social Work, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Cathy Banwell
- Research School of Population Health, College of Health and Medicine, The Australian National University, ACT, Canberra, Australia
| | - Gerard C Kelly
- Research School of Population Health, College of Health and Medicine, The Australian National University, ACT, Canberra, Australia
| | - Suhail A R Doi
- Research School of Population Health, College of Health and Medicine, The Australian National University, ACT, Canberra, Australia.,Department of Population Medicine, College of Medicine, Qatar University, Doha, Qatar
| | - Archie C A Clements
- Research School of Population Health, College of Health and Medicine, The Australian National University, ACT, Canberra, Australia
| |
Collapse
|
18
|
Abeku TA, Helinski MEH, Kirby MJ, Ssekitooleko J, Bass C, Kyomuhangi I, Okia M, Magumba G, Meek SR. Insecticide resistance patterns in Uganda and the effect of indoor residual spraying with bendiocarb on kdr L1014S frequencies in Anopheles gambiae s.s. Malar J 2017; 16:156. [PMID: 28427415 PMCID: PMC5397803 DOI: 10.1186/s12936-017-1799-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/04/2017] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Resistance of malaria vectors to pyrethroid insecticides has been attributed to selection pressure from long-lasting insecticidal nets (LLINs), indoor residual spraying (IRS), and the use of chemicals in agriculture. The use of different classes of insecticides in combination or by rotation has been recommended for resistance management. The aim of this study was to understand the role of IRS with a carbamate insecticide in management of pyrethroid resistance. METHODS Anopheles mosquitoes were collected from multiple sites in nine districts of Uganda (up to five sites per district). Three districts had been sprayed with bendiocarb. Phenotypic resistance was determined using standard susceptibility tests. Molecular assays were used to determine the frequency of resistance mutations. The kdr L1014S homozygote frequency in Anopheles gambiae s.s. was used as the outcome measure to test the effects of various factors using a logistic regression model. Bendiocarb coverage, annual rainfall, altitude, mosquito collection method, LLIN use, LLINs distributed in the previous 5 years, household use of agricultural pesticides, and malaria prevalence in children 2-9 years old were entered as explanatory variables. RESULTS Tests with pyrethroid insecticides showed resistance and suspected resistance levels in all districts except Apac (a sprayed district). Bendiocarb resistance was not detected in sprayed sites, but was confirmed in one unsprayed site (Soroti). Anopheles gambiae s.s. collected from areas sprayed with bendiocarb had significantly less kdr homozygosity than those collected from unsprayed areas. Mosquitoes collected indoors as adults had significantly higher frequency of kdr homozygotes than mosquitoes collected as larvae, possibly indicating selective sampling of resistant adults, presumably due to exposure to insecticides inside houses that would disproportionately affect susceptible mosquitoes. The effect of LLIN use on kdr homozygosity was significantly modified by annual rainfall. In areas receiving high rainfall, LLIN use was associated with increased kdr homozygosity and this association weakened as rainfall decreased, indicating more frequency of exposure to pyrethroids in relatively wet areas with high vector density. CONCLUSION This study suggests that using a carbamate insecticide for IRS in areas with high levels of pyrethroid resistance may reduce kdr frequencies in An. gambiae s.s.
Collapse
Affiliation(s)
- Tarekegn A. Abeku
- Malaria Consortium, Development House, 56-64 Leonard Street, London, EC2A 4LT UK
| | | | - Matthew J. Kirby
- Malaria Consortium, Development House, 56-64 Leonard Street, London, EC2A 4LT UK
- London School of Hygiene & Tropical Medicine, London, WC1E 7HT UK
| | - James Ssekitooleko
- Malaria Consortium Uganda, Plot 25, Upper Naguru East Road, Naguru, Kampala, Uganda
| | - Chris Bass
- University of Exeter, Penryn Campus, Treliever Road, Penryn, TR10 9FE UK
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ UK
| | - Irene Kyomuhangi
- Malaria Consortium Uganda, Plot 25, Upper Naguru East Road, Naguru, Kampala, Uganda
| | - Michael Okia
- National Malaria Control Programme, Ministry of Health, Kampala, Uganda
- Uganda IRS Project Phase II/Abt Associates Inc., Kampala, Uganda
| | - Godfrey Magumba
- Malaria Consortium Uganda, Plot 25, Upper Naguru East Road, Naguru, Kampala, Uganda
| | - Sylvia R. Meek
- Malaria Consortium, Development House, 56-64 Leonard Street, London, EC2A 4LT UK
| |
Collapse
|
19
|
Ebhuoma O, Gebreslasie M, Magubane L. Modeling malaria control intervention effect in KwaZulu-Natal, South Africa using intervention time series analysis. J Infect Public Health 2017; 10:334-338. [PMID: 28330701 DOI: 10.1016/j.jiph.2017.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/07/2017] [Accepted: 02/22/2017] [Indexed: 11/28/2022] Open
Abstract
The change of the malaria control intervention policy in South Africa (SA), re-introduction of dichlorodiphenyltrichloroethane (DDT), may be responsible for the low and sustained malaria transmission in KwaZulu-Natal (KZN). We evaluated the effect of the re-introduction of DDT on malaria in KZN and suggested practical ways the province can strengthen her already existing malaria control and elimination efforts, to achieve zero malaria transmission. We obtained confirmed monthly malaria cases in KZN from the malaria control program of KZN from 1998 to 2014. The seasonal autoregressive integrated moving average (SARIMA) intervention time series analysis (ITSA) was employed to model the effect of the re-introduction of DDT on confirmed monthly malaria cases. The result is an abrupt and permanent decline of monthly malaria cases (w0=-1174.781, p-value=0.003) following the implementation of the intervention policy. The sustained low malaria cases observed over a long period suggests that the continued usage of DDT did not result in insecticide resistance as earlier anticipated. It may be due to exophagic malaria vectors, which renders the indoor residual spraying not totally effective. Therefore, the feasibility of reducing malaria transmission to zero in KZN requires other reliable and complementary intervention resources to optimize the existing ones.
Collapse
Affiliation(s)
- Osadolor Ebhuoma
- School of Agricultural, Earth, and Environmental Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa.
| | - Michael Gebreslasie
- School of Agricultural, Earth, and Environmental Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Lethumusa Magubane
- School of Agricultural, Earth, and Environmental Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
20
|
Randriamaherijaona S, Velonirina HJ, Boyer S. Susceptibility status of Anopheles arabiensis (Diptera: Culicidae) commonly used as biological materials for evaluations of malaria vector control tools in Madagascar. Malar J 2016; 15:338. [PMID: 27364163 PMCID: PMC4929764 DOI: 10.1186/s12936-016-1406-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/20/2016] [Indexed: 11/10/2022] Open
Abstract
Background Madagascar is a malaria-endemic country with an increase in cases in recent years. In vector control using insecticide, a susceptible strain is necessary to evaluate insecticide efficacy, either for spraying or on nets. The susceptibility of Anopheles arabiensis from Antananarivo, Madagascar to two organophosphate, three pyrethroid, two carbamate, and one organochlorine insecticides was investigated. Since 2010, An. arabiensis strain has been maintained away from insecticide source during 110 generations with optimal insectarium conditions. Methods Bioassay were performed on adult mosquitoes to assess the susceptibility of An. arabiensis to insecticide-impregnated papers (malathion 5 %, fenitrothion 1 %, deltamethrin 0.05 %, permethrin 0.75 %, alphacypermethrin 0.05 %, bendiocarb 0.1 %, propoxur 0.01 %, and DDT 4 %) following World Health Organization Pesticide Evaluation Scheme guidelines. Bioassay using Center for Disease Control bottle tests were also used to detect mortality. Molecular assay were carried out to detect the presence of knock down resistance (kdr) mutation using PCR techniques. Results Anopheles arabiensis is fully susceptible with 100 % mortality to malathion, fenitrothion, deltamethrin, permethrin, alphacypermethrin, bendiocarb, propoxur, and DDT. No kdr gene was detected using PCR method. Conclusion The strain An. arabiensis maintained in the insectarium of Institut Pasteur de Madagascar is a fully susceptible strain and can be used for insecticide evaluation.
Collapse
Affiliation(s)
- Sanjiarizaha Randriamaherijaona
- Unité d'Entomologie Médicale, Institut Pasteur de Madagascar, Antananarivo, Madagascar. .,Ecole Doctorale Science de la vie et de l'environnement, Faculté des Sciences, Université d'Antananarivo, Antananarivo, Madagascar.
| | | | - Sébastien Boyer
- Unité d'Entomologie Médicale, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| |
Collapse
|
21
|
|
22
|
Munhenga G, Brooke BD, Gilles JRL, Slabbert K, Kemp A, Dandalo LC, Wood OR, Lobb LN, Govender D, Renke M, Koekemoer LL. Mating competitiveness of sterile genetic sexing strain males (GAMA) under laboratory and semi-field conditions: Steps towards the use of the Sterile Insect Technique to control the major malaria vector Anopheles arabiensis in South Africa. Parasit Vectors 2016; 9:122. [PMID: 26934869 PMCID: PMC4774148 DOI: 10.1186/s13071-016-1385-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anopheles arabiensis Patton is primarily responsible for malaria transmission in South Africa after successful suppression of other major vector species using indoor spraying of residual insecticides. Control of An. arabiensis using current insecticide based approaches is proving difficult owing to the development of insecticide resistance, and variable feeding and resting behaviours. The use of the sterile insect technique as an area-wide integrated pest management system to supplement the control of An. arabiensis was proposed for South Africa and is currently under investigation. The success of this technique is dependent on the ability of laboratory-reared sterile males to compete with wild males for mates. As part of the research and development of the SIT technique for use against An. arabiensis in South Africa, radio-sensitivity and mating competitiveness of a local An. arabiensis sexing strain were assessed. METHODS The optimal irradiation dose inducing male sterility without compromising mating vigour was tested using Cobalt 60 irradiation doses ranging from 70-100 Gy. Relative mating competitiveness of sterile laboratory-reared males (GAMA strain) compared to fertile wild-type males (AMAL strain) for virgin wild-type females (AMAL) was investigated under laboratory and semi-field conditions using large outdoor cages. Three different sterile male to fertile male to wild-type female ratios were evaluated [1:1:1, 5:1:1 and 10:1:1 (sterile males: fertile, wild-type males: fertile, wild-type females)]. RESULTS Irradiation at the doses tested did not affect adult emergence but had a moderate effect on adult survivorship and mating vigour. A dose of 75 Gy was selected for the competitiveness assays. Mating competitiveness experiments showed that irradiated GAMA male mosquitoes are a third as competitive as their fertile AMAL counterparts under semi-field conditions. However, they were not as competitive under laboratory conditions. An inundative ratio of 10:1 induced the highest sterility in the representative wild-type population, with potential to effectively suppress reproduction. CONCLUSION Laboratory-reared and sterilised GAMA male An. arabiensis at a release ratio of 3:1 (3 sterile males to 1 wild, fertile male) can successfully compete for insemination of wild-type females. These results will be used to inform subsequent small-scale pilot field releases in South Africa.
Collapse
Affiliation(s)
- Givemore Munhenga
- Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Private Bag X4, Sandringham, Johannesburg, South Africa. .,Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Basil D Brooke
- Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Private Bag X4, Sandringham, Johannesburg, South Africa. .,Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Jeremie R L Gilles
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria.
| | - Kobus Slabbert
- iThemba LABS (Laboratory for Accelerator Based Sciences), Somerset West, South Africa.
| | - Alan Kemp
- Special Pathogens Unit, Center for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Private Bag X4, Sandringham, Johannesburg, South Africa.
| | - Leonard C Dandalo
- Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Private Bag X4, Sandringham, Johannesburg, South Africa. .,Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Oliver R Wood
- Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Private Bag X4, Sandringham, Johannesburg, South Africa. .,Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Leanne N Lobb
- Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Private Bag X4, Sandringham, Johannesburg, South Africa. .,Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Danny Govender
- Scientific Services, South African National Parks, Private Bag X402, Skukuza, South Africa. .,Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, South Africa.
| | - Marius Renke
- Conservation Management, Kruger National Park, Private Bag X402, Skukuza, South Africa.
| | - Lizette L Koekemoer
- Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Private Bag X4, Sandringham, Johannesburg, South Africa. .,Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
23
|
Brooke BD, Robertson L, Kaiser ML, Raswiswi E, Munhenga G, Venter N, Wood OR, Koekemoer LL. Insecticide resistance in the malaria vector Anopheles arabiensis in Mamfene, KwaZulu-Natal. S AFR J SCI 2015. [DOI: 10.17159/sajs.2015/20150261] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Abstract The control of malaria vector mosquitoes in South Africa’s affected provinces is primarily based on indoor spraying of long-lasting residual insecticides. The primary vectors in South Africa are Anopheles arabiensis and An. funestus. South Africa’s National Malaria Control Programme has adopted a malaria elimination agenda and has scaled up vector control activities accordingly. However, despite these plans, local transmission continues and is most likely because of outdoor feeding by populations of An. arabiensis. An outdoor Anopheles surveillance system has been set up in three sections of the Mamfene district in northern KwaZulu- Natal in order to assess the extent of outdoor resting An. arabiensis in Mamfene and to assess the current insecticide susceptibility status of this population. According to WHO criteria, the An. arabiensis samples tested showed evidence of resistance to deltamethrin (pyrethroid), DDT (organochlorine) and bendiocarb (carbamate), and full susceptibility to the organophosphates pirimiphos-methyl and fenitrothion. Pre-exposure to piperonyl butoxide completely nullified the deltamethrin resistance otherwise evident in these samples, supporting previous studies implicating monooxygenase-based detoxification as the primary mechanism of pyrethroid resistance. The data presented here affirm the presence of pyrethroid and DDT resistance previously detected in this population and also indicate the comparatively recent emergence of resistance to the carbamate insecticide bendiocarb. These data show that special attention and commitment needs to be given to the principles of insecticide resistance management as well as to investigations into alternative control techniques designed to target outdoor-resting An. arabiensis in northern KwaZulu-Natal.
Collapse
|
24
|
Electrostatic coating enhances bioavailability of insecticides and breaks pyrethroid resistance in mosquitoes. Proc Natl Acad Sci U S A 2015; 112:12081-6. [PMID: 26324912 DOI: 10.1073/pnas.1510801112] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insecticide resistance poses a significant and increasing threat to the control of malaria and other mosquito-borne diseases. We present a novel method of insecticide application based on netting treated with an electrostatic coating that binds insecticidal particles through polarity. Electrostatic netting can hold small amounts of insecticides effectively and results in enhanced bioavailability upon contact by the insect. Six pyrethroid-resistant Anopheles mosquito strains from across Africa were exposed to similar concentrations of deltamethrin on electrostatic netting or a standard long-lasting deltamethrin-coated bednet (PermaNet 2.0). Standard WHO exposure bioassays showed that electrostatic netting induced significantly higher mortality rates than the PermaNet, thereby effectively breaking mosquito resistance. Electrostatic netting also induced high mortality in resistant mosquito strains when a 15-fold lower dose of deltamethrin was applied and when the exposure time was reduced to only 5 s. Because different types of particles adhere to electrostatic netting, it is also possible to apply nonpyrethroid insecticides. Three insecticide classes were effective against strains of Aedes and Culex mosquitoes, demonstrating that electrostatic netting can be used to deploy a wide range of active insecticides against all major groups of disease-transmitting mosquitoes. Promising applications include the use of electrostatic coating on walls or eave curtains and in trapping/contamination devices. We conclude that application of electrostatically adhered particles boosts the efficacy of WHO-recommended insecticides even against resistant mosquitoes. This innovative technique has potential to support the use of unconventional insecticide classes or combinations thereof, potentially offering a significant step forward in managing insecticide resistance in vector-control operations.
Collapse
|
25
|
Chanda E, Ameneshewa B, Angula HA, Iitula I, Uusiku P, Trune D, Islam QM, Govere JM. Strengthening tactical planning and operational frameworks for vector control: the roadmap for malaria elimination in Namibia. Malar J 2015; 14:302. [PMID: 26242587 PMCID: PMC4524019 DOI: 10.1186/s12936-015-0785-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/27/2015] [Indexed: 11/10/2022] Open
Abstract
Background Namibia has made tremendous gains in malaria control and the epidemiological trend of the disease has changed significantly over the past years. In 2010, the country reoriented from the objective of reducing disease mor
bidity and mortality to the goal of achieving malaria elimination by 2020. This manuscript outlines the processes undertaken in strengthening tactical planning and operational frameworks for vector control to facilitate expeditious malaria elimination in Namibia. Case description The information sources for this study included all available data and accessible archived documentary records on malaria vector control in Namibia. A methodical assessment of published and unpublished documents was conducted via a literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. Discussion and evaluation To attain the goal of elimination in Namibia, systems are being strengthened to identify and clear all infections, and significantly reduce human–mosquito contact. Particularly, consolidating vector control for reducing transmission at the identified malaria foci will be critical for accelerated malaria elimination. Thus, guarding against potential challenges and the need for evidence-based and sustainable vector control instigated the strengthening of strategic frameworks by: adopting the integrated vector management (IVM) strategy; initiating implementation of the global plan for insecticide resistance management (GPIRM); intensifying malaria vector surveillance; improving data collection and reporting systems on DDT; updating the indoor residual spraying (IRS) data collection and reporting tool; and, improving geographical reconnaissance using geographical information system-based satellite imagery. Conclusions Universal coverage with IRS and long-lasting insecticidal nets, supplemented by larval source management in the context of IVM and guided by vector surveillance coupled with rational operationalization of the GPIRM, will enable expeditious attainment of elimination in Namibia. However, national capacity to plan, implement, monitor and evaluate interventions will require adequate and sustained support for technical, physical infrastructure, and human and financial resources for entomology and vector control operations.
Collapse
Affiliation(s)
| | - Birkinesh Ameneshewa
- World Health Organization, Regional Office for Africa, Brazaville, Republic of Congo.
| | - Hans A Angula
- Namibia National Vector-borne Diseases Control Programme, Windhoek, Namibia.
| | - Iitula Iitula
- Namibia National Vector-borne Diseases Control Programme, Windhoek, Namibia.
| | - Pentrina Uusiku
- Namibia National Vector-borne Diseases Control Programme, Windhoek, Namibia.
| | - Desta Trune
- World Health Organization, Country Office, Windhoek, Namibia.
| | - Quazi M Islam
- World Health Organization, Country Office, Windhoek, Namibia.
| | | |
Collapse
|
26
|
Dembo EG, Abay SM, Dahiya N, Ogboi JS, Christophides GK, Lupidi G, Chianese G, Lucantoni L, Habluetzel A. Impact of repeated NeemAzal-treated blood meals on the fitness of Anopheles stephensi mosquitoes. Parasit Vectors 2015; 8:94. [PMID: 25884799 PMCID: PMC4330930 DOI: 10.1186/s13071-015-0700-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 01/26/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Herbal remedies are widely used in many malaria endemic countries to treat patients, in particular in the absence of anti-malarial drugs and in some settings to prevent the disease. Herbal medicines may be specifically designed for prophylaxis and/or for blocking malaria transmission to benefit both, the individual consumer and the community at large. Neem represents a good candidate for this purpose due to its inhibitory effects on the parasite stages that cause the clinical manifestations of malaria and on those responsible for infection in the vector. Furthermore, neem secondary metabolites have been shown to interfere with various physiological processes in insect vectors. This study was undertaken to assess the impact of the standardised neem extract NeemAzal on the fitness of the malaria vector Anopheles stephensi following repeated exposure to the product through consecutive blood meals on treated mice. METHODS Batches of An. stephensi mosquitoes were offered 5 consecutive blood meals on female BALB/c mice treated with NeemAzal at an azadirachtin A concentration of 60, 105 or 150 mg/kg. The blood feeding capacity was estimated by measuring the haematin content of the rectal fluid excreted by the mosquitoes during feeding. The number of eggs laid was estimated by image analysis and their hatchability assessed by direct observations. RESULTS A dose and frequency dependent impact of NeemAzal treatment on the mosquito feeding capacity, oviposition and egg hatchability was demonstrated. In the 150 mg/kg treatment group, the mosquito feeding capacity was reduced by 50% already at the second blood meal and by 50 to 80% in all treatment groups at the fifth blood meal. Consequently, a 50 - 65% reduction in the number of eggs laid per female mosquito was observed after the fifth blood meal in all treatment groups. Similarly, after the fifth treated blood meal exposure, hatchability was found to be reduced by 62% and 70% in the 105 and 150 mg/kg group respectively. CONCLUSIONS The findings of this study, taken together with the accumulated knowledge on neem open the challenging prospects of designing neem-based formulations as multi-target phytomedicines exhibiting preventive, parasite transmission-blocking as well as anti-vectorial properties.
Collapse
Affiliation(s)
- Edson G Dembo
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy.
| | - Solomon M Abay
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy. .,School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Nisha Dahiya
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy.
| | - Johnbull S Ogboi
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy.
| | | | - Giulio Lupidi
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy.
| | - Giuseppina Chianese
- Department of Pharmacy, University of Naples Federico II, Via Montesano 49, 80131, Naples, Italy.
| | - Leonardo Lucantoni
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy. .,Current address: Discovery Biology, Eskitis Institute for Drug Discovery, Griffith University, Nathan, 4111, Queensland, Australia.
| | - Annette Habluetzel
- School of Pharmacy, University of Camerino, Piazza dei Costanti, 62032, Camerino, MC, Italy.
| |
Collapse
|
27
|
Assogba BS, Djogbénou LS, Saizonou J, Milesi P, Djossou L, Djegbe I, Oumbouke WA, Chandre F, Baba-Moussa L, Weill M, Makoutodé M. Phenotypic effects of concomitant insensitive acetylcholinesterase (ace-1(R)) and knockdown resistance (kdr(R)) in Anopheles gambiae: a hindrance for insecticide resistance management for malaria vector control. Parasit Vectors 2014; 7:548. [PMID: 25471264 PMCID: PMC4265331 DOI: 10.1186/s13071-014-0548-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 11/19/2014] [Indexed: 01/29/2023] Open
Abstract
Background Malaria is endemic in sub-Saharan Africa with considerable burden for human health. Major insecticide resistance mechanisms such as kdrR and ace-1Ralleles constitute a hindrance to malaria vector control programs. Anopheles gambiae bearing both kdr and ace-1 resistant alleles are increasingly recorded in wild populations. In order to maintain the efficacy of vector control strategies, the characterization of concomitant kdr and ace-1 resistance, and their pleiotropic effects on malaria vector phenotype on insecticide efficacy are important. Methods Larval and adult bioassays were performed with different insecticide classes used in public health following WHO standard guidelines on four laboratory Anopheles gambiae strains, sharing the same genetic background but harboring distinct resistance status: KISUMU with no resistance allele; ACERKIS with ace-1R allele; KISKDR with kdrR allele and ACERKDRKIS with both resistance alleles’ ace-1R and kdrR. Results Larval bioassays indicate that the homozygote resistant strain harboring both alleles (ACERKDRKIS) displayed slightly but significantly higher resistance level to various insecticides like carbamates (bendiocarb, p < 0.001; propoxur, p = 0.02) and organophosphates (chlorpyriphos-methyl, p = 0.002; fenitrothion, p < 0.001) when compared to ACERKIS strain. However, no differences were recorded between ACERKDRKIS and KISKDR resistance level against permethrin (Pyrethroid, p = 0.7) and DDT (Organochlorine, p = 0.24). For adult bioassays, the percentages of mosquitoes knocked down were significantly lower for ACERKDRKIS than for KISKDR with permethrin (p = 0.003) but not with deltamethrin. The percentage of mortality from adult bioassays was similar between ACERKDRKIS and ACERKIS with carbamates and organophosphates, or between ACERKDRKIS and KISKDR with pyrethroid and DDT. Concerning acetylcholinesterase enzyme, ACERKDRKIS strain showed similarAChE1 activity than that of ACERKIS. Conclusion The presence of both kdrR and ace-1R alleles seems to increase the resistance levels to both carbamate and organophosphate insecticides and at operational level, may represent an important threat to malaria vector control programs in West Africa.
Collapse
Affiliation(s)
- Benoît S Assogba
- Institut Régional de Santé Publique, Université d'Abomey Calavi, 01BP918, Cotonou, Benin. .,Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM2-IRD), Université Montpellier 2, Montpellier, France.
| | - Luc S Djogbénou
- Institut Régional de Santé Publique, Université d'Abomey Calavi, 01BP918, Cotonou, Benin.
| | - Jacques Saizonou
- Institut Régional de Santé Publique, Université d'Abomey Calavi, 01BP918, Cotonou, Benin.
| | - Pascal Milesi
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM2-IRD), Université Montpellier 2, Montpellier, France.
| | - Laurette Djossou
- Institut Régional de Santé Publique, Université d'Abomey Calavi, 01BP918, Cotonou, Benin.
| | - Innocent Djegbe
- Institut de Recherche pour le Développement (IRD), MIVEGEC (UMR 224-CNRS 5290-UM1-UM2), Centre de Recherche Entomologique de Cotonou (CREC), Cotonou, Benin.
| | - Welbeck A Oumbouke
- Centre de Recherche Entomologique de Cotonou (CREC), Health Ministry, Cotonou, Bénin.
| | - Fabrice Chandre
- Institut de recherche pour le développement, Unité Mixte de Recherche MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), Montpellier, France.
| | - Lamine Baba-Moussa
- Faculté des Sciences et Techniques, Laboratoire de Biologie et de Typage Moléculaire en Microbiologie, Université d'Abomey Calavi, 05 BP 1604, Cotonou, Benin.
| | - Mylene Weill
- Institut des Sciences de l'Evolution de Montpellier (UMR 5554, CNRS-UM2-IRD), Université Montpellier 2, Montpellier, France.
| | - Michel Makoutodé
- Institut Régional de Santé Publique, Université d'Abomey Calavi, 01BP918, Cotonou, Benin.
| |
Collapse
|
28
|
Lwetoijera DW, Harris C, Kiware SS, Dongus S, Devine GJ, McCall PJ, Majambere S. Increasing role of Anopheles funestus and Anopheles arabiensis in malaria transmission in the Kilombero Valley, Tanzania. Malar J 2014; 13:331. [PMID: 25150840 PMCID: PMC4150941 DOI: 10.1186/1475-2875-13-331] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/22/2014] [Indexed: 11/24/2022] Open
Abstract
Background In order to sustain the gains achieved by current malaria control strategies, robust surveillance systems that monitor dynamics of vectors and their roles in malaria transmission over time are essential. This longitudinal study demonstrates the trends in malaria vector dynamics and their relative contribution to malaria transmission in hyperendemic transmission settings in Tanzania. Methods The study was conducted in two villages within the Kilombero Valley, in rural Tanzania for five consecutive years (2008–2012). Seventy-two houses were selected per village and each house was sampled for mosquitoes monthly using a CDC light trap. Collected mosquitoes were assessed for species identity and sporozoite infection status using PCR and ELISA, respectively. Anopheles funestus and Anopheles arabiensis susceptibility to insecticides was assessed using WHO guidelines. Results A total of 100,810 malaria vectors were collected, of which 76% were Anopheles gambiae s. l. and 24% were An. funestus. Of all An. funestus samples that amplified with PCR (n = 2,737), 97% were An. funestus s.s., 2% were Anopheles rivorulum and 1% Anopheles leesoni. Whereas for An. gambiae s.l. (n = 8,117), 93% were An. arabiensis and 7% were Anopheles gambiae s.s. The proportion of An. gambiae s.s. identified by PCR (2,924) declined from 0.2% in the year 2008 to undetectable levels in 2012. Malaria transmission intensity significantly decreased from an EIR of 78.14 infectious bites/person/year in 2008 to 35 ib/p/yr in 2011 but rebounded to 226 ib/p/yr in 2012 coinciding with an increased role of An. funestus in malaria transmission. Insecticide susceptibility tests indicated high levels of resistance in An. funestus against deltamethrin (87%), permethrin (65%), lambda cyhalothrin (74%), bendiocarb (65%), and DDT (66%). Similarly, An. arabiensis showed insecticide resistance to deltamethrin (64%), permethrin (77%) and lambda cyhalothrin (42%) in 2014. Conclusion The results indicate the continuing role of An. arabiensis and the increasing importance of An. funestus in malaria transmission, and pyrethroid resistance development in both species. Complementary vector control and surveillance tools are needed that target the ecology, behaviour and insecticide resistance management of these vector species, in order to preserve the efficacy of LLINs.
Collapse
Affiliation(s)
- Dickson W Lwetoijera
- Environmental Health and Ecological Sciences Thematic Group, Ifakara Health Institute, PO Box 53, Ifakara, Tanzania.
| | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Abdalla H, Wilding CS, Nardini L, Pignatelli P, Koekemoer LL, Ranson H, Coetzee M. Insecticide resistance in Anopheles arabiensis in Sudan: temporal trends and underlying mechanisms. Parasit Vectors 2014; 7:213. [PMID: 24886129 PMCID: PMC4026821 DOI: 10.1186/1756-3305-7-213] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/08/2014] [Indexed: 12/03/2022] Open
Abstract
Background Malaria vector control in Sudan relies mainly on indoor residual spraying (IRS) and the use of long lasting insecticide treated bed nets (LLINs). Monitoring insecticide resistance in the main Sudanese malaria vector, Anopheles arabiensis, is essential for planning and implementing an effective vector control program in this country. Methods WHO susceptibility tests were used to monitor resistance to insecticides from all four WHO-approved classes of insecticide at four sentinel sites in Gezira state over a three year period. Insecticide resistance mechanisms were studied using PCR and microarray analyses. Results WHO susceptibility tests showed that Anopheles arabiensis from all sites were fully susceptible to bendiocarb and fenitrothion for the duration of the study (2008–2011). However, resistance to DDT and pyrethroids was detected at three sites, with strong seasonal variations evident at all sites. The 1014 F kdr allele was significantly associated with resistance to pyrethroids and DDT (P < 0.001) with extremely high effects sizes (OR > 7 in allelic tests). The 1014S allele was not detected in any of the populations tested. Microarray analysis of the permethrin-resistant population of An. arabiensis from Wad Medani identified a number of metabolic genes that were significantly over-transcribed in the field-collected resistant samples when compared to the susceptible Sudanese An. arabiensis Dongola strain. These included CYP6M2 and CYP6P3, two genes previously implicated in pyrethroid resistance in Anopheles gambiae s.s, and the epsilon-class glutathione-S-transferase, GSTe4. Conclusions These data suggest that both target-site mechanisms and metabolic mechanisms play an important role in conferring pyrethroid resistance in An. arabiensis from Sudan. Identification in An. arabiensis of candidate loci that have been implicated in the resistance phenotype in An. gambiae requires further investigation to confirm the role of these genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maureen Coetzee
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
31
|
Knox TB, Juma EO, Ochomo EO, Pates Jamet H, Ndungo L, Chege P, Bayoh NM, N’Guessan R, Christian RN, Hunt RH, Coetzee M. An online tool for mapping insecticide resistance in major Anopheles vectors of human malaria parasites and review of resistance status for the Afrotropical region. Parasit Vectors 2014; 7:76. [PMID: 24559061 PMCID: PMC3942210 DOI: 10.1186/1756-3305-7-76] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 02/05/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Malaria control programmes across Africa and beyond are facing increasing insecticide resistance in the major anopheline vectors. In order to preserve or prolong the effectiveness of the main malaria vector interventions, up-to-date and easily accessible insecticide resistance data that are interpretable at operationally-relevant scales are critical. Herein we introduce and demonstrate the usefulness of an online mapping tool, IR Mapper. METHODS A systematic search of published, peer-reviewed literature was performed and Anopheles insecticide susceptibility and resistance mechanisms data were extracted and added to a database after a two-level verification process. IR Mapper ( http://www.irmapper.com) was developed using the ArcGIS for JavaScript Application Programming Interface and ArcGIS Online platform for exploration and projection of these data. RESULTS Literature searches yielded a total of 4,084 susceptibility data points for 1,505 populations, and 2,097 resistance mechanisms data points for 1,000 populations of Anopheles spp. tested via recommended WHO methods from 54 countries between 1954 and 2012. For the Afrotropical region, data were most abundant for populations of An. gambiae, and pyrethroids and DDT were more often used in susceptibility assays (51.1 and 26.8% of all reports, respectively) than carbamates and organophosphates. Between 2001 and 2012, there was a clear increase in prevalence and distribution of confirmed resistance of An. gambiae s.l. to pyrethroids (from 41 to 87% of the mosquito populations tested) and DDT (from 64 to 91%) throughout the Afrotropical region. Metabolic resistance mechanisms were detected in western and eastern African populations and the two kdr mutations (L1014S and L1014F) were widespread. For An. funestus s.l., relatively few populations were tested, although in 2010-2012 resistance was reported in 50% of 10 populations tested. Maps are provided to illustrate the use of IR Mapper and the distribution of insecticide resistance in malaria vectors in Africa. CONCLUSIONS The increasing pyrethroid and DDT resistance in Anopheles in the Afrotropical region is alarming. Urgent attention should be afforded to testing An. funestus populations especially for metabolic resistance mechanisms. IR Mapper is a useful tool for investigating temporal and spatial trends in Anopheles resistance to support the pragmatic use of insecticidal interventions.
Collapse
Affiliation(s)
- Tessa B Knox
- Vestergaard Frandsen (Ltd.) East Africa, PO Box 66889–00800, Nairobi, Kenya
- Vestergaard Frandsen SA, Chemin de Messidor 5-7, CH– 1006 Lausanne, Switzerland
| | - Elijah O Juma
- Vestergaard Frandsen (Ltd.) East Africa, PO Box 66889–00800, Nairobi, Kenya
| | - Eric O Ochomo
- KEMRI/CDC Research and Public Health Collaboration, P.O. Box 1578, Kisumu 40100, Kenya
- Department of Biomedical Sciences, Maseno University, Maseno, Kenya
| | - Helen Pates Jamet
- Vestergaard Frandsen SA, Chemin de Messidor 5-7, CH– 1006 Lausanne, Switzerland
| | - Laban Ndungo
- Esri Eastern Africa, P.O. Box 57783, Nairobi 00200, Kenya
| | - Patrick Chege
- Esri Eastern Africa, P.O. Box 57783, Nairobi 00200, Kenya
| | - Nabie M Bayoh
- KEMRI/CDC Research and Public Health Collaboration, P.O. Box 1578, Kisumu 40100, Kenya
| | - Raphael N’Guessan
- Disease Control Department, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- Centre de Recherche Entomologique de Cotonou, Cotonou 06 BP 2604, Benin
| | - Riann N Christian
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Vector Control Reference Laboratory, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, Johannesburg, South Africa
| | - Richard H Hunt
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Maureen Coetzee
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Vector Control Reference Laboratory, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham, Johannesburg, South Africa
| |
Collapse
|
32
|
Nardini L, Christian RN, Coetzer N, Koekemoer LL. DDT and pyrethroid resistance in Anopheles arabiensis from South Africa. Parasit Vectors 2013; 6:229. [PMID: 23924547 PMCID: PMC3751093 DOI: 10.1186/1756-3305-6-229] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/02/2013] [Indexed: 11/11/2022] Open
Abstract
Background Pyrethroid resistance has been well documented in Anopheles arabiensis, one of the major African malaria vectors, and the predominant malaria vector in South Africa. Methods In this study, the genetic basis of pyrethroid resistance in a selected laboratory strain of An. arabiensis from South Africa was investigated using a custom-made microarray, known as the An. gambiae detoxification chip. Results A large number of P450 genes were over-transcribed, as well as a suite of redox genes and glutathione S-transferases. The five genes that showed the highest level of gene transcription when compared with an insecticide susceptible strain were: CYP6AG2, CYPZ1, TPX2, CYPZ2 and CYP6P1. Conclusions Permethrin resistance in South African An. arabiensis is associated with increased transcription of multiple genes, and a large proportion of these genes were also previously recorded as over-transcribed in another An. arabiensis strain selected for resistance to DDT with cross-resistance to deltamethrin. The deltamethrin resistance developed de novo in the DDT-selected strain and is most likely due to increased transcription of those genes associated with DDT resistance. However, of particular interest was the fact that the strain selected for resistance to pyrethroids did not develop de novo resistance to DDT. These differences are compared and discussed.
Collapse
Affiliation(s)
- Luisa Nardini
- Division of the National Health Laboratory Services, Vector Control Reference Laboratory, Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases, Johannesburg , Sandringham, South Africa.
| | | | | | | |
Collapse
|
33
|
Protopopoff N, Matowo J, Malima R, Kavishe R, Kaaya R, Wright A, West PA, Kleinschmidt I, Kisinza W, Mosha FW, Rowland M. High level of resistance in the mosquito Anopheles gambiae to pyrethroid insecticides and reduced susceptibility to bendiocarb in north-western Tanzania. Malar J 2013; 12:149. [PMID: 23638757 PMCID: PMC3655935 DOI: 10.1186/1475-2875-12-149] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/19/2013] [Indexed: 11/29/2022] Open
Abstract
Background To control malaria in Tanzania, two primary vector control interventions are being scaled up: long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS). The main threat to effective malaria control is the selection of insecticide resistance. While resistance to pyrethroids, the primary insecticide used for LLINs and IRS, has been reported among mosquito vectors in only a few sites in Tanzania, neighbouring East African countries are recording increasing levels of resistance. To monitor the rapidly evolving situation, the resistance status of the malaria vector Anopheles gambiae s.l to different insecticides and the prevalence of the kdr resistance allele involved in pyrethroid resistance were investigated in north-western Tanzania, an area that has been subject to several rounds of pyrethroid IRS since 2006. Methods Household collections of anopheline mosquitoes were exposed to diagnostic dosages of pyrethroid, DDT, and bendiocarb using WHO resistance test kits. The relative proportions of An. gambiae s.s and Anopheles arabiensis were also investigated among mosquitoes sampled using indoor CDC light traps. Anophelines were identified to species and the kdr mutation was detected using real time PCR TaqMan assays. Results From the light trap collections 80% of An. gambiae s.l were identified as An. gambiae s.s and 20% as An. arabiensis. There was cross-resistance between pyrethroids and DDT with mortality no higher than 40% reported in any of the resistance tests. The kdr-eastern variant was present in homozygous form in 97% of An. gambiae s.s but was absent in An. arabiensis. Anopheles gambiae s.s showed reduced susceptibility to the carbamate insecticide, bendiocarb, the proportion surviving WHO tests ranging from 0% to 30% depending on season and location. Conclusion Anopheles gambiae s.s has developed phenotypic resistance to pyrethroids and DDT and kdr frequency has almost reached fixation. Unlike in coastal Tanzania, where the ratio of An. gambiae s.s to An. arabiensis has decreased in response to vector control, An. gambiae s.s persists at high frequency in north-western Tanzania, probably due to selection of pyrethroid resistance, and this trend is likely to arise in other areas as resistance spreads or is subject to local selection from IRS or LLINs.
Collapse
Affiliation(s)
- Natacha Protopopoff
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Genetic mapping identifies a major locus spanning P450 clusters associated with pyrethroid resistance in kdr-free Anopheles arabiensis from Chad. Heredity (Edinb) 2013; 110:389-97. [PMID: 23299100 PMCID: PMC3607182 DOI: 10.1038/hdy.2012.112] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Prevention of malaria transmission throughout much of Africa is dependent on bednets that are impregnated with pyrethroid insecticides. Anopheles arabiensis is the major malaria vector in Chad and efforts to control this vector are threatened by the emergence of pyrethroid resistance. WHO bioassays revealed that An. arabiensis from Ndjamena is resistant to pyrethroids and dichlorodiphenyltrichloroethane (DDT) but fully susceptible to carbamates and organophosphates. No 1014F or 1014S kdr alleles were detected in this population. To determine the mechanisms that are responsible for resistance, genetic crosses were established between the Ndja strain and an insecticide susceptible population from Mozambique. Resistance was inherited as an autosomal trait and quantitative trait locus (QTL) mapping identified a single major locus on chromosome 2R, which explained 24.4% of the variance in resistance. This QTL is enriched in P450 genes including 25 cytochrome P450s in total. One of these, Cyp6p4 is 22-fold upregulated in the Ndja strain compared with the susceptible. Piperonyl butoxide (PBO) synergist and biochemical assays further support a role for P450s in conferring pyrethroid resistance in this population.
Collapse
|
35
|
Maharaj R, Morris N, Seocharan I, Kruger P, Moonasar D, Mabuza A, Raswiswi E, Raman J. The feasibility of malaria elimination in South Africa. Malar J 2012; 11:423. [PMID: 23253091 PMCID: PMC3573969 DOI: 10.1186/1475-2875-11-423] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/12/2012] [Indexed: 12/02/2022] Open
Abstract
Background Following the last major malaria epidemic in 2000, malaria incidence in South Africa has declined markedly. The decrease has been so emphatic that South Africa now meets the World Health Organization (WHO) threshold for malaria elimination. Given the Millennium Development Goal of reversing the spread of malaria by 2015, South Africa is being urged to adopt an elimination agenda. This study aimed to determine the appropriateness of implementing a malaria elimination programme in present day South Africa. Methods An assessment of the progress made by South Africa in terms of implementing an integrated malaria control programme across the three malaria-endemic provinces was undertaken. Vector control and case management data were analysed from the period of 2000 until 2011. Results Both malaria-related morbidity and mortality have decreased significantly across all three malaria-endemic provinces since 2000. The greatest decline was seen in KwaZulu-Natal where cases decreased from 42,276 in 2000 to 380 in 2010 and deaths dropped from 122 in 2000 to six in 2010. Although there has been a 49.2 % (8,553 vs 4,214) decrease in the malaria cases reported in Limpopo Province, currently it is the largest contributor to the malaria incidence in South Africa. Despite all three provinces reporting average insecticide spray coverage of over 80%, malaria incidence in both Mpumalanga and Limpopo remains above the elimination threshold. Locally transmitted case numbers have declined in all three malaria provinces but imported case numbers have been increasing. Knowledge gaps in vector distribution, insecticide resistance status and drug usage were also identified. Conclusions Malaria elimination in South Africa is a realistic possibility if certain criteria are met. Firstly, there must be continued support for the existing malaria control programmes to ensure the gains made are sustained. Secondly, cross border malaria control initiatives with neighbouring countries must be strongly encouraged and supported to reduce malaria in the region and the importation of malaria into South Africa. Thirdly, operational research, particularly on vector distribution and insecticide resistance status must be conducted as a matter of urgency, and finally, the surveillance systems must be refined to ensure the information required to inform an elimination agenda are routinely collected.
Collapse
Affiliation(s)
- Rajendra Maharaj
- Malaria Research Unit, Medical Research Council, 491 Ridge Road, Durban, KwaZulu-Natal 4001, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bouwman H, Kylin H, Sereda B, Bornman R. High levels of DDT in breast milk: intake, risk, lactation duration, and involvement of gender. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 170:63-70. [PMID: 22766005 DOI: 10.1016/j.envpol.2012.06.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/03/2012] [Accepted: 06/05/2012] [Indexed: 06/01/2023]
Abstract
We investigated presence and levels of DDT in 163 breast milk samples from four South African villages where, in three of them, malaria is controlled with DDT-sprayed indoors. Mean ΣDDT levels in breast milk were 18, 11, and 9.5 mg/kg mf (milk fat) from the three DDT-sprayed villages, respectively, including the highest ΣDDT level ever reported for breast milk from South Africa (140 mg/kg mf). Understanding the causes for these differences would be informative for exposure reduction intervention. The Provisional Tolerable Daily Intake (PTDI) for DDT by infants, and the Maximum Residue Limit (MRL) were significantly exceeded. DDT had no effect on duration of lactation. There were indications (not significant) from DDT-sprayed villages that first-born female infants drink milk with more ΣDDT than first-born male infants, and vice versa for multipara male and female infants, suggesting gender involvement on levels of DDT in breast milk - requiring further investigation.
Collapse
Affiliation(s)
- Hindrik Bouwman
- School of Environmental Sciences and Development, North-West University, Potchefstroom 2520, South Africa.
| | | | | | | |
Collapse
|
37
|
Ketseoglou I, Bouwer G. The susceptibility of five African Anopheles species to Anabaena PCC 7120 expressing Bacillus thuringiensis subsp. israelensis mosquitocidal cry genes. Parasit Vectors 2012; 5:220. [PMID: 23036082 PMCID: PMC3480929 DOI: 10.1186/1756-3305-5-220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 09/27/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria, one of the leading causes of death in Africa, is transmitted by the bite of an infected female Anopheles mosquito. Problems associated with the development of resistance to chemical insecticides and concerns about the non-target effects and persistence of chemical insecticides have prompted the development of environmentally friendly mosquito control agents. The aim of this study was to evaluate the larvicidal activity of a genetically engineered cyanobacterium, Anabaena PCC 7120#11, against five African Anopheles species in laboratory bioassays. FINDINGS There were significant differences in the susceptibility of the anopheline species to PCC 7120#11. The ranking of the larvicidal activity of PCC 7120#11 against species in the An. gambiae complex was: An. merus CONCLUSIONS PCC 7120#11 exhibited good larvicidal activity against larvae of the An. gambiae complex, but relatively weak larvicidal activity against An. funestus. The study has highlighted the importance of evaluating a novel mosquitocidal agent against a range of malaria vectors so as to obtain a clear understanding of the agent's spectrum of activity and potential as a vector control agent.
Collapse
Affiliation(s)
- Irene Ketseoglou
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
| | - Gustav Bouwer
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
| |
Collapse
|
38
|
Maharaj R, Maharaj V, Crouch NR, Bhagwandin N, Folb PI, Pillay P, Gayaram R. Screening of selected ethnomedicinal plants from South Africa for larvicidal activity against the mosquito Anopheles arabiensis. Malar J 2012; 11:320. [PMID: 22963538 PMCID: PMC3472289 DOI: 10.1186/1475-2875-11-320] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/28/2012] [Indexed: 11/29/2022] Open
Abstract
Background This study was initiated to establish whether any South African ethnomedicinal plants (indigenous or exotic), that have been reported to be used traditionally to repel or kill mosquitoes, exhibit effective mosquito larvicidal properties. Methods Extracts of a selection of plant taxa sourced in South Africa were tested for larvicidal properties in an applicable assay. Thirty 3rd instar Anopheles arabiensis larvae were exposed to various extract types (dichloromethane, dichloromethane/methanol) (1:1), methanol and purified water) of each species investigated. Mortality was evaluated relative to the positive control Temephos (Mostop; Agrivo), an effective emulsifiable concentrate larvicide. Results Preliminary screening of crude extracts revealed substantial variation in toxicity with 24 of the 381 samples displaying 100% larval mortality within the seven day exposure period. Four of the high activity plants were selected and subjected to bioassay guided fractionation. The results of the testing of the fractions generated identified one fraction of the plant, Toddalia asiatica as being very potent against the An. arabiensis larvae. Conclusion The present study has successfully identified a plant with superior larvicidal activity at both the crude and semi pure fractions generated through bio-assay guided fractionation. These results have initiated further research into isolating the active compound and developing a malaria vector control tool.
Collapse
Affiliation(s)
- Rajendra Maharaj
- South African Medical Research Council, 491 Ridge Road, Overport, Durban 4001, South Africa.
| | | | | | | | | | | | | |
Collapse
|
39
|
Evaluation of the efficacy of bendiocarb in indoor residual spraying against pyrethroid resistant malaria vectors in Benin: results of the third campaign. Parasit Vectors 2012; 5:163. [PMID: 22873930 PMCID: PMC3437192 DOI: 10.1186/1756-3305-5-163] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/29/2012] [Indexed: 11/26/2022] Open
Abstract
Background Since 2008, the National Malaria Control Program (NMCP) has been engaged in the implementation of indoor residual spraying (IRS) in Benin. The first and second round was a success with a drastic decrease of malaria transmission in areas under IRS. We present here the results of the third round. The purpose of this study was to compare the results of the third round of IRS to those achieved during the first two rounds. A second success of IRS will enable the Government of Benin to extend the strategy to other areas. Methods Mosquito collections were carried out in the department of Ouémé where the homes of four districts were treated with bendiocarb. In these districts, more than 350 000 inhabitants were protected by IRS. A fifth untreated district served as control. In the five districts, mosquito collections were organized to follow the dynamics of malaria transmission and possible changes in the behavior of mosquitoes. Results A significant reduction in human biting rate was recorded after the third round of IRS, specifically in Adjohoun (89.78%), Dangbo (56.8%) and Missérété (93.22%) where an inhabitant received less than 2 bites of An. gambiae per night. During this same time, the entomological inoculation rate (EIR) declined dramatically in all areas under intervention (74.26% reduction). We also noted a significant reduction in longevity, the blood feeding rate of the vectors and an increase in exophily induced by bendiocarb on An. gambiae and Mansonia spp. Conclusion The present study showed, once again, the effectiveness of bendiocarb on anopheles populations resistant to pyrethroids. This product can be recommended in combination with other insecticides for the management of vector resistance to insecticides.
Collapse
|
40
|
Nardini L, Christian RN, Coetzer N, Ranson H, Coetzee M, Koekemoer LL. Detoxification enzymes associated with insecticide resistance in laboratory strains of Anopheles arabiensis of different geographic origin. Parasit Vectors 2012; 5:113. [PMID: 22676389 PMCID: PMC3430573 DOI: 10.1186/1756-3305-5-113] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/03/2012] [Indexed: 11/28/2022] Open
Abstract
Background The use of insecticides to control malaria vectors is essential to reduce the prevalence of malaria and as a result, the development of insecticide resistance in vector populations is of major concern. Anopheles arabiensis is one of the main African malaria vectors and insecticide resistance in this species has been reported in a number of countries. The aim of this study was to investigate the detoxification enzymes that are involved in An. arabiensis resistance to DDT and pyrethroids. Methods The detoxification enzyme profiles were compared between two DDT selected, insecticide resistant strains of An. arabiensis, one from South Africa and one from Sudan, using the An. gambiae detoxification chip, a boutique microarray based on the major classes of enzymes associated with metabolism and detoxification of insecticides. Synergist assays were performed in order to clarify the roles of over-transcribed detoxification genes in the observed resistance phenotypes. In addition, the presence of kdr mutations in the colonies under investigation was determined. Results The microarray data identifies several genes over-transcribed in the insecticide selected South African strain, while in the Sudanese population, only one gene, CYP9L1, was found to be over-transcribed. The outcome of the synergist experiments indicate that the over-transcription of detoxification enzymes is linked to deltamethrin resistance, while DDT and permethrin resistance are mainly associated with the presence of the L1014F kdr mutation. Conclusions These data emphasise the complexity associated with resistance phenotypes and suggest that specific insecticide resistance mechanisms cannot be extrapolated to different vector populations of the same species.
Collapse
Affiliation(s)
- Luisa Nardini
- Vector Control Reference Unit, Centre for Opportunistic, Tropical and Hospital Infections, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa.
| | | | | | | | | | | |
Collapse
|
41
|
Kiware SS, Chitnis N, Moore SJ, Devine GJ, Majambere S, Merrill S, Killeen GF. Simplified models of vector control impact upon malaria transmission by zoophagic mosquitoes. PLoS One 2012; 7:e37661. [PMID: 22701527 PMCID: PMC3365128 DOI: 10.1371/journal.pone.0037661] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 04/23/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND High coverage of personal protection measures that kill mosquitoes dramatically reduce malaria transmission where vector populations depend upon human blood. However, most primary malaria vectors outside of sub-Saharan Africa can be classified as "very zoophagic," meaning they feed occasionally (<10% of blood meals) upon humans, so personal protection interventions have negligible impact upon their survival. METHODS AND FINDINGS We extended a published malaria transmission model to examine the relationship between transmission, control, and the baseline proportion of bloodmeals obtained from humans (human blood index). The lower limit of the human blood index enables derivation of simplified models for zoophagic vectors that (1) Rely on only three field-measurable parameters. (2) Predict immediate and delayed (with and without assuming reduced human infectivity, respectively) impacts of personal protection measures upon transmission. (3) Illustrate how appreciable indirect communal-level protection for non-users can be accrued through direct personal protection of users. (4) Suggest the coverage and efficacy thresholds required to attain epidemiological impact. The findings suggest that immediate, indirect, community-wide protection of users and non-users alike may linearly relate to the efficacy of a user's direct personal protection, regardless of whether that is achieved by killing or repelling mosquitoes. High protective coverage and efficacy (≥80%) are important to achieve epidemiologically meaningful impact. Non-users are indirectly protected because the two most common species of human malaria are strict anthroponoses. Therefore, the small proportion of mosquitoes that are killed or diverted while attacking humans can represent a large proportion of those actually transmitting malaria. CONCLUSIONS Simplified models of malaria transmission by very zoophagic vectors may be used by control practitioners to predict intervention impact interventions using three field-measurable parameters; the proportion of human exposure to mosquitoes occurring when an intervention can be practically used, its protective efficacy when used, and the proportion of people using it.
Collapse
Affiliation(s)
- Samson S Kiware
- Biomedical and Environmental Thematic Group, Ifakara Health Institute, Ifakara, Tanzania.
| | | | | | | | | | | | | |
Collapse
|
42
|
da Silva-Nunes M, Moreno M, Conn JE, Gamboa D, Abeles S, Vinetz JM, Ferreira MU. Amazonian malaria: asymptomatic human reservoirs, diagnostic challenges, environmentally driven changes in mosquito vector populations, and the mandate for sustainable control strategies. Acta Trop 2012; 121:281-91. [PMID: 22015425 DOI: 10.1016/j.actatropica.2011.10.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/30/2011] [Accepted: 10/06/2011] [Indexed: 11/28/2022]
Abstract
Across the Americas and the Caribbean, nearly 561,000 slide-confirmed malaria infections were reported officially in 2008. The nine Amazonian countries accounted for 89% of these infections; Brazil and Peru alone contributed 56% and 7% of them, respectively. Local populations of the relatively neglected parasite Plasmodium vivax, which currently accounts for 77% of the regional malaria burden, are extremely diverse genetically and geographically structured. At a time when malaria elimination is placed on the public health agenda of several endemic countries, it remains unclear why malaria proved so difficult to control in areas of relatively low levels of transmission such as the Amazon Basin. We hypothesize that asymptomatic parasite carriage and massive environmental changes that affect vector abundance and behavior are major contributors to malaria transmission in epidemiologically diverse areas across the Amazon Basin. Here we review available data supporting this hypothesis and discuss their implications for current and future malaria intervention policies in the region. Given that locally generated scientific evidence is urgently required to support malaria control interventions in Amazonia, we briefly describe the aims of our current field-oriented malaria research in rural villages and gold-mining enclaves in Peru and a recently opened agricultural settlement in Brazil.
Collapse
|
43
|
Munhenga G, Brooke BD, Chirwa TF, Hunt RH, Coetzee M, Govender D, Koekemoer LL. Evaluating the potential of the sterile insect technique for malaria control: relative fitness and mating compatibility between laboratory colonized and a wild population of Anopheles arabiensis from the Kruger National Park, South Africa. Parasit Vectors 2011; 4:208. [PMID: 22041133 PMCID: PMC3216276 DOI: 10.1186/1756-3305-4-208] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/31/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The successful suppression of a target insect population using the sterile insect technique (SIT) partly depends on the premise that the laboratory insects used for mass rearing are genetically compatible with the target population, that the mating competitiveness of laboratory reared males is at least comparable to that of their wild counterparts, and that mass rearing and sterilization processes do not in themselves compromise male fitness to a degree that precludes them from successfully competing for mates in the wild. This study investigated the fitness and sexual cross-compatibility between samples of field collected and laboratory reared An. arabiensis under laboratory conditions. RESULTS The physiological and reproductive fitness of the MALPAN laboratory strain is not substantially modified with respect to the field population at Malahlapanga. Further, a high degree of mating compatibility between MALPAN and the Malahlapanga population was established based on cross-mating experiments. Lastly, the morphological characteristics of hybrid ovarian polytene chromosomes further support the contention that the MALPAN laboratory colony and the An. arabiensis population at Malahlapanga are genetically homogenous and therefore compatible. CONCLUSIONS It is concluded that the presence of a perennial and isolated population of An. arabiensis at Malahlapanga presents a unique opportunity for assessing the feasibility of SIT as a malaria vector control option. The MALPAN laboratory colony has retained sufficient enough measures of reproductive and physiological fitness to present as a suitable candidate for male sterilization, mass rearing and subsequent mass release of sterile males at Malahlapanga in order to further assess the feasibility of SIT in a field setting.
Collapse
Affiliation(s)
- Givemore Munhenga
- Vector Control Reference Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Private Bag X4, Sandringham, Johannesburg 2131, South Africa
| | | | | | | | | | | | | |
Collapse
|
44
|
Sibanda MM, Focke WW, Labuschagne FJWJ, Moyo L, Nhlapo NS, Maity A, Muiambo H, Massinga P, Crowther NAS, Coetzee M, Brindley GWA. Degradation of insecticides used for indoor spraying in malaria control and possible solutions. Malar J 2011; 10:307. [PMID: 22008292 PMCID: PMC3213200 DOI: 10.1186/1475-2875-10-307] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 10/18/2011] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The insecticide dichloro-diphenyl-trichloroethane (DDT) is widely used in indoor residual spraying (IRS) for malaria control owing to its longer residual efficacy in the field compared to other World Health Organization (WHO) alternatives. Suitable stabilization to render these alternative insecticides longer lasting could provide a less controversial and more acceptable and effective alternative insecticide formulations than DDT. METHODS This study sought to investigate the reasons behind the often reported longer lasting behaviour of DDT by exposing all the WHO approved insecticides to high temperature, high humidity and ultra-violet light. Interactions between the insecticides and some mineral powders in the presence of an aqueous medium were also tested. Simple insecticidal paints were made using slurries of these mineral powders whilst some insecticides were dispersed into a conventional acrylic paint binder. These formulations were then spray painted on neat and manure coated mud plaques, representative of the material typically used in rural mud houses, at twice the upper limit of the WHO recommended dosage range. DDT was applied directly onto mud plaques at four times the WHO recommended concentration and on manure plaques at twice WHO recommended concentration. All plaques were subjected to accelerated ageing conditions of 40°C and a relative humidity of 90%. RESULTS The pyrethroids insecticides outperformed the carbamates and DDT in the accelerated ageing tests. Thus UV exposure, high temperature oxidation and high humidity per se were ruled out as the main causes of failure of the alternative insecticides. Gas chromatography (GC) spectrograms showed that phosphogypsum stabilised the insecticides the most against alkaline degradation (i.e., hydrolysis). Bioassay testing showed that the period of efficacy of some of these formulations was comparable to that of DDT when sprayed on mud surfaces or cattle manure coated surfaces. CONCLUSIONS Bioassay experiments indicated that incorporating insecticides into a conventional paint binder or adsorbing them onto phosphogypsum can provide for extended effective life spans that compare favourably with DDT's performance under accelerated ageing conditions. Best results were obtained with propoxur in standard acrylic emulsion paint. Similarly, insecticides adsorbed on phosphogypsum and sprayed on cattle manure coated surfaces provided superior lifespans compared with DDT sprayed directly on a similar surface.
Collapse
Affiliation(s)
- Mthokozisi M Sibanda
- Institute of Applied Materials, Departments of Chemistry and Chemical Engineering, University of Pretoria, Lynwood Road, Pretoria 0002, South Africa
| | - Walter W Focke
- Institute of Applied Materials, Departments of Chemistry and Chemical Engineering, University of Pretoria, Lynwood Road, Pretoria 0002, South Africa
| | - Frederick JWJ Labuschagne
- Institute of Applied Materials, Departments of Chemistry and Chemical Engineering, University of Pretoria, Lynwood Road, Pretoria 0002, South Africa
| | - Lumbidzani Moyo
- Institute of Applied Materials, Departments of Chemistry and Chemical Engineering, University of Pretoria, Lynwood Road, Pretoria 0002, South Africa
| | - Nontete S Nhlapo
- Institute of Applied Materials, Departments of Chemistry and Chemical Engineering, University of Pretoria, Lynwood Road, Pretoria 0002, South Africa
| | - Arjun Maity
- Polymers and Composites, MSM - CSIR, 1 Meiring Naude Road, Brummeria, Pretoria 0001, South Africa
| | - Herminio Muiambo
- Institute of Applied Materials, Departments of Chemistry and Chemical Engineering, University of Pretoria, Lynwood Road, Pretoria 0002, South Africa
- Department of Chemistry, Eduardo Mondlane University, P.O. Box 257, Maputo, Mozambique
| | - Pedro Massinga
- Institute of Applied Materials, Departments of Chemistry and Chemical Engineering, University of Pretoria, Lynwood Road, Pretoria 0002, South Africa
- Department of Chemistry, Eduardo Mondlane University, P.O. Box 257, Maputo, Mozambique
| | - Nico AS Crowther
- Department of Statistics, University of Pretoria, Lynwood Road, Pretoria 0002, South Africa
| | - Maureen Coetzee
- Malaria Entomology Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Institute for Communicable Diseases, 1 Modderfontein Road, Sandringham 2131, South Africa
| | - Gordon WA Brindley
- Institute of Applied Materials, Departments of Chemistry and Chemical Engineering, University of Pretoria, Lynwood Road, Pretoria 0002, South Africa
| |
Collapse
|
45
|
Manaca MN, Grimalt JO, Sunyer J, Mandomando I, Gonzalez R, Sacarlal J, Dobaño C, Alonso PL, Menendez C. Concentration of DDT compounds in breast milk from African women (Manhiça, Mozambique) at the early stages of domestic indoor spraying with this insecticide. CHEMOSPHERE 2011; 85:307-314. [PMID: 21764104 DOI: 10.1016/j.chemosphere.2011.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 03/19/2011] [Accepted: 06/01/2011] [Indexed: 05/31/2023]
Abstract
Breast milk concentrations of 4,4'-DDT and its related compounds were studied in samples collected in 2002 and 2006 from two populations of mothers in Manhiça, Mozambique. The 2006 samples were obtained several months after implementation of indoor residual spraying (IRS) with DDT for malaria vector control in dwellings and those from 2002 were taken as reference prior to DDT use. A significant increase in 4,4'-DDT and its main metabolite, 4,4'-DDE, was observed between the 2002 (median values 2.4 and 0.9 ng/ml, respectively) and the 2006 samples (7.3 and 2.6 ng/ml, respectively, p<0.001 and 0.019, respectively). This observation identifies higher body burden intakes of these compounds in pregnant women already in these initial stages of the IRS program. The increase in both 4,4'-DDT and 4,4'-DDE suggest a rapid transformation of DDT into DDE after incorporation of the insecticide residues. The median baseline concentrations in breast milk in 2002 were low, and the median concentrations in 2006 (280 ng/g lipid) were still lower than in other world populations. However, the observed increases were not uniform and in some individuals high values (5100 ng/g lipid) were determined. Significant differences were found between the concentrations of DDT and related compounds in breast milk according to parity, with higher concentrations in primiparae than multiparae women. These differences overcome the age effect in DDT accumulation between the two groups and evidence that women transfer a significant proportion of their body burden of DDT and its metabolites to their infants.
Collapse
Affiliation(s)
- Maria N Manaca
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
The effects of age, exposure history and malaria infection on the susceptibility of Anopheles mosquitoes to low concentrations of pyrethroid. PLoS One 2011; 6:e24968. [PMID: 21966392 PMCID: PMC3178580 DOI: 10.1371/journal.pone.0024968] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 08/25/2011] [Indexed: 11/19/2022] Open
Abstract
Chemical insecticides are critical components of malaria control programs. Their ability to eliminate huge numbers of mosquitoes allows them to swiftly interrupt disease transmission, but that lethality also imposes immense selection for insecticide resistance. Targeting control at the small portion of the mosquito population actually responsible for transmitting malaria parasites to humans would reduce selection for resistance, yet maintain effective malaria control. Here, we ask whether simply lowering the concentration of the active ingredient in insecticide formulations could preferentially kill mosquitoes infected with malaria and/or those that are potentially infectious, namely, old mosquitoes. Using modified WHO resistance-monitoring assays, we exposed uninfected Anopheles stephensi females to low concentrations of the pyrethroid permethrin at days 4, 8, 12, and 16 days post-emergence and monitored survival for at least 30 days to evaluate the immediate and long-term effects of repeated exposure as mosquitoes aged. We also exposed Plasmodium chabaudi- and P. yoelii-infected An. stephensi females. Permethrin exposure did not consistently increase mosquito susceptibility to subsequent insecticide exposure, though older mosquitoes were more susceptible. A blood meal slightly improved survival after insecticide exposure; malaria infection did not detectably increase insecticide susceptibility. Exposure to low concentrations over successive feeding cycles substantially altered cohort age-structure. Our data suggest the possibility that, where high insecticide coverage can be achieved, low concentration formulations have the capacity to reduce disease transmission without the massive selection for resistance imposed by current practice.
Collapse
|
47
|
Djogbénou L, Pasteur N, Akogbéto M, Weill M, Chandre F. Insecticide resistance in the Anopheles gambiae complex in Benin: a nationwide survey. MEDICAL AND VETERINARY ENTOMOLOGY 2011; 25:256-267. [PMID: 21155858 DOI: 10.1111/j.1365-2915.2010.00925.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Benin has embraced World Health Organization-recommended preventive strategies to control malaria. Its National Malaria Control Programme is implementing and/or coordinating various actions and conducting evaluation trials of mosquito control strategies. Mosquito control is based on the use of insecticide-treated nets and indoor residual spraying, but the efficacy of these strategies to control malaria vectors is endangered by insecticide resistance. Here, we present the results of a nationwide survey on the status of insecticide susceptibility and resistance in Anopheles gambiae s.l. (Diptera: Culicidae) carried out in Benin in 2006-2007 (i.e. before extensive vector control was undertaken). Overall, our study showed that the S molecular form of An. gambiae s.s. predominates and is widely distributed across the country, whereas the frequency of the M form shows a strong decline with increasing latitude. Susceptibility to DDT, permethrin, carbosulfan and chlorpyrifos-methyl was assessed; individual mosquitoes were identified for species and molecular forms, and genotyped for the kdr and ace-1 loci. Full susceptibility to chlorpyrifos-methyl was recorded and very few samples displayed resistance to carbosulfan. High resistance levels to permethrin were detected in most samples and almost all samples displayed resistance to DDT. The kdr-Leu-Phe mutation was present in all localities and in both molecular forms of An. gambiae s.s. Furthermore, the ace-1(R) mutation was predominant in the S form, but absent from the M form. By contrast, no target modification was observed in Anopheles arabiensis. Resistance in the An. gambiae S molecular form in this study seemed to be associated with agricultural practices. Our study showed important geographic variations which must be taken into account in the vector control strategies that will be applied in different regions of Benin. It also emphasizes the need to regularly monitor insecticide resistance across the country and to adapt measures to manage resistance.
Collapse
Affiliation(s)
- L Djogbénou
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin.
| | | | | | | | | |
Collapse
|
48
|
Norris LC, Norris DE. Efficacy of long-lasting insecticidal nets in use in Macha, Zambia, against the local Anopheles arabiensis population. Malar J 2011; 10:254. [PMID: 21880143 PMCID: PMC3175477 DOI: 10.1186/1475-2875-10-254] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 08/31/2011] [Indexed: 11/11/2022] Open
Abstract
Background The mosquito Anopheles arabiensis is the primary vector of Plasmodium falciparum in Macha, Zambia. A major portion of Zambia's current malaria control programme relies on long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) with insecticides. Currently, the efficacy of these measures against An. arabiensis in Macha is unknown, and previous data has shown that An. arabiensis has continued to feed on human hosts, despite high ITN coverage. It is possible that this could be due to either decreased efficacy of ITNs in used in Macha, or pyrethroid resistance in the vector. Methods F1 offspring of field-collected adult An. arabiensis were tested for insecticide resistance, using CDC bottle bioassays and deltamethrin ITN susceptibility assays. The mosquitoes were characterized for the knock-down resistance (kdr) allele by PCR. LLINs that had been in use for two years in nearby villages were collected and tested for residual deltamethrin concentration and net quality, and were used in bioassays against susceptible colonized Anopheles gambiae s.s. Keele. Additionally, a survey on ITN use and care was conducted among LLIN owners. Results In the F1 An. arabiensis field population, low levels of resistance to DDT and deltamethrin-treated net material were detected by bioassay, although the knock-down resistance (kdr) allele not present in the population. ITN evaluations revealed high variability in residual deltamethrin concentration, quality of the nets, and mosquito mortality in bioassays. Mortality against An. gambiae s.s. in bioassays was correlated with residual deltamethrin concentration, which was dependent upon the number of washes each net had received. Conclusions Proper LLIN care was a strong determinant of LLIN efficacy, indicating that education on the importance of LLIN use and care is key when distributing nets. As there is little insecticide resistance in the local vector population, degradation of LLINs most likely allowed for continued human feeding by An. arabiensis. Continued monitoring and assessment of both the vector population and the efficacy of LLINs in use is necessary in order to appropriately modify vector control operations and prevent the development of pyrethroid resistance.
Collapse
Affiliation(s)
- Laura C Norris
- W, Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N, Wolfe St, Baltimore, MD 21218, USA.
| | | |
Collapse
|
49
|
Screening for adulticidal bioactivity of South African plants against Anopheles arabiensis. Malar J 2011; 10:233. [PMID: 21835000 PMCID: PMC3170252 DOI: 10.1186/1475-2875-10-233] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 08/11/2011] [Indexed: 12/01/2022] Open
Abstract
Background This study was conducted to evaluate whether a selection of South African ethnomedicinal plants included in this study displayed insecticidal properties when screened against adult stages of the mosquito. Methods 381 crude extracts of 80 plant taxa in 42 families were sprayed onto ceramic tiles and screened using the cone bio-assay method for insecticide efficacy testing. Blood-fed, female Anopheles arabiensis mosquitoes were exposed to the treated tiles for a period of sixty minutes. Mosquito mortality was monitored for twenty-four hours. Results Of all the extracts analysed, the highest activity was observed in Ptaeroxylon obliquum (Ptaeroxylaceae) and Pittosporum viridiflorum (Pittosporaceae), a single extract from each, exhibiting more than 50% mortality. A large proportion (81.63%) of the extracts tested displayed low levels of mosquitocidal activity. The remainder of the extracts (17.85%) exhibited no bioactivity (0% mortality). Conclusions The screening results have shown that in accordance with WHO standards, none of the crude extracts tested had exhibited greater than 60% mortality against the adult stages of the malaria vector Anopheles arabiensis.
Collapse
|
50
|
George J, Blanford S, Domingue MJ, Thomas MB, Read AF, Baker TC. Reduction in host-finding behaviour in fungus-infected mosquitoes is correlated with reduction in olfactory receptor neuron responsiveness. Malar J 2011; 10:219. [PMID: 21812944 PMCID: PMC3162589 DOI: 10.1186/1475-2875-10-219] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 08/03/2011] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Chemical insecticides against mosquitoes are a major component of malaria control worldwide. Fungal entomopathogens formulated as biopesticides and applied as insecticide residual sprays could augment current control strategies and mitigate the evolution of resistance to chemical-based insecticides. METHODS Anopheles stephensi mosquitoes were exposed to Beauveria bassiana or Metarhizium acridum fungal spores and sub-lethal effects of exposure to fungal infection were studied, especially the potential for reductions in feeding and host location behaviours related to olfaction. Electrophysiological techniques, such as electroantennogram, electropalpogram and single sensillum recording techniques were then employed to investigate how fungal exposure affected the olfactory responses in mosquitoes. RESULTS Exposure to B. bassiana caused significant mortality and reduced the propensity of mosquitoes to respond and fly to a feeding stimulus. Exposure to M. acridum spores induced a similar decline in feeding propensity, albeit more slowly than B. bassiana exposure. Reduced host-seeking responses following fungal exposure corresponded to reduced olfactory neuron responsiveness in both antennal electroantennogram and maxillary palp electropalpogram recordings. Single cell recordings from neurons on the palps confirmed that fungal-exposed behavioural non-responders exhibited significantly impaired responsiveness of neurons tuned specifically to 1-octen-3-ol and to a lesser degree, to CO2. CONCLUSIONS Fungal infection reduces the responsiveness of mosquitoes to host odour cues, both behaviourally and neuronally. These pre-lethal effects are likely to synergize with fungal-induced mortality to further reduce the capacity of mosquito populations exposed to fungal biopesticides to transmit malaria.
Collapse
Affiliation(s)
- Justin George
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Simon Blanford
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael J Domingue
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew B Thomas
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew F Read
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
| | - Thomas C Baker
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|