1
|
Keaveny EC, Helling MR, Basile F, Strange JP, Lozier JD, Dillon ME. Metabolomes of bumble bees reared in common garden conditions suggest constitutive differences in energy and toxin metabolism across populations. JOURNAL OF INSECT PHYSIOLOGY 2023; 151:104581. [PMID: 37871769 DOI: 10.1016/j.jinsphys.2023.104581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Cold tolerance of ectotherms can vary strikingly among species and populations. Variation in cold tolerance can reflect differences in genomes and transcriptomes that confer cellular-level protection from cold; additionally, shifts in protein function and abundance can be altered by other cellular constituents as cold-exposed insects often have shifts in their metabolomes. Even without a cold challenge, insects from different populations may vary in cellular composition that could alter cold tolerance, but investigations of constitutive differences in metabolomes across wild populations remain rare. To address this gap, we reared Bombus vosnesenskii queens collected from Oregon and California (USA) that differ in cold tolerance (CTmin = -6 °C and 0 °C, respectively) in common garden conditions, and measured offspring metabolomes using untargeted LC-MS/MS. Oregon bees had higher levels of metabolites associated with carbohydrate (sorbitol, lactitol, maltitol, and sorbitol-6-phosphate) and amino acid (hydroxyproline, ornithine, and histamine) metabolism. Exogenous metabolites, likely derived from the diet, also varied between Oregon and California bees, suggesting population-level differences in toxin metabolism. Overall, our results reveal constitutive differences in metabolomes for bumble bees reared in common garden conditions from queens collected in different locations despite no previous cold exposure.
Collapse
Affiliation(s)
- Ellen C Keaveny
- Department of Zoology and Physiology and Program in Ecology and Evolution, University of Wyoming, Laramie, WY 82071, United States.
| | - Mitchell R Helling
- Department of Chemistry, University of Wyoming, Laramie, WY 82071, United States
| | - Franco Basile
- Department of Chemistry, University of Wyoming, Laramie, WY 82071, United States
| | - James P Strange
- USDA-ARS Pollinating Insects Research Unit, Utah State University, Logan, UT 84322, United States; Department of Entomology, The Ohio State University, Columbus, OH 44691, United States
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, United States
| | - Michael E Dillon
- Department of Zoology and Physiology and Program in Ecology and Evolution, University of Wyoming, Laramie, WY 82071, United States.
| |
Collapse
|
2
|
Burny C, Nolte V, Dolezal M, Schlötterer C. Genome-wide selection signatures reveal widespread synergistic effects of two different stressors in Drosophila melanogaster. Proc Biol Sci 2022; 289:20221857. [PMID: 36259211 PMCID: PMC9579754 DOI: 10.1098/rspb.2022.1857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Experimental evolution combined with whole-genome sequencing (evolve and resequence (E&R)) is a powerful approach to study the adaptive architecture of selected traits. Nevertheless, so far the focus has been on the selective response triggered by a single stressor. Building on the highly parallel selection response of founder populations with reduced variation, we evaluated how the presence of a second stressor affects the genomic selection response. After 20 generations of adaptation to laboratory conditions at either 18°C or 29°C, strong genome-wide selection signatures were observed. Only 38% of the selection signatures can be attributed to laboratory adaptation (no difference between temperature regimes). The remaining selection responses are either caused by temperature-specific effects, or reflect the joint effects of temperature and laboratory adaptation (same direction, but the magnitude differs between temperatures). The allele frequency changes resulting from the combined effects of temperature and laboratory adaptation were more extreme in the hot environment for 83% of the affected genomic regions-indicating widespread synergistic effects of the two stressors. We conclude that E&R with reduced genetic variation is a powerful approach to study genome-wide fitness consequences driven by the combined effects of multiple environmental factors.
Collapse
Affiliation(s)
- Claire Burny
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Vienna 1210, Austria.,Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna 1210, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Vienna 1210, Austria
| | - Marlies Dolezal
- Plattform Bioinformatik und Biostatistik, Vetmeduni Vienna, Vienna 1210, Austria
| | - Christian Schlötterer
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, Vienna 1210, Austria
| |
Collapse
|
3
|
Otte KA, Nolte V, Mallard F, Schlötterer C. The genetic architecture of temperature adaptation is shaped by population ancestry and not by selection regime. Genome Biol 2021; 22:211. [PMID: 34271951 PMCID: PMC8285869 DOI: 10.1186/s13059-021-02425-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 06/29/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Understanding the genetic architecture of temperature adaptation is key for characterizing and predicting the effect of climate change on natural populations. One particularly promising approach is Evolve and Resequence, which combines advantages of experimental evolution such as time series, replicate populations, and controlled environmental conditions, with whole genome sequencing. Recent analysis of replicate populations from two different Drosophila simulans founder populations, which were adapting to the same novel hot environment, uncovered very different architectures-either many selection targets with large heterogeneity among replicates or fewer selection targets with a consistent response among replicates. RESULTS Here, we expose the founder population from Portugal to a cold temperature regime. Although almost no selection targets are shared between the hot and cold selection regime, the adaptive architecture was similar. We identify a moderate number of targets under strong selection (19 selection targets, mean selection coefficient = 0.072) and parallel responses in the cold evolved replicates. This similarity across different environments indicates that the adaptive architecture depends more on the ancestry of the founder population than the specific selection regime. CONCLUSIONS These observations will have broad implications for the correct interpretation of the genomic responses to a changing climate in natural populations.
Collapse
Affiliation(s)
- Kathrin A Otte
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Present address: Institute for Zoology, University of Cologne, Cologne, Germany
| | - Viola Nolte
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - François Mallard
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Present address: Institut de Biologie de l'École Normale Supérieure, CNRS UMR 8197, Inserm U1024, PSL Research University, F-75005, Paris, France
| | | |
Collapse
|
4
|
Pimsler ML, Oyen KJ, Herndon JD, Jackson JM, Strange JP, Dillon ME, Lozier JD. Biogeographic parallels in thermal tolerance and gene expression variation under temperature stress in a widespread bumble bee. Sci Rep 2020; 10:17063. [PMID: 33051510 PMCID: PMC7553916 DOI: 10.1038/s41598-020-73391-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Global temperature changes have emphasized the need to understand how species adapt to thermal stress across their ranges. Genetic mechanisms may contribute to variation in thermal tolerance, providing evidence for how organisms adapt to local environments. We determine physiological thermal limits and characterize genome-wide transcriptional changes at these limits in bumble bees using laboratory-reared Bombus vosnesenskii workers. We analyze bees reared from latitudinal (35.7-45.7°N) and altitudinal (7-2154 m) extremes of the species' range to correlate thermal tolerance and gene expression among populations from different climates. We find that critical thermal minima (CTMIN) exhibit strong associations with local minimums at the location of queen origin, while critical thermal maximum (CTMAX) was invariant among populations. Concordant patterns are apparent in gene expression data, with regional differentiation following cold exposure, and expression shifts invariant among populations under high temperatures. Furthermore, we identify several modules of co-expressed genes that tightly correlate with critical thermal limits and temperature at the region of origin. Our results reveal that local adaptation in thermal limits and gene expression may facilitate cold tolerance across a species range, whereas high temperature responses are likely constrained, both of which may have implications for climate change responses of bumble bees.
Collapse
Affiliation(s)
- Meaghan L Pimsler
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Kennan J Oyen
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - James D Herndon
- USDA-ARS Pollinating Insects Research Unit, Utah State University, Logan, UT, 84322, USA
| | - Jason M Jackson
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - James P Strange
- USDA-ARS Pollinating Insects Research Unit, Utah State University, Logan, UT, 84322, USA
- Department of Entomology, The Ohio State University, Columbus, OH, 44691, USA
| | - Michael E Dillon
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
5
|
Conservation of gene architecture and domains amidst sequence divergence in the hsrω lncRNA gene across the Drosophila genus: an in silico analysis. J Genet 2020. [DOI: 10.1007/s12041-020-01218-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Lecheta MC, Awde DN, O’Leary TS, Unfried LN, Jacobs NA, Whitlock MH, McCabe E, Powers B, Bora K, Waters JS, Axen HJ, Frietze S, Lockwood BL, Teets NM, Cahan SH. Integrating GWAS and Transcriptomics to Identify the Molecular Underpinnings of Thermal Stress Responses in Drosophila melanogaster. Front Genet 2020; 11:658. [PMID: 32655626 PMCID: PMC7324644 DOI: 10.3389/fgene.2020.00658] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
Thermal tolerance of an organism depends on both the ability to dynamically adjust to a thermal stress and preparatory developmental processes that enhance thermal resistance. However, the extent to which standing genetic variation in thermal tolerance alleles influence dynamic stress responses vs. preparatory processes is unknown. Here, using the model species Drosophila melanogaster, we used a combination of Genome Wide Association mapping (GWAS) and transcriptomic profiling to characterize whether genes associated with thermal tolerance are primarily involved in dynamic stress responses or preparatory processes that influence physiological condition at the time of thermal stress. To test our hypotheses, we measured the critical thermal minimum (CTmin) and critical thermal maximum (CTmax) of 100 lines of the Drosophila Genetic Reference Panel (DGRP) and used GWAS to identify loci that explain variation in thermal limits. We observed greater variation in lower thermal limits, with CTmin ranging from 1.81 to 8.60°C, while CTmax ranged from 38.74 to 40.64°C. We identified 151 and 99 distinct genes associated with CTmin and CTmax, respectively, and there was strong support that these genes are involved in both dynamic responses to thermal stress and preparatory processes that increase thermal resistance. Many of the genes identified by GWAS were involved in the direct transcriptional response to thermal stress (72/151 for cold; 59/99 for heat), and overall GWAS candidates were more likely to be differentially expressed than other genes. Further, several GWAS candidates were regulatory genes that may participate in the regulation of stress responses, and gene ontologies related to development and morphogenesis were enriched, suggesting many of these genes influence thermal tolerance through effects on development and physiological status. Overall, our results suggest that thermal tolerance alleles can influence both dynamic plastic responses to thermal stress and preparatory processes that improve thermal resistance. These results also have utility for directly comparing GWAS and transcriptomic approaches for identifying candidate genes associated with thermal tolerance.
Collapse
Affiliation(s)
- Melise C. Lecheta
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - David N. Awde
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Thomas S. O’Leary
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Laura N. Unfried
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Nicholas A. Jacobs
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Miles H. Whitlock
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Eleanor McCabe
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Beck Powers
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Katie Bora
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - James S. Waters
- Department of Biology, Providence College, Providence, RI, United States
| | - Heather J. Axen
- Department of Biology and Biomedical Sciences, Salve Regina College, Providence, RI, United States
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, United States
| | - Brent L. Lockwood
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - Nicholas M. Teets
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Sara H. Cahan
- Department of Biology, University of Vermont, Burlington, VT, United States
| |
Collapse
|
7
|
Stazione L, Norry FM, Gomez FH, Sambucetti P. Heat knockdown resistance and chill-coma recovery as correlated responses to selection on mating success at high temperature in Drosophila buzzatii. Ecol Evol 2020; 10:1998-2006. [PMID: 32128132 PMCID: PMC7042739 DOI: 10.1002/ece3.6032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 01/13/2023] Open
Abstract
Reproduction and related traits such as mating success are strongly affected by thermal stress. We tested direct and correlated responses to artificial selection in replicated lines of Drosophila buzzatii that were selected for mating success at high temperature. Knockdown resistance at high temperature (KRHT) and chill-coma recovery (CCR) were tested as correlated selection responses. Virgin flies were allowed to mate for four hours at 33°C in three replicated lines (S lines) to obtain the selected flies and then returned at 25°C to lay eggs. Other three replicated lines were maintained at 25°C without any selection as control (C lines). After 15 selection generations, KRHT and CCR were measured. Both traits were assessed in flies that did not receive any hardening pretreatments as well as in flies that were either heat or cold hardened. Thermotolerance traits showed significant correlated responses with higher KRHT in S than in C lines, both with a heat-hardening pretreatment and without a heat-hardening pretreatment. CCR time was longer in S than in C lines both with a cold-hardening pretreatment and without a cold-hardening pretreatment. Hardening treatments improved both KRHT and CCR in all cases excepting KRHT in C lines. Overall, KRHT and CCR showed an antagonistic pattern of correlated responses to our selection regime, suggesting either pleiotropy or tightly linked trait-specific genes partially affecting KRHT and CCR.
Collapse
Affiliation(s)
- Leonel Stazione
- Departamento de EcologíaGenética y EvoluciónFacultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de EcologíaGenética y Evolución (IEGEBA)CONICET‐Universidad de Buenos AiresBuenos AiresArgentina
| | - Fabian M. Norry
- Departamento de EcologíaGenética y EvoluciónFacultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de EcologíaGenética y Evolución (IEGEBA)CONICET‐Universidad de Buenos AiresBuenos AiresArgentina
| | - Federico H. Gomez
- Departamento de EcologíaGenética y EvoluciónFacultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de EcologíaGenética y Evolución (IEGEBA)CONICET‐Universidad de Buenos AiresBuenos AiresArgentina
| | - Pablo Sambucetti
- Departamento de EcologíaGenética y EvoluciónFacultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de EcologíaGenética y Evolución (IEGEBA)CONICET‐Universidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
8
|
Freda PJ, Alex JT, Morgan TJ, Ragland GJ. Genetic Decoupling of Thermal Hardiness across Metamorphosis in Drosophila melanogaster. Integr Comp Biol 2018; 57:999-1009. [PMID: 29045669 DOI: 10.1093/icb/icx102] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
As organisms age the environment fluctuates, exerting differential selection across ontogeny. In particular, highly seasonal environments expose life stages to often drastically different thermal environments. This developmental variation is particularly striking in organisms with complex life cycles, wherein life history stages also exhibit distinct morphologies, physiologies, and behaviors. Genes acting pleiotropically on thermal responses may produce genetic correlations across ontogeny, constraining the independent evolution of each life stage to their respective thermal environments. To investigate whether developmental genetic correlations constrain the evolution thermal hardiness of the fly Drosophila melanogaster, we applied quantitative genetic analyses to cold hardiness measured in both larvae and adults from isogenic lines of the Drosophila Genetic Reference Panel (DGRP), using survival at stressful low temperatures as the phenotypic metric. Using full genome resequencing data for the DGRP, we also implemented genome-wide association (GWA) analysis using Bayesian Sparse Linear Mixed Models (BSLMMs) to estimate associations between naturally segregating variation and cold hardiness for both larvae and adults. Quantitative genetic analyses revealed no significant genetic correlation for cold hardiness between life stages, suggesting complete genetic decoupling of thermal hardiness across the metamorphic boundary. Both quantitative genetic and GWA analyses suggested that polygenic variation underlies cold hardiness in both stages, and that associated loci largely affected one stage or the other, but not both. However, reciprocal enrichment tests and correlations between BSLMM parameters for each life stage support some shared physiological mechanisms that may reflect common cellular thermal response pathways. Overall, these results suggest no developmental genetic constraints on cold hardiness across metamorphosis in D. melanogaster, an important consideration in evolutionary models of responses to changing climates. Genetic correlations for environmental sensitivity across ontogeny remains largely unexplored in other organisms, thus assessing the generality of genetic decoupling will require further quantitative or population genetic analysis in additional species.
Collapse
Affiliation(s)
- Philip J Freda
- Department of Entomology, Kansas State University, Manhattan, KS 66502, USA
| | - Jackson T Alex
- Division of Biology, Kansas State University, Manhattan, KS 66502, USA
| | - Theodore J Morgan
- Division of Biology, Kansas State University, Manhattan, KS 66502, USA
| | - Gregory J Ragland
- Department of Entomology, Kansas State University, Manhattan, KS 66502, USA.,Department of Integrative Biology, University of Colorado, Denver, CO 80217-3364, USA
| |
Collapse
|
9
|
Carreira VP, Mensch J, Hasson E, Fanara JJ. Natural Genetic Variation and Candidate Genes for Morphological Traits in Drosophila melanogaster. PLoS One 2016; 11:e0160069. [PMID: 27459710 PMCID: PMC4961385 DOI: 10.1371/journal.pone.0160069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/13/2016] [Indexed: 11/21/2022] Open
Abstract
Body size is a complex character associated to several fitness related traits that vary within and between species as a consequence of environmental and genetic factors. Latitudinal and altitudinal clines for different morphological traits have been described in several species of Drosophila and previous work identified genomic regions associated with such variation in D. melanogaster. However, the genetic factors that orchestrate morphological variation have been barely studied. Here, our main objective was to investigate genetic variation for different morphological traits associated to the second chromosome in natural populations of D. melanogaster along latitudinal and altitudinal gradients in Argentina. Our results revealed weak clinal signals and a strong population effect on morphological variation. Moreover, most pairwise comparisons between populations were significant. Our study also showed important within-population genetic variation, which must be associated to the second chromosome, as the lines are otherwise genetically identical. Next, we examined the contribution of different candidate genes to natural variation for these traits. We performed quantitative complementation tests using a battery of lines bearing mutated alleles at candidate genes located in the second chromosome and six second chromosome substitution lines derived from natural populations which exhibited divergent phenotypes. Results of complementation tests revealed that natural variation at all candidate genes studied, invected, Fasciclin 3, toucan, Reticulon-like1, jing and CG14478, affects the studied characters, suggesting that they are Quantitative Trait Genes for morphological traits. Finally, the phenotypic patterns observed suggest that different alleles of each gene might contribute to natural variation for morphological traits. However, non-additive effects cannot be ruled out, as wild-derived strains differ at myriads of second chromosome loci that may interact epistatically with mutant alleles.
Collapse
Affiliation(s)
- Valeria Paula Carreira
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail:
| | - Julián Mensch
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Esteban Hasson
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan José Fanara
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
10
|
MacMillan HA, Knee JM, Dennis AB, Udaka H, Marshall KE, Merritt TJS, Sinclair BJ. Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome. Sci Rep 2016; 6:28999. [PMID: 27357258 PMCID: PMC4928047 DOI: 10.1038/srep28999] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/07/2016] [Indexed: 01/05/2023] Open
Abstract
Cold tolerance is a key determinant of insect distribution and abundance, and thermal acclimation can strongly influence organismal stress tolerance phenotypes, particularly in small ectotherms like Drosophila. However, there is limited understanding of the molecular and biochemical mechanisms that confer such impressive plasticity. Here, we use high-throughput mRNA sequencing (RNA-seq) and liquid chromatography – mass spectrometry (LC-MS) to compare the transcriptomes and metabolomes of D. melanogaster acclimated as adults to warm (rearing) (21.5 °C) or cold conditions (6 °C). Cold acclimation improved cold tolerance and led to extensive biological reorganization: almost one third of the transcriptome and nearly half of the metabolome were differentially regulated. There was overlap in the metabolic pathways identified via transcriptomics and metabolomics, with proline and glutathione metabolism being the most strongly-supported metabolic pathways associated with increased cold tolerance. We discuss several new targets in the study of insect cold tolerance (e.g. dopamine signaling and Na+-driven transport), but many previously identified candidate genes and pathways (e.g. heat shock proteins, Ca2+ signaling, and ROS detoxification) were also identified in the present study, and our results are thus consistent with and extend the current understanding of the mechanisms of insect chilling tolerance.
Collapse
Affiliation(s)
- Heath A MacMillan
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Jose M Knee
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| | - Alice B Dennis
- Landcare Research, Auckland, New Zealand.,Allan Wilson Centre for Molecular Ecology and Evolution, Auckland, New Zealand
| | - Hiroko Udaka
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Katie E Marshall
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Thomas J S Merritt
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
11
|
Fournier-Level A, Neumann-Mondlak A, Good RT, Green LM, Schmidt JM, Robin C. Behavioural response to combined insecticide and temperature stress in natural populations of Drosophila melanogaster. J Evol Biol 2016; 29:1030-44. [DOI: 10.1111/jeb.12844] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 12/25/2022]
Affiliation(s)
- A. Fournier-Level
- School of BioSciences; The University of Melbourne; Parkville Vic. Australia
| | - A. Neumann-Mondlak
- School of BioSciences; The University of Melbourne; Parkville Vic. Australia
| | - R. T. Good
- School of BioSciences; The University of Melbourne; Parkville Vic. Australia
| | - L. M. Green
- School of BioSciences; The University of Melbourne; Parkville Vic. Australia
| | - J. M. Schmidt
- School of BioSciences; The University of Melbourne; Parkville Vic. Australia
- Max Planck Institute for Evolutionary Anthropology; Leipzig Germany
| | - C. Robin
- School of BioSciences; The University of Melbourne; Parkville Vic. Australia
| |
Collapse
|
12
|
Ivory-Church J, Frentiu FD, Chenoweth SF. Polymorphisms in a desaturase 2 ortholog associate with cuticular hydrocarbon and male mating success variation in a natural population of Drosophila serrata. J Evol Biol 2015; 28:1600-9. [PMID: 26104145 DOI: 10.1111/jeb.12679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/07/2015] [Indexed: 01/22/2023]
Abstract
Elucidating the nature of genetic variation underlying both sexually selected traits and the fitness components of sexual selection is essential to understanding the broader consequences of sexual selection as an evolutionary process. To date, there have been relatively few attempts to connect the genetic variance in sexually selected traits with segregating DNA sequence polymorphisms. We set out to address this in a well-characterized sexual selection system--the cuticular hydrocarbons (CHCs) of Drosophila serrata--using an indirect association study design that allowed simultaneous estimation of the genetic variance in CHCs, sexual fitness and single nucleotide polymorphism (SNP) effects in an outbred population. We cloned and sequenced an ortholog of the D. melanogaster desaturase 2 gene, previously shown to affect CHC biosynthesis in D. melanogaster, and associated 36 SNPs with minor allele frequencies > 0.02 with variance in CHCs and sexual fitness. Three SNPs had significant multivariate associations with CHC phenotype (q-value < 0.05). At these loci, minor alleles had multivariate effects on CHCs that were weakly associated with the multivariate direction of sexual selection operating on these traits. Two of these SNPs had pleiotropic associations with male mating success, suggesting these variants may underlie responses to sexual selection due to this locus. There were 15 significant male mating success associations (q-value < 0.1), and interestingly, we detected a nonrandom pattern in the relationship between allele frequency and direction of effect on male mating success. The minor-frequency allele usually reduced male mating success, suggesting a positive association between male mating success and total fitness at this locus.
Collapse
Affiliation(s)
- J Ivory-Church
- School of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia
| | - F D Frentiu
- School of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia.,Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Qld, Australia
| | - S F Chenoweth
- School of Biological Sciences, The University of Queensland, St. Lucia, Qld, Australia
| |
Collapse
|
13
|
Xu D, Sun L, Liu S, Zhang L, Yang H. Polymorphisms of heat shock protein 90 (Hsp90) in the sea cucumber Apostichopus japonicus and their association with heat-resistance. FISH & SHELLFISH IMMUNOLOGY 2014; 41:428-436. [PMID: 25270529 DOI: 10.1016/j.fsi.2014.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/09/2014] [Accepted: 09/20/2014] [Indexed: 06/03/2023]
Abstract
Heat shock protein 90 (Hsp90) functions as a molecular chaperone and plays an important role in the resistance of organisms to stress, particularly heat-stress. In our study, 12 exons and 11 introns of hsp90 were identified in the sea cucumber Apostichopus japonicus. Twenty-two single nucleotide polymorphisms (SNPs), including three non-synonymous mutations, were detected in the exons. Susceptible and resistant individuals were distinguished using a high-temperature (32 °C) challenge experiment. Three blocks with high linkage disequilibrium were detected among these SNPs. Five of the twenty-two SNPs were shown to be significantly associated with susceptibility/resistance to high temperature by correlation analysis (chi-square test, P < 0.05). To confirm the importance of these five SNPs, a heat-resistance strain (HRS) was selected through three generations. Using the common population as the control group, it was shown that the distributions of genotypes and alleles of SNP e10-1 and e11-6 were significantly different between the two groups (P < 0.05). SNP e10-1 was trimorphic, with three alleles (A, C and T) and five genotypes (AA, CC, AT, CT and AC). The allele frequency of SNP e2-3 was also significantly associated with this trait (P < 0.05). This is the first demonstration of SNPs related to heat-resistance in A. japonicus and supports the use of SNP markers in the selective breeding of sea cucumbers.
Collapse
Affiliation(s)
- Dongxue Xu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Lina Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | - Shilin Liu
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | - Libin Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China
| | - Hongsheng Yang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, PR China.
| |
Collapse
|
14
|
Paaby AB, Bergland AO, Behrman EL, Schmidt PS. A highly pleiotropic amino acid polymorphism in the Drosophila insulin receptor contributes to life-history adaptation. Evolution 2014; 68:3395-409. [PMID: 25319083 DOI: 10.1111/evo.12546] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/05/2014] [Indexed: 12/24/2022]
Abstract
Finding the specific nucleotides that underlie adaptive variation is a major goal in evolutionary biology, but polygenic traits pose a challenge because the complex genotype-phenotype relationship can obscure the effects of individual alleles. However, natural selection working in large wild populations can shift allele frequencies and indicate functional regions of the genome. Previously, we showed that the two most common alleles of a complex amino acid insertion-deletion polymorphism in the Drosophila insulin receptor show independent, parallel clines in frequency across the North American and Australian continents. Here, we report that the cline is stable over at least a five-year period and that the polymorphism also demonstrates temporal shifts in allele frequency concurrent with seasonal change. We tested the alleles for effects on levels of insulin signaling, fecundity, development time, body size, stress tolerance, and life span. We find that the alleles are associated with predictable differences in these traits, consistent with patterns of Drosophila life-history variation across geography that likely reflect adaptation to the heterogeneous climatic environment. These results implicate insulin signaling as a major mediator of life-history adaptation in Drosophila, and suggest that life-history trade-offs can be explained by extensive pleiotropy at a single locus.
Collapse
Affiliation(s)
- Annalise B Paaby
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104; Current Address: Department of Biology, Center for Genomics & Systems Biology, New York University, New York, New York, 10003.
| | | | | | | |
Collapse
|
15
|
Kleynhans E, Mitchell KA, Conlong DE, Terblanche JS. Evolved variation in cold tolerance among populations of Eldana saccharina (Lepidoptera: Pyralidae) in South Africa. J Evol Biol 2014; 27:1149-59. [PMID: 24773121 DOI: 10.1111/jeb.12390] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 03/10/2014] [Accepted: 03/28/2014] [Indexed: 11/30/2022]
Abstract
Among-population variation in chill-coma onset temperature (CTmin ) is thought to reflect natural selection for local microclimatic conditions. However, few studies have investigated the evolutionary importance of cold tolerance limits in natural populations. Here, using a common-environment approach, we show pronounced variation in CTmin (± 4 °C) across the geographic range of a nonoverwintering crop pest, Eldana saccharina. The outcomes of this study provide two notable results in the context of evolved chill-coma variation: (1) CTmin differs significantly between geographic lines and is significantly positively correlated with local climates, and (2) there is a stable genetic architecture underlying CTmin trait variation, likely representing four key genes. Crosses between the most and least cold-tolerant geographic lines confirmed a genetic component to CTmin trait variation. Slower developmental time in the most cold-tolerant population suggests that local adaptation involves fitness costs; however, it confers fitness benefits in that environment. A significant reduction in phenotypic plasticity in the laboratory population suggests that plasticity of this trait is costly to maintain but also likely necessary for field survival. These results are significant for understanding field population adaption to novel environments, whereas further work is needed to dissect the underlying mechanism and gene(s) responsible.
Collapse
Affiliation(s)
- E Kleynhans
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | | | | | | |
Collapse
|
16
|
Kuntz SG, Eisen MB. Drosophila embryogenesis scales uniformly across temperature in developmentally diverse species. PLoS Genet 2014; 10:e1004293. [PMID: 24762628 PMCID: PMC3998915 DOI: 10.1371/journal.pgen.1004293] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/21/2014] [Indexed: 02/02/2023] Open
Abstract
Temperature affects both the timing and outcome of animal development, but the detailed effects of temperature on the progress of early development have been poorly characterized. To determine the impact of temperature on the order and timing of events during Drosophila melanogaster embryogenesis, we used time-lapse imaging to track the progress of embryos from shortly after egg laying through hatching at seven precisely maintained temperatures between 17.5°C and 32.5°C. We employed a combination of automated and manual annotation to determine when 36 milestones occurred in each embryo. D. melanogaster embryogenesis takes 33 hours at 17.5°C, and accelerates with increasing temperature to a low of 16 hours at 27.5°C, above which embryogenesis slows slightly. Remarkably, while the total time of embryogenesis varies over two fold, the relative timing of events from cellularization through hatching is constant across temperatures. To further explore the relationship between temperature and embryogenesis, we expanded our analysis to cover ten additional Drosophila species of varying climatic origins. Six of these species, like D. melanogaster, are of tropical origin, and embryogenesis time at different temperatures was similar for them all. D. mojavensis, a sub-tropical fly, develops slower than the tropical species at lower temperatures, while D. virilis, a temperate fly, exhibits slower development at all temperatures. The alpine sister species D. persimilis and D. pseudoobscura develop as rapidly as tropical flies at cooler temperatures, but exhibit diminished acceleration above 22.5°C and have drastically slowed development by 30°C. Despite ranging from 13 hours for D. erecta at 30°C to 46 hours for D. virilis at 17.5°C, the relative timing of events from cellularization through hatching is constant across all species and temperatures examined here, suggesting the existence of a previously unrecognized timer controlling the progress of embryogenesis that has been tuned by natural selection as each species diverges. Temperature profoundly impacts the rate of development of “cold-blooded” animals, which proceeds far faster when it is warm. There is, however, no universal relationship. Closely related species can develop at markedly different speeds at the same temperature. This creates a major challenge when comparing development among species, as it is unclear whether they should be compared at the same temperature or under different conditions to maintain the same developmental rate. Facing this challenge while working with flies (Drosophila species), we found there was little data to inform this decision. So, using time-lapse imaging, precise temperature-control, and computational and manual video-analysis, we tracked the complex process of embryogenesis in 11 species at seven different temperatures. There was over a three-fold difference in developmental rate between the fastest species at its fastest temperature and the slowest species at its slowest temperature. However, our finding that the timing of events within development all scaled uniformly across species and temperatures astonished us. This is good news for developmental biologists, since we can induce species to develop nearly identically by growing them at different temperatures. But it also means flies must possess some unknown clock-like molecular mechanism driving embryogenesis forward.
Collapse
Affiliation(s)
- Steven G. Kuntz
- QB3 Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| | - Michael B. Eisen
- QB3 Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
17
|
Cockerell FE, Sgrò CM, McKechnie SW. Latitudinal clines in heat tolerance, protein synthesis rate and transcript level of a candidate gene in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2014; 60:136-144. [PMID: 24333150 DOI: 10.1016/j.jinsphys.2013.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 11/27/2013] [Accepted: 12/03/2013] [Indexed: 06/03/2023]
Abstract
The occurrence of climatic adaptation in Drosophila melanogaster is highlighted by the presence of latitudinal clines in several quantitative traits, particularly clines in adult heat knockdown tolerance that is higher in tropical populations. However the presence of latitudinal patterns in physiological characteristics that may underlie these traits have rarely been assessed. Protein synthesis has been implicated as an important physiological process that influences thermal tolerance, and this has not been examined in a clinal context. Here, we characterise latitudinal variation in D. melanogaster from eastern Australia in both adult heat knockdown tolerance and rates of protein synthesis following rearing at both 25 °C, approximating summer conditions, and 18 °C approximating winter development. We also examined clinal variation in the predominant nuclear transcript of the heat-inducible RNA gene hsr-omega, which has been implicated in regulating protein synthesis. We find significant clines in heat-hardened tolerance when cultured at both 18 and 25 °C - tolerance increased towards the low latitude tropics. Rates of protein synthesis measured in ovarian tissue also associated negatively with latitude, however the presence of the clines depended on rearing temperature and heat stress conditions. Finally, omega-n levels measured without heat stress showed a positive linear cline. When measured after a mild heat stress higher levels of omega-n were detected and the clinal pattern became parabolic - mid-latitude populations had lower levels of the transcript. While congruent latitudinal trends were detected for these three traits, only a low level of positive association was detected between protein synthesis and thermal tolerance providing little evidence that these traits are related at the level of cellular physiology. However the new clinal patterns of protein synthesis and hsr-omega variation suggest that these variables exert important influences on traits involved with latitudinal climatic adaptation.
Collapse
Affiliation(s)
- Fiona E Cockerell
- School of Biological Sciences, Monash University, Wellington Rd, Clayton 3800, Melbourne, Australia.
| | - Carla M Sgrò
- School of Biological Sciences, Monash University, Wellington Rd, Clayton 3800, Melbourne, Australia
| | - Stephen W McKechnie
- School of Biological Sciences, Monash University, Wellington Rd, Clayton 3800, Melbourne, Australia
| |
Collapse
|
18
|
Udaka H, Percival-Smith A, Sinclair BJ. Increased abundance of frost mRNA during recovery from cold stress is not essential for cold tolerance in adult Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2013; 22:541-550. [PMID: 23901849 DOI: 10.1111/imb.12044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Frost (Fst) is a candidate gene associated with the response to cold in Drosophila melanogaster because Fst mRNA accumulation increases during recovery from low temperature exposure. We investigated the contribution of Fst expression to chill-coma recovery time, acute cold tolerance and rapid cold hardening (RCH) in adult D. melanogaster by knocking down Fst mRNA expression using GAL4/UAS-mediated RNA interference. In this experiment, four UAS-Fst and one tubulin-GAL4 lines were used. We predicted that if Fst is essential for cold tolerance phenotypes, flies with low Fst mRNA levels should be less cold tolerant than flies with normal levels of cold-induced Fst mRNA. Cold-induced Fst abundance and recovery time from chill-coma were not negatively correlated in male or female flies. Survival of 2 h exposures to sub-zero temperatures in Fst knockdown lines was not lower than that in a control line. Moreover, a low temperature pretreatment increased survival of severe cold exposure in flies regardless of Fst abundance level during recovery from cold stress, suggesting that Fst expression is not essential for RCH. Thus, cold-induced Fst accumulation is not essential for cold tolerance measured as chill-coma recovery time, survival to acute cold stress and RCH response in adult D. melanogaster.
Collapse
Affiliation(s)
- H Udaka
- Department of Biology, The University of Western Ontario, London, ON, Canada.
| | | | | |
Collapse
|
19
|
Lee SF, Eyre-Walker YC, Rane RV, Reuter C, Vinti G, Rako L, Partridge L, Hoffmann AA. Polymorphism in the neurofibromin gene, Nf1, is associated with antagonistic selection on wing size and development time in Drosophila melanogaster. Mol Ecol 2013; 22:2716-25. [PMID: 23506114 DOI: 10.1111/mec.12301] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 02/10/2013] [Accepted: 02/16/2013] [Indexed: 12/14/2022]
Abstract
In many invertebrates, body size shows genetically based clines, with size increasing in colder climates. Large body size is typically associated with prolonged development times. We consider variation in the CNS-specific gene neurofibromin 1 (Nf1) and its association with body size and development time. We identified two major Nf1 haplotypes in natural populations, Nf1-insertion-A and Nf1-deletion-G. These haplotypes are characterized by a 45-base insertion/deletion (INDEL) in Nf1 intron 2 and an A/G synonymous substitution (locus L17277). Linkage disequilibrium (LD) between the INDEL and adjacent sites is high but appears to be restricted within the Nf1 gene interval. In Australia, the frequency of the Nf1-insertion-A haplotype increases with latitude where wing size is larger, independent of the chromosomal inversion In(3R)Payne. Unexpectedly, the Nf1-insertion-A haplotype is negatively associated with wing size. We found that the Nf1-insertion-A haplotype is enriched in females with shorter development time. This suggests that the Nf1 haplotype cline may be driven by selection for development time rather than size; females from southern (higher latitude) D. melanogaster populations maintain a rapid development time despite being relatively larger, and the higher incidence of Nf1-insertion-A in Southern Australia may contribute to this pattern, whereas the effects of the Nf1 haplotypes on size may be countered by other loci with antagonistic effects on size and development time. Our results point to the potential complexity involved in identifying selection on genetic variants exhibiting pleiotropic effects when studies are based on spatial patterns or association studies.
Collapse
Affiliation(s)
- Siu F Lee
- Department of Genetics and Bio21 Institute, The University of Melbourne, Parkville, Melbourne, VIC, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Zulliger D, Schnyder E, Gugerli F. Are adaptive loci transferable across genomes of related species? Outlier and environmental association analyses in Alpine Brassicaceae species. Mol Ecol 2013; 22:1626-39. [PMID: 23398479 DOI: 10.1111/mec.12199] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 11/22/2012] [Accepted: 11/22/2012] [Indexed: 11/27/2022]
Abstract
Local adaptation is one possible response of organisms to survive in a changing environment. However, the genetic basis of adaptation is not well understood, especially in nonmodel species. To infer recurrent patterns of local adaptation, we investigated whether the same putative adaptive loci reoccur in related species. We performed genome scans using amplified fragment length polymorphism (AFLP) markers on populations of five Alpine Brassicaceae species sampled across a wide range of environmental conditions. To identify markers potentially under directional selection, we performed outlier and environmental association analyses using a set of topo-climatic variables available as GIS layers. Several AFLP loci showed signatures of adaptation, of which one, found in Cardamine resedifolia (Cre_P1_212.5), was associated with precipitation. We sequence-characterized this candidate locus and genotyped single nucleotide polymorphisms (SNPs) found within this locus for all species. Testing for environmental associations of SNPs revealed the same association of this locus in Arabis alpina but not in other study species. Cumulative statistical evidence indicates that locus Cre_P1_212.5 is environmentally relevant or is linked to a gene under selection in our study range. Furthermore, the locus shows an association to the same potentially selective factor in at least one other related species. These findings help to identify trends in plant adaptation in Alpine ecosystems in response to particular environmental parameters.
Collapse
Affiliation(s)
- Deborah Zulliger
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903, Birmensdorf, Switzerland
| | | | | |
Collapse
|
21
|
Sambucetti P, Scannapieco AC, Loeschcke V, Norry FM. Heat stress survival in the pre-adult stage of the life cycle in an intercontinental set of recombinant inbred lines of Drosophila melanogaster. J Exp Biol 2013; 216:2953-9. [DOI: 10.1242/jeb.079830] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
In insects, pre-adult stages of the life cycle are exposed to variation in temperature that may differ from that in adults. However, the genetic basis for adaptation to environmental temperature could be similar between the pre-adult and the adult stages of the life cycle. Here, we tested quantitative trait loci (QTL) for heat-stress survival in larvae of D. melanogaster, with and without a mild-heat-stress pre-treatment. Two sets of recombinant inbred lines derived from lines artificially selected for high and low levels of knockdown resistance to high temperature in young flies were used as mapping population. There was no apparent increase in heat-shock survival between heat-pretreated and non-pretreated larvae. There was a positive correlation between the two experimental conditions of heat-shock survival (with and without a heat pre-treatment) except for males from one set of lines. Several QTL were identified involving all three major chromosomes. Many QTL for larval thermotolerance overlapped with thermotolerance-QTL identified in previous studies for adults. One new thermotolerance-QTL was found but these QTL explained only a small fraction of the phenotypic variance and were only significant in larvae that received no heat pre-treatment. Several candidate genes mapped within QTL ranges. We discuss an overall co-localization for thermotolerance-QTL between the adult fly in previous studies and the pre-adult stage of the life cycle in this study.
Collapse
|
22
|
Sinclair BJ, Williams CM, Terblanche JS. Variation in Thermal Performance among Insect Populations. Physiol Biochem Zool 2012; 85:594-606. [DOI: 10.1086/665388] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Santos M, Castañeda LE, Rezende EL. Keeping pace with climate change: what is wrong with the evolutionary potential of upper thermal limits? Ecol Evol 2012; 2:2866-80. [PMID: 23170220 PMCID: PMC3501637 DOI: 10.1002/ece3.385] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 08/20/2012] [Accepted: 08/27/2012] [Indexed: 11/10/2022] Open
Abstract
The potential of populations to evolve in response to ongoing climate change is partly conditioned by the presence of heritable genetic variation in relevant physiological traits. Recent research suggests that Drosophila melanogaster exhibits negligible heritability, hence little evolutionary potential in heat tolerance when measured under slow heating rates that presumably mimic conditions in nature. Here, we study the effects of directional selection for increased heat tolerance using Drosophila as a model system. We combine a physiological model to simulate thermal tolerance assays with multilocus models for quantitative traits. Our simulations show that, whereas the evolutionary response of the genetically determined upper thermal limit (CTmax) is independent of methodological context, the response in knockdown temperatures varies with measurement protocol and is substantially (up to 50%) lower than for CTmax. Realized heritabilities of knockdown temperature may grossly underestimate the true heritability of CTmax. For instance, assuming that the true heritability of CTmax in the base population is h(2) = 0.25, realized heritabilities of knockdown temperature are around 0.08-0.16 depending on heating rate. These effects are higher in slow heating assays, suggesting that flawed methodology might explain the apparently limited evolutionary potential of cosmopolitan D. melanogaster.
Collapse
Affiliation(s)
- Mauro Santos
- Departament de Genètica i de Microbiologia, Grup de Biologia Evolutiva (GBE), Universitat Autònoma de Barcelona 08193, Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
24
|
Hosoya S, Kai W, Fujita M, Miyaki K, Suetake H, Suzuki Y, Kikuchi K. The genetic architecture of growth rate in juvenile Takifugu species. Evolution 2012; 67:590-8. [PMID: 23356630 DOI: 10.1111/j.1558-5646.2012.01781.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Closely related species have often evolved dramatic differences in body size. Takifugu rubripes (fugu) is a large marine pufferfish whose genome has been sequenced, whereas T. niphobles is the smallest species among Takifugu. We show that, unsurprisingly, the juvenile growth rate of T. rubripes is higher than that of T. niphobles in a laboratory setting. We produced F(2) progenies of their F(1) hybrids and found one quantitative trait locus (QTL) significantly associated with variation in juvenile body size. This QTL region (3.5 Mb) contains no known genes directly related to growth phenotype (such as IGFs) except Fgf21, which inhibits growth hormone signaling in mouse. The QTL in Takifugu spp. is distinct from the region previously known to control body size variations in stickleback or tilapia. Our results suggest that in the fish tested herein, genomic regions underlying body size evolution might have different genetic origins. They also suggest that many diverse traits in Takifugu spp. are amenable to genetic mapping.
Collapse
Affiliation(s)
- Sho Hosoya
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, University of Tokyo, Maisaka, Shizuoka 431-0214, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Hoffmann AA, Blacket MJ, McKechnie SW, Rako L, Schiffer M, Rane RV, Good RT, Robin C, Lee SF. A proline repeat polymorphism of the Frost gene of Drosophila melanogaster showing clinal variation but not associated with cold resistance. INSECT MOLECULAR BIOLOGY 2012; 21:437-445. [PMID: 22708613 DOI: 10.1111/j.1365-2583.2012.01149.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Genetic polymorphisms underlying adaptive shifts in thermal responses are poorly known even though studies are providing a detailed understanding of these responses at the cellular and physiological levels. The Frost gene of Drosophila melanogaster is a prime candidate for thermal adaptation; it is up-regulated under cold stress and knockdown of this gene influences cold resistance. Here we describe an amino-acid INDEL polymorphism in proline repeat number in the structural component of this gene. The two main repeats, accounting for more than 90% of alleles in eastern Australia, show a strong clinal pattern; the 6P allele was at a high frequency in tropical locations, and the 10P allele was common in temperate populations. However, the frequency of these alleles was not associated with three different assays of cold resistance. Adult transcription level of Frost was also unrelated to cold resistance as measured through post chill coma mobility. The functional significance of the proline repeat polymorphism therefore remains unclear despite its clinal pattern. The data also demonstrate the feasibility of using Roche/454 sequencing for establishing clinal patterns.
Collapse
Affiliation(s)
- A A Hoffmann
- Department of Genetics, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Adaptation to aridity in the malaria mosquito Anopheles gambiae: chromosomal inversion polymorphism and body size influence resistance to desiccation. PLoS One 2012; 7:e34841. [PMID: 22514674 PMCID: PMC3325948 DOI: 10.1371/journal.pone.0034841] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 03/09/2012] [Indexed: 11/19/2022] Open
Abstract
Chromosomal inversions are thought to confer a selective advantage in alternative habitats by protecting co-adapted alleles from recombination. The frequencies of two inversions (2La and 2Rb) of the afro-tropical malaria mosquito Anopheles gambiae change gradually along geographical clines, increasing in frequency with degree of aridity. Such clines can result from gene flow and local selection acting upon alternative karyotypes along the cline, suggesting that these inversions may be associated with tolerance to xeric conditions. Since water loss represents a major challenge in xeric habitats, it can be supposed that genes inside these inversions are involved in water homeostasis. To test this hypothesis, we compared the desiccation resistance of alternative karyotypes from a colonised 2Rb/2La polymorphic population of A. gambiae from Cameroon. The strain included only the molecular form S, one of the genetic units marking incipient speciation in this taxon. Day-old mosquitoes of both sexes were assayed individually for time to death in a dry environment and the karyotype of each was determined post-mortem using molecular diagnostic assays for each inversion. In agreement with expectations based on their eco-geographical distribution, we found that 2La homokaryotypes survived significantly longer (1.3 hours) than the other karyotypes. However, there was weak support for the effect of 2Rb on desiccation resistance. Larger mosquitoes survived longer than smaller ones. Median survival of females was greater than males, but the effect of sex on desiccation resistance was weakly supported, indicating that differential survival was correlated to differences between sexes in average size. We found weak evidence for a heterotic effect of 2La karyotype on size in females. These results support the notion that genes located inside the 2La inversion are involved in water balance, contributing towards local adaptation of A. gambiae to xeric habitats, beyond the adaptive value conferred by a larger body size.
Collapse
|
27
|
Fallis LC, Fanara JJ, Morgan TJ. Genetic variation in heat-stress tolerance among South American Drosophila populations. Genetica 2012; 139:1331-7. [PMID: 22350564 DOI: 10.1007/s10709-012-9635-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 02/02/2012] [Indexed: 10/14/2022]
Abstract
Spatial or temporal differences in environmental variables, such as temperature, are ubiquitous in nature and impose stress on organisms. This is especially true for organisms that are isothermal with the environment, such as insects. Understanding the means by which insects respond to temperature and how they will react to novel changes in environmental temperature is important for understanding the adaptive capacity of populations and to predict future trajectories of evolutionary change. The organismal response to heat has been identified as an important environmental variable for insects that can dramatically influence life history characters and geographic range. In the current study we surveyed the amount of variation in heat tolerance among Drosophila melanogaster populations collected at diverse sites along a latitudinal gradient in Argentina (24°-38°S). This is the first study to quantify heat tolerance in South American populations and our work demonstrates that most of the populations surveyed have abundant within-population phenotypic variation, while still exhibiting significant variation among populations. The one exception was the most heat tolerant population that comes from a climate exhibiting the warmest annual mean temperature. All together our results suggest there is abundant genetic variation for heat-tolerance phenotypes within and among natural populations of Drosophila and this variation has likely been shaped by environmental temperature.
Collapse
Affiliation(s)
- Lindsey C Fallis
- The Division of Biology, The Ecological Genomics Institute, Kansas State University, 116 Ackert Hall, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
28
|
Bing X, Zhang J, Sinclair BJ. A comparison of Frost expression among species and life stages of Drosophila. INSECT MOLECULAR BIOLOGY 2012; 21:31-39. [PMID: 21955087 DOI: 10.1111/j.1365-2583.2011.01108.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Frost (Fst) is a gene associated with cold exposure in Drosophila melanogaster. We used real-time PCR to assess whether cold exposure induces expression of Fst in 10 different life stages of D. melanogaster, and adults of seven other Drosophila species. We exposed groups of individuals to 0 °C (2 h), followed by 1 h recovery (22 °C). Frost was significantly upregulated in response to cold in eggs, third instar larvae, and 2- and 5-day-old male and female adults in D. melanogaster. Life stages in which cold did not upregulate Fst had high constitutive expression. Frost is located on the opposite strand of an intron of Diuretic hormone (DH), but cold exposure did not upregulate DH. Frost orthologues were identified in six other species within the Melanogaster group (Drosophila sechellia, Drosophila simulans, Drosophila yakuba, Drosophila erecta, Drosophila ananassae and Drosophila mauritiana). Frost orthologues were upregulated in response to cold exposure in both sexes in adults of all of these species. The predicted structure of a putative Frost consensus protein shows highly conserved tandem repeats of motifs involved in cell signalling (PEST and TRAF2), suggesting that Fst might encode an adaptor protein involved in acute stress or apoptosis signalling in vivo.
Collapse
Affiliation(s)
- X Bing
- Department of Biology, The University of Western Ontario, London, ON, Canada
| | | | | |
Collapse
|
29
|
Santos M, Castañeda LE, Rezende EL. Making sense of heat tolerance estimates in ectotherms: lessons from Drosophila. Funct Ecol 2011. [DOI: 10.1111/j.1365-2435.2011.01908.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Reis M, Vieira CP, Morales-Hojas R, Aguiar B, Rocha H, Schlötterer C, Vieira J. A comparative study of the short term cold resistance response in distantly related Drosophila species: the role of regucalcin and frost. PLoS One 2011; 6:e25520. [PMID: 21991316 PMCID: PMC3184994 DOI: 10.1371/journal.pone.0025520] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 09/05/2011] [Indexed: 01/24/2023] Open
Abstract
The molecular basis of short term cold resistance (indexed as chill-coma recovery time) has been mostly addressed in D. melanogaster, where candidate genes (Dca (also known as smp-30) and Frost (Fst)) have been identified. Nevertheless, in Drosophila, the ability to tolerate short term exposure to low temperatures evolved several times independently. Therefore, it is unclear whether variation in the same candidate genes is also responsible for short term cold resistance in distantly related Drosophila species. It should be noted that Dca is a candidate gene for cold resistance in the Sophophora subgenus only, since there is no orthologous gene copy in the Drosophila subgenus. Here we show that, in D. americana (Drosophila subgenus), there is a north-south gradient for a variant at the 5′ non-coding region of regucalcin (a Dca-like gene; in D. melanogaster the proteins encoded by the two genes share 71.9% amino acid identities) but in our D. americana F2 association experiment there is no association between this polymorphism and chill-coma recovery times. Moreover, we found no convincing evidence that this gene is up-regulated after cold shock in both D. americana and D. melanogaster. Size variation in the Fst PEST domain (putatively involved in rapid protein degradation) is observed when comparing distantly related Drosophila species, and is associated with short term cold resistance differences in D. americana. Nevertheless, this effect is likely through body size variation. Moreover, we show that, even at two hours after cold shock, when up-regulation of this gene is maximal in D. melanogaster (about 48 fold expression change), in D. americana this gene is only moderately up-regulated (about 3 fold expression change). Our work thus shows that there are important differences regarding the molecular basis of cold resistance in distantly related Drosophila species.
Collapse
Affiliation(s)
- Micael Reis
- IBMC-Instituto de Biologia Celular e Molecular, University of Porto, Porto, Portugal
| | - Cristina P. Vieira
- IBMC-Instituto de Biologia Celular e Molecular, University of Porto, Porto, Portugal
| | - Ramiro Morales-Hojas
- IBMC-Instituto de Biologia Celular e Molecular, University of Porto, Porto, Portugal
| | - Bruno Aguiar
- IBMC-Instituto de Biologia Celular e Molecular, University of Porto, Porto, Portugal
| | - Hélder Rocha
- IBMC-Instituto de Biologia Celular e Molecular, University of Porto, Porto, Portugal
| | | | - Jorge Vieira
- IBMC-Instituto de Biologia Celular e Molecular, University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
31
|
Loeschcke V, Kristensen TN, Norry FM. Consistent effects of a major QTL for thermal resistance in field-released Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1227-1231. [PMID: 21708160 DOI: 10.1016/j.jinsphys.2011.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/19/2011] [Accepted: 05/24/2011] [Indexed: 05/31/2023]
Abstract
Molecular genetic markers can be used to identify quantitative trait loci (QTL) for thermal resistance and this has allowed characterization of a major QTL for knockdown resistance to high temperature in Drosophila melanogaster. The QTL showed trade-off associations with cold resistance under laboratory conditions. However, assays of thermal tolerance conducted in the laboratory may not necessarily reflect performance at varying temperatures in the field. Here we tested if lines with different genotypes in this QTL show different thermal performance under high and low temperatures in the field using a release recapture assay. We found that lines carrying the QTL genotype for high thermal tolerance were significantly better at locating resources in the field releases under hot temperatures while the QTL line carrying the contrasting genotype were superior at cold temperatures. Further, we studied copulatory success between the different QTL genotypes at different temperatures. We found higher copulatory success in males of the high tolerance QTL genotype under hot temperature conditions, while there was no difference in females at cold temperatures. The results allow relating components of field fitness at different environmental temperatures with genotypic variation in a QTL for thermal tolerance.
Collapse
Affiliation(s)
- Volker Loeschcke
- Department of Biological Sciences, Aarhus University, Ny Munkegade 114-116, Aarhus C, Denmark.
| | | | | |
Collapse
|
32
|
Lee SF, Chen Y, Varan AK, Wee CW, Rako L, Axford JK, Good RT, Blacket MJ, Reuter C, Partridge L, Hoffmann AA. Molecular basis of adaptive shift in body size in Drosophila melanogaster: functional and sequence analyses of the Dca gene. Mol Biol Evol 2011; 28:2393-402. [PMID: 21393605 DOI: 10.1093/molbev/msr064] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Latitudinal body size clines in animals conforming to Bergmann's rule occur on many continents but isolating their underlying genetic basis remains a challenge. In Drosophila melanogaster, the gene Dca accounts for approximately 5-10% of the natural wing size variation (McKechnie SW, Blacket MJ, Song SV, Rako L, Carroll X, Johnson TK, Jensen LT, Lee SF, Wee CW, Hoffmann AA. 2010. A clinally varying promoter polymorphism associated with adaptive variation in wing size in Drosophila. Mol Ecol. 19:775-784). We present here functional evidence that Dca is a negative regulator of wing size. A significant negative latitudinal cline of Dca gene expression was detected in synchronized third instar larvae. In addition, we clarified the evolutionary history of the three most common Dca promoter alleles (Dca237-1, Dca237-2, and Dca247) and showed that the insertion allele (Dca247), whose frequency increases with latitude, is associated with larger wing centroid size and higher average cell number in male flies. Finally, we showed that the overall linkage disequilibrium (LD) was low in the Dca promoter and that the insertion/deletion polymorphism that defines the Dca alleles was in strong LD with two other upstream sites. Our results provide strong support that Dca is a candidate for climatic adaptation in D. melanogaster.
Collapse
Affiliation(s)
- Siu F Lee
- Centre for Environmental Stress and Adaptation Research, Department of Genetics, Bio21 Institute, The University of Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Johnson TK, Cockerell FE, McKechnie SW. Transcripts from the Drosophila heat-shock gene hsr-omega influence rates of protein synthesis but hardly affect resistance to heat knockdown. Mol Genet Genomics 2011; 285:313-23. [DOI: 10.1007/s00438-011-0610-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 02/27/2011] [Indexed: 10/18/2022]
|
34
|
Tomberlin JK, Mohr R, Benbow ME, Tarone AM, VanLaerhoven S. A roadmap for bridging basic and applied research in forensic entomology. ANNUAL REVIEW OF ENTOMOLOGY 2011; 56:401-421. [PMID: 20822449 DOI: 10.1146/annurev-ento-051710-103143] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The National Research Council issued a report in 2009 that heavily criticized the forensic sciences. The report made several recommendations that if addressed would allow the forensic sciences to develop a stronger scientific foundation. We suggest a roadmap for decomposition ecology and forensic entomology hinging on a framework built on basic research concepts in ecology, evolution, and genetics. Unifying both basic and applied research fields under a common umbrella of terminology and structure would facilitate communication in the field and the production of scientific results. It would also help to identify novel research areas leading to a better understanding of principal underpinnings governing ecosystem structure, function, and evolution while increasing the accuracy of and ability to interpret entomological evidence collected from crime scenes. By following the proposed roadmap, a bridge can be built between basic and applied decomposition ecology research, culminating in science that could withstand the rigors of emerging legal and cultural expectations.
Collapse
Affiliation(s)
- J K Tomberlin
- Department of Entomology, Texas A&M University, College Station, Texas 77843, USA.
| | | | | | | | | |
Collapse
|
35
|
Kolaczkowski B, Kern AD, Holloway AK, Begun DJ. Genomic differentiation between temperate and tropical Australian populations of Drosophila melanogaster. Genetics 2011; 187:245-60. [PMID: 21059887 PMCID: PMC3018305 DOI: 10.1534/genetics.110.123059] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/03/2010] [Indexed: 11/18/2022] Open
Abstract
Determining the genetic basis of environmental adaptation is a central problem of evolutionary biology. This issue has been fruitfully addressed by examining genetic differentiation between populations that are recently separated and/or experience high rates of gene flow. A good example of this approach is the decades-long investigation of selection acting along latitudinal clines in Drosophila melanogaster. Here we use next-generation genome sequencing to reexamine the well-studied Australian D. melanogaster cline. We find evidence for extensive differentiation between temperate and tropical populations, with regulatory regions and unannotated regions showing particularly high levels of differentiation. Although the physical genomic scale of geographic differentiation is small--on the order of gene sized--we observed several larger highly differentiated regions. The region spanned by the cosmopolitan inversion polymorphism In(3R)P shows higher levels of differentiation, consistent with the major difference in allele frequencies of Standard and In(3R)P karyotypes in temperate vs. tropical Australian populations. Our analysis reveals evidence for spatially varying selection on a number of key biological processes, suggesting fundamental biological differences between flies from these two geographic regions.
Collapse
Affiliation(s)
- Bryan Kolaczkowski
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 and Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Andrew D. Kern
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 and Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Alisha K. Holloway
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 and Department of Evolution and Ecology, University of California, Davis, California 95616
| | - David J. Begun
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755 and Department of Evolution and Ecology, University of California, Davis, California 95616
| |
Collapse
|
36
|
van Heerwaarden B, Sgrò CM. THE EFFECT OF DEVELOPMENTAL TEMPERATURE ON THE GENETIC ARCHITECTURE UNDERLYING SIZE AND THERMAL CLINES IN DROSOPHILA MELANOGASTER AND D. SIMULANS FROM THE EAST COAST OF AUSTRALIA. Evolution 2010; 65:1048-67. [DOI: 10.1111/j.1558-5646.2010.01196.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Udaka H, Ueda C, Goto SG. Survival rate and expression of Heat-shock protein 70 and Frost genes after temperature stress in Drosophila melanogaster lines that are selected for recovery time from temperature coma. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1889-1894. [PMID: 20713057 DOI: 10.1016/j.jinsphys.2010.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/06/2010] [Accepted: 08/06/2010] [Indexed: 05/29/2023]
Abstract
In this study, we investigated the physiological mechanisms underlying temperature tolerance using Drosophila melanogaster lines with rapid, intermediate, or slow recovery from heat or chill coma that were established by artificial selection or by free recombination without selection. Specifically, we focused on the relationships among their recovery from heat or chill coma, survival after severe heat or cold, and survival enhanced by rapid cold hardening (RCH) or heat hardening. The recovery time from heat coma was not related to the survival rate after severe heat. The line with rapid recovery from chill coma showed a higher survival rate after severe cold exposure, and therefore the same mechanisms are likely to underlie these phenotypes. The recovery time from chill coma and survival rate after severe cold were unrelated to RCH-enhanced survival. We also examined the expression of two genes, Heat-shock protein 70 (Hsp70) and Frost, in these lines to understand the contribution of these stress-inducible genes to intraspecific variation in recovery from temperature coma. The line showing rapid recovery from heat coma did not exhibit higher expression of Hsp70 and Frost. In addition, Hsp70 and Frost transcription levels were not correlated with the recovery time from chill coma. Thus, Hsp70 and Frost transcriptional regulation was not involved in the intraspecific variation in recovery from temperature coma.
Collapse
Affiliation(s)
- Hiroko Udaka
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka 558 8585, Japan
| | | | | |
Collapse
|
38
|
Genetic variation in senescence marker protein-30 is associated with natural variation in cold tolerance in Drosophila. Genet Res (Camb) 2010; 92:103-13. [PMID: 20515514 DOI: 10.1017/s0016672310000108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A comprehensive understanding of the genetic basis of phenotypic adaptation in nature requires the identification of the functional allelic variation underlying adaptive phenotypes. The manner in which organisms respond to temperature extremes is an adaptation in many species. In the current study, we investigate the role of molecular variation in senescence marker protein-30 (Smp-30) on natural phenotypic variation in cold tolerance in Drosophila melanogaster. Smp-30 encodes a product that is thought to be involved in the regulation of Ca2+ ion homeostasis and has been shown previously to be differentially expressed in response to cold stress. Thus, we sought to assess whether molecular variation in Smp-30 was associated with natural phenotypic variation in cold tolerance in a panel of naturally derived inbred lines from a population in Raleigh, North Carolina. We identified four non-coding polymorphisms that were strongly associated with natural phenotypic variation in cold tolerance. Interestingly, two polymorphisms that were in close proximity to one another (2 bp apart) exhibited opposite phenotypic effects. Consistent with the maintenance of a pair of antagonistically acting polymorphisms, tests of molecular evolution identified a significant excess of maintained variation in this region, suggesting balancing selection is acting to maintain this variation. These results suggest that multiple mutations in non-coding regions can have significant effects on phenotypic variation in adaptive traits within natural populations, and that balancing selection can maintain polymorphisms with opposite effects on phenotypic variation.
Collapse
|
39
|
Abstract
From early allozyme work to recent genome-wide scans, many studies have reported associations between molecular markers and latitude. These geographic patterns are tantalizing because they hint at the possibility of identifying specific mutations responsible for climatic adaptation. Unfortunately, few studies have done so because these exciting first glances often prove extremely challenging to follow up. Many difficulties can hinder connecting genetic and phenotypic variation in this context, and without such links, distinguishing the action of spatially varying selection from the other evolutionary processes capable of generating these patterns can be quite thorny. Nevertheless, two papers in this issue report excellent progress in overcoming these obstacles and provide persuasive evidence supporting the involvement of specific natural variants in clinal adaptation of Drosophila melanogaster populations (Fig. 1). In the first paper, Paaby et al. (2010) describe replicated allele frequency clines for a coding polymorphism in the Insulin-like Receptor (InR) gene on two continents, findings that strongly point to selection acting at this locus and that likely reflect life history adaptation. McKechnie et al. (2010) report compelling functional evidence that cis-regulatory variation in the Dca (drosophila cold acclimation) gene contributes to an adaptive cline in wing size. Notably, these papers employ largely alternative and complementary approaches, and together they exemplify how diverse strategies may be interwoven to draw convincing connections between genotype, phenotype, and evolutionary process.
Collapse
Affiliation(s)
- B K Blackman
- Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
40
|
González J, Karasov TL, Messer PW, Petrov DA. Genome-wide patterns of adaptation to temperate environments associated with transposable elements in Drosophila. PLoS Genet 2010; 6:e1000905. [PMID: 20386746 PMCID: PMC2851572 DOI: 10.1371/journal.pgen.1000905] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 03/09/2010] [Indexed: 12/02/2022] Open
Abstract
Investigating spatial patterns of loci under selection can give insight into how populations evolved in response to selective pressures and can provide monitoring tools for detecting the impact of environmental changes on populations. Drosophila is a particularly good model to study adaptation to environmental heterogeneity since it is a tropical species that originated in sub-Saharan Africa and has only recently colonized the rest of the world. There is strong evidence for the adaptive role of Transposable Elements (TEs) in the evolution of Drosophila, and TEs might play an important role specifically in adaptation to temperate climates. In this work, we analyzed the frequency of a set of putatively adaptive and putatively neutral TEs in populations with contrasting climates that were collected near the endpoints of two known latitudinal clines in Australia and North America. The contrasting results obtained for putatively adaptive and putatively neutral TEs and the consistency of the patterns between continents strongly suggest that putatively adaptive TEs are involved in adaptation to temperate climates. We integrated information on population behavior, possible environmental selective agents, and both molecular and functional information of the TEs and their nearby genes to infer the plausible phenotypic consequences of these insertions. We conclude that adaptation to temperate environments is widespread in Drosophila and that TEs play a significant role in this adaptation. It is remarkable that such a diverse set of TEs located next to a diverse set of genes are consistently adaptive to temperate climate-related factors. We argue that reverse population genomic analyses, as the one described in this work, are necessary to arrive at a comprehensive picture of adaptation. The potential of geographic studies of genetic variation for the understanding of adaptation has been recognized for some time. In Drosophila, most of the available studies are based on a priori candidates giving a biased picture of the genes and traits under spatially varying selection. In this work, we performed a genome-wide scan of adaptations to temperate climates associated with Transposable Element (TE) insertions. We integrated the available information of the identified TEs and their nearby genes to provide plausible hypotheses about the phenotypic consequences of these insertions. Considering the diversity of these TEs and the variety of genes into which they are inserted, it is surprising that their adaptive effects are consistently related to temperate climate-related factors. The TEs identified in this work add substantially to the markers available to monitor the impact of climate change on populations.
Collapse
Affiliation(s)
- Josefa González
- Department of Biology, Stanford University, Stanford, California, United States of America.
| | | | | | | |
Collapse
|
41
|
Sub-littoral and supra-littoral amphipods respond differently to acute thermal stress. Comp Biochem Physiol B Biochem Mol Biol 2010; 155:413-8. [DOI: 10.1016/j.cbpb.2010.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 12/22/2009] [Accepted: 01/11/2010] [Indexed: 11/22/2022]
|
42
|
Jensen LT, Cockerell FE, Kristensen TN, Rako L, Loeschcke V, McKechnie SW, Hoffmann AA. Adult heat tolerance variation in Drosophila melanogaster is not related to Hsp70 expression. ACTA ACUST UNITED AC 2010; 313:35-44. [PMID: 19739085 DOI: 10.1002/jez.573] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Expression of heat-inducible Hsp70 is considered closely linked to thermotolerance in Drosophila melanogaster and other ectotherms. However, intra-specific variation of Hsp70 expression levels and its relationship to heat resistance has only been investigated in a few studies. Although in Drosophila larvae Hsp70 expression may be a key determinant of heat tolerance, the evidence for this in adults is equivocal. We therefore examined heat-induced Hsp70 expression and several measurements of adult heat tolerance in three independent collections of D. melanogaster, measured in three laboratories and using slightly different protocols. Expression levels of Hsp70 were quantified using ELISA or Western blots on extracts from adult females. Both Hsp70 and heat tolerance exhibited substantial within-population variation as previously reported. However, in all experiments there were no significant correlation between Hsp70 expression and laboratory assays of adult heat tolerance commonly used in Drosophila. When combining data across three studies we had high power to detect associations but the results showed that variation in Hsp70 expression is only likely to explain a small proportion of variation in adult heat tolerance. Therefore, although Hsp70 expression is a major component of the cellular heat stress response, its influence on intra-specific heat tolerance variation may be life-stage specific.
Collapse
|
43
|
Overgaard J, Sørensen JG, Jensen LT, Loeschcke V, Kristensen TN. Field tests reveal genetic variation for performance at low temperatures inDrosophila melanogaster. Funct Ecol 2010. [DOI: 10.1111/j.1365-2435.2009.01615.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
McKechnie SW, Blacket MJ, Song SV, Rako L, Carroll X, Johnson TK, Jensen LT, Lee SF, Wee CW, Hoffmann AA. A clinally varying promoter polymorphism associated with adaptive variation in wing size in Drosophila. Mol Ecol 2010; 19:775-84. [PMID: 20074315 DOI: 10.1111/j.1365-294x.2009.04509.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Body size often shows adaptive clines in many ectotherms across altitude and latitude, but little is known about the genetic basis of these adaptive clines. Here we identify a polymorphism in the Dca (Drosophila cold acclimation) gene in Drosophila melanogaster that influences wing size, affects wing:thorax allometry and also controls a substantial proportion of the clinal wing-size variation. A polymorphism in the promoter region of Dca had two common alleles showing strong reciprocal clinal variation in frequency with latitude along the east coast of Australia. The Dca-237 allele increased towards the tropics where wing size is smaller. A within-population association study highlighted that an increase in the frequency of this allele decreased wing size but did not influence thorax size. A manipulated increase in the level of expression of Dca achieved through UAS-GAL4 was associated with a decrease in wing size but had no effect on thorax size. This was consistent with higher Dca expression levels in family lines with higher frequency of the Dca-237 allele. Genetic variation in the promoter region of the Dca gene appears to influence adaptive size variation in the eastern Australian cline of Drosophila melanogaster and accounts for more than 10% of the genetic variation in size within and between populations.
Collapse
Affiliation(s)
- S W McKechnie
- Centre for Environmental Stress and Adaptation Research, School of Biological Sciences, Monash University, Vic. 3800 Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
PAABY ANNALISEB, BLACKET MARKJ, HOFFMANN ARYA, SCHMIDT PAULS. Identification of a candidate adaptive polymorphism forDrosophilalife history by parallel independent clines on two continents. Mol Ecol 2010; 19:760-74. [DOI: 10.1111/j.1365-294x.2009.04508.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Johnson TK, Carrington LB, Hallas RJ, McKechnie SW. Protein synthesis rates in Drosophila associate with levels of the hsr-omega nuclear transcript. Cell Stress Chaperones 2009; 14:569-77. [PMID: 19280368 PMCID: PMC2866946 DOI: 10.1007/s12192-009-0108-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/06/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022] Open
Abstract
Transcripts of the Drosophila hsr-omega gene are known to interact with RNA processing factors and ribosomes and are postulated to aid in co-ordinating nuclear and cytoplasmic activities particularly in stressed cells. However, the significance of these interactions for physiological processes and in turn for whole-organism fitness remains an open question. Because hsr-omega's cellular expression characteristics suggest it may influence protein synthesis, and because both genotypic and expression variation of hsr-omega have been associated with thermotolerance, we characterised 30 lines for variation in the rates of protein synthesis, measured in ovarian tissues, both before and after a mild heat shock, and for basal levels of the two main hsr-omega transcripts, omega-n and omega-c. As expected, the mild heat shock reduced protein synthesis rates. Large variation occurred among lines in levels of omega-n which was negatively associated with rates of basal protein synthesis--a result that supports the model for the cellular function of omega-n. Furthermore, omega-n levels were associated with hsr-omega genotype of the line parents. Little variation occurred among lines for omega-c levels and no associations were detected with protein synthesis or genotype. Since protein synthesis is a fundamental process for growth and development, we characterised the lines for several life-history traits; however, no associations with protein synthesis, omega-n or omega-c levels were detected. Our results are consistent with the idea that natural variation in hsr-omega expression influence rates of protein synthesis in this species.
Collapse
Affiliation(s)
- Travis K. Johnson
- Centre for Environmental Stress and Adaptation Research (CESAR), School of Biological Sciences, Monash University, Melbourne, VIC 3800 Australia
| | - Lauren B. Carrington
- Centre for Environmental Stress and Adaptation Research (CESAR), School of Biological Sciences, Monash University, Melbourne, VIC 3800 Australia
| | - Rebecca J. Hallas
- Centre for Environmental Stress and Adaptation Research (CESAR), School of Biological Sciences, Monash University, Melbourne, VIC 3800 Australia
| | - Stephen W. McKechnie
- Centre for Environmental Stress and Adaptation Research (CESAR), School of Biological Sciences, Monash University, Melbourne, VIC 3800 Australia
| |
Collapse
|
47
|
Norry FM, Larsen PF, Liu Y, Loeschcke V. Combined expression patterns of QTL-linked candidate genes best predict thermotolerance in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:1050-1057. [PMID: 19651134 DOI: 10.1016/j.jinsphys.2009.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/22/2009] [Accepted: 07/23/2009] [Indexed: 05/28/2023]
Abstract
Knockdown resistance to high temperature (KRHT) is a thermal adaptation trait in Drosophila melanogaster. Here we used quantitative real-time PCR (qRT-PCR) to test for possible associations between KRHT and the expression of candidate genes within quantitative trait loci (QTL) in eight recombinant inbred lines (RIL). hsp60 and hsc70-3 map within an X-linked QTL, while CG10383, catsup, ddc, trap1, and cyp6a13 are linked in a KRHT-QTL on chromosome 2. hsc70-3 expression increased by heat-hardening. Principal Components analysis revealed that catsup, ddc and trap1 were either co-expressed or combined in their expression levels. This composite expression variable (e-PC1) was positively associated to KRHT in non-hardened RIL. In heat-hardened flies, hsp60 was negatively related to hsc70-3 on e-PC2, with effects on KRHT. These results are consistent with the notion that QTL can be shaped by expression variation in combined candidate loci. We found composite variables of gene expression (e-PCs) that best correlated to KRHT. Network effects with other untested linked loci are apparent because, in spite of their associations with KRHT phenotypes, e-PCs were sometimes uncorrelated with their QTL genotype.
Collapse
Affiliation(s)
- Fabian M Norry
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
48
|
Johnson TK, Cockerell FE, Carrington LB, Rako L, Hoffmann AA, McKechnie SW. The capacity of Drosophila to heat harden associates with low rates of heat-shocked protein synthesis. J Therm Biol 2009. [DOI: 10.1016/j.jtherbio.2009.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
TERBLANCHE JS, KLEYNHANS E. Phenotypic plasticity of desiccation resistance inGlossinapuparia: are there ecotype constraints on acclimation responses? J Evol Biol 2009; 22:1636-48. [DOI: 10.1111/j.1420-9101.2009.01784.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- J. S. TERBLANCHE
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - E. KLEYNHANS
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
50
|
Telonis-Scott M, Hallas R, McKechnie SW, Wee CW, Hoffmann AA. Selection for cold resistance alters gene transcript levels in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:549-555. [PMID: 19232407 DOI: 10.1016/j.jinsphys.2009.01.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 01/20/2009] [Accepted: 01/23/2009] [Indexed: 05/27/2023]
Abstract
Microarrays have been used to examine changes in gene expression underlying responses to selection for increased stress resistance in Drosophila melanogaster, but changes in expression patterns associated with increased resistance to cold stress have not been previously reported. Here we describe such changes in basal expression levels in replicate lines following selection for increased resistance to chill coma stress. We found significant up- or down-regulation of expression in 94 genes on the Affymetrix Genome 2.0 array. Quantitative RT-PCR was used to confirm changes in expression of six genes. Some of the identified genes had previously been associated with stress resistance but no previously identified candidate genes for cold resistance showed altered patterns of expression. Seven differentially expressed genes that form a tight chromosomal cluster and an unlinked gene AnnX may be potentially important for cold adaptation in natural populations. Artificial selection for chill coma resistance therefore altered basal patterns of gene expression, but we failed to link these changes to plastic changes in expression under cold stress or to previously identified candidate genes for components of cold resistance.
Collapse
Affiliation(s)
- M Telonis-Scott
- Centre for Environmental Stress and Adaptation Research, Department of Genetics, University of Melbourne, Vic, Australia
| | | | | | | | | |
Collapse
|