1
|
Chen Y, Wang Y, Fu H, Zeng W, Wang P, Zheng X, Yang F. A new Bowman-Birk type protease inhibitor regulated by MeJA pathway in maize exhibits anti-feedant activity against the Ostrinia furnacalis. PLANT MOLECULAR BIOLOGY 2024; 114:110. [PMID: 39361185 DOI: 10.1007/s11103-024-01506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024]
Abstract
Jasmonic acid (JA), an important plant hormone, plays a crucial role in defending against herbivorous insects. In this study, we have identified a new Bowman-Birk type protease inhibitor (BBTI) protein in maize that is regulated by the JA pathway and exhibits significant antifeedant activity, which is notably induced by exogenous Methyl Jasmonate and Ostrinia furnacalis feeding treatments. Bioinformatics analysis revealed significant differences in the BBTI protein among different maize inbred lines, except for the conserved domain. Prokaryotic and eukaryotic expression systems were constructed and expressed, and combined with bioassays, it was demonstrated that the antifeedant activity of BBTI is determined by protein modifications and conserved domains. Through RT-qPCR detection of BBTI and JA regulatory pathway-related genes' temporal expression in different maize inbred lines, we identified the regulatory mechanism of BBTI synthesis under the JA pathway. This study successfully cloned and identified the MeJA-induced anti-feedant activity gene BBTI and conducted functional validation in different maize inbred lines, providing valuable insights into the response mechanism of insect resistance induced by the plant JA pathway. The increased expression of the anti-feedant activity gene BBTI through exogenous MeJA induction may offer a potential new strategy for mediating plant defense against Lepidoptan insects.
Collapse
Affiliation(s)
- Yuanlong Chen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Yanbo Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Haiyan Fu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Wei Zeng
- School of Economies and Management, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pan Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xu Zheng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Fengshan Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
2
|
He T, Chen L, Wu Y, Wang J, Wu Q, Sun J, Ding C, Zhou T, Chen L, Jin A, Li Y, Zhu Q. Combined Metabolome and Transcriptome Analyses of Maize Leaves Reveal Global Effect of Biochar on Mechanisms Involved in Anti-Herbivory to Spodoptera frugiperda. Metabolites 2024; 14:498. [PMID: 39330505 PMCID: PMC11433984 DOI: 10.3390/metabo14090498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Fall armyworm (FAW, Spodoptera frugiperda) has now spread to more than 26 Chinese provinces. The government is working with farmers and researchers to find ways to prevent and control this pest. The use of biochar is one of the economic and environmentally friendly strategies to increase plant growth and improve pest resistance. We tested four v/v combinations of bamboo charcoal with coconut bran [BC1 (10:1), BC2(30:1), BC3(50:1)] against a control (CK) in maize. We found that plant height, stem thickness, fresh weight and chlorophyll content were significantly higher in BC2, in addition to the lowest FAW survival %. We then compared the metabolome and transcriptome profiles of BC2 and CK maize plants under FAW herbivory. Our results show that the levels of flavonoids, amino acids and derivatives, nucleotides and derivatives and most phenolic acids decreased, while terpenoids, organic acids, lipids and defense-related hormones increased in BC-grown maize leaves. Transcriptome sequencing revealed consistent expression profiles of genes enriched in these pathways. We also observed the increased expression of genes related to abscisic acid, jasmonic acid, auxin and MAPK signaling. Based on these observations, we discussed the possible pathways involved in maize against FAW herbivory. We conclude that bamboo charcoal induces anti-herbivory responses in maize leaves.
Collapse
Affiliation(s)
- Tianjun He
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Lin Chen
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Yingjun Wu
- Ecological Forestry Development Center of Suichang County, Lishui 323300, China;
| | - Jinchao Wang
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
| | - Quancong Wu
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Jiahao Sun
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Chaohong Ding
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Tianxing Zhou
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Limin Chen
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Aiwu Jin
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
| | - Yang Li
- Soil Fertilizer and Plant Protection Station of Lishui City, Lishui 323000, China
| | - Qianggen Zhu
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
| |
Collapse
|
3
|
Setotaw YB, Li J, Qi J, Ma C, Zhang M, Huang C, Wang L, Wu J. Salicylic acid positively regulates maize defenses against lepidopteran insects. PLANT DIVERSITY 2024; 46:519-529. [PMID: 39280976 PMCID: PMC11390602 DOI: 10.1016/j.pld.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 09/18/2024]
Abstract
In response to insect attack, plants use intricate signaling pathways, including phytohormones, such as jasmonate (JA), ethylene (ET), and salicylic acid (SA), to activate defenses. Maize (Zea mays) is one of the most important staple food crops around the world. Previous studies have shown that the JA and ET signaling play important roles in maize defense against insects, but little is known about whether and how SA regulates maize resistance to insect herbivores. In this study, we ectopically expressed the NahG (salicylate hydroxylase) gene in maize plants (NahG maize) to block the accumulation of SA. It was found that compared with the wild-type (WT) maize, the NahG maize exhibited decreased resistance to the generalist insects S podoptera litura and Spodoptera frugiperda and the specialist Mythimna separata, and the compromised resistance in the NahG maize was associated with decreased levels of defensive metabolites benzoxazinoids (Bxs) and chlorogenic acid (CA). Quantification of simulated S. litura feeding-induced JA, JA-isoleucine conjugate (JA-Ile), and ET in the WT and NahG maize indicated that SA does not regulate JA or JA-Ile, but positively controls ET. We provide evidence suggesting that the SA pathway does not crosstalk with the JA or the ET signaling in regulating the accumulation of Bxs and CA. Transcriptome analysis revealed that the bHLH, ERF, and WRKY transcription factors might be involved in SA-regulated defenses. This study uncovers a novel and important phytohormone pathway in maize defense against lepidopterous larvae.
Collapse
Affiliation(s)
- Yohannes Besufekad Setotaw
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Canrong Ma
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mou Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuilian Huang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing 100093, China
| |
Collapse
|
4
|
Romero B, Mithöfer A, Olivier C, Wist T, Prager SM. The Role of Plant Defense Signaling Pathways in Phytoplasma-Infected and Uninfected Aster Leafhoppers' Oviposition, Development, and Settling Behavior. J Chem Ecol 2024; 50:276-289. [PMID: 38532167 DOI: 10.1007/s10886-024-01488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
In plant-microbe-insect systems, plant-mediated responses involve the regulation and interactions of plant defense signaling pathways of phytohormones jasmonic acid (JA), ethylene (ET), and salicylic acid (SA). Phytoplasma subgroup 16SrI is the causal agent of Aster Yellows (AY) disease and is primarily transmitted by populations of aster leafhoppers (Macrosteles quadrilineatus Forbes). Aster Yellows infection in plants is associated with the downregulation of the JA pathway and increased leafhopper oviposition. The extent to which the presence of intact phytohormone-mediated defensive pathways regulates aster leafhopper behavioral responses, such as oviposition or settling preferences, remains unknown. We conducted no-choice and two-choice bioassays using a selection of Arabidopsis thaliana lines that vary in their defense pathways and repeated the experiments using AY-infected aster leafhoppers to evaluate possible differences associated with phytoplasma infection. While nymphal development was similar among the different lines and groups of AY-uninfected and AY-infected insects, the number of offspring and individual female egg load of AY-uninfected and AY-infected insects differed in lines with mutated components of the JA and SA signaling pathways. In most cases, AY-uninfected insects preferred to settle on wild-type (WT) plants over mutant lines; no clear pattern was observed in the settling preference of AY-infected insects. These findings support previous observations in other plant pathosystems and suggest that plant signaling pathways and infection with a plant pathogen can affect insect behavioral responses in more than one manner. Potential differences with previous work on AY could be related to the specific subgroup of phytoplasma involved in each case.
Collapse
Affiliation(s)
- Berenice Romero
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Chrystel Olivier
- Agriculture and Agri-Food Canada Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Tyler Wist
- Agriculture and Agri-Food Canada Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Sean M Prager
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| |
Collapse
|
5
|
Ali J, Tonğa A, Islam T, Mir S, Mukarram M, Konôpková AS, Chen R. Defense strategies and associated phytohormonal regulation in Brassica plants in response to chewing and sap-sucking insects. FRONTIERS IN PLANT SCIENCE 2024; 15:1376917. [PMID: 38645389 PMCID: PMC11026728 DOI: 10.3389/fpls.2024.1376917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024]
Abstract
Plants have evolved distinct defense strategies in response to a diverse range of chewing and sucking insect herbivory. While chewing insect herbivores, exemplified by caterpillars and beetles, cause visible tissue damage and induce jasmonic acid (JA)-mediated defense responses, sucking insects, such as aphids and whiteflies, delicately tap into the phloem sap and elicit salicylic acid (SA)-mediated defense responses. This review aims to highlight the specificity of defense strategies in Brassica plants and associated underlying molecular mechanisms when challenged by herbivorous insects from different feeding guilds (i.e., chewing and sucking insects). To establish such an understanding in Brassica plants, the typical defense responses were categorized into physical, chemical, and metabolic adjustments. Further, the impact of contrasting feeding patterns on Brassica is discussed in context to unique biochemical and molecular modus operandi that governs the resistance against chewing and sucking insect pests. Grasping these interactions is crucial to developing innovative and targeted pest management approaches to ensure ecosystem sustainability and Brassica productivity.
Collapse
Affiliation(s)
- Jamin Ali
- College of Plant Protection, Jilin Agricultural University, Changchun, China
- School of Life Sciences, Keele University, Newcastle-Under-Lyme, United Kingdom
| | - Adil Tonğa
- Entomology Department, Diyarbakır Plant Protection Research Institute, Diyarbakir, Türkiye
| | - Tarikul Islam
- Department of Entomology, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Department of Entomology, Rutgers University, New Brunswick, NJ, United States
| | - Sajad Mir
- Entomology Section, Sher-E-Kashmir University of Agricultural Science and Technology, Kashmir, India
| | - Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, Universidad de la República, Montevideo, Uruguay
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Alena Sliacka Konôpková
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - Rizhao Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
6
|
Davis JA, Poulsen LR, Kjeldgaard B, Moog MW, Brown E, Palmgren M, López-Marqués RL, Harper JF. Deficiencies in cluster-2 ALA lipid flippases result in salicylic acid-dependent growth reductions. PHYSIOLOGIA PLANTARUM 2024; 176:e14228. [PMID: 38413387 DOI: 10.1111/ppl.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
P4 ATPases (i.e., lipid flippases) are eukaryotic enzymes that transport lipids across membrane bilayers. In plants, P4 ATPases are named Aminophospholipid ATPases (ALAs) and are organized into five phylogenetic clusters. Here we generated an Arabidopsis mutant lacking all five cluster-2 ALAs (ala8/9/10/11/12), which is the most highly expressed ALA subgroup in vegetative tissues. Plants harboring the quintuple knockout (KO) show rosettes that are 2.2-fold smaller and display chlorotic lesions. A similar but less severe phenotype was observed in an ala10/11 double KO. The growth and lesion phenotypes of ala8/9/10/11/12 mutants were reversed by expressing a NahG transgene, which encodes an enzyme that degrades salicylic acid (SA). A role for SA in promoting the lesion phenotype was further supported by quantitative PCR assays showing increased mRNA abundance for an SA-biosynthesis gene ISOCHORISMATE SYNTHASE 1 (ICS1) and two SA-responsive genes PATHOGENESIS-RELATED GENE 1 (PR1) and PR2. Lesion phenotypes were also reversed by growing plants in liquid media containing either low calcium (~0.1 mM) or high nitrogen concentrations (~24 mM), which are conditions known to suppress SA-dependent autoimmunity. Yeast-based fluorescent lipid uptake assays revealed that ALA10 and ALA11 display overlapping substrate specificities, including the transport of LysoPC signaling lipids. Together, these results establish that the biochemical functions of ALA8-12 are at least partially overlapping, and that deficiencies in cluster-2 ALAs result in an SA-dependent autoimmunity phenotype that has not been observed for flippase mutants with deficiencies in other ALA clusters.
Collapse
Affiliation(s)
- James A Davis
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Lisbeth R Poulsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Bodil Kjeldgaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Max W Moog
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Elizabeth Brown
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Rosa L López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| |
Collapse
|
7
|
Xiong Y, Oduor AMO, Zhao C. Population genetic differentiation and phenotypic plasticity of Ambrosia artemisiifolia under different nitrogen levels. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2903. [PMID: 37347236 DOI: 10.1002/eap.2903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023]
Abstract
Rapid adaptive evolution and phenotypic plasticity are two mechanisms that often underlie invasiveness of alien plant species, but whether they can co-occur within invasive plant populations under altered environmental conditions such as nitrogen (N) enrichment has seldom been explored. Latitudinal clines in plant trait responses to variation in environmental factors may provide evidence of local adaptation. Here, we inferred the relative contributions of phenotypic plasticity and local adaptation to the performance of the invasive plant Ambrosia artemisiifolia under different soil N levels, using a common garden approach. We grew A. artemisiifolia individuals raised from seeds that were sampled from six invasive populations along a wide latitudinal cline in China (23°42' N to 45°43' N) under three N (0, 5, and 10 g N m-2 ) levels in a common garden. Results show significant interpopulation genetic differentiation in plant height, number of branches, total biomass, and transpiration rate of the invader A. artemisiifolia across the N treatments. The populations also expressed genetic differentiation in basal diameter, growth rate, leaf area, seed width, root biomass, aboveground biomass, stomatal conductance, and intercellular CO2 concentration regardless of N treatments. Moreover, plants from different populations of the invader displayed plastic responses in time to first flower, hundred-grain weight, net photosynthetic rate, and relative biomass allocation to roots and shoots and seed length under different N treatments. Additionally, individuals of A. artemisiifolia from higher latitudes grew shorter and allocated less biomass to the roots regardless of N treatment, while latitudinal cline (or lack thereof) in other traits depended on the level of N in which the plants were grown. Overall, these results suggest that rapid adaptive evolution and phenotypic plasticity in the various traits that we quantified may jointly contribute to invasiveness of A. artemisiifolia under different levels of N availability. More broadly, the results support the idea that phenotypic plasticity and rapid adaptive evolution can jointly enable invasive plants to colonize a wide range of environmental conditions.
Collapse
Affiliation(s)
- Yunqi Xiong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ayub M O Oduor
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
- Department of Applied Biology, Technical University of Kenya, Nairobi, Kenya
| | - Caiyun Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
8
|
Li Q, Yin Z, Tan W, Sun X, Cao H, Wang D. The resistance of the jujube (Ziziphus jujuba) to the devastating insect pest Apolygus lucorum (Hemiptera, Insecta) involves the jasmonic acid signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105597. [PMID: 37945226 DOI: 10.1016/j.pestbp.2023.105597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 11/12/2023]
Abstract
Apolygus lucorum (Hemiptera, Insecta), cosmopolitan true bug, is a major pest of the Chinese jujube (Ziziphus jujuba). To propose control measures of A. lucorum, we investigated the molecular mechanisms of resistance in two varieties of jujube (wild jujube and winter jujube) with different sensitivities to this pest. We monitored changes of two species of jujube in the transcriptome, jasmonic acid (JA) and salicylic acid (SA) content, and the expression of genes involved in signaling pathways. The preference of A. lucorum for jujube with exogenous SA and methyl jasmonate (MeJA) were also examined. The results showed that wild jujube leaves infested by A. lucorum showed stronger resistance and non-selectivity to A. lucorum than winter jujube. By comparing data from the A. lucorum infested plants with the control, A total of 438 and 796 differentially expressed genes (DEGs) were found in winter and wild jujube leaves, respectively. GO analysis revealed that biological process termed "plant-pathogen interactions", "plant hormone transduction" and "phenylpropanoid biosynthesis". Most of DEGs enriched in JA pathways were upregulated, while most DEGs of SA pathways were downregulated. A. lucorum increased the JA content but decreased the SA content in jujube. Consistently, the JA and SA contents in winter jujube were lower than those in wild jujube leaves. The key genes ZjFAD3, ZjLOX, ZjAOS, ZjAOC3 and ZjAOC4 involved in JA synthesis of jujube leaves were significantly up-regulated after A. lucorum infestation, especially the expression and up-regulation ratio of ZjFAD3, ZjLOX and ZjAOS in wild jujube were significantly higher than those in winter jujube. MeJA-treated jujube showed an obvious repellent effect on A. lucorum. Based on these findings, we conclude that A. lucorum infestation of jujube induced the JA pathway and suppressed the SA pathway. In jujube leaves the ZjFAD3, ZjLOX and ZjAOS played important roles in increasing of JA content in jujube leaves. Thus, JA played an important role in repelling and resisting against A. lucorum in jujube.
Collapse
Affiliation(s)
- Qingliang Li
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China
| | - Zujun Yin
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wei Tan
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China.
| | - Xia Sun
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China
| | - Hui Cao
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China
| | - Deya Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China
| |
Collapse
|
9
|
Nehela Y, Killiny N. Gamma-Aminobutyric Acid Supplementation Boosts the Phytohormonal Profile in ' Candidatus Liberibacter asiaticus'-Infected Citrus. PLANTS (BASEL, SWITZERLAND) 2023; 12:3647. [PMID: 37896110 PMCID: PMC10609878 DOI: 10.3390/plants12203647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
The devastating citrus disease, Huanglongbing (HLB), is associated with 'Candidatus Liberibacter sp.' and transmitted by citrus psyllids. Unfortunately, HLB has no known sustainable cure yet. Herein, we proposed γ-aminobutyric acid (GABA) as a potential eco-friendly therapeutic solution to HLB. Herein, we used GC/MS-based targeted metabolomics combined with gene expression to investigate the role of GABA in citrus response against HLB and to better understand its relationship(s) with different phytohormones. GABA supplementation via root drench boosts the accumulation of endogenous GABA in the leaves of both healthy and 'Ca. L. asiaticus'-infected trees. GABA accumulation benefits the activation of a multi-layered defensive system via modulating the phytohormone levels and regulating the expression of their biosynthesis genes and some pathogenesis-related proteins (PRs) in both healthy and 'Ca. L. asiaticus'-infected plants. Moreover, our findings showed that GABA application stimulates auxin biosynthesis in 'Ca. L. asiaticus'-infected plants via the activation of the indole-3-pyruvate (I3PA) pathway, not via the tryptamine (TAM)-dependent pathway, to enhance the growth of HLB-affected trees. Likewise, GABA accumulation was associated with the upregulation of SA biosynthesis genes, particularly the PAL-dependent route, resulting in higher SA levels that activated CsPR1, CsPR2, CsPR5, and CsWRKY70, which are prominent to activation of the SA-mediated pathway. Additionally, higher GABA levels were correlated with an enhanced JA profile and linked with both CsPR3 and CsPR4, which activates the JA-mediated pathway. Collectively, our findings suggest that exogenous GABA application might be a promising alternative and eco-friendly strategy that helps citrus trees battle HLB.
Collapse
Affiliation(s)
- Yasser Nehela
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA;
- Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA;
| |
Collapse
|
10
|
Jiao L, Bian L, Luo Z, Li Z, Xiu C, Fu N, Cai X, Chen Z. Enhanced volatile emissions and anti-herbivore functions mediated by the synergism between jasmonic acid and salicylic acid pathways in tea plants. HORTICULTURE RESEARCH 2022; 9:uhac144. [PMID: 36101895 PMCID: PMC9463459 DOI: 10.1093/hr/uhac144] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The interaction between jasmonic acid (JA) and salicylic acid (SA) pathways, which affects plant stress resistance, is mainly considered to be antagonistic. Using an established theoretical model, we investigated how tea plant (Camellia sinensis) volatiles induced by exogenous elicitors of the JA and SA pathways are affected by the sequence of elicitor application, elicitor identity, and the applied concentrations. We also examined the effects of the volatiles mediated by the JA-SA synergistic interaction on the behaviors of a tea leaf-chewing herbivore (Ectropis grisescens) and its parasitic wasp (Apanteles sp.). The JA and SA pathway interactions were almost always reciprocally synergistic when the two pathways were elicited at different times, except at high JA elicitor concentrations. However, the JA pathway antagonized the SA pathway when they were elicited simultaneously. The elicitor identity affected the degree of JA-SA interaction. The volatiles induced by the JA pathway in the JA-SA reciprocal synergism treatments included up to 11 additional compounds and the total amount of volatiles was up to 7.9-fold higher. Similarly, the amount of emitted volatiles induced by the SA pathway in the reciprocal synergism treatments increased by up to 4.2-fold. Compared with the volatiles induced by either pathway, the enriched volatiles induced by the JA-SA reciprocal synergism similarly repelled E. grisescens, but attracted Apanteles sp. more strongly. Thus, non-simultaneous activation is important for optimizing the JA-SA reciprocal synergism. This reciprocal synergism enables plants to induce multifarious responses, leading to increased biotic stress resistance.
Collapse
Affiliation(s)
- Long Jiao
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Lei Bian
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Zongxiu Luo
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Zhaoqun Li
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Chunli Xiu
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Nanxia Fu
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | | | | |
Collapse
|
11
|
Liu Z, Wang H, Lv J, Luo S, Hu L, Wang J, Li L, Zhang G, Xie J, Yu J. Effects of Plant Hormones, Metal Ions, Salinity, Sugar, and Chemicals Pollution on Glucosinolate Biosynthesis in Cruciferous Plant. FRONTIERS IN PLANT SCIENCE 2022; 13:856442. [PMID: 35574082 PMCID: PMC9096887 DOI: 10.3389/fpls.2022.856442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
Cruciferous vegetable crops are grown widely around the world, which supply a multitude of health-related micronutrients, phytochemicals, and antioxidant compounds. Glucosinolates (GSLs) are specialized metabolites found widely in cruciferous vegetables, which are not only related to flavor formation but also have anti-cancer, disease-resistance, and insect-resistance properties. The content and components of GSLs in the Cruciferae are not only related to genotypes and environmental factors but also are influenced by hormones, plant growth regulators, and mineral elements. This review discusses the effects of different exogenous substances on the GSL content and composition, and analyzes the molecular mechanism by which these substances regulate the biosynthesis of GSLs. Based on the current research status, future research directions are also proposed.
Collapse
Affiliation(s)
- Zeci Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Huiping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jie Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Lushan Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guobin Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
12
|
Lin PA, Chen Y, Ponce G, Acevedo FE, Lynch JP, Anderson CT, Ali JG, Felton GW. Stomata-mediated interactions between plants, herbivores, and the environment. TRENDS IN PLANT SCIENCE 2022; 27:287-300. [PMID: 34580024 DOI: 10.1016/j.tplants.2021.08.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Stomata play a central role in plant responses to abiotic and biotic stresses. Existing knowledge regarding the roles of stomata in plant stress is centered on abiotic stresses and plant-pathogen interactions, but how stomata influence plant-herbivore interactions remains largely unclear. Here, we summarize the functions of stomata in plant-insect interactions and highlight recent discoveries of how herbivores manipulate plant stomata. Because stomata are linked to interrelated physiological processes in plants, herbivory-induced changes in stomatal dynamics might have cellular, organismic, and/or even community-level impacts. We summarize our current understanding of how stomata mediate plant responses to herbivory and environmental stimuli, propose how herbivores may influence these responses, and identify key knowledge gaps in plant-herbivore interactions.
Collapse
Affiliation(s)
- Po-An Lin
- Department of Entomology, Pennsylvania State University, State College, PA, USA.
| | - Yintong Chen
- Department of Biology, Pennsylvania State University, State College, PA, USA
| | - Gabriela Ponce
- Department of Entomology, Pennsylvania State University, State College, PA, USA
| | - Flor E Acevedo
- Department of Entomology, Pennsylvania State University, State College, PA, USA
| | - Jonathan P Lynch
- Department of Plant Science, Pennsylvania State University, State College, PA, USA
| | - Charles T Anderson
- Department of Biology, Pennsylvania State University, State College, PA, USA
| | - Jared G Ali
- Department of Entomology, Pennsylvania State University, State College, PA, USA
| | - Gary W Felton
- Department of Entomology, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
13
|
Chinarelli HD, Nogueira A, Leal LC. Extrafloral nectar production induced by simulated herbivory does not improve ant bodyguard attendance and ultimately plant defence. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Highly competitive and aggressive ant species are efficient bodyguards that monopolize the more attractive plants bearing extrafloral nectaries. Given that herbivory often increases the quality of extrafloral nectar, we hypothesized that plants damaged by herbivory would be more prone to interact with high-quality ant bodyguards and be better defended against herbivores. We performed an experiment with Chamaecrista nictitans plants. We induced anti-herbivore responses by applying jasmonic acid to a group of plants while keeping another group unmanaged. We measured extrafloral nectar production, censused ants visiting extrafloral nectaries and, subsequently, added herbivore mimics to measure the efficiency of ant anti-herbivore defence in both conditions. Induction increased the volume of extrafloral nectar and the mass of sugar per nectary without affecting the sugar concentration or the patterns of plant attendance and defence by ants. Thus, we found no evidence that defence-induced C. nictitans plants are more prone to interact with high-quality bodyguards or to receive better anti-herbivore defence. These findings highlight that increases in extrafloral nectar production are not always rewarded with increases in the biotic defences; instead, these rewards might be dependent on the traits of the nectar induced by herbivory events and/or on the ecological context in which the interaction is embedded. Consequently, herbivory might increase the costs of this induced biotic defence to plants bearing extrafloral nectaries when the induced defence does not increase the attractiveness of the plants to ants.
Collapse
Affiliation(s)
- Henrique D Chinarelli
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Rua Artur Riedel, 275 , Eldorado, Diadema, São Paulo, Brazil
| | - Anselmo Nogueira
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, Alameda da Universidade, s/nº, Anchieta, São Bernardo do Campo, São Paulo, Brazil
| | - Laura C Leal
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Rua Artur Riedel, 275 , Eldorado, Diadema, São Paulo, Brazil
| |
Collapse
|
14
|
Mbaluto CM, Vergara F, van Dam NM, Martínez-Medina A. Root infection by the nematode Meloidogyne incognita modulates leaf antiherbivore defenses and plant resistance to Spodoptera exigua. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7909-7926. [PMID: 34545935 PMCID: PMC8664589 DOI: 10.1093/jxb/erab370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Studies on plant-mediated interactions between root parasitic nematodes and aboveground herbivores are rapidly increasing. However, outcomes for the interacting organisms vary, and the mechanisms involved remain ambiguous. We hypothesized that the impact of root infection by the root-knot nematode Meloidogyne incognita on the performance of the aboveground caterpillar Spodoptera exigua is modulated by the nematode's infection cycle. We challenged root-knot nematode-infected tomato plants with caterpillars when the nematode's infection cycle was at the invasion, galling, and reproduction stages. We found that M. incognita root infection enhanced S. exigua performance during the galling stage, while it did not affect the caterpillar's performance at the invasion and reproduction stages. Molecular and chemical analyses performed at the different stages of the nematode infection cycle revealed that M. incognita root infection systemically affected the jasmonic acid-, salicylic acid-, and abscisic acid-related responses, as well as the changes in the leaf metabolome triggered during S. exigua feeding. The M. incognita-induced leaf responses varied over the nematode's root infection cycle. These findings suggest that specific leaf responses triggered systemically by the nematode at its different life-cycle stages underlie the differential impact of M. incognita on plant resistance against the caterpillar S. exigua.
Collapse
Affiliation(s)
- Crispus M Mbaluto
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; PuschStraße 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena; DornburgerStraße 159, 07743 Jena, Germany
| | - Fredd Vergara
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; PuschStraße 4, 04103, Leipzig, Germany
| | - Nicole M van Dam
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; PuschStraße 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena; DornburgerStraße 159, 07743 Jena, Germany
| | - Ainhoa Martínez-Medina
- Molecular Interaction Ecology, German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig; PuschStraße 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-Universität-Jena; DornburgerStraße 159, 07743 Jena, Germany
- Plant-Microorganism Interaction, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Cordel de Merinas, 40, 37008, Salamanca, Spain
| |
Collapse
|
15
|
Badenes-Pérez FR, Cartea ME. Glucosinolate Induction and Resistance to the Cabbage Moth, Mamestra brassicae, Differs among Kale Genotypes with High and Low Content of Sinigrin and Glucobrassicin. PLANTS 2021; 10:plants10091951. [PMID: 34579483 PMCID: PMC8469716 DOI: 10.3390/plants10091951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022]
Abstract
The cabbage moth, Mamestra brassicae L. (Lepidoptera: Noctuidae), is a generalist insect pest of cruciferous crops. We tested glucosinolate induction by jasmonic acid (JA) and salicylic acid (SA), and by these phytohormones combined with feeding by M. brassicae larvae in four genotypes of kale, Brassica oleracea L. var. acephala (Brassicaceae). The genotypes tested had high glucobrassicin (genotype HGBS), low glucobrassicin (genotype LGBS), high sinigrin (genotype HSIN), and low sinigrin content (genotype LSIN). Application of JA increased indolic and total glucosinolate content in all kale genotypes 1, 3, and 9 days after treatment. For SA-treated plants, glucosinolate induction varied depending on the number of days after treatment and the genotype. Overall, herbivory by M. brassicae accentuated and attenuated the effects of JA and SA, respectively, on plant glucosinolate content. Larvae of M. brassicae gained less weight on leaves from plants treated with JA compared to leaves from control plants and plants treated with SA. In bioassays with leaf discs, a significant reduction of defoliation only occurred in JA-treated plants of the HSIN genotype. This research shows that previous herbivory alters the susceptibility of kale to M. brassicae and that induction of glucosinolates varies among kale genotypes differing in their glucosinolate content.
Collapse
Affiliation(s)
| | - María Elena Cartea
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas, 36080 Pontevedra, Spain;
| |
Collapse
|
16
|
Rufián JS, Elmore JM, Bejarano ER, Beuzon CR, Coaker GL. ER Bodies Are Induced by Pseudomonas syringae and Negatively Regulate Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1001-1009. [PMID: 34110257 PMCID: PMC8635791 DOI: 10.1094/mpmi-11-20-0330-sc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
ER bodies are endoplasmic reticulum-derived organelles present in plants belonging to the Brassicales order. In Arabidopsis thaliana, ER bodies are ubiquitous in cotyledons and roots and are present only in certain cell types in rosette leaves. However, both wounding and jasmonic acid treatment induce the formation of ER bodies in leaves. Formation of this structure is dependent on the transcription factor NAI1. The main components of the ER bodies are β-glucosidases (BGLUs), enzymes that hydrolyze specialized compounds. In Arabidopsis, PYK10 (BGLU23) and BGLU18 are the most abundant ER body proteins. In this work, we found that ER bodies are downregulated as a consequence of the immune responses induced by bacterial flagellin perception. Arabidopsis mutants defective in ER body formation show enhanced responses upon flagellin perception and enhanced resistance to bacterial infections. Furthermore, the bacterial toxin coronatine induces the formation of de novo ER bodies in leaves and its virulence function is partially dependent on this structure. Finally, we show that performance of the polyphagous beet armyworm herbivore Spodoptera exigua increases in plants lacking ER bodies. Altogether, we provide new evidence for the role of the ER bodies in plant immune responses.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- José S. Rufián
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Dept. Biología Celular, Genética y Fisiología, Campus de Teatinos, Málaga E-29071, Spain
- Department of Plant Pathology, University of California Davis, Davis, CA 95616, U.S.A
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences; Chinese Academy of Sciences, Shanghai 201602, China
| | - James M. Elmore
- Department of Plant Pathology, University of California Davis, Davis, CA 95616, U.S.A
| | - Eduardo R. Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Dept. Biología Celular, Genética y Fisiología, Campus de Teatinos, Málaga E-29071, Spain
| | - Carmen R. Beuzon
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Dept. Biología Celular, Genética y Fisiología, Campus de Teatinos, Málaga E-29071, Spain
| | - Gitta L. Coaker
- Department of Plant Pathology, University of California Davis, Davis, CA 95616, U.S.A
| |
Collapse
|
17
|
Liu H, Wang C, Qiu CL, Shi JH, Sun Z, Hu XJ, Liu L, Wang MQ. A Salivary Odorant-Binding Protein Mediates Nilaparvata lugens Feeding and Host Plant Phytohormone Suppression. Int J Mol Sci 2021; 22:4988. [PMID: 34066665 PMCID: PMC8125829 DOI: 10.3390/ijms22094988] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Odorant-binding proteins (OBPs) typically act as transporters of odor molecules and play an important role in insect host location. Here, we identified an OBP in brown planthopper (BPH) Nilaparvata lugens salivary glands via transcriptome sequencing. Real-time quantitative PCR and Western blotting analysis results showed that NlugOBP11 was highly expressed in salivary glands and secreted into rice plant during feeding, suggesting that it assists in BPH feeding on rice. Functional analysis in N. lugens saliva revealed that silencing this gene by RNA interference decreased the BPH stylet performance in the phloem of rice plants, reduced sap sucking, and ultimately led to insect death. Moreover, overexpression of NlugOBP11 in rice protoplasts or Nicotiana benthamiana leaves inhibited the production of defense-related signaling molecule salicylic acid in rice plant. The results demonstrate that NlugOBP11 is not only essential for BPH feeding, but also acts as an effector that inhibits plant defense.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (C.W.); (C.-L.Q.); (J.-H.S.); (Z.S.); (X.-J.H.); (L.L.)
| |
Collapse
|
18
|
Wattier C, Turbant A, Sargos-Vallade L, Pelloux J, Rustérucci C, Cherqui A. New insights into diet breadth of polyphagous and oligophagous aphids on two Arabidopsis ecotypes. INSECT SCIENCE 2019; 26:753-769. [PMID: 29271105 DOI: 10.1111/1744-7917.12563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 11/10/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
We investigated whether plant ecotype might affect aphid performance and behavior. The probing behaviors of the polyphagous aphid Myzus persicae and the oligophagous aphid Brevicoryne brassicae on two ecotypes of Arabidopsis thaliana, WS and Col-0 were recorded using the direct current electrical penetration graph method (DC-EPG). Myzus persicae displayed a significant preference for the WS ecotype but was not greatly disturbed on Col-0, while B. brassicae discriminated between the two A. thaliana ecotypes, feeding less on WS than on Col-0. A Principal Component Analysis of aphid probing behavior data recorded on Col-0 and WS ecotypes showed that the one of M. persicae was positively correlated with the phloem ingestion phases while the one of B. brassicae was more related to nonfeeding phase. The survival of the aphid species was followed during early larval stages on the two ecotypes and a significantly higher mortality was observed of B. brassicae neonates compared to M. persicae, both reared on WS. Moreover, transcriptomic analysis of noninfested plant leaves from both ecotypes was monitored and underlined constitutive differences between Col-0 and WS gene expression that might explain the different aphid behaviors. Among a unigene set comprising 39 042 sequences for A. thaliana, 6% were differently expressed affecting, for example, the secondary metabolites and cell wall pathways: two third upregulated in WS and one third upregulated in Col-0. Thus, the "ecotype" variable should be taken into account when setting up a plant-insect experimental research.
Collapse
Affiliation(s)
- Christopher Wattier
- CRRBM (Centre de Ressources Régionales en Biologie Moléculaire), Université de Picardie Jules Verne, Amiens, Cedex, France
| | - Amélie Turbant
- EA 3900 BIOPI (Biologie des Plantes et Innovation), Université de Picardie Jules Verne, Amiens, Cedex, France
| | - Lisa Sargos-Vallade
- EA 3900 BIOPI (Biologie des Plantes et Innovation), Université de Picardie Jules Verne, Amiens, Cedex, France
| | - Jérôme Pelloux
- EA 3900 BIOPI (Biologie des Plantes et Innovation), Université de Picardie Jules Verne, Amiens, Cedex, France
| | - Christine Rustérucci
- EA 3900 BIOPI (Biologie des Plantes et Innovation), Université de Picardie Jules Verne, Amiens, Cedex, France
| | - Anas Cherqui
- FRE CNRS 3498 EDYSAN (Ecologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, Amiens, Cedex, France
| |
Collapse
|
19
|
Luo X, Xu X, Zheng Y, Guo H, Hu S. The role of phenotypic plasticity and rapid adaptation in determining invasion success of Plantago virginica. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02004-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Ding X, Huang X, Sun L, Wu J, Liu J. Influence of Abscisic Acid-Biosynthesis Inhibitor Fluridone on the Feeding Behavior and Fecundity of Nilaparvata lugens. INSECTS 2019; 10:insects10020057. [PMID: 30791475 PMCID: PMC6409642 DOI: 10.3390/insects10020057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Fluridone (FLU) was a pyrrolidone herbicide that was used for selective weeding in wheat, rice, corn and pasture and was also a biosynthesis inhibitor of abscisic acid (ABA), a significant plant hormone. ABA-promoted callose deposition facilitates rice resistance to pests but whether FLU had the opposite influence was unknown. The effects of FLU on the feeding behavior of the brown planthopper (Nilaparvata lugens Stål; BPH), after feeding with rice plants treated with FLU, were studied, using an electrical penetration graph (EPG). For susceptible rice cultivar (TN1), the duration for which BPH sucked phloem sap (N4 wave duration) after 15 μmol/L of FLU treatment was longer than that of the control but decreased after 30 and 60 μmol/L FLU treatments. Fecundity of BPH treated with 15 μmol/L FLU had no significant change, while the deposition area of callose was significantly decreased. For moderately-resistant rice cultivar (IR42), no differences in BPH feeding behavior and fecundity were observed but the deposition area of callose declined after treated with 15 μmol/L of FLU. These findings suggested that a low concentration of FLU (15 μmol/L) promoted BPH feeding behavior in TN1 but not in IR42 and the response in IR42 appeared to be more complicated, which provided supplementary evidence that ABA promoted plant resistance to BPH.
Collapse
Affiliation(s)
- Xu Ding
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | | | | | | | | |
Collapse
|
21
|
Gautam JK, Nandi AK. APD1, the unique member of Arabidopsis AP2 family influences systemic acquired resistance and ethylene-jasmonic acid signaling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 133:92-99. [PMID: 30396118 DOI: 10.1016/j.plaphy.2018.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/11/2018] [Accepted: 10/24/2018] [Indexed: 06/08/2023]
Abstract
Arabidopsis AP2 FAMILY PROTEIN INVOLVED IN DISEASE DEFENSE (APD1) is a member of AP2/EREBP super-family that positively regulates SA biosynthesis and defense against virulent bacterial pathogens. Here we report additional roles of APD1 in plant defense and development. We show that APD1 function is required for light-mediated defense against bacterial pathogens and systemic acquired resistance (SAR). We demonstrate that APD1 function is not required for generating SAR mobile signal at the site of primary inoculation but is required at the distal end for SAR manifestation. In addition, the APD1 function is required for PTI-induced callose deposition, defense against necrotrophic pathogen Botrytis cinerea and Alternaria alternata, which are ethylene (ET) or ethylene-Jasmonate (JA) dependent responses. Development of seedling under dark and ET is partly dependent on APD1. The mutant apd1 plants are non-responsive towards exogenous ACC application regarding apical hook formation and hypocotyl shortening, however, possess WT-like ET-mediated root growth inhibition. JA-mediated root growth inhibition is also impaired in apd1 seedlings. Altogether our results suggest that APD1 impacts multiple aspects of plant growth and development.
Collapse
Affiliation(s)
- Janesh Kumar Gautam
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashis Kumar Nandi
- 415, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
22
|
Halliday FW, Umbanhowar J, Mitchell CE. A host immune hormone modifies parasite species interactions and epidemics: insights from a field manipulation. Proc Biol Sci 2018; 285:rspb.2018.2075. [PMID: 30404885 DOI: 10.1098/rspb.2018.2075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
Parasite epidemics can depend on priority effects, and parasite priority effects can result from the host immune response to prior infection. Yet we lack experimental evidence that such immune-mediated priority effects influence epidemics. To address this research gap, we manipulated key host immune hormones, then measured the consequences for within-host parasite interactions, and ultimately parasite epidemics in the field. Specifically, we applied plant immune-signalling hormones to sentinel plants, embedded into a wild host population, and tracked foliar infections caused by two common fungal parasites. Within-host individuals, priority effects were altered by the immune-signalling hormone, salicylic acid (SA). Scaling up from within-host interactions, hosts treated with SA experienced a lower prevalence of a less aggressive parasite, increased burden of infection by a more aggressive parasite, and experienced fewer co-infections. Together, these results indicate that by altering within-host priority effects, host immune hormones can drive parasite epidemics. This study therefore experimentally links host immune hormones to within-host priority effects and parasite epidemics, advancing a more mechanistic understanding of how interactions among parasites alter their epidemics.
Collapse
Affiliation(s)
- Fletcher W Halliday
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - James Umbanhowar
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.,Curriculum for the Environment and Ecology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Charles E Mitchell
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.,Curriculum for the Environment and Ecology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
23
|
Rathi D, Pareek A, Gayali S, Chakraborty S, Chakraborty N. Variety-specific nutrient acquisition and dehydration-induced proteomic landscape of grasspea (Lathyrus sativus L.). J Proteomics 2018; 183:45-57. [PMID: 29852296 DOI: 10.1016/j.jprot.2018.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/30/2018] [Accepted: 05/23/2018] [Indexed: 12/15/2022]
Abstract
Grasspea, a stress-resilient pulse crop, has largely remained outside the realm of phytochemical and functional genomics analyses despite its high nutritional significance. To unravel the intervarietal variability in nutrient acquisition of grasspea, we conducted a series of physicochemical experiments using two cultivated varieties, LP-24 and Prateek. The analyses revealed high percentage of starch, cellulose, peroxides, carotenoids, phytic acid and minerals in cv. LP-24, whereas large amounts of protein, soluble carbohydrates and antioxidants in Prateek. To dissect the mechanism of stress tolerance, 3-week-old seedlings of cv. LP-24 and Prateek were afflicted with dehydration for a period of 144 h. The physicochemical indices indicated better adaptation in cv. LP-24, with high abundance of proline, phenolics and flavonoids. Dehydration-responsive proteome landscape of cv. LP-24 revealed 152 proteins with variance at a statistically 94% significance level. The comparative proteomics analysis led to the identification of 120 dehydration-responsive proteins (DRPs), most of which were associated with carbohydrate metabolism, amino acid synthesis, antioxidant reactions and cell defense. We report, for the first time, the dehydration-induced proteome landscape of grasspea, whose genome is yet to be sequenced. The results provide unique insights into variety-specific nutrient acquisition attributes and dehydration-tolerance of grasspea. BIOLOGICAL SIGNIFICANCE Grasspea is a great source of protein and antioxidants with nitrogen fixing ability, besides its tolerance to multivariate environmental stress as compared to major legume species. This represents the first report on nutrient profile and health-promoting attributes of grasspea. The cultivars under study are nutritionally enriched that possess high protein, amino acids and health-promoting factors and may therefore be projected as a vital part of a healthy diet. Grasspea is known for its hardy nature, water-use efficiency and efficacy as a stress-tolerant pulse. Further, this study portrays the dehydration-responsive proteomic landscape of grasspea. The proteomics analyses provide crucial insights into the dehydration response, presumably orchestrated by proteins belonging to an array of functional classes including photosynthesis, protein and RNA metabolism, protein folding, antioxidant enzymes and defense. The interplay of the differentially regulated proteins might aid in reinforcing the mechanisms of dehydration avoidance and/or tolerance.
Collapse
Affiliation(s)
- Divya Rathi
- National Institute of Plant Genome Research, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Akanksha Pareek
- National Institute of Plant Genome Research, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh Gayali
- National Institute of Plant Genome Research, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Jawaharlal Nehru University, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
24
|
Nouri-Ganbalani G, Borzoui E, Shahnavazi M, Nouri A. Induction of Resistance Against Plutella xylostella (L.) (Lep.: Plutellidae) by Jasmonic Acid and Mealy Cabbage Aphid Feeding in Brassica napus L. Front Physiol 2018; 9:859. [PMID: 30050454 PMCID: PMC6052903 DOI: 10.3389/fphys.2018.00859] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/15/2018] [Indexed: 11/30/2022] Open
Abstract
The diamondback moth, Plutella xylostella (L.), has become the most destructive insect pest of cruciferous plants, such as B. napus throughout the world including Iran. In this study, the induction of resistance was activated in oilseed rape plants (Brassica napus L.) using foliar application of jasmonic acid (JA) and mealy cabbage aphid either individually or in combination against diamondback moth. Induced resistance by inducers significantly reduced the population growth parameters, as well as the survival rate of immature P. xylostella. Also, the nutritional indices of P. xylostella were studied to evaluate the potential impact of induced resistance on the insect feeding behavior. The values of the efficiency of conversion of ingested food, the efficiency of conversion of digested food, relative consumption rate, and relative growth rate of P. xylostella on JA-treated plants were significantly reduced compared to control. These are because glucosinolates and proteinase inhibitors are induced following treatment of plants. Also, we found a significantly higher glucose oxidase activity in the salivary gland extracts of larvae fed on JA treatment. These results express that JA and/or Aphid application induces systemic defenses in oilseed rape that have a negative effect on P. xylostella fitness. These findings develop our knowledge the effects of induced defenses on P. xylostella.
Collapse
Affiliation(s)
- Gadir Nouri-Ganbalani
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ehsan Borzoui
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Maryam Shahnavazi
- Department of Oral and Maxillofacial Radiology, Faculty of Density, AJA University of Medical Sciences, Tehran, Iran
| | - Alireza Nouri
- Institute of Higher Education of Sabalan Ardabil, Ardabil, Iran
| |
Collapse
|
25
|
Heyer M, Scholz SS, Voigt D, Reichelt M, Aldon D, Oelmüller R, Boland W, Mithöfer A. Herbivory-responsive calmodulin-like protein CML9 does not guide jasmonate-mediated defenses in Arabidopsis thaliana. PLoS One 2018; 13:e0197633. [PMID: 29768484 PMCID: PMC5955546 DOI: 10.1371/journal.pone.0197633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/04/2018] [Indexed: 11/17/2022] Open
Abstract
Calcium is an important second messenger in plants that is released into the cytosol early after recognition of various environmental stimuli. Decoding of such calcium signals by calcium sensors is the key for the plant to react appropriately to each stimulus. Several members of Calmodulin-like proteins (CMLs) act as calcium sensors and some are known to mediate both abiotic and biotic stress responses. Here, we study the role of the Arabidopsis thaliana CML9 in different stress responses. CML9 was reported earlier as defense regulator against Pseudomonas syringae. In contrast to salicylic acid-mediated defense against biotrophic pathogens such as P. syringae, defenses against herbivores and necrotrophic fungi are mediated by jasmonates. We demonstrate that CML9 is induced upon wounding and feeding of the insect herbivore Spodoptera littoralis. However, neither different CML9 loss-of-function mutant lines nor overexpression lines were impaired upon insect feeding. No difference in herbivore-induced phytohormone elevation was detected in cml9 lines. The defense against the spider mite Tetranychus urticae was also unaffected. In addition, cml9 mutant lines showed a wild type-like reaction to the necrotrophic fungus Alternaria brassicicola. Thus, our data suggest that CML9 might be a regulator involved only in the defense against biotrophic pathogens, independent of jasmonates. In addition, our data challenge the involvement of CML9 in plant drought stress response. Taken together, we suggest that CML9 is a specialized rather than a general regulator of stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Monika Heyer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sandra S Scholz
- Department for Plant Physiology, Matthias Schleiden Institute, Friedrich Schiller University, Jena, Germany
| | - Dagmar Voigt
- Institute for Botany, Technical University Dresden, Dresden, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Didier Aldon
- UMR 5546 CNRS-Université Toulouse III, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Ralf Oelmüller
- Department for Plant Physiology, Matthias Schleiden Institute, Friedrich Schiller University, Jena, Germany
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
26
|
Sanches PA, Santos F, Peñaflor MFGV, Bento JMS. Direct and indirect resistance of sugarcane to Diatraea saccharalis induced by jasmonic acid. BULLETIN OF ENTOMOLOGICAL RESEARCH 2017; 107:828-838. [PMID: 28434411 DOI: 10.1017/s0007485317000372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Treating plants with synthetic jasmonic acid (JA) induces a defensive response similar to herbivore attack, and is a potential strategy for integrated pest management. Despite the importance of sugarcane, its JA-induced defences have not yet been studied. We investigated the effects of JA treatment on the direct and indirect resistance of sugarcane to the key-pest and specialist herbivore Diatraea saccharalis and the generalist Spodoptera frugiperda. Indirect defences were examined by testing the attraction of Cotesia flavipes, a sugarcane-borer parasitoid, to JA-induced volatile. The results showed that JA-treated sugarcane did not affect the weight gain of the two larvae. However, in dual-choice assays, both species preferred to feed on mock rather than JA-treated plants. Leaf colorimetric analyses showed that visual cues are unlikely to be involved in larval preference, whereas results from olfactometric assays revealed that D. saccharalis preferred JA-induced over mock plant volatiles. After 48 h of treatment, JA-treated plants emitted a volatile blend attractive to C. flavipes, comprised mainly of sesquiterpenes. However, the parasitoid did not discriminate JA-treated from host-damaged plant volatiles. When the wasps were given a choice between JA-treated and JA-treated + host-damaged plants, they preferred the latter, which emitted a more complex blend, suggesting that JA treatment likely does not hamper host-finding. We concluded that JA induces the emission of volatiles that are attractive to the sugarcane borer parasitoid, as well as an antixenosis type of resistance in sugarcane against the two pests, although neither volatiles nor visual cues alone are involved in the underlying mechanism.
Collapse
Affiliation(s)
- P A Sanches
- Department of Entomology and Acarology, University of São Paulo, Luiz de Queiroz College of Agriculture (ESALQ/USP), Av. Pádua Dias, 11, mailbox 9, Piracicaba-SP, Brazil
| | - F Santos
- Department of Entomology and Acarology, University of São Paulo, Luiz de Queiroz College of Agriculture (ESALQ/USP), Av. Pádua Dias, 11, mailbox 9, Piracicaba-SP, Brazil
| | - M F G V Peñaflor
- Department of Entomology, Federal University of Lavras (UFLA), mailbox 3037, Lavras-MG, Brazil
| | - J M S Bento
- Department of Entomology and Acarology, University of São Paulo, Luiz de Queiroz College of Agriculture (ESALQ/USP), Av. Pádua Dias, 11, mailbox 9, Piracicaba-SP, Brazil
| |
Collapse
|
27
|
Bonnet C, Lassueur S, Ponzio C, Gols R, Dicke M, Reymond P. Combined biotic stresses trigger similar transcriptomic responses but contrasting resistance against a chewing herbivore in Brassica nigra. BMC PLANT BIOLOGY 2017; 17:127. [PMID: 28716054 PMCID: PMC5513356 DOI: 10.1186/s12870-017-1074-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 07/10/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND In nature, plants are frequently exposed to simultaneous biotic stresses that activate distinct and often antagonistic defense signaling pathways. How plants integrate this information and whether they prioritize one stress over the other is not well understood. RESULTS We investigated the transcriptome signature of the wild annual crucifer, Brassica nigra, in response to eggs and caterpillars of Pieris brassicae butterflies, Brevicoryne brassicae aphids and the bacterial phytopathogen Xanthomonas campestris pv. raphani (Xcr). Pretreatment with egg extract, aphids, or Xcr had a weak impact on the subsequent transcriptome profile of plants challenged with caterpillars, suggesting that the second stress dominates the transcriptional response. Nevertheless, P. brassicae larval performance was strongly affected by egg extract or Xcr pretreatment and depended on the site where the initial stress was applied. Although egg extract and Xcr pretreatments inhibited insect-induced defense gene expression, suggesting salicylic acid (SA)/jasmonic acid (JA) pathway cross talk, this was not strictly correlated with larval performance. CONCLUSION These results emphasize the need to better integrate plant responses at different levels of biological organization and to consider localized effects in order to predict the consequence of multiple stresses on plant resistance.
Collapse
Affiliation(s)
- Christelle Bonnet
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Steve Lassueur
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Camille Ponzio
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Philippe Reymond
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland.
| |
Collapse
|
28
|
Cui H, Sun Y, Chen F, Zhang Y, Ge F. Elevated O₃ and TYLCV Infection Reduce the Suitability of Tomato as a Host for the Whitefly Bemisia tabaci. Int J Mol Sci 2016; 17:E1964. [PMID: 27916792 PMCID: PMC5187764 DOI: 10.3390/ijms17121964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/04/2016] [Accepted: 11/16/2016] [Indexed: 11/16/2022] Open
Abstract
The effects of elevated atmospheric ozone (O₃) levels on herbivorous insects have been well studied, but little is known about the combined effects of elevated O₃ and virus infection on herbivorous insect performance. Using open-top chambers in the field, we determined the effects of elevated O₃ and Tomato yellow leaf curl virus (TYLCV) infection on wild-type (Wt) tomato and 35S tomato (jasmonic acid (JA) defense-enhanced genotype) in association with whitefly, Bemisia tabaci Gennadius biotype B. Elevated O₃ and TYLCV infection, alone and in combination, significantly reduced the contents of soluble sugars and free amino acids, increased the contents of total phenolics and condensed tannins, and increased salicylic acid (SA) content and the expression of SA-related genes in leaves. The JA signaling pathway was upregulated by elevated O₃, but downregulated by TYLCV infection and O₃ + TYLCV infection. Regardless of plant genotype, elevated O₃, TYLCV infection, or O₃ + TYLCV infection significantly decreased B. tabaci fecundity and abundance. These results suggest that elevated O₃ and TYLCV infection, alone and in combination, reduce the nutrients available for B. tabaci, increase SA content and SA-related gene expression, and increase secondary metabolites, resulting in decreases in fecundity and abundance of B. tabaci in both tomato genotypes.
Collapse
Affiliation(s)
- Hongying Cui
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
29
|
Moerkens R, Berckmoes E, Van Damme V, Ortega-Parra N, Hanssen I, Wuytack M, Wittemans L, Casteels H, Tirry L, De Clercq P, De Vis R. High population densities of Macrolophus pygmaeus on tomato plants can cause economic fruit damage: interaction with Pepino mosaic virus? PEST MANAGEMENT SCIENCE 2016; 72:1350-1358. [PMID: 26419416 DOI: 10.1002/ps.4159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND The zoophytophagous predator Macrolophus pygmaeus Rambur (Hemiptera: Miridae) is a successful biocontrol agent against several pest species in protected tomato crops. This predator is considered to be harmless for the crop. However, in recent years, Heteroptera feeding punctures on tomato fruit in Belgian and Dutch greenhouses have been misinterpreted as Pepino mosaic virus (PepMV) symptoms. In this study, three hypotheses were tested: (1) M. pygmaeus causes fruit damage that increases with population density and surpasses economic thresholds; (2) the presence of prey or alternative prey reduces the damage; (3) an infection of the tomato plants by PepMV triggers or aggravates M. pygmaeus fruit damage. RESULTS At increasing M. pygmaeus densities, the severity of fruit damage increased from a few dimples towards yellowish discoloration and deformed fruits. A correlation with an infection with PepMV was found. The severity of the symptoms was independent of the presence of prey. A minimum economic density threshold was estimated at 0.32 M. pygmaeus per leaf. CONCLUSION M. pygmaeus can cause economic damage to tomato fruits at densities common in practice. An infection of the plants with PepMV enhances fruit symptoms significantly. Interacting plant defence responses are most likely the key to explaining this, although confirmation is required. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rob Moerkens
- Tomato Research, Research Centre Hoogstraten, Hoogstraten, Belgium
- Evolutionary Ecology Group, University of Antwerp, Belgium
| | - Els Berckmoes
- Research Station for Vegetable Production, Sint-Katelijne-Waver, Belgium
| | - Veerle Van Damme
- Institute for Agricultural and Fisheries Research (ILVO), Merelbeke, Belgium
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | | | - Inge Hanssen
- Scientia Terrae Research Institute, Sint-Katelijne-Waver, Belgium
| | - Martine Wuytack
- Research Station for Vegetable Production, Sint-Katelijne-Waver, Belgium
| | - Lieve Wittemans
- Research Station for Vegetable Production, Sint-Katelijne-Waver, Belgium
| | - Hans Casteels
- Institute for Agricultural and Fisheries Research (ILVO), Merelbeke, Belgium
| | - Luc Tirry
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Patrick De Clercq
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Raf De Vis
- Research Station for Vegetable Production, Sint-Katelijne-Waver, Belgium
| |
Collapse
|
30
|
Cao S, Chen H, Zhang C, Tang Y, Liu J, Qi H. Heterologous Expression and Biochemical Characterization of Two Lipoxygenases in Oriental Melon, Cucumis melo var. makuwa Makino. PLoS One 2016; 11:e0153801. [PMID: 27101009 PMCID: PMC4839669 DOI: 10.1371/journal.pone.0153801] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/04/2016] [Indexed: 01/25/2023] Open
Abstract
Lipoxygenases (LOXs) are a class of non-heme iron-containing dioxygenases that catalyse oxidation of polyunsaturated fatty acids to produce hydroperoxidation that are in turn converted to oxylipins. Although multiple isoforms of LOXs have been detected in several plants, LOXs in oriental melon have not attracted much attention. Two full-length LOX cDNA clones, CmLOX10 and CmLOX13 which have been isolated from oriental melon (Cucumis melo var. makuwa Makino) cultivar “Yumeiren”, encode 902 and 906 amino acids, respectively. Bioinformatics analysis showed that CmLOX10 and CmLOX13 included all of the typical LOX domains and shared 58.11% identity at the amino acid level with each other. The phylogenetic analysis revealed that CmLOX10 and CmLOX13 were members of the type 2 13-LOX subgroup which are known to be involved in biotic and abiotic stress. Heterologous expression of the full-length CmLOX10 and truncated CmLOX13 in Escherichia coli revealed that the encoded exogenous proteins were identical to the predicted molecular weights and possessed the lipoxygenase activities. The purified CmLOX10 and CmLOX13 recombinant enzymes exhibited maximum activity at different temperature and pH and both had higher affinity for linoleic acid than linolenic acid. Chromatogram analysis of reaction products from the CmLOX10 and CmLOX13 enzyme reaction revealed that both enzymes produced 13S-hydroperoxides when linoleic acid was used as substrate. Furthermore, the subcellular localization analysis by transient expression of the two LOX fusion proteins in tobacco leaves showed that CmLOX10 and CmLOX13 proteins were located in plasma membrane and chloroplasts respectively. We propose that the two lipoxygenases may play different functions in oriental melon during plant growth and development.
Collapse
Affiliation(s)
- Songxiao Cao
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hao Chen
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chong Zhang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yufan Tang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jieying Liu
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hongyan Qi
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, China
- * E-mail:
| |
Collapse
|
31
|
Wu M, Li Y, Chen D, Liu H, Zhu D, Xiang Y. Genome-wide identification and expression analysis of the IQD gene family in moso bamboo (Phyllostachys edulis). Sci Rep 2016; 6:24520. [PMID: 27094318 PMCID: PMC4837358 DOI: 10.1038/srep24520] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/30/2016] [Indexed: 12/14/2022] Open
Abstract
Members of the plant-specific IQ67-domain (IQD) protein family are involved in various aspects of normal plant growth and developmental processes as well as basal defence response. Although hundreds of IQD proteins have been identified, only a small number of IQDs have been functionally characterized. Moreover, no systematic study has been performed on moso bamboo. In this study, we performed for the first time a genome-wide identification and expression analysis of the IQD gene family in moso bamboo. We identified 29 non-redundant PeIQD encoding genes. Analysis of the evolutionary patterns and divergence revealed that the IQD genes underwent a large-scale event around 12 million years ago and the division times of IQD family genes between moso bamboo and rice, and, between moso bamboo and Brachypodium, were found to be 20-35 MYA and 25-40 MYA, respectively. We surveyed the putative promoter regions of the PeIQD genes, which showed that largely stress-related cis-elements existed in these genes. The expression profiles of the IQD genes shed light on their functional divergence. Additionally, a yeast two-hybrid assay proved that PeIQD8 can interact with PeCaM2 and that IQ or I in the IQ motif is required for PeIQD8 to combine with CaM2.
Collapse
Affiliation(s)
- Min Wu
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yuan Li
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Danmei Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Huanlong Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Dongyue Zhu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yan Xiang
- Key Laboratory of Crop Biology of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
32
|
Su Q, Mescher MC, Wang S, Chen G, Xie W, Wu Q, Wang W, Zhang Y. Tomato yellow leaf curl virus differentially influences plant defence responses to a vector and a non-vector herbivore. PLANT, CELL & ENVIRONMENT 2016; 39:597-607. [PMID: 26436779 DOI: 10.1111/pce.12650] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/20/2015] [Indexed: 06/05/2023]
Abstract
Plants frequently engage in simultaneous interactions with diverse classes of biotic antagonists. Differential induction of plant defence pathways by these antagonists, and interactions between pathways, can have important ecological implications; however, these effects are currently not well understood. We explored how Tomato yellow leaf curl virus (TYLCV) influenced the performance of its vector (Bemisia tabaci) and a non-vector herbivore (Tetranychus urticae) occurring separately or together on tomato plants (Solanum lycopersicum). TYLCV enhanced the performance of B. tabaci, although this effect was statistically significant only in the absence of T. urticae, which adversely affected B. tabaci performance regardless of infection status. In contrast, the performance of T. urticae was enhanced (only) by the combined presence of TYLCV and B. tabaci. Analyses of phytohormone levels and defence gene expression in wild-type tomatoes and various plant-defence mutants indicate that the enhancement of herbivore performance (for each species) entails the disruption of downstream defences in the jasmonic acid (JA) pathway. For T. urticae, this disruption appears to involve antagonistic effects of salicylic acid (SA), which is cumulatively induced to high levels by B. tabaci and TYLCV. In contrast, TYLCV was found to suppress JA-mediated responses to B. tabaci via mechanisms independent of SA.
Collapse
Affiliation(s)
- Qi Su
- College of Agriculture, Yangtze University, Jingzhou, Hubei, 434025, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, Zürich, 8092, Switzerland
| | - Shaoli Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Gong Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingjun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wenkai Wang
- College of Agriculture, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
33
|
Host target modification as a strategy to counter pathogen hijacking of the jasmonate hormone receptor. Proc Natl Acad Sci U S A 2015; 112:14354-9. [PMID: 26578782 DOI: 10.1073/pnas.1510745112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the past decade, characterization of the host targets of pathogen virulence factors took a center stage in the study of pathogenesis and disease susceptibility in plants and humans. However, the impressive knowledge of host targets has not been broadly exploited to inhibit pathogen infection. Here, we show that host target modification could be a promising new approach to "protect" the disease-vulnerable components of plants. In particular, recent studies have identified the plant hormone jasmonate (JA) receptor as one of the common targets of virulence factors from highly evolved biotrophic/hemibiotrophic pathogens. Strains of the bacterial pathogen Pseudomonas syringae, for example, produce proteinaceous effectors, as well as a JA-mimicking toxin, coronatine (COR), to activate JA signaling as a mechanism to promote disease susceptibility. Guided by the crystal structure of the JA receptor and evolutionary clues, we succeeded in modifying the JA receptor to allow for sufficient endogenous JA signaling but greatly reduced sensitivity to COR. Transgenic Arabidopsis expressing this modified receptor not only are fertile and maintain a high level of insect defense, but also gain the ability to resist COR-producing pathogens Pseudomonas syringae pv. tomato and P. syringae pv. maculicola. Our results provide a proof-of-concept demonstration that host target modification can be a promising new approach to prevent the virulence action of highly evolved pathogens.
Collapse
|
34
|
Davis TS, Bosque-Pérez NA, Popova I, Eigenbrode SD. Evidence for additive effects of virus infection and water availability on phytohormone induction in a staple crop. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Zang YX, Ge JL, Huang LH, Gao F, Lv XS, Zheng WW, Hong SB, Zhu ZJ. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp. pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation. J Zhejiang Univ Sci B 2015; 16:696-708. [PMID: 26238545 PMCID: PMC4534547 DOI: 10.1631/jzus.b1400370] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/05/2015] [Indexed: 12/16/2022]
Abstract
Glucosinolates (GSs) are an important group of defensive phytochemicals mainly found in Brassicaceae. Plant hormones jasmonic acid (JA) and salicylic acid (SA) are major regulators of plant response to pathogen attack. However, there is little information about the interactive effect of both elicitors on inducing GS biosynthesis in Chinese cabbage (Brassica rapa ssp. pekinensis). In this study, we applied different concentrations of methyl jasmonate (MeJA) and/or SA onto the leaf and root of Chinese cabbage to investigate the time-course interactive profiles of GSs. Regardless of the site of the elicitation and the concentrations of the elicitors, the roots accumulated much more GSs and were more sensitive and more rapidly responsive to the elicitors than leaves. Irrespective of the elicitation site, MeJA had a greater inducing and longer lasting effect on GS accumulation than SA. All three components of indole GS (IGS) were detected along with aliphatic and aromatic GSs. However, IGS was a major component of total GSs that accumulated rapidly in both root and leaf tissues in response to MeJA and SA elicitation. Neoglucobrassicin (neoGBC) did not respond to SA but to MeJA in leaf tissue, while it responded to both SA and MeJA in root tissue. Conversion of glucobrassicin (GBC) to neoGBC occurred at a steady rate over 3 d of elicitation. Increased accumulation of 4-methoxy glucobrassicin (4-MGBC) occurred only in the root irrespective of the type of elicitors and the site of elicitation. Thus, accumulation of IGS is a major metabolic hallmark of SA- and MeJA-mediated systemic response systems. SA exerted an antagonistic effect on the MeJA-induced root GSs irrespective of the site of elicitation. However, SA showed synergistic and antagonistic effects on the MeJA-induced leaf GSs when roots and leaves are elicitated for 3 d, respectively.
Collapse
Affiliation(s)
- Yun-xiang Zang
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Research Center of Bio-Breeding Industry, School of Agricultural and Food Science, Zhejiang A & F University, Lin'an 311300, China
| | - Jia-li Ge
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Research Center of Bio-Breeding Industry, School of Agricultural and Food Science, Zhejiang A & F University, Lin'an 311300, China
| | - Ling-hui Huang
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Research Center of Bio-Breeding Industry, School of Agricultural and Food Science, Zhejiang A & F University, Lin'an 311300, China
| | - Fei Gao
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Research Center of Bio-Breeding Industry, School of Agricultural and Food Science, Zhejiang A & F University, Lin'an 311300, China
| | - Xi-shan Lv
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Research Center of Bio-Breeding Industry, School of Agricultural and Food Science, Zhejiang A & F University, Lin'an 311300, China
| | - Wei-wei Zheng
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Research Center of Bio-Breeding Industry, School of Agricultural and Food Science, Zhejiang A & F University, Lin'an 311300, China;
| | - Seung-beom Hong
- Department of Biotechnology, University of Houston-Clear Lake, Houston, TX 77058-1098, USA
| | - Zhu-jun Zhu
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Research Center of Bio-Breeding Industry, School of Agricultural and Food Science, Zhejiang A & F University, Lin'an 311300, China;
| |
Collapse
|
36
|
Herbivory and relative growth rates of Pieris rapae are correlated with host constitutive salicylic acid and flowering time. J Chem Ecol 2015; 41:350-9. [PMID: 25893789 PMCID: PMC4427633 DOI: 10.1007/s10886-015-0572-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/14/2015] [Accepted: 03/24/2015] [Indexed: 11/30/2022]
Abstract
Treatment of plants with exogenous salicylic acid (SA) improves resistance to many bacterial pathogens, but can suppress resistance to insect herbivores. While plants vary naturally in constitutive SA, whether such differences are predictive of resistance to insect herbivores has not been studied previously. We examined the possible role of this endogenous SA in structuring the interactions between the cabbage white butterfly, Pieris rapae, and ten hosts in the mustard family (Brassicaceae). Because P. rapae has multiple generations that utilize different hosts across the year, we included five spring-flowering mustards and five summer-flowering mustards that co-occur in ruderal habitats in upstate New York. Under common garden conditions, the spring flowering mustards (Capsella bursa-pastoris, Draba verna, Cardamine impatiens, Barbarea vulgaris, and Arabidopsis thaliana) were significantly more resistant to P. rapae, supporting 42 % less herbivory (P = 0.015) and 64 % lower relative growth rates (P = 0.007), relative to the summer flowering mustards (Sisymbrium altissimum, Brassica nigra, Sinapis arvense, Lepidium campestre, and Arabis canadensis). Leaf total constitutive SA explained significant variation in larval herbivory (R2 = 75.3 %, P = 0.007) and relative growth rates (R2 = 59.4 %, P = 0.043). The three species with the lowest levels of constitutive SA (Capsella bursa-pastoris, Draba verna, and Cardamine impatiens) were the most resistant to larvae. Barbarea vulgaris and Arabis canadensis were notable exceptions, exhibiting high SA concentrations and intermediate resistance to P. rapae. These results suggest a curvilinear relationship between leaf constitutive SA and the herbivory by P. rapae, and they provide some insight into the ecology and possible management of this economically important crop pest.
Collapse
|
37
|
Yang FZ, Yang B, Li BB, Xiao C. Alternaria toxin-induced resistance in rose plants against rose aphid (Macrosiphum rosivorum): effect of tenuazonic acid. J Zhejiang Univ Sci B 2015; 16:264-74. [PMID: 25845360 PMCID: PMC4399427 DOI: 10.1631/jzus.b1400151] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 12/10/2014] [Indexed: 11/11/2022]
Abstract
Many different types of toxins are produced by the fungus, Alternaria alternata (Fr.) Keissler. Little is known, however, regarding the influence of these toxins on insects. In this study, we investigated the toxin-induced inhibitory effects of the toxin produced by A. alternata on the rose aphid, Macrosiphum rosivorum, when the toxin was applied to leaves of the rose, Rosa chinensis. The results demonstrated that the purified crude toxin was non-harmful to rose plants and rose aphids, but had an intensive inhibitory effect on the multiplication of aphids. The inhibitory index against rose aphids reached 87.99% when rose plants were sprayed with the toxin solution at a low concentration. Further results from bioassays with aphids and high performance liquid chromatography (HPLC) analyses demonstrated that tenuazonic acid (TeA) was one of the most important resistance-related active components in the crude toxin. The content of TeA was 0.1199% in the crude toxin under the HPLC method. Similar to the crude toxin, the inhibitory index of pure TeA reached 83.60% 15 d after the rose plants were sprayed with pure TeA solution at the lower concentration of 0.060 μg/ml, while the contents of residual TeA on the surface and in the inner portion of the rose plants were only 0.04 and 0.00 ng/g fresh weight of TeA-treated rose twigs, respectively, 7 d after the treatment. Our results show that TeA, an active component in the A. alternata toxin, can induce the indirect plant-mediated responses in rose plants to intensively enhance the plant's resistances against rose aphids, and the results are very helpful to understand the plant-mediated interaction between fungi and insects on their shared host plants.
Collapse
Affiliation(s)
- Fa-zhong Yang
- School of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Bin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Bei-bei Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Chun Xiao
- School of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
38
|
Zhang PJ, Huang F, Zhang JM, Wei JN, Lu YB. The mealybug Phenacoccus solenopsis suppresses plant defense responses by manipulating JA-SA crosstalk. Sci Rep 2015; 5:9354. [PMID: 25790868 PMCID: PMC4366759 DOI: 10.1038/srep09354] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/27/2015] [Indexed: 01/08/2023] Open
Abstract
Induced plant defenses against herbivores are modulated by jasmonic acid-, salicylic acid-, and ethylene-signaling pathways. Although there is evidence that some pathogens suppress plant defenses by interfering with the crosstalk between different signaling pathways, such evidence is scarce for herbivores. Here, we demonstrate that the mealybug Phenacoccus solenopsis suppresses the induced defenses in tomato. We found that exogenous JA, but not SA, significantly decreased mealybug feeding time and reduced nymphal performance. In addition, constitutive activation of JA signaling in 35s::prosys plants reduced mealybug survival. These data indicate that the JA signaling pathway plays a key role in mediating the defense responses against P. solenopsis. We also found that mealybug feeding decreased JA production and JA-dependent defense gene expression, but increased SA accumulation and SA-dependent gene expression. In SA-deficient plants, mealybug feeding did not suppress but activated JA accumulation, indicating that the suppression of JA-regulated defenses depends on the SA signaling pathway. Mealybugs benefit from suppression of JA-regulated defenses by exhibiting enhanced nymphal performance. These findings confirm that P. solenopsis manipulates plants for its own benefits by modulating the JA-SA crosstalk and thereby suppressing induced defenses.
Collapse
Affiliation(s)
- Peng-Jun Zhang
- 1] Zhejiang Provincial Key Laboratory of Biometrology and Inspection &Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China [2] State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fang Huang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jin-Ming Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jia-Ning Wei
- State Key Laboratory of Integrated Management of Pest Insects &Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Yao-Bin Lu
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control; Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
39
|
Su Q, Oliver KM, Xie W, Wu Q, Wang S, Zhang Y. The whitefly‐associated facultative symbiont
Hamiltonella defensa
suppresses induced plant defences in tomato. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12405] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Qi Su
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing 100081 China
- College of Plant Protection Hunan Agricultural University Changsha Hunan 410128 China
| | - Kerry M. Oliver
- Department of Entomology University of Georgia Athens GA 30602 USA
| | - Wen Xie
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing 100081 China
| | - Qingjun Wu
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing 100081 China
| | - Shaoli Wang
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing 100081 China
| | - Youjun Zhang
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing 100081 China
| |
Collapse
|
40
|
Kroes A, van Loon JJA, Dicke M. Density-dependent interference of aphids with caterpillar-induced defenses in Arabidopsis: involvement of phytohormones and transcription factors. PLANT & CELL PHYSIOLOGY 2015; 56:98-106. [PMID: 25339349 DOI: 10.1093/pcp/pcu150] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In nature, plants are exposed to attacks by multiple herbivore species at the same time. To cope with these attacks, plants regulate defenses with the production of hormones such as salicylic acid (SA) and jasmonic acid (JA). Because herbivore densities are dynamic in time, this may affect plant-mediated interactions between different herbivores attacking at the same time. In Arabidopsis thaliana, feeding by Brevicoryne brassicae aphids interferes with induced defenses against Plutella xylostella caterpillars. This is density dependent: at a low aphid density, the growth rate of P. xylostella was increased, whereas caterpillars feeding on plants colonized by aphids at a high density have a reduced growth rate. Growth of P. xylostella larvae was unaffected on sid2-1 or on dde2-2 mutant plants when feeding simultaneously with a low or high aphid density. This shows that aphid interference with caterpillar-induced defenses requires both SA and JA signal transduction pathways. Transcriptional analysis revealed that simultaneous feeding by caterpillars and aphids at a low density induced the expression of the SA transcription factor gene WRKY70 whereas expression of WRKY70 was lower in plants induced with both caterpillars and a high aphid density. Interestingly, the expression of the JA transcription factor gene MYC2 was significantly higher in plants simultaneously attacked by aphids at a high density and caterpillars. These results indicate that a lower expression level of WRKY70 leads to significantly higher MYC2 expression through SA-JA cross-talk. Thus, plant-mediated interactions between aphids and caterpillars are density dependent and involve phytohormonal cross-talk and differential activation of transcription factors.
Collapse
Affiliation(s)
- Anneke Kroes
- Laboratory of Entomology, Wageningen University, Radix building, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Joop J A van Loon
- Laboratory of Entomology, Wageningen University, Radix building, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, Radix building, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| |
Collapse
|
41
|
Ode PJ, Johnson SN, Moore BD. Atmospheric change and induced plant secondary metabolites - are we reshaping the building blocks of multi-trophic interactions? CURRENT OPINION IN INSECT SCIENCE 2014; 5:57-65. [PMID: 32846743 DOI: 10.1016/j.cois.2014.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/10/2014] [Indexed: 06/11/2023]
Abstract
At least for the foreseeable future, atmospheric concentrations of greenhouse gases - particularly carbon dioxide (CO2) and ozone (O3) - are projected to rise inexorably. Recent studies have begun to unveil the complex nature of how these gases modulate the expression of plant signaling hormones, the defensive chemistries produced, and the responses of the myriad trophic interactions involving plant pathogens as well as insect herbivores and their natural enemies. Given the ubiquity of complex trophic interactions in both natural and managed systems, it is crucial that we understand how CO2 and O3 interact with defense signaling hormones of plants and their consequences for their trophic associates if we are to adapt to, and even mitigate, the effects of climate change.
Collapse
Affiliation(s)
- Paul J Ode
- Bioagricultural Sciences & Pest Management and The Graduate Degree Program in Ecology, Colorado State University, CO, USA.
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, University of Western Sydney, NSW, Australia
| | - Ben D Moore
- Hawkesbury Institute for the Environment, University of Western Sydney, NSW, Australia
| |
Collapse
|
42
|
Ghazijahani N, Hadavi E, Jeong BR. Foliar sprays of citric acid and salicylic acid alter the pattern of root acquisition of some minerals in sweet basil (Ocimum basilicum L.). FRONTIERS IN PLANT SCIENCE 2014; 5:573. [PMID: 25400645 PMCID: PMC4215826 DOI: 10.3389/fpls.2014.00573] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/06/2014] [Indexed: 05/03/2023]
Abstract
The effect of foliar application of two levels of citric acid (CA; 0 and 7 mM) and two levels of salicylic acid (SA; 0 and 1 mM) combined with two levels of nutrient solution strength (full strength and half strength) on mineral acquisition by sweet basil were investigated. The experiment was conducted in a randomized block design arrangement with three replications. SA alone reduced the plant height and thickened the stem. Plants supplied with a full strength solution had a ticker stem, produced more biomass, and showed higher values of Fv/Fm. Some changes in the uptake pattern of some nutrients, especially boron and sulfur, were noticed. Higher boron concentrations in leaves were in plants sprayed with a combination of 7 mM CA and 1 mM of SA. Applying combination of CA and SA was more effective than using them individually that suggests an effective synergism between them.
Collapse
Affiliation(s)
| | - Ebrahim Hadavi
- Horticulture Department, Karaj Branch, Islamic Azad UniversityKaraj, Iran
| | - Byoung R. Jeong
- Horticulture Department, Gyeongsang National UniversityJinju, South Korea
| |
Collapse
|
43
|
Feng L, Chen Z, Ma H, Chen X, Li Y, Wang Y, Xiang Y. The IQD gene family in soybean: structure, phylogeny, evolution and expression. PLoS One 2014; 9:e110896. [PMID: 25343341 PMCID: PMC4208818 DOI: 10.1371/journal.pone.0110896] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/19/2014] [Indexed: 01/28/2023] Open
Abstract
Members of the plant-specific IQ67-domain (IQD) protein family are involved in plant development and the basal defense response. Although systematic characterization of this family has been carried out in Arabidopsis, tomato (Solanum lycopersicum), Brachypodium distachyon and rice (Oryza sativa), systematic analysis and expression profiling of this gene family in soybean (Glycine max) have not previously been reported. In this study, we identified and structurally characterized IQD genes in the soybean genome. A complete set of 67 soybean IQD genes (GmIQD1-67) was identified using Blast search tools, and the genes were clustered into four subfamilies (IQD I-IV) based on phylogeny. These soybean IQD genes are distributed unevenly across all 20 chromosomes, with 30 segmental duplication events, suggesting that segmental duplication has played a major role in the expansion of the soybean IQD gene family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the GmIQD family primarily underwent purifying selection. Microsynteny was detected in most pairs: genes in clade 1-3 might be present in genome regions that were inverted, expanded or contracted after the divergence; most gene pairs in clade 4 showed high conservation with little rearrangement among these gene-residing regions. Of the soybean IQD genes examined, six were most highly expressed in young leaves, six in flowers, one in roots and two in nodules. Our qRT-PCR analysis of 24 soybean IQD III genes confirmed that these genes are regulated by MeJA stress. Our findings present a comprehensive overview of the soybean IQD gene family and provide insights into the evolution of this family. In addition, this work lays a solid foundation for further experiments aimed at determining the biological functions of soybean IQD genes in growth and development.
Collapse
Affiliation(s)
- Lin Feng
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Zhu Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Hui Ma
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Xue Chen
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yuan Li
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yiyi Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Biology of Anhui Agriculture University, Hefei, China
| |
Collapse
|
44
|
Stem nematode counteracts plant resistance of aphids in alfalfa, Medicago sativa. J Chem Ecol 2014; 40:1099-109. [PMID: 25261892 PMCID: PMC4244557 DOI: 10.1007/s10886-014-0504-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/02/2014] [Accepted: 06/05/2014] [Indexed: 11/23/2022]
Abstract
Plants are exploited by a diverse community of insect herbivores and phytopathogens that interact indirectly through plant-mediated interactions. Generally, plants are thought to respond to insects and pathogens through different defensive signaling pathways. As plants are selected for resistance to one phytophagous organism type (insect vs. pathogen) in managed systems, it is not clear how this selection may affect community interactions. This study examined the effect of nematode-resistant varieties on aphid (Acyrthosiphon pisum) suppression, and then determined how infection by the stem nematode, Ditylenchus dipsaci, mediated ecological effects on aphids and on plant defense proteins. Four alfalfa (Medicago sativa) varieties were selected with resistance to nematodes only (+,−), aphids only (−,+), nematodes and aphids (+,+), and susceptibility to nematodes and aphids (−,−). Field and greenhouse experiments were conducted to isolate the effect of nematode infection and aphid abundance on each variety. We found that varieties resistant to nematode, regardless of aphid resistance, had the lowest aphid counts, suggesting possible cross-resistance. Aphid abundance, however, increased when plants were exposed to nematodes. Resistant varieties were associated with elevated saponins but these compounds were not affected by insect or pathogen feeding. Concentrations of peroxidases and trypsin inhibitors, however, were increased in nematode resistant varieties when exposed to nematodes and aphids, respectively. The patterns of plant defense were variable, and a combination of resistance traits and changes in nutrient availability may drive positive interactions between nematodes and aphids aboveground.
Collapse
|
45
|
Bosch M, Berger S, Schaller A, Stintzi A. Jasmonate-dependent induction of polyphenol oxidase activity in tomato foliage is important for defense against Spodoptera exigua but not against Manduca sexta. BMC PLANT BIOLOGY 2014; 14:257. [PMID: 25261073 PMCID: PMC4189532 DOI: 10.1186/s12870-014-0257-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/22/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Jasmonates are involved in plant defense, participating in the timely induction of defense responses against insect herbivores from different feeding guilds and with different degrees of host specialization. It is less clear to what extent the induction of plant defense is controlled by different members of the jasmonate family and how specificity of the response is achieved. Using transgenic plants blocked in jasmonic acid (JA) biosynthesis, we previously showed that JA is required for the formation of glandular trichomes and trichome-borne metabolites as constitutive defense traits in tomato, affecting oviposition and feeding behavior of the specialist Manduca sexta. In contrast, JA was not required for the local induction of defense gene expression after wounding. In JA-deficient plants, the JA precursor oxophytodienoic acid (OPDA) substituted as a regulator of defense gene expression maintaining considerable resistance against M. sexta larvae. In this study, we investigate the contribution of JA and OPDA to defense against the generalist herbivore Spodoptera exigua. RESULTS S. exigua preferred JA-deficient over wild-type tomato plants as a host for both oviposition and feeding. Feeding preference for JA-deficient plants was caused by constitutively reduced levels of repellent terpenes. Growth and development of the larvae, on the other hand, were controlled by additional JA-dependent defense traits, including the JA-mediated induction of foliar polyphenol oxidase (PPO) activity. PPO induction was more pronounced after S. exigua herbivory as compared to mechanical wounding or M. sexta feeding. The difference was attributed to an elicitor exclusively present in S. exigua oral secretions. CONCLUSIONS The behavior of M. sexta and S. exigua during oviposition and feeding is controlled by constitutive JA/JA-Ile-dependent defense traits involving mono- and sesquiterpenes in both species, and cis-3-hexenal as an additional chemical cue for M. sexta. The requirement of jasmonates for resistance of tomato plants against caterpillar feeding differs for the two species. While the OPDA-mediated induction of local defense is sufficient to restrict growth and development of M. sexta larvae in absence of JA/JA-Ile, defense against S. exigua relied on additional JA/JA-Ile dependent factors, including the induction of foliar polyphenol oxidase activity in response to S. exigua oral secretions.
Collapse
Affiliation(s)
- Marko Bosch
- Institute of Plant Physiology and Biotechnology, University of Hohenheim (260), 70593 Stuttgart, Germany
| | - Sonja Berger
- Institute of Plant Physiology and Biotechnology, University of Hohenheim (260), 70593 Stuttgart, Germany
| | - Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim (260), 70593 Stuttgart, Germany
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim (260), 70593 Stuttgart, Germany
| |
Collapse
|
46
|
Decreased emergence of emerald ash borer from ash treated with methyl jasmonate is associated with induction of general defense traits and the toxic phenolic compound verbascoside. Oecologia 2014; 176:1047-59. [PMID: 25231373 DOI: 10.1007/s00442-014-3082-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
Abstract
The emerald ash borer (EAB; Agrilus planipennis Fairmaire) is causing widespread mortality of ash (Fraxinus spp.) in North America. To date, no mechanisms of host resistance have been identified against this pest. Methyl jasmonate was applied to susceptible North American and resistant Asian ash species to determine if it can elicit induced responses in bark that enhance resistance to EAB. In particular, phenolic compounds, lignin, and defense-related proteins were quantified, and compounds associated with resistance were subsequently tested directly against EAB larvae in bioassays with artificial diet. MeJA application decreased adult emergence in susceptible ash species, comparable to levels achieved by insecticide application. Concentration of the phenolic compound verbascoside sharply increased after MeJA application to green and white ash. When incorporated in an artificial diet, verbascoside decreased survival and growth of EAB neonates in a dose-dependent fashion. Lignin and trypsin inhibitors were also induced by MeJA, and analogs of both compounds reduced growth of EAB larvae in artificial diets. We conclude that the application of MeJA prior to EAB attack has the ability to enhance resistance of susceptible ash trees by inducing endogenous plant defenses, and report evidence that induction of verbascoside is a mechanism of resistance to EAB.
Collapse
|
47
|
Schweiger R, Heise AM, Persicke M, Müller C. Interactions between the jasmonic and salicylic acid pathway modulate the plant metabolome and affect herbivores of different feeding types. PLANT, CELL & ENVIRONMENT 2014; 37:1574-85. [PMID: 24372400 DOI: 10.1111/pce.12257] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/05/2013] [Accepted: 12/10/2013] [Indexed: 05/22/2023]
Abstract
The phytohormones jasmonic acid (JA) and salicylic acid (SA) mediate induced plant defences and the corresponding pathways interact in a complex manner as has been shown on the transcript and proteine level. Downstream, metabolic changes are important for plant-herbivore interactions. This study investigated metabolic changes in leaf tissue and phloem exudates of Plantago lanceolata after single and combined JA and SA applications as well as consequences on chewing-biting (Heliothis virescens) and piercing-sucking (Myzus persicae) herbivores. Targeted metabolite profiling and untargeted metabolic fingerprinting uncovered different categories of plant metabolites, which were influenced in a specific manner, indicating points of divergence, convergence, positive crosstalk and pronounced mutual antagonism between the signaling pathways. Phytohormone-specific decreases of primary metabolite pool sizes in the phloem exudates may indicate shifts in sink-source relations, resource allocation, nutrient uptake or photosynthesis. Survival of both herbivore species was significantly reduced by JA and SA treatments. However, the combined application of JA and SA attenuated the negative effects at least against H. virescens suggesting that mutual antagonism between the JA and SA pathway may be responsible. Pathway interactions provide a great regulatory potential for the plant that allows triggering of appropriate defences when attacked by different antagonist species.
Collapse
Affiliation(s)
- R Schweiger
- Department of Chemical Ecology, Bielefeld University, D-33615, Bielefeld, Germany; Center for Biotechnology, Bielefeld University, D-33615, Bielefeld, Germany
| | | | | | | |
Collapse
|
48
|
Cao HH, Wang SH, Liu TX. Jasmonate- and salicylate-induced defenses in wheat affect host preference and probing behavior but not performance of the grain aphid, Sitobion avenae. INSECT SCIENCE 2014; 21:47-55. [PMID: 23956152 DOI: 10.1111/1744-7917.12023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/28/2013] [Indexed: 05/07/2023]
Abstract
Jasmonate- and salicylate-mediated signaling pathways play significant roles in induced plant defenses, but there is no sufficient evidence for their roles in monocots against aphids. We exogenously applied methyl jasmonate (MeJA) and salicylic acid (SA) on wheat seedlings and examined biochemical responses in wheat and effects on the grain aphid, Sitobion avenae (Fab.). Application of MeJA significantly increased levels of wheat's polyphenol oxidase, peroxidase and proteinase inhibitor 1, 2 and 6 days after treatment. In two-choice tests, adult aphids preferred control wheat leaves to MeJA- or SA-treated leaves. Electrical penetration graph (EPG) recordings of aphid probing behavior revealed that on MeJA-treated plants, the duration of aphid's first probe was significantly shorter and number of probes was significantly higher than those on control plants. Also total duration of probing on MeJA-treated plants was significantly shorter than on control plants. Total duration of salivation period on SA-treated plants was significantly longer, while mean phloem ingestion period was significantly shorter than on control plants. However, no significant difference in total duration of phloem sap ingestion period was observed among treatments. The EPG data suggest that MeJA-dependent resistance factors might be due to feeding deterrents in mesophyll, whereas the SA-mediated resistance may be phloem-based. We did not observe any significant difference of MeJA and SA application on aphid development, daily fecundity, intrinsic growth rate and population growth. The results indicate that both MeJA- and SA-induced defenses in wheat deterred S. avenae colonization processes and feeding behavior, but had no significant effects on its performance.
Collapse
Affiliation(s)
- He-He Cao
- State Key Laboratory of Crop Stress Biology on the Arid Areas, and the Key Laboratory of Crop Pest Management on the Losses Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | | | | |
Collapse
|
49
|
Lan Z, Krosse S, Achard P, van Dam NM, Bede JC. DELLA proteins modulate Arabidopsis defences induced in response to caterpillar herbivory. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:571-83. [PMID: 24399173 PMCID: PMC3904718 DOI: 10.1093/jxb/ert420] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Upon insect herbivory, many plant species change the direction of metabolic flux from growth into defence. Two key pathways modulating these processes are the gibberellin (GA)/DELLA pathway and the jasmonate pathway. In this study, the effect of caterpillar herbivory on plant-induced responses was compared between wild-type Arabidopsis thaliana (L.) Heynh. and quad-della mutants that have constitutively elevated GA responses. The labial saliva (LS) of caterpillars of the beet armyworm, Spodoptera exigua, is known to influence induced plant defence responses. To determine the role of this herbivore cue in determining metabolic shifts, plants were subject to herbivory by caterpillars with intact or impaired LS secretions. In both wild-type and quad-della plants, a jasmonate burst is an early response to caterpillar herbivory. Negative growth regulator DELLA proteins are required for the LS-mediated suppression of hormone levels. Jasmonate-dependent marker genes are induced in response to herbivory independently of LS, with the exception of AtPDF1.2 that showed LS-dependent expression in the quad-della mutant. Early expression of the salicylic acid (SA)-marker gene, AtPR1, was not affected by herbivory which also reflected SA hormone levels; however, this gene showed LS-dependent expression in the quad-della mutant. DELLA proteins may positively regulate glucosinolate levels and suppress laccase-like multicopper oxidase activity in response to herbivory. The present results show a link between DELLA proteins and early, induced plant defences in response to insect herbivory; in particular, these proteins are necessary for caterpillar LS-associated attenuation of defence hormones.
Collapse
Affiliation(s)
- Zhiyi Lan
- Department of Plant Science, McGill University, 21111 Lakeshore, Ste-Anne-de-Belleuve, QC, H9X 3V9, Canada
| | - Sebastian Krosse
- Ecogenomics, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Patrick Achard
- Institut de Biologie Moléculare des Plantes, Université de Strasbourg, Strasbourg, France
| | - Nicole M. van Dam
- Ecogenomics, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Jacqueline C. Bede
- Department of Plant Science, McGill University, 21111 Lakeshore, Ste-Anne-de-Belleuve, QC, H9X 3V9, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Affiliation(s)
- Ezra G. Schwartzberg
- Department of Entomology; Center for Chemical Ecology; The Pennsylvania State University; University Park Pennsylvania 16802 USA
| | - James H. Tumlinson
- Department of Entomology; Center for Chemical Ecology; The Pennsylvania State University; University Park Pennsylvania 16802 USA
| |
Collapse
|