1
|
Bursali F, Simsek FM. Population Genetics of Culex tritaeniorhynchus (Diptera: Culicidae) in Türkiye. Acta Parasitol 2024; 69:1157-1171. [PMID: 38592372 PMCID: PMC11182820 DOI: 10.1007/s11686-024-00844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
PURPOSE Mosquitoes are important vectors of pathogens that can affect humans and animals. Culex tritaeniorhynchus is an important vector of arboviruses such as Japanese encephalitis virus, West Nile virus among various human and animal communities. These diseases are of major public health concern and can have huge economic and health burdens in prevalent countries. Although populations of this important mosquito species have been detected in the Mediterranean and Aegean regions of Türkiye; little is known about its population structure. Our study is to examine the population genetics and genetic composition of Cx. tritaeniorhynchus mosquitoes collected from several localities using cytochrome oxidase subunit I (COI) and the NADH dehydrogenase subunit 5 genes (ND5). This is the first extensive study of Cx. tritaeniorhynchus in the mainland Türkiye with sampling spanning many of provinces. METHODS In this study, DNA extraction, amplification of mitochondrial COI and ND5 genes and population genetic analyses were performed on ten geographic populations of Culex tritaeniorhynchus in the Aegean and Mediterranean region of Türkiye. RESULTS Between 2019 and 2020, 96 samples were collected from 10 geographic populations in the Aegean and Mediterranean regions; they were molecularly analyzed and 139 sequences (50 sequence for COI and 89 sequence for ND5) were used to determine the population structure and genetic diversity. For ND5 gene region, the samples produced 24 haplotypes derived from 15 variable sites and for COI gene region, 43 haplotypes were derived from 17 variable sites. The haplotype for both gene regions was higher than nucleotide diversity. Haplotype phylogeny revealed two groups present in all populations. AMOVA test results show that the geographical populations were the same for all gene regions. Results suggest that Cx. tritaeniorhynchus is a native population in Türkiye, the species is progressing towards speciation and there is no genetic differentiation between provinces and regions. CONCLUSION This study provides useful information on the molecular identifcation and genetic diversity of Cx. tritaeniorhynchus; these results are important to improve mosquito control programs.
Collapse
Affiliation(s)
- Fatma Bursali
- Faculty of Science, Department of Biology, Aydın Adnan Menderes University, Aydın, 09100, Türkiye.
| | - Fatih Mehmet Simsek
- Faculty of Science, Department of Biology, Aydın Adnan Menderes University, Aydın, 09100, Türkiye
| |
Collapse
|
2
|
Friis G, Smith EG, Lovelock CE, Ortega A, Marshell A, Duarte CM, Burt JA. Rapid diversification of grey mangroves (Avicennia marina) driven by geographic isolation and extreme environmental conditions in the Arabian Peninsula. Mol Ecol 2024; 33:e17260. [PMID: 38197286 DOI: 10.1111/mec.17260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 11/13/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
Biological systems occurring in ecologically heterogeneous and spatially discontinuous habitats provide an ideal opportunity to investigate the relative roles of neutral and selective factors in driving lineage diversification. The grey mangroves (Avicennia marina) of Arabia occur at the northern edge of the species' range and are subject to variable, often extreme, environmental conditions, as well as historic large fluctuations in habitat availability and connectivity resulting from Quaternary glacial cycles. Here, we analyse fully sequenced genomes sampled from 19 locations across the Red Sea, the Arabian Sea and the Persian/Arabian Gulf (PAG) to reconstruct the evolutionary history of the species in the region and to identify adaptive mechanisms of lineage diversification. Population structure and phylogenetic analyses revealed marked genetic structure correlating with geographic distance and highly supported clades among and within the seas surrounding the Arabian Peninsula. Demographic modelling showed times of divergence consistent with recent periods of geographic isolation and low marine connectivity during glaciations, suggesting the presence of (cryptic) glacial refugia in the Red Sea and the PAG. Significant migration was detected within the Red Sea and the PAG, and across the Strait of Hormuz to the Arabian Sea, suggesting gene flow upon secondary contact among populations. Genetic-environment association analyses revealed high levels of adaptive divergence and detected signs of multi-loci local adaptation driven by temperature extremes and hypersalinity. These results support a process of rapid diversification resulting from the combined effects of historical factors and ecological selection and reveal mangrove peripheral environments as relevant drivers of lineage diversity.
Collapse
Affiliation(s)
- Guillermo Friis
- Center for Genomics and Systems Biology (CGSB) and Mubadala ACCESS Center, New York University - Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Edward G Smith
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Catherine E Lovelock
- School of Environment, The University of Queensland, St Lucia, Queensland, Australia
| | - Alejandra Ortega
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Alyssa Marshell
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - John A Burt
- Center for Genomics and Systems Biology (CGSB) and Mubadala ACCESS Center, New York University - Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Boo GH, Bottalico A, Le Gall L, Yoon HS. Genetic Diversity and Phylogeography of a Turf-Forming Cosmopolitan Marine Alga, Gelidium crinale (Gelidiales, Rhodo-Phyta). Int J Mol Sci 2023; 24:ijms24065263. [PMID: 36982334 PMCID: PMC10049384 DOI: 10.3390/ijms24065263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Cosmopolitan species are rare in red algae, which have a low-dispersal capacity unless they are dispersed by human-mediated introductions. Gelidium crinale, a turf-forming red alga, has a widespread distribution in tropical and temperate waters. To decipher the genetic diversity and phylogeography of G. crinale, we analyzed mitochondrial COI-5P and plastid rbcL sequences from collections in the Atlantic, Indian, and Pacific Oceans. Phylogenies of both markers statistically supported the monophyly of G. crinale, with a close relationship to G. americanum and G. calidum from the Western Atlantic. Based on the molecular analysis from these materials, Pterocladia heteroplatos from India is here merged with G. crinale. Phylogeny and TCS networks of COI-5P haplotypes revealed a geographic structure of five groups: (i) Atlantic-Mediterranean, (ii) Ionian, (iii) Asian, (iv) Adriatic-Ionian, and (v) Australasia-India-Tanzania-Easter Island. The most common ancestor of G. crinale likely diverged during the Pleistocene. The Bayesian Skyline Plots suggested the pre-LGM population expansion. Based on geographical structure, lineage-specific private haplotypes, the absence of shared haplotypes between lineages, and AMOVA, we propose that the cosmopolitan distribution of G. crinale has been shaped by Pleistocene relicts. The survival of the turf species under environmental stresses is briefly discussed.
Collapse
Affiliation(s)
- Ga Hun Boo
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Antonella Bottalico
- Department of Biosciences, Biotechnologies and Environment, University of Bari “A. Moro”, Via E. Orabona 4, 70125 Bari, Italy
| | - Line Le Gall
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, 75005 Paris, France
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence:
| |
Collapse
|
4
|
Addison JA, Kim J. Trans-Arctic vicariance in Strongylocentrotus sea urchins. PeerJ 2022; 10:e13930. [PMID: 36164602 PMCID: PMC9508886 DOI: 10.7717/peerj.13930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/31/2022] [Indexed: 01/19/2023] Open
Abstract
The sea urchins Strongylocentotus pallidus and S. droebachiensis first invaded the Atlantic Ocean from the Pacific following the opening of the Bering seaway in the late Miocene. While trans-Arctic dispersal during the Pleistocene is thought to have maintained species' integrity, a recent genomic analysis identified a reproductively isolated cryptic species within S. droebachiensis. Based on previous studies, the distribution of one of these lineages (S. droebachiensis W) includes the shallow water habitats of the northwest Atlantic and Pacific, while the other (S. droebachiensis E) is found throughout the shallow habitat in the northeast but is mostly restricted to deep habitats (>65 m) in the northwest Atlantic. However, since genetic variation within S. droebachiensis has been largely unstudied in the north Pacific and Arctic oceans, the biogeography of the cryptic species is not well known, and it is difficult to identify the mechanisms driving population subdivision and speciation. Here we use population genetic analyses to characterize the distribution of each species, and to test hypotheses about the role of vicariance in the evolution of systematic and genomic divergence within the genus. We collected individuals of all three Strongylocentrotus species (n = 365) from 10 previously unsampled locations in the northeast Pacific and north Atlantic (Labrador Sea and Norway), and generated mtDNA sequence data for a 418 bp fragment of cytochrome c oxidase subunit I (COI). To assess the biogeography of all three species, we combined our alignment with five previously published data sets (total n = 789) and used statistical parsimony and maximum likelihood to identify species and characterize their distribution within and among oceans. Patterns of haplotype sharing, pairwise F ST , and hierarchical analyses of molecular variance (AMOVA) identified trans-Arctic dispersal in S. pallidus and S. droebachiensis W, but other than 5 previously reported singletons we failed to detect additional mtDNA haplotypes of S. droebachiensis E in the north Pacific. Within the Atlantic, patterns of habitat segregation suggests that temperature may play a role in limiting the distribution of S. droebachiensis E, particularly throughout the warmer coastal waters along the coast of Nova Scotia. Our results are consistent with the cycles of trans-Arctic dispersal and vicariance in S. pallidus and S. droebachiensis W, but we suggest that the evolution of Atlantic populations of S. droebachiensis E has been driven by persistent trans-Arctic vicariance that may date to the initial invasion in the late Pliocene.
Collapse
Affiliation(s)
- Jason A. Addison
- Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Jinhong Kim
- Biology, University of New Brunswick, Fredericton, New Brunswick, Canada,Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
5
|
Geburzi JC, Heuer N, Homberger L, Kabus J, Moesges Z, Ovenbeck K, Brandis D, Ewers C. An environmental gradient dominates ecological and genetic differentiation of marine invertebrates between the North and Baltic Sea. Ecol Evol 2022; 12:e8868. [PMID: 35600684 PMCID: PMC9121054 DOI: 10.1002/ece3.8868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022] Open
Abstract
Environmental gradients have emerged as important barriers to structuring populations and species distributions. We set out to test whether the strong salinity gradient from the marine North Sea to the brackish Baltic Sea in northern Europe represents an ecological and genetic break, and to identify life history traits that correlate with the strength of this break. We accumulated mitochondrial cytochrome oxidase subunit 1 sequence data, and data on the distribution, salinity tolerance, and life history for 28 species belonging to the Cnidaria, Crustacea, Echinodermata, Mollusca, Polychaeta, and Gastrotricha. We included seven non‐native species covering a broad range of times since introduction, in order to gain insight into the pace of adaptation and differentiation. We calculated measures of genetic diversity and differentiation across the environmental gradient, coalescent times, and migration rates between North and Baltic Sea populations, and analyzed correlations between genetic and life history data. The majority of investigated species is either genetically differentiated and/or adapted to the lower salinity conditions of the Baltic Sea. Species exhibiting population structure have a range of patterns of genetic diversity in comparison with the North Sea, from lower in the Baltic Sea to higher in the Baltic Sea, or equally diverse in North and Baltic Sea. Two of the non‐native species showed signs of genetic differentiation, their times since introduction to the Baltic Sea being about 80 and >700 years, respectively. Our results indicate that the transition from North Sea to Baltic Sea represents a genetic and ecological break: The diversity of genetic patterns points toward independent trajectories in the Baltic compared with the North Sea, and ecological differences with regard to salinity tolerance are common. The North Sea–Baltic Sea region provides a unique setting to study evolutionary adaptation during colonization processes at different stages by jointly considering native and non‐native species.
Collapse
Affiliation(s)
- Jonas C. Geburzi
- Mangrove Ecology Leibniz Centre for Tropical Marine Research (ZMT) Bremen Germany
- Department of Organismic and Evolutionary Biology Museum of Comparative Zoology Harvard University Cambridge Massachusetts USA
- Zoological Museum Kiel University Kiel Germany
| | - Nele Heuer
- Zoological Museum Kiel University Kiel Germany
| | | | - Jana Kabus
- Zoological Museum Kiel University Kiel Germany
- Department Aquatic Ecotoxicology Institute of Ecology Diversity and Evolution Goethe University Frankfurt am Main Frankfurt am Main Germany
| | - Zoe Moesges
- Zoological Museum Kiel University Kiel Germany
| | | | | | | |
Collapse
|
6
|
Hoshino M, Hiruta SF, Croce ME, Kamiya M, Jomori T, Wakimoto T, Kogame K. Geographical parthenogenesis in the brown alga Scytosiphon lomentaria (Scytosiphonaceae): Sexuals in warm waters and parthenogens in cold waters. Mol Ecol 2021; 30:5814-5830. [PMID: 34437743 DOI: 10.1111/mec.16152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/25/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022]
Abstract
Geographical parthenogenesis, a phenomenon where parthenogens and their close sexual relatives inhabit distinct geographical areas, has been considered an interesting topic in evolutionary biology. Reports of geographical parthenogenesis from land and freshwater are numerous, but this occurrence has been rarely reported from the sea. Brown algae are mostly marine and are thought to include numerous obligate parthenogens; still, little is known about the distribution, origin and evolution of parthenogens in this group. Here we report a novel pattern of geographical parthenogenesis in the isogamous brown alga Scytosiphon lomentaria. Sex ratio investigation demonstrated that, in Japan, sexual populations grew in the coast along warm ocean currents, whereas female-dominant parthenogenetic populations grew mainly in the coast along a cold ocean current. In the two localities where sexual and parthenogenetic populations were parapatric, parthenogens grew in more wave-exposed areas than sexuals. Population genetic and phylogenetic analyses, including those based on genome-wide single nucleotide polymorphism data, indicated that parthenogens have initially evolved at least twice and subsequent hybridizations between the parthenogens and sexuals have generated multiple new parthenogenetic lineages. The origin of the initial parthenogens is not clear, except that it would not be interspecies hybridization. Interestingly, we found that the production of sex pheromones, which attract male gametes, has been independently lost in the initial two parthenogenetic lineages. This parallel loss of the sexual trait may represent the direct origin of parthenogens, or the regressive evolution of a useless trait under asexuality.
Collapse
Affiliation(s)
- Masakazu Hoshino
- Department of Natural History Sciences, Graduate School of Science, Hokkaido University, Sapporo, Japan
- Department of Algal Development and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Shimpei F Hiruta
- Center for Molecular Biodiversity Research, National Museum of Nature and Science, Tsukuba, Japan
| | - Maria Emilia Croce
- Instituto Argentino de Oceanografía, CONICET-Bahía Blanca, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Mitsunobu Kamiya
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Takahiro Jomori
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | - Kazuhiro Kogame
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Phylogeography in an "oyster" shell provides first insights into the genetic structure of an extinct Ostrea edulis population. Sci Rep 2021; 11:2307. [PMID: 33504886 PMCID: PMC7840910 DOI: 10.1038/s41598-021-82020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/14/2021] [Indexed: 01/30/2023] Open
Abstract
The historical phylogeography of Ostrea edulis was successfully depicted in its native range for the first time using ancient DNA methods on dry shells from museum collections. This research reconstructed the historical population structure of the European flat oyster across Europe in the 1870s-including the now extinct population in the Wadden Sea. In total, four haplogroups were identified with one haplogroup having a patchy distribution from the North Sea to the Atlantic coast of France. This irregular distribution could be the result of translocations. The other three haplogroups are restricted to narrow geographic ranges, which may indicate adaptation to local environmental conditions or geographical barriers to gene flow. The phylogenetic reconstruction of the four haplogroups suggests the signatures of glacial refugia and postglacial expansion. The comparison with present-day O. edulis populations revealed a temporally stable population genetic pattern over the past 150 years despite large-scale translocations. This historical phylogeographic reconstruction was able to discover an autochthonous population in the German and Danish Wadden Sea in the late nineteenth century, where O. edulis is extinct today. The genetic distinctiveness of a now-extinct population hints at a connection between the genetic background of O. edulis in the Wadden Sea and for its absence until today.
Collapse
|
8
|
Phylogeography of split kelp Hedophyllum nigripes: northern ice-age refugia and trans-Arctic dispersal. Polar Biol 2020. [DOI: 10.1007/s00300-020-02748-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Md Naim D, Kamal NZM, Mahboob S. Population structure and genetic diversity of Aedes aegypti and Aedes albopictus in Penang as revealed by mitochondrial DNA cytochrome oxidase I. Saudi J Biol Sci 2020; 27:953-967. [PMID: 32127775 PMCID: PMC7042630 DOI: 10.1016/j.sjbs.2020.01.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 11/24/2022] Open
Abstract
The population genetics study is crucial as it helps in understanding the epidemiological aspects of dengue and help improving a vector control measures. This research aims to investigate the population genetics structure of two common species of Aedes mosquitoes in Penang; Aedes aegypti and Aedes albopictus using Cytochrome Oxidase I (COI) mitochondrial DNA (mtDNA) marker. Molecular investigations were derived from 440 bp and 418 bp mtDNA COI on 125 and 334 larvae of Aedes aegypti and Aedes albopictus respectively, from 32 locations in Penang. All samples were employed in the BLASTn for species identification. The haplotype diversity, nucleotide diversity, neutrality test and mismatch distribution analysis were conducted in DnaSP version 5.10.1. AMOVA analysis was conducted in ARLEQUIN version 3.5 and the phylogenetic reconstructions based on maximum likelihood (ML) and neighbor-joining (NJ) methods were implemented in MEGA X. The relationships among haplotypes were further tested by creating a minimum spanning tree using Network version 4.6.1. All samples were genetically identified and clustered into six distinct species. Among the species, Ae. albopictus was the most abundant (67.2%), followed by Ae. aegypti (25.2%) and the rest were counted for Culex sp. and Toxorhynchites sp. Both Ae. aegypti and Ae. albopictus show low nucleotide diversity (π) and high haplotype diversity (h), while the neutrality test shows a negative value in most of the population for both species. There are a total of 39 and 64 haplotypes recorded for Ae. aegypti and Ae. albopictus respectively. AMOVA analysis revealed that most of the variation occurred within population for both species. Mismatch distribution analysis showed bimodal characteristic of population differentiation for Ae. aegypti but Ae. albopictus showed unimodal characteristics of population differentiation. Genetic distance based on Tamura-Nei parameter showed low genetic divergent within population and high genetic divergent among population for both species. The maximum likelihood tree showed no obvious pattern of population genetic structure for both Ae. aegypti and Ae. albopictus from Penang and a moderate to high bootstrap values has supported this conclusion. The minimum spanning network for Ae. aegypti and Ae. albopictus showed five and three dominant haplotypes respectively, which indicates a mixture of haplotypes from the regions analysed. This study revealed that there is no population genetic structure exhibited by both Ae. aegypti and Ae. albopictus in Penang. Mutation has occurred rapidly in both species and this will be challenging in controlling the populations. However, further analysis needed to confirm this statement.
Collapse
Affiliation(s)
- Darlina Md Naim
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | | | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Deli T, Kiel C, Schubart CD. Phylogeographic and evolutionary history analyses of the warty crab Eriphia verrucosa (Decapoda, Brachyura, Eriphiidae) unveil genetic imprints of a late Pleistocene vicariant event across the Gibraltar Strait, erased by postglacial expansion and admixture among refugial lineages. BMC Evol Biol 2019; 19:105. [PMID: 31101005 PMCID: PMC6525375 DOI: 10.1186/s12862-019-1423-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/16/2019] [Indexed: 11/17/2022] Open
Abstract
Background The Pleistocene cyclic sea-level fluctuations are thought to have markedly affected the distribution and genetic architecture of Atlanto-Mediterranean biota. Despite the acknowledged key role played by these historical events in shaping population genetic structure of marine species, little is still known about the processes involved in shaping the spatial distribution of genetic variation within intertidal species. We intended in this study to reconstruct the phylogeography of a common and widely distributed coastal species across the East Atlantic and Mediterranean Sea (the warty crab Eriphia verrucosa), aiming to unravel potential microevolutionary processes likely involved in shaping its genetic polymorphism. For this purpose, a total of 155 specimens of E. verrucosa from 35 locations across the entire distribution range were analyzed by comparing a 453 basepairs region of the mitochondrial gene cytochrome oxidase subunit 1 (Cox1). Results Our results unveiled the prevalence of high genetic connectivity among East Atlantic and Mediterranean populations, with noticeable genetic distinctiveness of the peripheral population from the Azores. Spatio-temporal patterns of genetic diversification and demographic history allowed retrieving genetic imprints of late Pleistocene vicariant event across the Gibraltar Strait followed by subsequent postglacial expansion events for both the East Atlantic and Mediterranean regions. Integrative evidences from the outcomes of comparison of regional genetic diversification, as well as evolutionary and biogeographic histories reconstructions, support the existence of potential glacial refugia for E. verrucosa in the East Atlantic and western Mediterranean. Our results also revealed low levels of genetic variability along with recent demographic and spatial expansion events for eastern Mediterranean warty crabs, suggesting that the eastern areas within the distribution range of the species might have been recently colonized from putative glacial refugia. Conclusions These findings provide new insights into the phylogeography and evolutionary history of a common but poorly studied Atlanto-Mediterranean decapod species. Specifically, they contribute to the understanding of the impact of historical processes on shaping contemporary population genetic structure and diversity in intertidal marine species. Electronic supplementary material The online version of this article (10.1186/s12862-019-1423-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Temim Deli
- Zoology and Evolutionary Biology, University of Regensburg, D-93040, Regensburg, Germany
| | - Christina Kiel
- Zoology and Evolutionary Biology, University of Regensburg, D-93040, Regensburg, Germany
| | - Christoph D Schubart
- Zoology and Evolutionary Biology, University of Regensburg, D-93040, Regensburg, Germany.
| |
Collapse
|
11
|
Fairweather R, Bradbury IR, Helyar SJ, de Bruyn M, Therkildsen NO, Bentzen P, Hemmer‐Hansen J, Carvalho GR. Range-wide genomic data synthesis reveals transatlantic vicariance and secondary contact in Atlantic cod. Ecol Evol 2018; 8:12140-12152. [PMID: 30598806 PMCID: PMC6303715 DOI: 10.1002/ece3.4672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 11/11/2022] Open
Abstract
Recent advances in genetic and genomic analysis have greatly improved our understanding of spatial population structure in marine species. However, studies addressing phylogeographic patterns at oceanic spatial scales remain rare. In Atlantic cod (Gadus morhua), existing range-wide examinations suggest significant transatlantic divergence, although the fine-scale contemporary distribution of populations and potential for secondary contact are largely unresolved. Here, we explore transatlantic phylogeography in Atlantic cod using a data-synthesis approach, integrating multiple genome-wide single-nucleotide polymorphism (SNP) datasets representative of different regions to create a single range-wide dataset containing 1,494 individuals from 54 locations and genotyped at 796 common loci. Our analysis highlights significant transatlantic divergence and supports the hypothesis of westward post-glacial colonization of Greenland from the East Atlantic. Accordingly, our analysis suggests the presence of transatlantic secondary contact off eastern North America and supports existing perspectives on the phylogeographic history of Atlantic cod with an unprecedented combination of genetic and geographic resolution. Moreover, we demonstrate the utility of integrating distinct SNP databases of high comparability.
Collapse
Affiliation(s)
- Robert Fairweather
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
- School of Biological SciencesBangor UniversityBangorUK
| | - Ian R. Bradbury
- Science Branch, Department of FisheriesSt John’s, Newfoundland and LabradorCanada
| | - Sarah J. Helyar
- Institute of Global Food SecurityQueen’s University BelfastBelfastUK
| | - Mark de Bruyn
- School of Biological SciencesBangor UniversityBangorUK
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | | | - Paul Bentzen
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Jakob Hemmer‐Hansen
- Section for Marine Living Resources, National Institute for Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | | |
Collapse
|
12
|
Schoenrock KM, Bacquet M, Pearce D, Rea BR, Schofield JE, Lea J, Mair D, Kamenos N. Influences of salinity on the physiology and distribution of the Arctic coralline algae, Lithothamnion glaciale (Corallinales, Rhodophyta). JOURNAL OF PHYCOLOGY 2018; 54:690-702. [PMID: 30079466 DOI: 10.1111/jpy.12774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
In Greenland, free-living red coralline algae contribute to and dominate marine habitats along the coastline. Lithothamnion glaciale dominates coralline algae beds in many regions of the Arctic, but never in Godthåbsfjord, Greenland, where Clathromorphum sp. is dominant. To investigate environmental impacts on coralline algae distribution, calcification and primary productivity were measured in situ during summers of 2015 and 2016, and annual patterns of productivity in L. glaciale were monitored in laboratory-based mesocosm experiments where temperature and salinity were manipulated to mimic high glacial melt. The results of field and cold-room measurements indicate that both L. glaciale and Clathromorphum sp. had low calcification and photosynthetic rates during the Greenland summer (2015 and 2016), with maximum of 1.225 ± 0.17 or 0.002 ± 0.023 μmol CaCO3 · g-1 · h-1 and -0.007 ±0.003 or -0.004 ± 0.001 mg O2 · L-1 · h-1 in each species respectively. Mesocosm experiments indicate L. glaciale is a seasonal responder; photosynthetic and calcification rates increase with annual light cycles. Furthermore, metabolic processes in L. glaciale were negatively influenced by low salinity; positive growth rates only occurred in marine treatments where individuals accumulated an average of 1.85 ± 1.73 mg · d-1 of biomass through summer. These results indicate high freshwater input to the Godthåbsfjord region may drive the low abundance of L. glaciale, and could decrease species distribution as climate change increases freshwater input to the Arctic marine system via enhanced ice sheet runoff and glacier calving.
Collapse
Affiliation(s)
- Kathryn M Schoenrock
- Geographical and Earth Sciences, University of Glasgow, Gregory Building Lilybank Gardens, Glasgow, G12 8QQ, UK
| | - Marion Bacquet
- Université Quimper, 2 Rue de l'Université, 29000, Quimper, France
| | - Danni Pearce
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Brice R Rea
- Geography& Environment, School of Geosciences, University of Aberdeen, Elphinstone Road, Aberdeen, AB24 3UF, UK
| | - J Edward Schofield
- Geography& Environment, School of Geosciences, University of Aberdeen, Elphinstone Road, Aberdeen, AB24 3UF, UK
| | - James Lea
- School of Environmental Sciences, University of Liverpool, Jane Herdman Building, Liverpool, L69 3GP, UK
| | - Doug Mair
- School of Environmental Sciences, University of Liverpool, Jane Herdman Building, Liverpool, L69 3GP, UK
| | - Nicholas Kamenos
- Geographical and Earth Sciences, University of Glasgow, Gregory Building Lilybank Gardens, Glasgow, G12 8QQ, UK
| |
Collapse
|
13
|
Jenkins TL, Castilho R, Stevens JR. Meta-analysis of northeast Atlantic marine taxa shows contrasting phylogeographic patterns following post-LGM expansions. PeerJ 2018; 6:e5684. [PMID: 30280047 PMCID: PMC6166638 DOI: 10.7717/peerj.5684] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/30/2018] [Indexed: 01/09/2023] Open
Abstract
Background Comparative phylogeography enables the study of historical and evolutionary processes that have contributed to shaping patterns of contemporary genetic diversity across co-distributed species. In this study, we explored genetic structure and historical demography in a range of coastal marine species across the northeast Atlantic to assess whether there are commonalities in phylogeographic patterns across taxa and to evaluate whether the timings of population expansions were linked to the Last Glacial Maximum (LGM). Methods A literature search was conducted using Web of Science. Search terms were chosen to maximise the inclusion of articles reporting on population structure and phylogeography from the northeast Atlantic; titles and abstracts were screened to identify suitable articles within the scope of this study. Given the proven utility of mtDNA in comparative phylogeography and the availability of these data in the public domain, a meta-analysis was conducted using published mtDNA gene sequences. A standardised methodology was implemented to ensure that the genealogy and demographic history of all mtDNA datasets were reanalysed in a consistent and directly comparable manner. Results Mitochondrial DNA datasets were built for 21 species. The meta-analysis revealed significant population differentiation in 16 species and four main types of haplotype network were found, with haplotypes in some species unique to specific geographical locations. A signal of rapid expansion was detected in 16 species, whereas five species showed evidence of a stable population size. Corrected mutation rates indicated that the majority of expansions were estimated to have occurred after the earliest estimate for the LGM (∼26.5 Kyr), while few expansions were estimated to have pre-dated the LGM. Conclusion This study suggests that post-LGM expansion appeared to be common in a range of marine taxa, supporting the concept of rapid expansions after the LGM as the ice sheets started to retreat. However, despite the commonality of expansion patterns in many of these taxa, phylogeographic patterns appear to differ in the species included in this study. This suggests that species-specific evolutionary processes, as well as historical events, have likely influenced the distribution of genetic diversity of marine taxa in the northeast Atlantic.
Collapse
Affiliation(s)
- Tom L Jenkins
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Rita Castilho
- Center for Marine Sciences, Campus de Gambelas, University of Algarve, Faro, Portugal
| | - Jamie R Stevens
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
14
|
Lait LA, Carr SM. Intraspecific mitogenomics of three marine species-at-risk: Atlantic, spotted, and northern wolffish (Anarhichas spp.). Genome 2018; 61:625-634. [PMID: 30001499 DOI: 10.1139/gen-2018-0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High-resolution mitogenomics of within-species relationships can answer such phylogeographic questions as how species survived the most recent glaciation, as well as identify contemporary factors such as physical barriers, isolation, and gene flow. We examined the mitogenomic population structure of three at-risk species of wolffish: Atlantic (Anarhichas lupus), spotted (A. minor), and northern (A. denticulatus). These species are extensively sympatric across the North Atlantic but exhibit very different life history strategies, a combination that results in concordant and discordant patterns of genetic variation and structure. Wolffish haplogroups were not structured geographically: Atlantic and spotted wolffish each comprised three shallow clades, whereas northern wolffish comprised two deeper but unstructured lineages. We suggest that wolffish species survived in isolation in multiple glacial refugia, either refugia within refugia (Atlantic and spotted wolffish) or more distant refugia (northern wolffish), followed by secondary admixture upon post-glacial recolonisation of the North Atlantic.
Collapse
Affiliation(s)
- Linda A Lait
- a Genetics, Evolution, and Molecular Systematics Laboratory, Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.,b Centre for Biodiversity Genomics, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Steven M Carr
- a Genetics, Evolution, and Molecular Systematics Laboratory, Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| |
Collapse
|
15
|
Marine Refugia Past, Present, and Future: Lessons from Ancient Geologic Crises for Modern Marine Ecosystem Conservation. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-73795-9_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Mueller R, Wright JT, Bolch CJS. Historical demography and colonization pathways of the widespread intertidal seaweed Hormosira banksii (Phaeophyceae) in southeastern Australia. JOURNAL OF PHYCOLOGY 2018; 54:56-65. [PMID: 29054124 DOI: 10.1111/jpy.12599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
The palaeoceanography of southern Australia has been characterized by fluctuating sea levels during glacial periods, changing temperature regimes and modified boundary currents. Previous studies on genetic structuring of species in southeastern Australia have focused mainly on the differentiation of eastern and western populations while the potential role of Bass Strait as a region of overlap for three biogeographic provinces (Peronia, Maugea, and Flindersia) has been largely ignored. This study aimed to explore the likely roles of historic and contemporary factors in determining divergence patterns in the habitat-forming intertidal seaweed Hormosira banksii in southeastern Australia with a special focus on postglacial dispersal into Bass Strait. We examined the genetic diversity of 475 Hormosira specimens collected from 19 sites around southern Australia using DNA sequence analysis of cytochrome oxidase 1. Three major haplotype groups were identified (western, centre and eastern) corresponding with the three existing biogeographical provinces in this region. Historic break points appeared to be retained and reinforced by modern day dispersal barriers. Phylogeographic grouping of Hormosira reflected a combination of historic and contemporary oceanography. As western and eastern group haplotypes were largely absent within Bass Strait, re-colonization after the last glacial maximum appeared to have originated from refuges within or near present day Bass Strait. Patterns of genetic structure for Hormosira are consistent with other marine species in this region and highlight the importance of biogeographical barriers in contributing to modern genetic structure.
Collapse
Affiliation(s)
- Rebecca Mueller
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 1370, Launceston, Tasmania, 7250, Australia
| | - Jeffrey T Wright
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 1370, Launceston, Tasmania, 7250, Australia
| | - Christopher J S Bolch
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 1370, Launceston, Tasmania, 7250, Australia
| |
Collapse
|
17
|
Bestová H, Munoz F, Svoboda P, Škaloud P, Violle C. Ecological and biogeographical drivers of freshwater green algae biodiversity: from local communities to large-scale species pools of desmids. Oecologia 2018; 186:1017-1030. [DOI: 10.1007/s00442-018-4074-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 01/13/2018] [Indexed: 11/29/2022]
|
18
|
Contrasting global genetic patterns in two biologically similar, widespread and invasive Ciona species (Tunicata, Ascidiacea). Sci Rep 2016; 6:24875. [PMID: 27137892 PMCID: PMC4853746 DOI: 10.1038/srep24875] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/05/2016] [Indexed: 11/08/2022] Open
Abstract
Human-mediated dispersal interplays with natural processes and complicates understanding of the biogeographical history of species. This is exemplified by two invasive tunicates, Ciona robusta (formerly Ciona intestinalis type A) and C. intestinalis (formerly Ciona intestinalis type B), globally distributed and sympatric in Europe. By gathering new mitochondrial sequences that were merged with published datasets, we analysed genetic patterns in different regions, with a focus on 1) their sympatric range and 2) allopatric populations in N and S America and southern Europe. In the sympatric range, the two species display contrasting genetic diversity patterns, with low polymorphism in C. robusta supporting the prevalent view of its recent introduction. In the E Pacific, several genetic traits support the non-native status of C. robusta. However, in the NE Pacific, this appraisal requires a complex scenario of introduction and should be further examined supported by extensive sampling efforts in the NW Pacific (putative native range). For C. intestinalis, Bayesian analysis suggested a natural amphi-North Atlantic distribution, casting doubt on its non-native status in the NW Atlantic. This study shows that both natural and human-mediated dispersal have influenced genetic patterns at broad scales; this interaction lessens our ability to confidently ascertain native vs. non-native status of populations, particularly of those species that are globally distributed.
Collapse
|
19
|
Hirase S, Takeshima H, Nishida M, Iwasaki W. Parallel Mitogenome Sequencing Alleviates Random Rooting Effect in Phylogeography. Genome Biol Evol 2016; 8:1267-78. [PMID: 27016485 PMCID: PMC4860695 DOI: 10.1093/gbe/evw063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2016] [Indexed: 01/18/2023] Open
Abstract
Reliably rooted phylogenetic trees play irreplaceable roles in clarifying diversification in the patterns of species and populations. However, such trees are often unavailable in phylogeographic studies, particularly when the focus is on rapidly expanded populations that exhibit star-like trees. A fundamental bottleneck is known as the random rooting effect, where a distant outgroup tends to root an unrooted tree "randomly." We investigated whether parallel mitochondrial genome (mitogenome) sequencing alleviates this effect in phylogeography using a case study on the Sea of Japan lineage of the intertidal goby Chaenogobius annularis Eighty-three C. annularis individuals were collected and their mitogenomes were determined by high-throughput and low-cost parallel sequencing. Phylogenetic analysis of these mitogenome sequences was conducted to root the Sea of Japan lineage, which has a star-like phylogeny and had not been reliably rooted. The topologies of the bootstrap trees were investigated to determine whether the use of mitogenomes alleviated the random rooting effect. The mitogenome data successfully rooted the Sea of Japan lineage by alleviating the effect, which hindered phylogenetic analysis that used specific gene sequences. The reliable rooting of the lineage led to the discovery of a novel, northern lineage that expanded during an interglacial period with high bootstrap support. Furthermore, the finding of this lineage suggested the existence of additional glacial refugia and provided a new recent calibration point that revised the divergence time estimation between the Sea of Japan and Pacific Ocean lineages. This study illustrates the effectiveness of parallel mitogenome sequencing for solving the random rooting problem in phylogeographic studies.
Collapse
Affiliation(s)
- Shotaro Hirase
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Hamamatsu, Shizuoka, Japan
| | - Hirohiko Takeshima
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan Center for Research Promotion, Research Institute for Humanity and Nature, National Institutes for the Humanities, Kita-ku, Kyoto, Japan
| | - Mutsumi Nishida
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Wataru Iwasaki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
20
|
Ball RE, Serra-Pereira B, Ellis J, Genner MJ, Iglésias S, Johnson AF, Jones CS, Leslie R, Lewis J, Mariani S, Menezes G, Neat F, Noble LR, Sims DW, Griffiths AM. Resolving taxonomic uncertainty in vulnerable elasmobranchs: are the Madeira skate (Raja maderensis) and the thornback ray (Raja clavata) distinct species? CONSERV GENET 2016. [DOI: 10.1007/s10592-015-0806-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Abstract
Skates and rays constitute the most speciose group of chondrichthyan fishes, yet are characterised by remarkable levels of morphological and ecological conservatism. They can be challenging to identify, which makes monitoring species compositions for fisheries management purposes problematic. Owing to their slow growth and low fecundity, skates are vulnerable to exploitation and species exhibiting endemism or limited ranges are considered to be the most at risk. The Madeira skate Raja maderensis is endemic and classified as ‘Data Deficient’ by the IUCN, yet its taxonomic distinctiveness from the morphologically similar and more wide-ranging thornback ray Raja clavata is unresolved. This study evaluated the sequence divergence of both the variable control region and cytochrome oxidase I ‘DNA barcode’ gene of the mitochondrial genome to elucidate the genetic differentiation of specimens identified as R. maderensis and R. clavata collected across much of their geographic ranges. Genetic evidence was insufficient to support the different species designations. However regardless of putative species identification, individuals occupying waters around the Azores and North African Seamounts represent an evolutionarily significant unit worthy of special consideration for conservation management.
Collapse
|
21
|
Assis J, Lucas AV, Bárbara I, Serrão EÁ. Future climate change is predicted to shift long-term persistence zones in the cold-temperate kelp Laminaria hyperborea. MARINE ENVIRONMENTAL RESEARCH 2016; 113:174-82. [PMID: 26608411 DOI: 10.1016/j.marenvres.2015.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 11/06/2015] [Accepted: 11/07/2015] [Indexed: 05/06/2023]
Abstract
Global climate change is shifting species distributions worldwide. At rear edges (warmer, low latitude range margins), the consequences of small variations in environmental conditions can be magnified, producing large negative effects on species ranges. A major outcome of shifts in distributions that only recently received attention is the potential to reduce the levels of intra-specific diversity and consequently the global evolutionary and adaptive capacity of species to face novel disturbances. This is particularly important for low dispersal marine species, such as kelps, that generally retain high and unique genetic diversity at rear ranges resulting from long-term persistence, while ranges shifts during climatic glacial/interglacial cycles. Using ecological niche modelling, we (1) infer the major environmental forces shaping the distribution of a cold-temperate kelp, Laminaria hyperborea (Gunnerus) Foslie, and we (2) predict the effect of past climate changes in shaping regions of long-term persistence (i.e., climatic refugia), where this species might hypothetically harbour higher genetic diversity given the absence of bottlenecks and local extinctions over the long term. We further (3) assessed the consequences of future climate for the fate of L. hyperborea using different scenarios of greenhouse gas emissions (RCP 2.6 and RCP 8.5). Results show NW Iberia, SW Ireland and W English Channel, Faroe Islands and S Iceland, as regions where L. hyperborea may have persisted during past climate extremes until present day. All predictions for the future showed expansions to northern territories coupled with the significant loss of suitable habitats at low latitude range margins, where long-term persistence was inferred (e.g., NW Iberia). This pattern was particularly evident in the most agressive scenario of climate change (RCP 8.5), likely driving major biodiversity loss, changes in ecosystem functioning and the impoverishment of the global gene pool of L. hyperborea. Because no genetic baseline is currently available for this species, our results may represent a first step in informing conservation and mitigation strategies.
Collapse
Affiliation(s)
- Jorge Assis
- CCMAR, University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal.
| | - Ana Vaz Lucas
- CCMAR, University of Algarve, Campus de Gambelas, Faro 8005-139, Portugal
| | - Ignacio Bárbara
- Grupo BioCost, Departamento de Bioloxía Animal, Vexetal e Ecoloxía, Facultade de Ciencias, Universidade da Coruña, Campus de A Zapateira, 15071 A Coruña, Spain
| | | |
Collapse
|
22
|
Li JJ, Hu ZM, Liu RY, Zhang J, Liu SL, Duan DL. Phylogeographic surveys and apomictic genetic connectivity in the North Atlantic red seaweed Mastocarpus stellatus. Mol Phylogenet Evol 2016; 94:463-472. [DOI: 10.1016/j.ympev.2015.10.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 10/18/2015] [Accepted: 10/26/2015] [Indexed: 11/24/2022]
|
23
|
Robuchon M, Valero M, Gey D, Le Gall L. How does molecular-assisted identification affect our estimation of α, β and γ biodiversity? An example from understory red seaweeds (Rhodophyta) of Laminaria kelp forests in Brittany, France. Genetica 2015; 143:207-23. [PMID: 25351554 DOI: 10.1007/s10709-014-9796-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/15/2014] [Indexed: 12/18/2022]
Abstract
Using two distinct identification methods, one based on morphological characters only and the other combining morphological and molecular characters (integrative identification method), we investigated the differences in the biodiversity patterns of red seaweed communities associated with kelp forests at various spatial scales: the regional diversity of Brittany, France (γ-diversity), the local diversity at different Breton sites (α-diversity) and the differentiation in species diversity and abundances among those sites (β-diversity). To characterise α and β diversities, we conducted an initial survey in winter 2011 at 20 sites belonging to four different sub-regions, with specimens collected from six quadrats of 0.10 m(2) at each site, three in the tidal zone dominated by Laminaria digitata and three in the zone dominated by Laminaria hyperborea. To further characterise the regional diversity, we carried out another survey combining several sampling methods (quadrats and visual census) in different seasons (winter, spring and summer) and different years (2011 and 2012). In all, we collected 1990 specimens that were assigned to 76 taxa with the identification method based on morphological characters and 139 taxa using the integrative method. For γ and α diversity, the use of molecular characters revealed several cases of cryptic diversity and both increased the number of identified taxa and improved their taxonomic resolution. However, the addition of molecular characters for specimen identification only slightly affected estimates of β-diversity.
Collapse
Affiliation(s)
- Marine Robuchon
- Institut de Systématique, Evolution, Biodiversité, UMR 7205 CNRS, EPHE, MNHN, UPMC, Equipe Exploration, Espèces, Evolution, Muséum National d'Histoire Naturelle, Case Postale N° 39, 57 rue Cuvier, 75231, Cedex 05 Paris, France,
| | | | | | | |
Collapse
|
24
|
Gubili C, Sims DW, Veríssimo A, Domenici P, Ellis J, Grigoriou P, Johnson AF, McHugh M, Neat F, Satta A, Scarcella G, Serra-Pereira B, Soldo A, Genner MJ, Griffiths AM. A tale of two seas: contrasting patterns of population structure in the small-spotted catshark across Europe. ROYAL SOCIETY OPEN SCIENCE 2014; 1:140175. [PMID: 26064555 PMCID: PMC4448844 DOI: 10.1098/rsos.140175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Elasmobranchs represent important components of marine ecosystems, but they can be vulnerable to overexploitation. This has driven investigations into the population genetic structure of large-bodied pelagic sharks, but relatively little is known of population structure in smaller demersal taxa, which are perhaps more representative of the biodiversity of the group. This study explores spatial population genetic structure of the small-spotted catshark (Scyliorhinus canicula), across European seas. The results show significant genetic differences among most of the Mediterranean sample collections, but no significant structure among Atlantic shelf areas. The data suggest the Mediterranean populations are likely to have persisted in a stable and structured environment during Pleistocene sea-level changes. Conversely, the Northeast Atlantic populations would have experienced major changes in habitat availability during glacial cycles, driving patterns of population reduction and expansion. The data also provide evidence of male-biased dispersal and female philopatry over large spatial scales, implying complex sex-determined differences in the behaviour of elasmobranchs. On the basis of this evidence, we suggest that patterns of connectivity are determined by trends of past habitat stability that provides opportunity for local adaptation in species exhibiting philopatric behaviour, implying that resilience of populations to fisheries and other stressors may differ across the range of species.
Collapse
Affiliation(s)
- Chrysoula Gubili
- School of Environment and Life Sciences, University of Salford, Salford, Greater Manchester M5 4WU, UK
| | - David W. Sims
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth PL1 2PB, UK
| | - Ana Veríssimo
- CIBIO-U.P., Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Rua Padre Armando Quintas, Vairão 4485-661, Portugal
| | | | - Jim Ellis
- Centre for Environment, Fisheries and Aquaclture Science (CEFAS), Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK
| | - Panagiotis Grigoriou
- Cretaquarium, Thalassocosmos, Hellenic Centre for Marine Research (HCMR), PO Box 2214, Heraklion Crete 71003, Greece
| | - Andrew F. Johnson
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography 0202, University of California, 9500 Gilman Drive, San Diego, CA 92083-0202, USA
| | - Matthew McHugh
- Marine and Estuarine Ecology Unit, School of Biological Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Francis Neat
- Marine Scotland—Science, Marine Laboratory, PO Box 101, Aberdeen AB11 9DB, UK
| | - Andrea Satta
- CNR-IAMC Località Sa Mardini, Torregrande 09170, Italy
| | - Giuseppe Scarcella
- ISMAR-CNR—Istituto di Scienze Marine, Consiglio Nazionale delle Ricerche, Largo Fiera della Pesca 2, Ancona 60125, Italy
| | - Bárbara Serra-Pereira
- Departamento do Mar e Recursos Marinhos, IPMA, Instituto Português do Mar e da Atmosfera, Av. Brasilia, Lisboa 1449-006, Portugal
| | - Alen Soldo
- Department of Marine Studies, University of Split, Livanjska 5, Split 21000, Croatia
| | - Martin J. Genner
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Andrew M. Griffiths
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth PL1 2PB, UK
- School of Biological Sciences, University of Bristol, Bristol Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
25
|
Reynolds TV, Matthee CA, von der Heyden S. The influence of Pleistocene climatic changes and ocean currents on the phylogeography of the southern African barnacle, Tetraclita serrata (Thoracica; Cirripedia). PLoS One 2014; 9:e102115. [PMID: 25054971 PMCID: PMC4108325 DOI: 10.1371/journal.pone.0102115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/15/2014] [Indexed: 11/19/2022] Open
Abstract
The evolutionary effects of glacial periods are poorly understood for Southern Hemisphere marine intertidal species, particularly obligatory sessile organisms. We examined this by assessing the phylogeographic patterns of the southern African volcano barnacle, Tetraclita serrata, a dominant species on rocky intertidal shores. Restricted gene flow in some geographical areas was hypothesized based on oceanic circulation patterns and known biogeographic regions. Barnacle population genetic structure was investigated using the mitochondrial cytochrome oxidase subunit 1 (COI) region for 410 individuals sampled from 20 localities spanning the South African coast. The mtDNA data were augmented by generating nuclear internal transcribed spacer 1 (ITS1) sequences from a subset of samples. Phylogenetic and population genetic analyses of mitochondrial DNA data reveal two distinct clades with mostly sympatric distributions, whereas nuclear analyses reveal only a single lineage. Shallow, but significant structure (0.0041-0.0065, P<0.01) was detected for the mtDNA data set, with the south-west African region identified as harbouring the highest levels of genetic diversity. Gene flow analyses on the mtDNA data show that individuals sampled in south-western localities experience gene flow primarily in the direction of the Benguela Current, while south and eastern localities experience bi-directional gene flow, suggesting an influence of both the inshore currents and the offshore Agulhas Current in the larval distribution of T. serrata. The mtDNA haplotype network, Bayesian Skyline Plots, mismatch distributions and time since expansion indicate that T. serrata population numbers were not severely affected by the Last Glacial Maximum (LGM), unlike other southern African marine species. The processes resulting in the two morphologically cryptic mtDNA lineages may be the result of a recent historical allopatric event followed by secondary contact or could reflect selective pressures due to differing environmental conditions.
Collapse
Affiliation(s)
- Terry V. Reynolds
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Conrad A. Matthee
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
| | - Sophie von der Heyden
- Evolutionary Genomics Group, Department of Botany and Zoology, Stellenbosch University, Matieland, South Africa
- * E-mail:
| |
Collapse
|
26
|
Jurdíková K, Kulichová J, Bestová H, Leliaert F, Skaloud P. Exploration of nuclear DNA markers for population structure assessment in the desmid Micrasterias rotata (Zygnematophyceae, Streptophyta). J Eukaryot Microbiol 2014; 61:509-19. [PMID: 24961475 DOI: 10.1111/jeu.12130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 03/22/2014] [Accepted: 03/23/2014] [Indexed: 11/26/2022]
Abstract
Freshwater green microalgae are diverse and widely distributed across the globe, yet the population structuring of these organisms is poorly understood. We assessed the degree of genetic diversity and differentiation of the desmid species, Micrasterias rotata. First, we compared the sequences of four nuclear regions (actin, gapC1, gapC2, and oee1) in 25 strains and selected the gapC1 and actin regions as the most appropriate markers for population structure assessment in this species. Population genetic structure was subsequently analyzed, based on seven populations from the Czech Republic and Ireland. Hudson's Snn statistics indicated that nearest-neighbor sequences occurred significantly more frequently within geographical populations than within the wider panmictic population. Moreover, Irish populations consistently showed higher genetic diversity than the Czech samples. These results are in accordance with the unbalanced distribution of alleles in many land plant species; however, the large genetic diversity in M. rotata differs from levels of genetic diversity found in most land plants.
Collapse
Affiliation(s)
- Katarína Jurdíková
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, Praha, CZ, 12801, Czech Republic
| | | | | | | | | |
Collapse
|
27
|
Robuchon M, Le Gall L, Mauger S, Valero M. Contrasting genetic diversity patterns in two sister kelp species co-distributed along the coast of Brittany, France. Mol Ecol 2014; 23:2669-85. [PMID: 24787679 DOI: 10.1111/mec.12774] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/04/2014] [Accepted: 04/09/2014] [Indexed: 02/02/2023]
Abstract
We investigated patterns of genetic structure in two sister kelp species to explore how distribution width along the shore, zonation, latitudinal distribution and historical factors contribute to contrasting patterns of genetic diversity. We implemented a hierarchical sampling scheme to compare patterns of genetic diversity and structure in these two kelp species co-distributed along the coasts of Brittany (France) using a total of 12 microsatellites, nine for Laminaria hyperborea and 11 for Laminaria digitata, of which eight amplified in both species. The genetic diversity and connectivity of L. hyperborea populations were greater than those of L. digitata populations in accordance with the larger cross-shore distribution width along the coast and the greater depth occupied by L. hyperborea populations in contrast to L. digitata populations. In addition, marginal populations showed reduced genetic diversity and connectivity, which erased isolation-by-distance patterns in both species. As L. digitata encounters its southern range limit in southern Brittany (SBr) while L. hyperborea extends down to mid-Portugal, it was possible to distinguish the effect of habitat continuity from range edge effects. We found that L. digitata did not harbour high regional diversity at its southern edge, as expected in a typical rear edge, suggesting that refuges from the last glacial maximum for L. digitata were probably not located in SBr, but most likely further north. For both species, the highest levels of genetic diversity were found in the Iroise Sea and Morlaix Bay, the two regions in which they are being currently harvested. Preserving genetic diversity of these two foundation species in these areas should, thus, be a priority for the management of this resource in Brittany.
Collapse
Affiliation(s)
- Marine Robuchon
- ISYEB Institut, UMR 7205 CNRS-EPHE-MNHN-UPMC, Equipe Exploration, Espèces et Evolution, Muséum National d'Histoire Naturelle, case postale N° 39, 57 rue Cuvier, 75231, Cedex 05 Paris, France; CNRS, UMR 7144 Adaptation et Diversité en Milieu Marin, Equipe BEDIM, Station Biologique de Roscoff, CS 90074, 29688, Roscoff, France; Sorbonne Universités, UPMC Univ Paris 06, UMR 7144 Adaptation et Diversité en Milieu Marin, Equipe BEDIM, Station Biologique de Roscoff, CS 90074, 29688, Roscoff, France
| | | | | | | |
Collapse
|
28
|
Ravinet M, Harrod C, Eizaguirre C, Prodöhl PA. Unique mitochondrial DNA lineages in Irish stickleback populations: cryptic refugium or rapid recolonization? Ecol Evol 2014; 4:2488-504. [PMID: 25360281 PMCID: PMC4203293 DOI: 10.1002/ece3.853] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/06/2013] [Indexed: 11/24/2022] Open
Abstract
Repeated recolonization of freshwater environments following Pleistocene glaciations has played a major role in the evolution and adaptation of anadromous taxa. Located at the western fringe of Europe, Ireland and Britain were likely recolonized rapidly by anadromous fishes from the North Atlantic following the last glacial maximum (LGM). While the presence of unique mitochondrial haplotypes in Ireland suggests that a cryptic northern refugium may have played a role in recolonization, no explicit test of this hypothesis has been conducted. The three-spined stickleback is native and ubiquitous to aquatic ecosystems throughout Ireland, making it an excellent model species with which to examine the biogeographical history of anadromous fishes in the region. We used mitochondrial and microsatellite markers to examine the presence of divergent evolutionary lineages and to assess broad-scale patterns of geographical clustering among postglacially isolated populations. Our results confirm that Ireland is a region of secondary contact for divergent mitochondrial lineages and that endemic haplotypes occur in populations in Central and Southern Ireland. To test whether a putative Irish lineage arose from a cryptic Irish refugium, we used approximate Bayesian computation (ABC). However, we found no support for this hypothesis. Instead, the Irish lineage likely diverged from the European lineage as a result of postglacial isolation of freshwater populations by rising sea levels. These findings emphasize the need to rigorously test biogeographical hypothesis and contribute further evidence that postglacial processes may have shaped genetic diversity in temperate fauna.
Collapse
Affiliation(s)
- Mark Ravinet
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast Belfast, U.K ; Lovén Centre-Tjärnö, Department of Biology and Environmental Sciences, University of Gothenburg Gothenburg, Sweden
| | - Chris Harrod
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast Belfast, U.K ; Instituto de Ciencias Naturales Alexander Von Humboldt, Universidad de Antofagasta Chile
| | - Christophe Eizaguirre
- GEOMAR
- Helmholtz Centre for Ocean Research Duesternbrooker weg 20, 24105, Kiel, Germany ; Max Planck Institute for Evolutionary Biology August Thienemannstr. 2, 24306, Ploen, Germany
| | - Paulo A Prodöhl
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast Belfast, U.K
| |
Collapse
|
29
|
Raupach MJ, Bininda-Emonds ORP, Knebelsberger T, Laakmann S, Pfaender J, Leese F. Phylogeographical analysis ofLigia oceanica(Crustacea: Isopoda) reveals two deeply divergent mitochondrial lineages. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12254] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Michael J. Raupach
- Deutsches Zentrum für Marine Biodiversitätsforschung; Senckenberg am Meer; Südstrand 44 26382 Wilhelmshaven Germany
| | - Olaf R. P. Bininda-Emonds
- AG Systematik und Evolutionsbiologie; Institut für Biologie und Umweltwissenschaften (IBU) - Fakultät V; Carl von Ossietzky Universität Oldenburg; Carl von Ossietzky Str. 9-11 26111 Oldenburg Germany
| | - Thomas Knebelsberger
- Deutsches Zentrum für Marine Biodiversitätsforschung; Senckenberg am Meer; Südstrand 44 26382 Wilhelmshaven Germany
| | - Silke Laakmann
- Deutsches Zentrum für Marine Biodiversitätsforschung; Senckenberg am Meer; Südstrand 44 26382 Wilhelmshaven Germany
| | - Jobst Pfaender
- Zoologisches Forschungsmuseum Alexander Koenig; Adenauerallee 160-162 53113 Bonn Germany
| | - Florian Leese
- Lehrstuhl für Evolutionsökologie und Biodiversität der Tiere; Ruhr-Universität Bochum; Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
30
|
Pálsson S, Magnúsdóttir H, Reynisdóttir S, Jónsson ZO, Örnólfsdóttir EB. Divergence and molecular variation in common whelkBuccinum undatum(Gastropoda: Buccinidae) in Iceland: a trans-Atlantic comparison. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12191] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Snaebjörn Pálsson
- Department of Life and Environmental Sciences; University of Iceland; Sturlugata 7101 Reykjavík Iceland
| | - Hildur Magnúsdóttir
- Vör Marine Research Center at Breiðafjörður; Norðurtanga 355 Snaefellsbaer Iceland
| | - Sigrún Reynisdóttir
- Department of Life and Environmental Sciences; University of Iceland; Sturlugata 7101 Reykjavík Iceland
| | - Zophonías O. Jónsson
- Department of Life and Environmental Sciences; University of Iceland; Sturlugata 7101 Reykjavík Iceland
| | | |
Collapse
|
31
|
Use of multiple markers demonstrates a cryptic western refugium and postglacial colonisation routes of Atlantic salmon (Salmo salar L.) in Northwest Europe. Heredity (Edinb) 2013; 111:34-43. [PMID: 23512011 DOI: 10.1038/hdy.2013.17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Glacial and postglacial processes are known to be important determinants of contemporary population structuring for many species. In Europe, refugia in the Italian, Balkan and Iberian peninsulas are believed to be the main sources of species colonising northern Europe after the glacial retreat; however, there is increasing evidence of small, cryptic refugia existing north of these for many cold-tolerant species. This study examined the glacial history of Atlantic salmon in western Europe using two independent classes of molecular markers, microsatellites (nuclear) and mitochondrial DNA variation. Alongside the well-documented refuge in the Iberian Peninsula, evidence for a cryptic refuge in northwest France is also presented. Critically, methods utilised to estimate divergence times between the refugia indicated that salmon in these two regions had diverged a long time before the last glacial maximum; coalescence analysis (as implemented in the program IMa2) estimated divergence times at around 60 000 years before present. Through the examination of haplotype frequencies, previously glaciated areas of northwest Europe, that is, Britain and Ireland, appear to have been colonised from salmon expanding out of both refugia, with the southwest of England being the primary contact zone and exhibiting the highest genetic diversity.
Collapse
|
32
|
A legacy of contrasting spatial genetic structure on either side of the Atlantic-Mediterranean transition zone in a marine protist. Proc Natl Acad Sci U S A 2012; 109:20998-1003. [PMID: 23213247 DOI: 10.1073/pnas.1214398110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The mechanisms that underpin the varied spatial genetic structures exhibited by free-living marine microorganisms remain controversial, with most studies emphasizing a high dispersal capability that should redistribute genetic diversity in contrast to most macroorganisms whose populations often retain a genetic signature of demographic response to historic climate fluctuations. We quantified the European phylogeographic structure of the marine flagellate Oxyrrhis marina and found a marked difference in spatial genetic structure, population demography, and genetic diversity between the northwest Atlantic and Mediterranean Sea that reflects the persistent separation of these regions as well as context-dependent population responses to contrasting environments. We found similar geographic variation in the level of genetic diversity in the sister species Oxyrrhis maritima. Because the capacity for wide dispersal is not always realized, historic genetic footprints of range expansion and contraction persist in contemporary populations of marine microbes, as they do in larger species. Indeed, the well-described genetic effects of climatic variation on macroorganisms provide clear, testable hypotheses about the processes that drive genetic divergence in marine microbes and thus about the response to future environmental change.
Collapse
|
33
|
Provan J, Glendinning K, Kelly R, Maggs CA. Levels and patterns of population genetic diversity in the red seaweedChondrus crispus(Florideophyceae): a direct comparison of single nucleotide polymorphisms and microsatellites. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2012.02010.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Jim Provan
- School of Biological Sciences; Queen's University Belfast; 97 Lisburn Road; Belfast; BT9 7BL; UK
| | - Keith Glendinning
- School of Biological Sciences; Queen's University Belfast; 97 Lisburn Road; Belfast; BT9 7BL; UK
| | - Ruth Kelly
- School of Biological Sciences; Queen's University Belfast; 97 Lisburn Road; Belfast; BT9 7BL; UK
| | - Christine A. Maggs
- School of Biological Sciences; Queen's University Belfast; 97 Lisburn Road; Belfast; BT9 7BL; UK
| |
Collapse
|
34
|
References. Mol Ecol 2012. [DOI: 10.1002/9780470979365.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
Robalo JI, Castilho R, Francisco SM, Almada F, Knutsen H, Jorde PE, Pereira AM, Almada VC. Northern refugia and recent expansion in the North Sea: the case of the wrasse Symphodus melops (Linnaeus, 1758). Ecol Evol 2012; 2:153-64. [PMID: 22408733 PMCID: PMC3297185 DOI: 10.1002/ece3.77] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 10/21/2011] [Indexed: 11/10/2022] Open
Abstract
Pleistocene climate changes have imposed extreme conditions to intertidal rocky marine communities, forcing many species to significant range shifts in their geographical distributions. Phylogeographic analyses based on both mitochondrial and nuclear genetic markers provide a useful approach to unravel phylogeographic patterns and processes of species after this time period, to gain general knowledge of how climatic changes affect shifts in species distributions. We analyzed these patterns on the corkwing wrasse (Symphodus melops, Labridae), a rocky shore species inhabiting North Sea waters and temperate northeastern Atlantic Ocean from Norway to Morocco including the Azores, using a fragment of the mitochondrial control region and the first intron of the nuclear S7 ribosomal protein gene. We found that S. melops shows a clear differentiation between the Atlantic and the Scandinavian populations and a sharp contrast in the genetic diversity, high in the south and low in the north. Within each of these main geographic areas there is little or no genetic differentiation. The species may have persisted throughout the last glacial maximum in the southern areas as paleotemperatures were not lower than they are today in North Scandinavia. The North Sea recolonization most likely took place during the current interglacial and is dominated by a haplotype absent from the south of the study area, but present in Plymouth and Belfast. The possibility of a glacial refugium in or near the English Channel is discussed.
Collapse
|
36
|
Buchanan J, Zuccarello GC. DECOUPLING OF SHORT- AND LONG-DISTANCE DISPERSAL PATHWAYS IN THE ENDEMIC NEW ZEALAND SEAWEED CARPOPHYLLUM MASCHALOCARPUM (PHAEOPHYCEAE, FUCALES)(1). JOURNAL OF PHYCOLOGY 2012; 48:518-529. [PMID: 27011067 DOI: 10.1111/j.1529-8817.2012.01167.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The processes that produce and maintain genetic structure in organisms operate at different timescales and on different life-history stages. In marine macroalgae, gene flow occurs through gamete/zygote dispersal and rafting by adult thalli. Population genetic patterns arise from this contemporary gene flow interacting with historical processes. We analyzed spatial patterns of mitochondrial DNA variation to investigate contemporary and historical dispersal patterns in the New Zealand endemic fucalean brown alga Carpophyllum maschalocarpum (Turner) Grev. Populations bounded by habitat discontinuities were often strongly differentiated from adjoining populations over scales of tens of kilometers and intrapopulation diversity was generally low, except for one region of northeast New Zealand (the Bay of Plenty). There was evidence of strong connectivity between the northern and eastern regions of New Zealand's North Island and between the North and South Islands of New Zealand and the Chatham Islands (separated by 650 km of open ocean). Moderate haplotypic diversity was found in Chatham Islands populations, while other southern populations showed low diversity consistent with Last Glacial Maximum (LGM) retreat and subsequent recolonization. We suggest that ocean current patterns and prevailing westerly winds facilitate long-distance dispersal by floating adult thalli, decoupling genetic differentiation of Chatham Island populations from dispersal potential at the gamete/zygote stage. This study highlights the importance of encompassing the entire range of a species when inferring dispersal patterns from genetic differentiation, as realized dispersal distances can be contingent on local or regional oceanographic and historical processes.
Collapse
Affiliation(s)
- Joe Buchanan
- School of Biological Sciences, Victoria University of Wellington, P. O. Box 600, Wellington 6140, New Zealand
| | - Giuseppe C Zuccarello
- School of Biological Sciences, Victoria University of Wellington, P. O. Box 600, Wellington 6140, New Zealand
| |
Collapse
|
37
|
Bartsch I, Wiencke C, Laepple T. Global Seaweed Biogeography Under a Changing Climate: The Prospected Effects of Temperature. ECOLOGICAL STUDIES 2012. [DOI: 10.1007/978-3-642-28451-9_18] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
|
39
|
Hu ZM, Uwai S, Yu SH, Komatsu T, Ajisaka T, Duan DL. Phylogeographic heterogeneity of the brown macroalga Sargassum horneri (Fucaceae) in the northwestern Pacific in relation to late Pleistocene glaciation and tectonic configurations. Mol Ecol 2011; 20:3894-909. [PMID: 21851438 DOI: 10.1111/j.1365-294x.2011.05220.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pleistocene glacial oscillations and associated tectonic processes are believed to have influenced the historical abundances and distribution of organisms in the Asia Northwest Pacific (ANP). Accumulating evidence indicates that factors shaping tempospatial population dynamics and distribution patterns of marine taxa vary with biogeographical latitude, pelagic behaviour and oceanographic regimes. To detect what kinds of historical and contemporary factors affected genetic connectivity, phylogeographic profiles of littoral macroalga Sargassum horneri in the ANP were analysed based on mitochondrial (Cox3) and chloroplast (rbcL) data sets. Five distinct clades were recovered. A strong signature of biogeographical structure was revealed (Φ(CT) = 0.487, P < 0.0001) derived from remarkable differentiation in clade distribution, as clade I is restricted to Chinese marginal seas (Yellow-Bohai Sea, East China Sea and South China Sea), whereas clades II-V are discontinuously scattered around the main Islands of Japan. Furthermore, two secondary contact regions were identified along the south Japan-Pacific coastline. This significant differentiation between the two basins may reflect historical glacial isolation in the northwestern Pacific, which is congruent with the estimates of clade divergence and demographic expansion during the late Quaternary low sea levels. Analysis of molecular variance and the population-pair statistic F(ST) also revealed significant genetic structural differences between Chinese marginal seas and the Japanese basin. This exceptional phylogeographic architecture in S. horneri, initially shaped by historical geographic isolation during the late Pleistocene ice age and physical biogeographical barriers, can be complicated by oceanographic regimes (ocean surface currents) and relocating behaviour such as oceanic drifting.
Collapse
Affiliation(s)
- Zi-Min Hu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | | | | | | | | | | |
Collapse
|
40
|
COSCIA ILARIA, MARIANI STEFANO. Phylogeography and population structure of European sea bass in the north-east Atlantic. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2011.01712.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
41
|
KREBES LUKAS, BLANK MIRIAM, BASTROP RALF. Phylogeography, historical demography and postglacial colonization routes of two amphi-Atlantic distributed amphipods. SYST BIODIVERS 2011. [DOI: 10.1080/14772000.2011.604359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
42
|
Provan J, Maggs CA. Unique genetic variation at a species' rear edge is under threat from global climate change. Proc Biol Sci 2011; 279:39-47. [PMID: 21593035 DOI: 10.1098/rspb.2011.0536] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Global climate change is having a significant effect on the distributions of a wide variety of species, causing both range shifts and population extinctions. To date, however, no consensus has emerged on how these processes will affect the range-wide genetic diversity of impacted species. It has been suggested that species that recolonized from low-latitude refugia might harbour high levels of genetic variation in rear-edge populations, and that loss of these populations could cause a disproportionately large reduction in overall genetic diversity in such taxa. In the present study, we have examined the distribution of genetic diversity across the range of the seaweed Chondrus crispus, a species that has exhibited a northward shift in its southern limit in Europe over the last 40 years. Analysis of 19 populations from both sides of the North Atlantic using mitochondrial single nucleotide polymorphisms (SNPs), sequence data from two single-copy nuclear regions and allelic variation at eight microsatellite loci revealed unique genetic variation for all marker classes in the rear-edge populations in Iberia, but not in the rear-edge populations in North America. Palaeodistribution modelling and statistical testing of alternative phylogeographic scenarios indicate that the unique genetic diversity in Iberian populations is a result not only of persistence in the region during the last glacial maximum, but also because this refugium did not contribute substantially to the recolonization of Europe after the retreat of the ice. Consequently, loss of these rear-edge populations as a result of ongoing climate change will have a major effect on the overall genetic diversity of the species, particularly in Europe, and this could compromise the adaptive potential of the species as a whole in the face of future global warming.
Collapse
Affiliation(s)
- Jim Provan
- School of Biological Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | | |
Collapse
|
43
|
Doellman MM, Trussell GC, Grahame JW, Vollmer SV. Phylogeographic analysis reveals a deep lineage split within North Atlantic Littorina saxatilis. Proc Biol Sci 2011; 278:3175-83. [PMID: 21429920 DOI: 10.1098/rspb.2011.0346] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phylogeographic studies provide critical insight into the evolutionary histories of model organisms; yet, to date, range-wide data are lacking for the rough periwinkle Littorina saxatilis, a classic example of marine sympatric speciation. Here, we use mitochondrial DNA (mtDNA) sequence data to demonstrate that L. saxatilis is not monophyletic for this marker, but is composed of two distinct mtDNA lineages (I and II) that are shared with sister species Littorina arcana and Littorina compressa. Bayesian coalescent dating and phylogeographic patterns indicate that both L. saxatilis lineages originated in the eastern North Atlantic, around the British Isles, at approximately 0.64 Ma. Both lineages are now distributed broadly across the eastern, central and western North Atlantic, and show strong phylogeographic structure among regions. The Iberian Peninsula is genetically distinct, suggesting prolonged isolation from northeastern North Atlantic populations. Western North Atlantic populations of L. saxatilis lineages I and II predate the last glacial maximum and have been isolated from eastern North Atlantic populations since that time. This identification of two distinct, broadly distributed mtDNA lineages further complicates observed patterns of repeated incipient ecological speciation in L. saxatilis, because the sympatric origins of distinct ecotype pairs on eastern North Atlantic shores may be confounded by admixture of divergent lineages.
Collapse
|
44
|
Burbrink FT, Pyron RA. THE IMPACT OF GENE-TREE/SPECIES-TREE DISCORDANCE ON DIVERSIFICATION-RATE ESTIMATION. Evolution 2011; 65:1851-61. [PMID: 21729043 DOI: 10.1111/j.1558-5646.2011.01260.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Frank T Burbrink
- Department of Biology, The College of Staten Island, The City University of New York, Staten Island, New York 10314, USA
| | | |
Collapse
|
45
|
Panova M, Blakeslee AMH, Miller AW, Mäkinen T, Ruiz GM, Johannesson K, André C. Glacial history of the North Atlantic marine snail, Littorina saxatilis, inferred from distribution of mitochondrial DNA lineages. PLoS One 2011; 6:e17511. [PMID: 21412417 PMCID: PMC3055875 DOI: 10.1371/journal.pone.0017511] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 02/07/2011] [Indexed: 11/29/2022] Open
Abstract
The North Atlantic intertidal gastropod, Littorina saxatilis (Olivi, 1792), exhibits extreme morphological variation between and within geographic regions and has become a model for studies of local adaptation; yet a comprehensive analysis of the species' phylogeography is lacking. Here, we examine phylogeographic patterns of the species' populations in the North Atlantic and one remote Mediterranean population using sequence variation in a fragment of the mitochondrial cytochrome b gene (607 bp). We found that, as opposed to many other rocky intertidal species, L. saxatilis has likely had a long and continuous history in the Northwest Atlantic, including survival during the last glacial maximum (LGM), possibly in two refugia. In the Northeast Atlantic, several areas likely harboured refugial populations that recolonized different parts of this region after glacial retreat, resulting in strong population structure. However, the outlying monomorphic Venetian population is likely a recent anthropogenic introduction from northern Europe and not a remnant of an earlier wider distribution in the Mediterranean Sea. Overall, our detailed phylogeography of L. saxatilis adds an important piece to the understanding of Pleistocene history in North Atlantic marine biota as well as being the first study to describe the species' evolutionary history in its natural range. The latter contribution is noteworthy because the snail has recently become an important model species for understanding evolutionary processes of speciation; thus our work provides integral information for such endeavours.
Collapse
Affiliation(s)
- Marina Panova
- Department of Marine Ecology-Tjärnö, University of Gothenburg, Strömstad, Sweden.
| | | | | | | | | | | | | |
Collapse
|
46
|
Chee S, Devakie M, Siti Azizah M. Phylogenetic study and barcoding of the blood cockle, Tegillarca granosa, found on the west coast of peninsular Malaysia using the COI gene. GENETICS AND MOLECULAR RESEARCH 2011; 10:1237-44. [DOI: 10.4238/vol10-2gmr1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
47
|
HU ZM, LI W, LI JJ, DUAN DL. Post-Pleistocene demographic history of the North Atlantic endemic Irish moss Chondrus crispus: glacial survival, spatial expansion and gene flow. J Evol Biol 2010; 24:505-17. [DOI: 10.1111/j.1420-9101.2010.02186.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
BOISSIN EMILIE, HOAREAU THIERRYBERNARD, BERREBI PATRICK. Effects of current and historic habitat fragmentation on the genetic structure of the sand goby Pomatoschistus minutus (Osteichthys, Gobiidae). Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01565.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Neiva J, Pearson GA, Valero M, Serrão EA. Surfing the wave on a borrowed board: range expansion and spread of introgressed organellar genomes in the seaweed Fucus ceranoides L. Mol Ecol 2010; 19:4812-22. [PMID: 20958817 DOI: 10.1111/j.1365-294x.2010.04853.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
For many taxa, introgression represents an important source of genetic variation, but the specific contexts allowing locally introgressed material to spread and largely replace native allelic lineages throughout a species range remain poorly understood. Recent demographic-genetic simulations of spatial expansions show that the stochastic surfing of alien alleles during range expansions may constitute a general mechanism leading to extensive introgression, but empirical evidence remain scarce and difficult to distinguish from selection. In this study, we report a compelling case of such a phenomenon in the estuarine alga Fucus ceranoides. We re-assessed the phylogenetic relationships among F. ceranoides and its marine congeners F. vesiculosus and F. spiralis using nuclear, mitochondrial and chloroplast sequence data, and conducted a mtDNA phylogeographic survey in F. ceranoides. Our phylogenetic analyses revealed a recent and asymmetric introgression of a single F. vesiculosus cytoplasm into F. ceranoides. The phylogeographic scope of introgression was striking, with native and introgressed mtDNA displaying disjunct distributions south and north of the English Channel. A putative Pleistocene climatic refugium was detected in NW Iberia, and the extensive and exclusive spread of the alien cytoplasm throughout Northern Europe was inferred to have occurred concurrently with the species post-glacial, northwards range expansion. This massive spread of a foreign organelle throughout the entire post-glacial recolonization range represents good empirical evidence of an alien cytoplasm surfing the wave of a range expansion and the first description of such a phenomenon in the marine realm.
Collapse
Affiliation(s)
- João Neiva
- Centro de Ciências do Mar, Centro de Investigação Marinha e Ambiental-Laboratório Associado, Universidade do Algarve, Gambelas, 8005-139 Faro, Portugal
| | | | | | | |
Collapse
|
50
|
MARKO PETERB, HOFFMAN JESSICAM, EMME SANDRAA, MCGOVERN TAMARAM, KEEVER CARSONC, NICOLE COX L. The ‘Expansion-Contraction’ model of Pleistocene biogeography: rocky shores suffer a sea change? Mol Ecol 2010; 19:146-69. [DOI: 10.1111/j.1365-294x.2009.04417.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|