1
|
Hookabe N, Ueshima R, Miura T. Postembryonic development and lifestyle shift in the commensal ribbon worm. Front Zool 2024; 21:13. [PMID: 38711088 DOI: 10.1186/s12983-024-00533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Various morphological adaptations are associated with symbiotic relationships between organisms. One such adaptation is seen in the nemertean genus Malacobdella. All species in the genus are commensals of molluscan hosts, attaching to the surface of host mantles with a terminal sucker. Malacobdella possesses several unique characteristics within the order Monostilifera, exhibiting the terminal sucker and the absence of eyes and apical/cerebral organs, which are related to their adaptation to a commensal lifestyle. Nevertheless, the developmental processes that give rise to these morphological characteristics during their transition from free-living larvae to commensal adults remain uncertain. RESULTS In the present study, therefore, we visualized the developmental processes of the internal morphologies during postembryonic larval stages using fluorescent molecular markers. We demonstrated the developmental processes, including the formation of the sucker primordium and the functional sucker. Furthermore, our data revealed that sensory organs, including apical/cerebral organs, formed in embryonic and early postembryonic stages but degenerated in the late postembryonic stage prior to settlement within their host using a terminal sucker. CONCLUSIONS This study reveals the formation of the terminal sucker through tissue invagination, shedding light on its adhesion mechanism. Sucker muscle development likely originates from body wall muscles. Notably, M. japonica exhibits negative phototaxis despite lacking larval ocelli. This observation suggests a potential role for other sensory mechanisms, such as the apical and cerebral organs identified in the larvae, in facilitating settlement and adhesive behaviors. The loss of sensory organs during larval development might reflect a transition from planktonic feeding to a stable, host-associated lifestyle. This study also emphasizes the need for further studies to explore the phylogenetic relationships within the infraorder Amphiporiina and investigate the postembryonic development of neuromuscular systems in closely related taxa to gain a more comprehensive understanding of ecological adaptations in Nemertea.
Collapse
Affiliation(s)
- Natsumi Hookabe
- Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan.
| | - Rei Ueshima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, 113-0033, Japan
| | - Toru Miura
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Miura, Kanagawa, 238-0225, Japan
| |
Collapse
|
2
|
Buscaglia M, Iriarte JL, Schulz F, Díez B. Adaptation strategies of giant viruses to low-temperature marine ecosystems. THE ISME JOURNAL 2024; 18:wrae162. [PMID: 39178288 PMCID: PMC11512752 DOI: 10.1093/ismejo/wrae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/16/2024] [Accepted: 08/22/2024] [Indexed: 08/25/2024]
Abstract
Microbes in marine ecosystems have evolved their gene content to thrive successfully in the cold. Although this process has been reasonably well studied in bacteria and selected eukaryotes, less is known about the impact of cold environments on the genomes of viruses that infect eukaryotes. Here, we analyzed cold adaptations in giant viruses (Nucleocytoviricota and Mirusviricota) from austral marine environments and compared them with their Arctic and temperate counterparts. We recovered giant virus metagenome-assembled genomes (98 Nucleocytoviricota and 12 Mirusviricota MAGs) from 61 newly sequenced metagenomes and metaviromes from sub-Antarctic Patagonian fjords and Antarctic seawater samples. When analyzing our data set alongside Antarctic and Arctic giant viruses MAGs already deposited in the Global Ocean Eukaryotic Viral database, we found that Antarctic and Arctic giant viruses predominantly inhabit sub-10°C environments, featuring a high proportion of unique phylotypes in each ecosystem. In contrast, giant viruses in Patagonian fjords were subject to broader temperature ranges and showed a lower degree of endemicity. However, despite differences in their distribution, giant viruses inhabiting low-temperature marine ecosystems evolved genomic cold-adaptation strategies that led to changes in genetic functions and amino acid frequencies that ultimately affect both gene content and protein structure. Such changes seem to be absent in their mesophilic counterparts. The uniqueness of these cold-adapted marine giant viruses may now be threatened by climate change, leading to a potential reduction in their biodiversity.
Collapse
Affiliation(s)
- Marianne Buscaglia
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
- Millennium Institute Center for Genome Regulation (CGR), Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Av. Blanco Encalada 2002, Santiago 8370449, Chile
| | - José Luis Iriarte
- Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Universidad Austral de Chile, Avda. El Bosque 01789, Punta Arenas 6210445, Chile
- Instituto de Acuicultura y Medio Ambiente, Universidad Austral de Chile, Los Pinos s/n Balneario Pelluco, Puerto Montt 5500000, Chile
| | - Frederik Schulz
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Beatriz Díez
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Av. Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Av. Blanco Encalada 2002, Santiago 8370449, Chile
| |
Collapse
|
3
|
DNA barcoding reveals hidden nemertean diversity from the marine protected area Namuncurá–Burdwood Bank, Southwestern Atlantic. Polar Biol 2023. [DOI: 10.1007/s00300-023-03117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
4
|
Cordone A, Selci M, Barosa B, Bastianoni A, Bastoni D, Bolinesi F, Capuozzo R, Cascone M, Correggia M, Corso D, Di Iorio L, Misic C, Montemagno F, Ricciardelli A, Saggiomo M, Tonietti L, Mangoni O, Giovannelli D. Surface Bacterioplankton Community Structure Crossing the Antarctic Circumpolar Current Fronts. Microorganisms 2023; 11:microorganisms11030702. [PMID: 36985275 PMCID: PMC10054113 DOI: 10.3390/microorganisms11030702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
The Antarctic Circumpolar Current (ACC) is the major current in the Southern Ocean, isolating the warm stratified subtropical waters from the more homogeneous cold polar waters. The ACC flows from west to east around Antarctica and generates an overturning circulation by fostering deep-cold water upwelling and the formation of new water masses, thus affecting the Earth's heat balance and the global distribution of carbon. The ACC is characterized by several water mass boundaries or fronts, known as the Subtropical Front (STF), Subantarctic Front (SAF), Polar Front (PF), and South Antarctic Circumpolar Current Front (SACCF), identified by typical physical and chemical properties. While the physical characteristics of these fronts have been characterized, there is still poor information regarding the microbial diversity of this area. Here we present the surface water bacterioplankton community structure based on 16S rRNA sequencing from 13 stations sampled in 2017 between New Zealand to the Ross Sea crossing the ACC Fronts. Our results show a distinct succession in the dominant bacterial phylotypes present in the different water masses and suggest a strong role of sea surface temperatures and the availability of Carbon and Nitrogen in controlling community composition. This work represents an important baseline for future studies on the response of Southern Ocean epipelagic microbial communities to climate change.
Collapse
Affiliation(s)
- Angelina Cordone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Matteo Selci
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Bernardo Barosa
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Alessia Bastianoni
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Deborah Bastoni
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Francesco Bolinesi
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Rosaria Capuozzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Martina Cascone
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Monica Correggia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Davide Corso
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Luciano Di Iorio
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Cristina Misic
- Dipartimento di Scienze della Terra, Dell'Ambiente e della Vita, Universitá di Genova, 16132 Genova, Italy
| | | | | | | | - Luca Tonietti
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Department of Science and Technology, University of Naples Parthenope, 80143 Naples, Italy
| | - Olga Mangoni
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Consorzio Nazionale Interuniversitario delle Scienze del Mare (CoNISMa), 00196 Rome, Italy
| | - Donato Giovannelli
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Institute of Marine Biological Resources and Biotechnologies, National Research Council, 60125 Ancona, Italy
- Earth-Life Science Institute, Tokyo Institute for Technology, Tokyo 152-8552, Japan
- Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ 08901, USA
- Marine Chemistry and Geology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02540, USA
| |
Collapse
|
5
|
Leiva C, Riesgo A, Combosch D, Arias MB, Giribet G, Downey R, Kenny NJ, Taboada S. Guiding marine protected area network design with comparative phylogeography and population genomics: An exemplary case from the Southern Ocean. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Carlos Leiva
- Marine Laboratory University of Guam Mangilao Guam USA
- Life Sciences Department The Natural History Museum London UK
| | - Ana Riesgo
- Life Sciences Department The Natural History Museum London UK
- Department of Biodiversity and Evolutionary Biology National Museum of Natural Sciences (CSIC) Madrid Spain
| | - David Combosch
- Marine Laboratory University of Guam Mangilao Guam USA
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology Harvard University Cambridge Massachusetts USA
| | - María Belén Arias
- Life Sciences Department The Natural History Museum London UK
- School of Life Sciences University of Essex Colchester Campus UK
| | - Gonzalo Giribet
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology Harvard University Cambridge Massachusetts USA
| | - Rachel Downey
- Fenner School of Environment and Society Australian National University Acton Australian Capital Territory Australia
| | - Nathan James Kenny
- Life Sciences Department The Natural History Museum London UK
- Department of Biochemistry University of Otago Dunedin New Zealand
| | - Sergi Taboada
- Life Sciences Department The Natural History Museum London UK
- Departamento de Biodiversidad, Ecología y Evolución Universidad Complutense de Madrid Madrid Spain
- Departamento de Ciencias de la Vida, Apdo. 20 Universidad de Alcalá Alcalá de Henares Spain
| |
Collapse
|
6
|
Kajihara H, Ganaha I, Kohtsuka H. Lineid Heteronemerteans (Nemertea: Pilidiophora) from Sagami Bay, Japan, with Some Proposals for the Family-Level Classification System. Zoolog Sci 2022; 39:62-80. [PMID: 35106994 DOI: 10.2108/zs210059] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
We performed molecular phylogenetic analyses using nucleotide sequence data from five genes (16S rRNA, cytochrome c oxidase subunit I, 18S rRNA, 28S rRNA, histone H3) determined from 36 specimens representing 25 (10 named, 15 unnamed) species of lineid heteronemerteans collected in Sagami Bay, Japan, along with other sequences obtained from public databases. External features of the 25 species are briefly described and illustrated. Lineus fuscoviridis Takakura, 1898 is transferred to Notospermus Huschke, 1830. Our molecular analysis indicated that one of our Notospermus specimens from Sagami Bay and material previously collected from the Seto Inland Sea are conspecific with Notospermus geniculatus (Delle Chiaje, 1822) s. str. [the year of publication is not 1828 as previously regarded], originally described from Naples, Italy. The new species Siphonenteron nakanoi is established; our tree shows it as the sister taxon to Siphonenteron bilineatum Renier in Meneghini, 1847; it differs from the latter in having more diffuse, scattered yellow pigmentation at the anterolateral margin of the head on each side. Pros and cons of lumping and splitting Lineidae in future studies are discussed.
Collapse
Affiliation(s)
- Hiroshi Kajihara
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan,
| | - Ikumasa Ganaha
- Graduate School of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Hisanori Kohtsuka
- Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan
| |
Collapse
|
7
|
Giachini Tosetto E, Bertrand A, Neumann-Leitão S, Nogueira Júnior M. The Amazon River plume, a barrier to animal dispersal in the Western Tropical Atlantic. Sci Rep 2022; 12:537. [PMID: 35017566 PMCID: PMC8752809 DOI: 10.1038/s41598-021-04165-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/03/2021] [Indexed: 11/09/2022] Open
Abstract
The dispersal of marine organisms can be restricted by a set of isolation mechanisms including hard barriers or hydrological features. In the Western Atlantic Ocean, the Amazon River discharge has been shown to act as a biogeographical barrier responsible for the differences in reef fish communities between Caribbean Sea and Northeast Brazil continental shelves. Here, we compare the diversity of all Animalia phyla from biogeographic ecoregions along the Tropical Western Atlantic continental shelf to test the hypothesis that the Amazon River plume spatially structures species diversity. For that, we used beta diversity estimators and multivariate ecological analysis on a database of species occurrence of the whole animal kingdom including 175,477 occurrences of 8,375 species from six ecoregions along the Western Tropical Atlantic. Results of the whole animal kingdom and the richest phyla showed that the Caribbean Sea and Tropical Brazil ecoregions are isolated by the Amazon River Plume, broadening and confirming the hypothesis that it acts as a soft barrier to animal dispersal in the Western Tropical Atlantic. Species sharing is larger northwestwards, in direction of the Caribbean than the opposite direction. Beyond species isolation due to local characteristics such as low salinity and high turbidity, our results suggest the dominant northwestward currents probably play a major role in animal dispersion: it enhances the flux of larvae and other planktonic organisms with reduced mobility from Brazil to Caribbean and hinders their contrary movement. Thus, the Amazon area is a strong barrier for taxa with reduced dispersal capacity, while species of pelagic taxa with active swimming may transpose it more easily.
Collapse
Affiliation(s)
- Everton Giachini Tosetto
- Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil. .,Institut de Recherche pour le Développement, MARBEC, Université Montpellier, CNRS, IFREMER, IRD, 34200, Sète, France.
| | - Arnaud Bertrand
- Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil.,Institut de Recherche pour le Développement, MARBEC, Université Montpellier, CNRS, IFREMER, IRD, 34200, Sète, France.,Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco, Recife, PE, 52171-900, Brazil
| | - Sigrid Neumann-Leitão
- Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Miodeli Nogueira Júnior
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| |
Collapse
|
8
|
Maroni PJ, Baker BJ, Moran AL, Woods HA, Avila C, Johnstone GJ, Stark JS, Kocot KM, Lockhart S, Saucède T, Rouse GW, Wilson NG. One Antarctic slug to confuse them all: the underestimated diversity of Doris kerguelenensis. INVERTEBR SYST 2022. [DOI: 10.1071/is21073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Zhang R, Guo Z, Fang L, Zhong C, Duke NC, Shi S. Population subdivision promoted by a sea-level-change-driven bottleneck: A glimpse from the evolutionary history of the mangrove plant Aegiceras corniculatum. Mol Ecol 2021; 31:780-797. [PMID: 34826188 DOI: 10.1111/mec.16290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022]
Abstract
Historic climate changes drive geographical populations of coastal plants to contract and recover dynamically, even die out completely. Species suffering from such bottlenecks usually lose intraspecific genetic diversity, but how do these events influence population subdivision patterns of coastal plants? Here, we investigated this question in the typical coastal plant: mangrove species Aegiceras corniculatum. Inhabiting the intertidal zone of the tropical and subtropical coast of the Indo-West Pacific oceans, its populations are deemed to be greatly shaped by historic sea-level fluctuations. Using dual methods of Sanger and Illumina sequencing, we found that the 18 sampled populations were structured into two groups, namely, the "Indo-Malayan" group, comprising three subgroups (the northern South China Sea, Gulf of Bengal, and Bali), and the "Pan-Australasia" group, comprising the subgroups of the southern South China Sea and Australasia. Based on the approximate Bayesian computations and Stairway Plot, we inferred that the southern South China Sea subgroup, which penetrates the interior of the "Indo-Malayan" group, originated from the Australasia subgroup, accompanied by a severe bottleneck event, with a spot of gene flow from both the Australasia and "Indo-Malayan" groups. Geographical barriers such as the Sundaland underlie the genetic break between Indian and Pacific Oceans, but the discontinuity between southern and northern South China Sea was originated from genetic drift in the bottleneck event. Hence, we revealed a case evidencing that the bottleneck event promoted population subdivision. This conclusion may be applicable in other taxa beyond coastal plants.
Collapse
Affiliation(s)
- Rufan Zhang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Lu Fang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, China
| | - Norman C Duke
- Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Townsville, Australia
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Schwob G, Segovia NI, González-Wevar C, Cabrol L, Orlando J, Poulin E. Exploring the Microdiversity Within Marine Bacterial Taxa: Toward an Integrated Biogeography in the Southern Ocean. Front Microbiol 2021; 12:703792. [PMID: 34335536 PMCID: PMC8317501 DOI: 10.3389/fmicb.2021.703792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Most of the microbial biogeographic patterns in the oceans have been depicted at the whole community level, leaving out finer taxonomic resolution (i.e., microdiversity) that is crucial to conduct intra-population phylogeographic study, as commonly done for macroorganisms. Here, we present a new approach to unravel the bacterial phylogeographic patterns combining community-wide survey by 16S rRNA gene metabarcoding and intra-species resolution through the oligotyping method, allowing robust estimations of genetic and phylogeographic indices, and migration parameters. As a proof-of-concept, we focused on the bacterial genus Spirochaeta across three distant biogeographic provinces of the Southern Ocean; maritime Antarctica, sub-Antarctic Islands, and Patagonia. Each targeted Spirochaeta operational taxonomic units were characterized by a substantial intrapopulation microdiversity, and significant genetic differentiation and phylogeographic structure among the three provinces. Gene flow estimations among Spirochaeta populations support the role of the Antarctic Polar Front as a biogeographic barrier to bacterial dispersal between Antarctic and sub-Antarctic provinces. Conversely, the Antarctic Circumpolar Current appears as the main driver of gene flow, connecting sub-Antarctic Islands with Patagonia and maritime Antarctica. Additionally, historical processes (drift and dispersal limitation) govern up to 86% of the spatial turnover among Spirochaeta populations. Overall, our approach bridges the gap between microbial and macrobial ecology by revealing strong congruency with macroorganisms distribution patterns at the populational level, shaped by the same oceanographic structures and ecological processes.
Collapse
Affiliation(s)
- Guillaume Schwob
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Instituto de Ecología y Biodiversidad, Santiago, Chile
| | - Nicolás I. Segovia
- Instituto de Ecología y Biodiversidad, Santiago, Chile
- Universidad Católica del Norte, Coquimbo, Chile
| | - Claudio González-Wevar
- Instituto de Ecología y Biodiversidad, Santiago, Chile
- Facultad de Ciencias, Centro Fondap IDEAL, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Léa Cabrol
- Instituto de Ecología y Biodiversidad, Santiago, Chile
- Aix Marseille University, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - Julieta Orlando
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Elie Poulin
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Instituto de Ecología y Biodiversidad, Santiago, Chile
| |
Collapse
|
11
|
Levicoy D, Rosenfeld S, Cárdenas L. Divergence time and species delimitation of microbivalves in the Southern Ocean: the case of Kidderia species. Polar Biol 2021; 44:1365-1377. [PMID: 34092908 PMCID: PMC8169414 DOI: 10.1007/s00300-021-02885-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 11/18/2022]
Abstract
The systematics of Subantarctic and Antarctic near-shore marine benthic invertebrates requires major revision and highlights the necessity to incorporate additional sources of information in the specimen identification chart in the Southern Ocean (SO). In this study, we aim to improve our understanding of the biodiversity of Kidderia (Dall 1876) through molecular and morphological comparisons of Antarctic and Subantarctic taxa. The microbivalves of the genus Kidderia are small brooding organisms that inhabit intertidal and shallow subtidal rocky ecosystems. This genus represents an interesting model to test the vicariance and dispersal hypothesis in the biogeography of the SO. However, the description of Kidderia species relies on a few morphological characters and biogeographic records that raise questions about the true diversity in the group. Here we will define the specimens collected with genetic tools, delimiting their respective boundaries across provinces of the SO, validating the presence of two species of Kidderia. Through the revision of taxonomic issues and species delimitation, it was possible to report that the Antarctic species is Kidderia subquadrata and the species recorded in the Subantarctic islands Diego Ramirez, South Georgia and the Kerguelen Archipelago is Kidderia minuta. The divergence time estimation suggests the origin and diversification of Kidderia lineages are related to historical vicariant processes probably associated with the separation of the continental landmasses close to the late Eocene.
Collapse
Affiliation(s)
- Daniela Levicoy
- Centro FONDAP- IDEAL, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Instituto de Ciencias Ambientales & Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Independencia 641, P.O. Box 567, Valdivia, Chile
| | - Sebastián Rosenfeld
- Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras #3425, Ñuñoa, Santiago Chile.,Laboratorio de Ecosistemas Marinos Antárticos y Subantárticos, Universidad de Magallanes, Avenida Bulnes 01890, Punta Arenas, Chile.,Instituto de Ecología y Biodiversidad, Las Palmeras 3425, Ñuñoa, Santiago Chile.,Centro de Investigación Gaia-Antártica, Universidad de Magallanes, Avenida Bulnes 01855, Punta Arenas, Chile
| | - Leyla Cárdenas
- Centro FONDAP- IDEAL, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.,Instituto de Ciencias Ambientales & Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Independencia 641, P.O. Box 567, Valdivia, Chile
| |
Collapse
|
12
|
Ikenaga J, Kajihara H, Yoshida M. Kulikovia alborostrata and Kulikovia fulva comb. nov. (Nemertea: Heteronemertea) are Sister Species with Prezygotic Isolating Barriers. Zoolog Sci 2021; 38:193-202. [PMID: 33812359 DOI: 10.2108/zs200112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/13/2020] [Indexed: 11/17/2022]
Abstract
The heteronemertean Kulikovia alborostrata (Takakura, 1898) was originally described as Lineus alborostratus based on material from Misaki, Japan. Although this species was regarded as consisting of two color variants, purple and brown-yellow, the identity of these variants has never been examined based on topotypes. In this study, we performed a multi-locus phylogeny reconstruction, species delimitation analyses, and cross-fertilization experiments to examine the species status of Takakura's original taxon concept consisting of these color variants. Our results suggest that the purple type is identical to Lineus alborostratus Takakura, 1898 auct. (currently Kulikovia alborostrata), whereas the brown-yellow type is conspecific with Lineus fulvus Iwata, 1954, originally established from Hokkaido. These two species appear to have a sister-taxon relationship and are reproductively isolated from each other by prezygotic mechanisms involving gamete incompatibility, minimally separated with 2.8% (16S rRNA) and 14.4% (COI) uncorrected p-distances. We propose that the purple type be considered as representing the true identity of the nominal species Lineus alborostratus (currently assigned to the genus Kulikovia) to maintain the common usage of the name. Although Takakura's type material is not extant, we consider that neotypification is unnecessary in this case because no taxonomic/nomenclatural confusion persists. We also propose to transfer Lineus fulvus to yield Kulikovia fulva comb. nov.
Collapse
Affiliation(s)
- Jumpei Ikenaga
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan
| | - Hiroshi Kajihara
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0180, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan,
| |
Collapse
|
13
|
Levicoy D, Flores K, Rosenfeld S, Cárdenas L. Phylogeography and genetic diversity of the microbivalve Kidderia subquadrata, reveals new data from West Antarctic Peninsula. Sci Rep 2021; 11:5705. [PMID: 33707560 PMCID: PMC7952419 DOI: 10.1038/s41598-021-85042-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
It is well established that Antarctic biodiversity has been strongly influenced by rapid climatic fluctuations during the Quaternary. Marine invertebrates from Antarctica constitute an interesting lens through which to study the impacts of the last glacial periods as glaciation impacted the distribution and intraspecific genetic variation of these animals. However, the impact on the spatial genetic distribution and historical demography of local processes in areas adjacent to the West Antarctic Peninsula (WAP) is less clear. Here we present new genetic information on the bivalve Kidderia subquadrata, a small mollusk that inhabits intertidal rocky island ecosystems throughout the WAP. Using a phylogeographical approach, we examined the spatial patterns of genetic diversity in this brooder species to test the hypothesis of strong genetic structure in incubating organisms and the hypothesis of glacial refugia in organisms with limited dispersion. We found evidence of strong genetic structure among populations of the WAP and a recent expansion in the South Shetland Islands. Our findings are concordant with the predictions that incubating organisms, abundant in Antarctica, present a strong genetic structure among their populations and also support the hypothesis of glacial refugia in organisms with limited dispersion. The effect of the coastal current pattern in the WAP is suggested as a driver to the local spatial dynamics of the genetic diversity distribution. Although genetic information about this microbivalve is still scarce, the knowledge reported here has increased our understanding of the evolutionary patterns of this organism that is endemic to the Southern Ocean.
Collapse
Affiliation(s)
- Daniela Levicoy
- Centro FONDAP- IDEAL, Instituto de Ciencias Ambientales and Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Independencia 641, P.O. Box 567, Valdivia, Punta Arenas, Chile
| | - Kamilla Flores
- Centro FONDAP- IDEAL, Instituto de Ciencias Ambientales and Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Independencia 641, P.O. Box 567, Valdivia, Punta Arenas, Chile
| | - Sebastián Rosenfeld
- Laboratorio de Ecosistemas Marinos Antárticos Y Subantárticos, Universidad de Magallanes, Casilla 113-D, Punta Arenas, Chile.,Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras # 3425, Ñuñoa, Santiago, Chile.,Instituto de Ecología y Biodiversidad (IEB), Las Palmeras # 3425, Ñuñoa, Santiago, Chile
| | - Leyla Cárdenas
- Centro FONDAP- IDEAL, Instituto de Ciencias Ambientales and Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Independencia 641, P.O. Box 567, Valdivia, Punta Arenas, Chile.
| |
Collapse
|
14
|
Depth-dependent parental effects create invisible barriers to coral dispersal. Commun Biol 2021; 4:202. [PMID: 33589736 PMCID: PMC7884412 DOI: 10.1038/s42003-021-01727-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/19/2021] [Indexed: 01/02/2023] Open
Abstract
Historically, marine populations were considered to be interconnected across large geographic regions due to the lack of apparent physical barriers to dispersal, coupled with a potentially widely dispersive pelagic larval stage. Recent studies, however, are providing increasing evidence of small-scale genetic segregation of populations across habitats and depths, separated in some cases by only a few dozen meters. Here, we performed a series of ex-situ and in-situ experiments using coral larvae of three brooding species from contrasting shallow- and deep-water reef habitats, and show that their settlement success, habitat choices, and subsequent survival are substantially influenced by parental effects in a habitat-dependent manner. Generally, larvae originating from deep-water corals, which experience less variable conditions, expressed more specific responses than shallow-water larvae, with a higher settlement success in simulated parental-habitat conditions. Survival of juvenile corals experimentally translocated to the sea was significantly lower when not at parental depths. We conclude that local adaptations and parental effects alongside larval selectivity and phenotype-environment mismatches combine to create invisible semipermeable barriers to coral dispersal and connectivity, leading to habitat-dependent population segregation. Tom Shlesinger and Yossi Loya use ex-situ and in-situ experiments with coral larvae of three brooding species from contrasting shallow- and deep-water habitats and show that larvae originating from deep-water corals have narrower tolerances and higher habitat-specificity in simulated parental-habitat conditions. They also show that survival of juvenile corals experimentally translocated to the sea was significantly lower when not at parental depths. Together these results demonstrate that local adaptations and parental effects interact with larval selectivity and phenotype-environment mismatches to create semipermeable barriers to coral dispersal and connectivity.
Collapse
|
15
|
Hookabe N, Xu CM, Tsuyuki A, Jimi N, Sun SC, Kajihara H. A new nemertean with a branched proboscis, Gorgonorhynchus citrinus sp. nov. (Nemertea: Pilidiophora), with molecular systematics of the genus. INVERTEBR SYST 2021. [DOI: 10.1071/is20057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Among ~1300 species of world nemerteans, seven species in five genera of lineid heteronemerteans have been known to possess a branched proboscis. In this paper, we describe the eighth branched-proboscis species: Gorgonorhynchus citrinus sp. nov. from Okinawa, Japan. We also report Gorgonorhynchus cf. repens Dakin & Fordham, 1931 with uniformly orange body, as a new member for the Japanese nemertean fauna. We infer the phylogenetic relationships between these forms and other members of Lineidae McIntosh, 1874 for which partial sequences of the mitochondrial 16S rRNA and cytochrome c oxidase subunit I, and the nuclear 18S rRNA, 28S rRNA, and histone H3 genes are available in public databases, along with newly sequenced data of another branched-proboscis heteronemertean, Polydendrorhynchus zhanjiangensis (Yin & Zheng, 1984) from China. In the resulting tree, Gorgonorhychus Dakin & Fordham, 1931 was sister group to non-branched-proboscis Dushia Corrêa, 1963, whereas P. zhanjiangensis was sister group to likewise non-branched-proboscis Cerebratulus lacteus (Leidy, 1851).
http://zoobank.org/urn:lsid:zoobank.org:pub:685992C5-F595-4C28-9178-256D945E595A
Collapse
|
16
|
Verheye ML, D’Udekem D’Acoz C. Integrative taxonomy of giant crested Eusirus in the Southern Ocean, including the description of a new species (Crustacea: Amphipoda: Eusiridae). Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Among Antarctic amphipods of the genus Eusirus, a highly distinctive clade of giant species is characterized by a dorsal, blade-shaped tooth on pereionites 5–7 and pleonites 1–3. This lineage, herein named ‘crested Eusirus’, includes two potential species complexes, the Eusirus perdentatus and Eusirus giganteus complexes, in addition to the more distinctive Eusirus propeperdentatus. Molecular phylogenies and statistical parsimony networks (COI, CytB and ITS2) of crested Eusirus are herein reconstructed. This study aims to formally revise species diversity within crested Eusirus by applying several species delimitation methods (Bayesian implementation of the Poisson tree processes model, general mixed Yule coalescent, multi-rate Poisson tree processes and automatic barcode gap discovery) on the resulting phylogenies. In addition, results from the DNA-based methods are benchmarked against a detailed morphological analysis of all available specimens of the E. perdentatus complex. Our results indicate that species diversity of crested Eusirus is underestimated. Overall, DNA-based methods suggest that the E. perdentatus complex is composed of three putative species and that the E. giganteus complex includes four or five putative species. The morphological analysis of available specimens from the E. perdentatus complex corroborates molecular results by identifying two differentiable species, the genuine E. perdentatus and a new species, herein described as Eusirus pontomedon sp. nov.
Collapse
Affiliation(s)
- Marie L Verheye
- Royal Belgian Institute of Natural Sciences, O.D. Nature, Rue Vautier, Brussels, Belgium
- Université de Liège, Laboratoire d’Océanologie, Quartier Agora, Allée du 6 Août, Liège, Belgium
| | - Cédric D’Udekem D’Acoz
- Royal Belgian Institute of Natural Sciences, O.D. Nature, Rue Vautier, Brussels, Belgium
| |
Collapse
|
17
|
Ziegler AF, Hahn-Woernle L, Powell B, Smith CR. Larval Dispersal Modeling Suggests Limited Ecological Connectivity Between Fjords on the West Antarctic Peninsula. Integr Comp Biol 2020; 60:1369-1385. [PMID: 32617573 DOI: 10.1093/icb/icaa094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Larval dispersal is a key process for community assembly and population maintenance in the marine environment, yet it is extremely difficult to measure at ecologically relevant spatio-temporal scales. We used a high-resolution hydrodynamic model and particle-tracking model to explore the dispersal of simulated larvae in a hydrographically complex region of fjords on the West Antarctic Peninsula. Modeled larvae represented two end members of dispersal potential observed in Antarctic benthos resulting from differing developmental periods and swimming behavior. For simulations of low dispersing larvae (pre-competency period = 8 days, settlement period = 15 days, swimming downward) self-recruitment within fjords was important, with no larval settlement occurring in adjacent fjords <50 km apart. For simulations of highly dispersing organisms (pre-competency period = 35-120 days, settlement period = 30-115 days, no swimming behavior), dispersal between fjords occurred when larvae were in the water column for at least 35 days, but settlement was rarely successful even for larvae spending up to 150 days in the plankton. The lack of ecological connectivity between fjords within a single spawning event suggests that these fjords harbor ecologically distinct populations in which self-recruitment may maintain populations, and genetic connectivity between fjords is likely achieved through stepping-stone dispersal. Export of larvae from natal fjord populations to the broader shelf region (>100 km distance) occurred within surface layers (<100 m depth) and was enhanced by episodic katabatic wind events that may be common in glaciomarine fjords worldwide.
Collapse
Affiliation(s)
- Amanda F Ziegler
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Lisa Hahn-Woernle
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Brian Powell
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Craig R Smith
- Department of Oceanography, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| |
Collapse
|
18
|
Hipfner JM, Prill MM, Studholme KR, Domalik AD, Tucker S, Jardine C, Maftei M, Wright KG, Beck JN, Bradley RW, Carle RD, Good TP, Hatch SA, Hodum PJ, Ito M, Pearson SF, Rojek NA, Slater L, Watanuki Y, Will AP, Bindoff AD, Crossin GT, Drever MC, Burg TM. Geolocator tagging links distributions in the non-breeding season to population genetic structure in a sentinel North Pacific seabird. PLoS One 2020; 15:e0240056. [PMID: 33166314 PMCID: PMC7652296 DOI: 10.1371/journal.pone.0240056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
We tested the hypothesis that segregation in wintering areas is associated with population differentiation in a sentinel North Pacific seabird, the rhinoceros auklet (Cerorhinca monocerata). We collected tissue samples for genetic analyses on five breeding colonies in the western Pacific Ocean (Japan) and on 13 colonies in the eastern Pacific Ocean (California to Alaska), and deployed light-level geolocator tags on 12 eastern Pacific colonies to delineate wintering areas. Geolocator tags were deployed previously on one colony in Japan. There was strong genetic differentiation between populations in the eastern vs. western Pacific Ocean, likely due to two factors. First, glaciation over the North Pacific in the late Pleistocene might have forced a southward range shift that historically isolated the eastern and western populations. And second, deep-ocean habitat along the northern continental shelf appears to act as a barrier to movement; abundant on both sides of the North Pacific, the rhinoceros auklet is virtually absent as a breeder in the Aleutian Islands and Bering Sea, and no tagged birds crossed the North Pacific in the non-breeding season. While genetic differentiation was strongest between the eastern vs. western Pacific, there was also extensive differentiation within both regional groups. In pairwise comparisons among the eastern Pacific colonies, the standardized measure of genetic differentiation (FꞌST) was negatively correlated with the extent of spatial overlap in wintering areas. That result supports the hypothesis that segregation in the non-breeding season is linked to genetic structure. Philopatry and a neritic foraging habit probably also contribute to the structuring. Widely distributed, vulnerable to anthropogenic stressors, and exhibiting extensive genetic structure, the rhinoceros auklet is fully indicative of the scope of the conservation challenges posed by seabirds.
Collapse
Affiliation(s)
- J. Mark Hipfner
- Wildlife Research Division, Environment and Climate Change Canada, Delta, British Columbia, Canada
- * E-mail:
| | - Marie M. Prill
- Department of Biology, University of Lethbridge, Lethbridge, Alberta, Canada
| | | | - Alice D. Domalik
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Strahan Tucker
- Fisheries and Oceans Canada, Nanaimo, British Columbia, Canada
| | | | - Mark Maftei
- Wildlife Research Division, Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Kenneth G. Wright
- Wildlife Research Division, Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Jessie N. Beck
- Oikonos Ecosystems Knowledge, Santa Cruz, California, United States of America
| | - Russell W. Bradley
- Point Blue Conservation Science, Petaluma, California, United States of America
| | - Ryan D. Carle
- Oikonos Ecosystems Knowledge, Santa Cruz, California, United States of America
| | - Thomas P. Good
- Northwest Fisheries Science Centre, National Marine Fisheries Service, National Oceanographic and Atmospheric Administration, Seattle, Washington, United States of America
| | - Scott A. Hatch
- Institute for Seabird Research and Conservation, Anchorage, Alaska, United States of America
| | - Peter J. Hodum
- Department of Biology, University of Puget Sound, Tacoma, Washington, United States of America
| | - Motohiro Ito
- Department of Applied Biosciences, Toyo University, Bunkyō-ku, Japan
| | - Scott F. Pearson
- Washington Department of Fish and Wildlife, Olympia, Washington, United States of America
| | - Nora A. Rojek
- United States Fish and Wildlife Service, Homer, Alaska, United States of America
| | - Leslie Slater
- United States Fish and Wildlife Service, Homer, Alaska, United States of America
| | - Yutaka Watanuki
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Alexis P. Will
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Aidan D. Bindoff
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Glenn T. Crossin
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mark C. Drever
- Wildlife Research Division, Environment and Climate Change Canada, Delta, British Columbia, Canada
| | - Theresa M. Burg
- Department of Biology, University of Lethbridge, Lethbridge, Alberta, Canada
| |
Collapse
|
19
|
Hookabe N, Kajihara H. Taxonomic Reappraisal of Lineus longifissus Auct. (Nemertea: Pilidiophora) from Japan for the First Time in 122 Years. Zoolog Sci 2020; 37:467-475. [DOI: 10.2108/zs200001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/15/2020] [Indexed: 11/17/2022]
Affiliation(s)
- Natsumi Hookabe
- Graduate School of Science, Hokkaido University, N10E8 Kita-ku, Sapporo, Hokkaido 060-0180, Japan
| | - Hiroshi Kajihara
- Faculty of Science, Hokkaido University, N10W8 Kita-ku, Sapporo, Hokkaido 060-0180, Japan
| |
Collapse
|
20
|
Dömel JS, Macher TH, Dietz L, Duncan S, Mayer C, Rozenberg A, Wolcott K, Leese F, Melzer RR. Combining morphological and genomic evidence to resolve species diversity and study speciation processes of the Pallenopsis patagonica (Pycnogonida) species complex. Front Zool 2019; 16:36. [PMID: 31516540 PMCID: PMC6728986 DOI: 10.1186/s12983-019-0316-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/06/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pallenopsis patagonica (Hoek, 1881) is a morphologically and genetically variable sea spider species whose taxonomic classification is challenging. Currently, it is considered as a species complex including several genetic lineages, many of which have not been formally described as species. Members of this species complex occur on the Patagonian and Antarctic continental shelves as well as around sub-Antarctic islands. These habitats have been strongly influenced by historical large-scale glaciations and previous studies suggested that communities were limited to very few refugia during glacial maxima. Therefore, allopatric speciation in these independent refugia is regarded as a common mechanism leading to high biodiversity of marine benthic taxa in the high-latitude Southern Hemisphere. However, other mechanisms such as ecological speciation have rarely been considered or tested. Therefore, we conducted an integrative morphological and genetic study on the P. patagonica species complex to i) resolve species diversity using a target hybrid enrichment approach to obtain multiple genomic markers, ii) find morphological characters and analyze morphometric measurements to distinguish species, and iii) investigate the speciation processes that led to multiple lineages within the species complex. RESULTS Phylogenomic results support most of the previously reported lineages within the P. patagonica species complex and morphological data show that several lineages are distinct species with diagnostic characters. Two lineages are proposed as new species, P. aulaeturcarum sp. nov. Dömel & Melzer, 2019 and P. obstaculumsuperavit sp. nov. Dömel, 2019, respectively. However, not all lineages could be distinguished morphologically and thus likely represent cryptic species that can only be identified with genetic tools. Further, morphometric data of 135 measurements showed a high amount of variability within and between species without clear support of adaptive divergence in sympatry. CONCLUSIONS We generated an unprecedented molecular data set for members of the P. patagonica sea spider species complex with a target hybrid enrichment approach, which we combined with extensive morphological and morphometric analyses to investigate the taxonomy, phylogeny and biogeography of this group. The extensive data set enabled us to delineate species boundaries, on the basis of which we formally described two new species. No consistent evidence for positive selection was found, rendering speciation in allopatric glacial refugia as the most likely model of speciation.
Collapse
Affiliation(s)
- Jana S. Dömel
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany
| | - Till-Hendrik Macher
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany
| | - Lars Dietz
- Zoological Research Museum Alexander Koenig, Statistical Phylogenetics and Phylogenomics, Adenauerallee 160, 53113 Bonn, Germany
| | - Sabrina Duncan
- Bavarian State Collection of Zoology – SNSB, Muenchhausenstr. 21, 81247 Munich, Germany
| | - Christoph Mayer
- Zoological Research Museum Alexander Koenig, Statistical Phylogenetics and Phylogenomics, Adenauerallee 160, 53113 Bonn, Germany
| | - Andrey Rozenberg
- Faculty of Biology, Technion – Israel Institute of Technology, 3200003 Haifa, Israel
| | - Katherine Wolcott
- Bavarian State Collection of Zoology – SNSB, Muenchhausenstr. 21, 81247 Munich, Germany
| | - Florian Leese
- Aquatic Ecosystem Research, Faculty of Biology, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Universitaetsstr. 2, 45141 Essen, Germany
| | - Roland R. Melzer
- Bavarian State Collection of Zoology – SNSB, Muenchhausenstr. 21, 81247 Munich, Germany
- Department Biologie II, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
- GeoBioCenter, LMU Munich, Richard-Wagner-Str. 10, 80333 Munich, Germany
| |
Collapse
|
21
|
Plouviez S, LaBella AL, Weisrock DW, von Meijenfeldt FAB, Ball B, Neigel JE, Van Dover CL. Amplicon sequencing of 42 nuclear loci supports directional gene flow between South Pacific populations of a hydrothermal vent limpet. Ecol Evol 2019; 9:6568-6580. [PMID: 31312428 PMCID: PMC6609911 DOI: 10.1002/ece3.5235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/05/2022] Open
Abstract
In the past few decades, population genetics and phylogeographic studies have improved our knowledge of connectivity and population demography in marine environments. Studies of deep-sea hydrothermal vent populations have identified barriers to gene flow, hybrid zones, and demographic events, such as historical population expansions and contractions. These deep-sea studies, however, used few loci, which limit the amount of information they provided for coalescent analysis and thus our ability to confidently test complex population dynamics scenarios. In this study, we investigated population structure, demographic history, and gene flow directionality among four Western Pacific hydrothermal vent populations of the vent limpet Lepetodrilus aff. schrolli. These vent sites are located in the Manus and Lau back-arc basins, currently of great interest for deep-sea mineral extraction. A total of 42 loci were sequenced from each individual using high-throughput amplicon sequencing. Amplicon sequences were analyzed using both genetic variant clustering methods and evolutionary coalescent approaches. Like most previously investigated vent species in the South Pacific, L. aff. schrolli showed no genetic structure within basins but significant differentiation between basins. We inferred significant directional gene flow from Manus Basin to Lau Basin, with low to no gene flow in the opposite direction. This study is one of the very few marine population studies using >10 loci for coalescent analysis and serves as a guide for future marine population studies.
Collapse
Affiliation(s)
- Sophie Plouviez
- Department of BiologyUniversity of Louisiana at LafayetteLafayetteLouisiana
- Division of Marine Science and Conservation, Nicholas School of the EnvironmentDuke UniversityBeaufortNorth Carolina
| | | | | | | | - Bernard Ball
- School of Biological, Earth & Environmental SciencesUniversity College CorkCorkIreland
| | - Joseph E. Neigel
- Department of BiologyUniversity of Louisiana at LafayetteLafayetteLouisiana
| | - Cindy L. Van Dover
- Division of Marine Science and Conservation, Nicholas School of the EnvironmentDuke UniversityBeaufortNorth Carolina
| |
Collapse
|
22
|
Redak C, Halanych KM. Mitochondrial genome of Parborlasia corrugatus (Nemertea: Lineidae). Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2018.1544043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Caitlin Redak
- Department of Biological Sciences, Auburn University, Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn, AL, USA
| | - Kenneth M. Halanych
- Department of Biological Sciences, Auburn University, Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn, AL, USA
| |
Collapse
|
23
|
Halanych KM, Mahon AR. Challenging Dogma Concerning Biogeographic Patterns of Antarctica and the Southern Ocean. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-121415-032139] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Antarctica is enormous, cold, remote, and particularly sensitive to climate change. Most biological research below 60°S has focused on the isolated nature of the biota and how organisms have adapted to the cold and ice. However, biogeographic patterns in Antarctica and the Southern Ocean, and the processes explaining how those patterns came about, still await adequate explanation. Both terrestrial and marine organisms have been influenced by climatic change (e.g., glaciation), physical phenomena (e.g., oceanic currents), and/or potential barriers to gene flow (e.g., steep thermal gradients). Whereas the Antarctic region contains diverse and complex marine communities, terrestrial systems tend to be comparatively simple with limited diversity. Here, we challenge the current dogma used to explain the diversity and biogeographic patterns present in the Antarctic. We assert that relatively modern processes within the last few million years, rather than geo-logical events that occurred in the Eocene and Miocene, account for present patterns of biodiversity in the region. Additionally, reproductive life history stages appear to have little influence in structuring genetic patterns in the Antarctic, as currents and glacial patterns are noted to be more important drivers of organismal patterns of distribution. Finally, we highlight the need for additional sampling, high-throughput genomic approaches, and broad, multinational cooperation for addressing outstanding questions of Antarctic biogeography and biodiversity.
Collapse
Affiliation(s)
- Kenneth M. Halanych
- Molette Biology Laboratory for Environmental and Climate Change Studies, Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Andrew R. Mahon
- Department of Biology, Central Michigan University, Mount Pleasant, Michigan 48859, USA
| |
Collapse
|
24
|
Moore JM, Carvajal JI, Rouse GW, Wilson NG. The Antarctic Circumpolar Current isolates and connects: Structured circumpolarity in the sea star Glabraster antarctica. Ecol Evol 2018; 8:10621-10633. [PMID: 30464833 PMCID: PMC6238125 DOI: 10.1002/ece3.4551] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 01/15/2023] Open
Abstract
AIM The Antarctic Circumpolar Current (ACC) connects benthic populations by transporting larvae around the continent, but also isolates faunas north and south of the Antarctic Convergence. We test circumpolar panmixia and dispersal across the Antarctic Convergence barrier in the benthic sea star Glabraster antarctica. LOCATION The Southern Ocean and south Atlantic Ocean, with comprehensive sampling including the Magellanic region, Scotia Arc, Antarctic Peninsula, Ross Sea, and East Antarctica. METHODS The cytochrome c oxidase subunit I (COI) gene (n = 285) and the internal transcribed spacer region 2 (ITS2; n = 33) were sequenced. We calculated haplotype networks for each genetic marker and estimated population connectivity and the geographic distribution of genetic structure using ΦST for COI data. RESULTS Glabraster antarctica is a single circum-Antarctic species with instances of gene flow between distant locations. Despite the homogenizing potential of the ACC, population structure is high (ΦST = 0.5236), and some subpopulations are genetically isolated. Genetic breaks in the Magellanic region do not align with the Antarctic Convergence, in contrast with prior studies. Connectivity patterns in East Antarctic sites are not uniform, with some regional isolation and some surprising affinities to the distant Magellanic and Scotia Arc regions. MAIN CONCLUSIONS Despite gene flow over extraordinary distances, there is strong phylogeographic structuring and genetic barriers evident between geographically proximate regions (e.g., Shag Rocks and South Georgia). Circumpolar panmixia is rejected, although some subpopulations show a circumpolar distribution. Stepping-stone dispersal occurs within the Scotia Arc but does not appear to facilitate connectivity across the Antarctic Convergence. The patterns of genetic connectivity in Antarctica are complex and should be considered in protected area planning for Antarctica.
Collapse
Affiliation(s)
- Jenna M. Moore
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFlorida
- Scripps Institution of OceanographyUCSDLa JollaCalifornia
| | - Jose I. Carvajal
- Scripps Institution of OceanographyUCSDLa JollaCalifornia
- Western Australian MuseumWelshpoolWestern AustraliaAustralia
| | - Greg W. Rouse
- Scripps Institution of OceanographyUCSDLa JollaCalifornia
| | - Nerida G. Wilson
- Scripps Institution of OceanographyUCSDLa JollaCalifornia
- Western Australian MuseumWelshpoolWestern AustraliaAustralia
- University of Western AustraliaCrawleyWestern AustraliaAustralia
| |
Collapse
|
25
|
Leiva C, Riesgo A, Avila C, Rouse GW, Taboada S. Population structure and phylogenetic relationships of a new shallow-water Antarctic phyllodocid annelid. ZOOL SCR 2018. [DOI: 10.1111/zsc.12313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Carlos Leiva
- Department of Genetics Microbiology and Statistics, Facultat de Biologia; Universitat de Barcelona; Barcelona Spain
- Department of Life Sciences; Natural History Museum of London; London UK
| | - Ana Riesgo
- Department of Life Sciences; Natural History Museum of London; London UK
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences; Facultat de Biologia, Universitat de Barcelona; Barcelona Spain
| | - Greg W. Rouse
- MBRD; Scripps Institution of Oceanography; La Jolla California
| | - Sergi Taboada
- Department of Life Sciences; Natural History Museum of London; London UK
| |
Collapse
|
26
|
Flaviani F, Schroeder DC, Lebret K, Balestreri C, Highfield AC, Schroeder JL, Thorpe SE, Moore K, Pasckiewicz K, Pfaff MC, Rybicki EP. Distinct Oceanic Microbiomes From Viruses to Protists Located Near the Antarctic Circumpolar Current. Front Microbiol 2018; 9:1474. [PMID: 30065704 PMCID: PMC6056678 DOI: 10.3389/fmicb.2018.01474] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 06/13/2018] [Indexed: 12/13/2022] Open
Abstract
Microbes occupy diverse ecological niches and only through recent advances in next generation sequencing technologies have the true microbial diversity been revealed. Furthermore, lack of perceivable marine barriers to genetic dispersal (i.e., mountains or islands) has allowed the speculation that organisms that can be easily transported by currents and therefore proliferate everywhere. That said, ocean currents are now commonly being recognized as barriers for microbial dispersal. Here we analyzed samples collected from a total of six stations, four located in the Indian Ocean, and two in the Southern Ocean. Amplicon sequencing was used to characterize both prokaryotic and eukaryotic plankton communities, while shotgun sequencing was used for the combined environmental DNA (eDNA), microbial eDNA (meDNA), and viral fractions. We found that Cyanobacteria dominated the prokaryotic component in the South-West Indian Ocean, while γ-Proteobacteria dominated the South-East Indian Ocean. A combination of γ- and α-Proteobacteria dominated the Southern Ocean. Alveolates dominated almost exclusively the eukaryotic component, with variation in the ratio of Protoalveolata and Dinoflagellata depending on station. However, an increase in haptophyte relative abundance was observed in the Southern Ocean. Similarly, the viral fraction was dominated by members of the order Caudovirales across all stations; however, a higher presence of nucleocytoplasmic large DNA viruses (mainly chloroviruses and mimiviruses) was observed in the Southern Ocean. To our knowledge, this is the first that a statistical difference in the microbiome (from viruses to protists) between the subtropical Indian and Southern Oceans. We also show that not all phylotypes can be found everywhere, and that meDNA is not a suitable resource for monitoring aquatic microbial diversity.
Collapse
Affiliation(s)
- Flavia Flaviani
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa.,Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom
| | - Declan C Schroeder
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom.,School of Biological Sciences, University of Reading, Reading, United Kingdom.,College of Veterinary Medicine, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Karen Lebret
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom.,Limnology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Cecilia Balestreri
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom
| | - Andrea C Highfield
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom
| | - Joanna L Schroeder
- Marine Biological Association of the United Kingdom, Citadel Hill, Plymouth, United Kingdom
| | - Sally E Thorpe
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Karen Moore
- Exeter Sequencing Service, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Konrad Pasckiewicz
- Exeter Sequencing Service, Biosciences, University of Exeter, Exeter, United Kingdom
| | - Maya C Pfaff
- Department of Environmental Affairs, Oceans and Coasts, Cape Town, South Africa
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
27
|
López-Escardó D, Paps J, de Vargas C, Massana R, Ruiz-Trillo I, Del Campo J. Metabarcoding analysis on European coastal samples reveals new molecular metazoan diversity. Sci Rep 2018; 8:9106. [PMID: 29904074 PMCID: PMC6002407 DOI: 10.1038/s41598-018-27509-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 06/05/2018] [Indexed: 11/08/2022] Open
Abstract
Although animals are among the best studied organisms, we still lack a full description of their diversity, especially for microscopic taxa. This is partly due to the time-consuming and costly nature of surveying animal diversity through morphological and molecular studies of individual taxa. A powerful alternative is the use of high-throughput environmental sequencing, providing molecular data from all organisms sampled. We here address the unknown diversity of animal phyla in marine environments using an extensive dataset designed to assess eukaryotic ribosomal diversity among European coastal locations. A multi-phylum assessment of marine animal diversity that includes water column and sediments, oxic and anoxic environments, and both DNA and RNA templates, revealed a high percentage of novel 18S rRNA sequences in most phyla, suggesting that marine environments have not yet been fully sampled at a molecular level. This novelty is especially high among Platyhelminthes, Acoelomorpha, and Nematoda, which are well studied from a morphological perspective and abundant in benthic environments. We also identified, based on molecular data, a potentially novel group of widespread tunicates. Moreover, we recovered a high number of reads for Ctenophora and Cnidaria in the smaller fractions suggesting their gametes might play a greater ecological role than previously suspected.
Collapse
Affiliation(s)
- David López-Escardó
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Catalonia, Spain
| | - Jordi Paps
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Colomban de Vargas
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- UPMC Univ. Paris 06, UMR 7144, Station Biologique de Roscoff, Roscoff, France
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Catalonia, Spain.
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Catalonia, Spain.
- Departament de Genètica, Microbiología i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Javier Del Campo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), 08003, Barcelona, Catalonia, Spain.
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain.
| |
Collapse
|
28
|
Díaz A, Gérard K, González-Wevar C, Maturana C, Féral JP, David B, Saucède T, Poulin E. Genetic structure and demographic inference of the regular sea urchin Sterechinus neumayeri (Meissner, 1900) in the Southern Ocean: The role of the last glaciation. PLoS One 2018; 13:e0197611. [PMID: 29874287 PMCID: PMC5991379 DOI: 10.1371/journal.pone.0197611] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 05/04/2018] [Indexed: 01/10/2023] Open
Abstract
One of the most relevant characteristics of the extant Southern Ocean fauna is its resiliency to survive glacial processes of the Quaternary. These climatic events produced catastrophic habitat reductions and forced some marine benthic species to move, adapt or go extinct. The marine benthic species inhabiting the Antarctic upper continental shelf faced the Quaternary glaciations with different strategies that drastically modified population sizes and thus affected the amount and distribution of intraspecific genetic variation. Here we present new genetic information for the most conspicuous regular sea urchin of the Antarctic continental shelf, Sterechinus neumayeri. We studied the patterns of genetic diversity and structure in this broadcast-spawner across three Antarctic regions: Antarctic Peninsula, the Weddell Sea and Adélie Land in East Antarctica. Genetic analyses based on mitochondrial and nuclear markers suggested that S. neumayeri is a single genetic unit around the Antarctic continent. The species is characterized by low levels of genetic diversity and exhibits a typical star-like haplotype genealogy that supports the hypothesis of a single in situ refugium. Based on two mutation rates standardized for this genus, the Bayesian Skyline plot analyses detected a rapid demographic expansion after the Last Glacial Maximum. We propose a scenario of rapid postglacial expansion and recolonization of Antarctic shallow areas from a less ice-impacted refugium where the species survived the LGM. Considering the patterns of genetic diversity and structure recorded in the species, this refugium was probably located in East Antarctica.
Collapse
Affiliation(s)
- Angie Díaz
- Departamento de Zoología, Universida d de Concepción, Barrio Universitario s/n, Concepción, Chile
| | - Karin Gérard
- Facultad de Ciencias, Universidad de Magallanes, Bulnes, Punta Arenas, Chile
- Laboratorio de Ecología Molecular Antártica y Subantártica, Universidad de Magallanes, Punta Arenas, Chile
| | - Claudio González-Wevar
- Laboratorio de Ecología Molecular Antártica y Subantártica, Universidad de Magallanes, Punta Arenas, Chile
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Ñuñoa, Santiago, Chile
| | - Claudia Maturana
- Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Ñuñoa, Santiago, Chile
| | - Jean-Pierre Féral
- UMR 7263—IMBE, Station Marine d’Endoume, Institut Méditerranéen de Biodiversité et d’Ecologie Marine et continentale, Chemin de la Batterie des Lions,Marseille, France
| | - Bruno David
- Biogéosciences, UMR CNRS 6282, Université de Bourgogne, boulevard Gabriel, Dijon, France
- Museum National d’Histoire Naturelle, Paris, France
| | - Thomas Saucède
- UMR 7263—IMBE, Station Marine d’Endoume, Institut Méditerranéen de Biodiversité et d’Ecologie Marine et continentale, Chemin de la Batterie des Lions,Marseille, France
| | - Elie Poulin
- Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras, Ñuñoa, Santiago, Chile
| |
Collapse
|
29
|
Collins EE, Galaska MP, Halanych KM, Mahon AR. Population Genomics of Nymphon australe Hodgson, 1902 (Pycnogonida, Nymphonidae) in the Western Antarctic. THE BIOLOGICAL BULLETIN 2018; 234:180-191. [PMID: 29949435 DOI: 10.1086/698691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Within the Southern Ocean, the Antarctic Circumpolar Current is hypothesized to facilitate a circumpolar distribution for many taxa, even though some, such as pycnogonids, are assumed to have limited ability to disperse, based on brooding life histories and adult ambulatory capabilities. With a number of contradictions to circumpolarity reported in the literature for other pycnogonids, alternative hypotheses have been explored, particularly for Nymphon australe, the most common species of Pycnogonida (sea spider) in the Southern Ocean. Glacial events have been hypothesized to impact the capacity of organisms to colonize suitable areas without ice coverage as refuge and without the eurybathic capacity to colonize deeper areas. In this study, we examine populations of one presumed circumpolar species, the pycnogonid N. australe, from throughout the Western Antarctic, using a 2b-RAD approach to detect genetic variation with single-nucleotide polymorphisms. Using this approach, we found that N. australe included two distinct groups from within >5000-km sampling region. By using a discriminant analysis of principle components, sparse nonnegative matrix factorization, and admixture coefficient analysis, two distinctive populations were revealed in the Western Antarctic: one covered distances greater than 5000 km (Weddell, Western Antarctic Peninsula, and Ross Sea), and the other shared limited connectivity entrained within the Amundsen Sea. Under further scrutiny of the 3086 single-nucleotide polymorphisms in the data set, only 78 loci had alignment stacks between the two populations. We propose that the populations analyzed are divergent enough to constitute two different species from within this common Antarctic genus known for its phenotypic plasticity.
Collapse
Key Words
- 2b-RAD, 2b restriction site-associated DNA genotyping
- ACC, Antarctic Circumpolar Current
- APF, Antarctic Polar Front
- COI, cytochrome c oxidase subunit I
- DAPC, discriminant analysis of principle components
- FST, fixation index
- K, number of populations
- LEA, Landscape and Ecological Associations
- Mb, megabases (unit of length for DNA fragments = 1 million nucleotides)
- RADseq, restriction site-associated DNA sequencing
- SNP, single-nucleotide polymorphism
- mya, million years ago; PCA, Principal Component Analysis
Collapse
|
30
|
Voje KL, Starrfelt J, Liow LH. Model Adequacy and Microevolutionary Explanations for Stasis in the Fossil Record. Am Nat 2018; 191:509-523. [DOI: 10.1086/696265] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Taboada S, Leiva C, Junoy J, Alexander F, Riesgo A. A new member of the genus Antarctonemertes (Hoplonemertea, Nemertea) from Antarctic waters. Polar Biol 2018. [DOI: 10.1007/s00300-018-2298-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Comparative phylogeography of six red algae along the Antarctic Peninsula: extreme genetic depletion linked to historical bottlenecks and recent expansion. Polar Biol 2018. [DOI: 10.1007/s00300-017-2244-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Adaptation Without Boundaries: Population Genomics in Marine Systems. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Segadilha JL, Lavrado HP. Tanaidacea fauna (Peracarida, Crustacea) from the shallow sublittoral zone of Admiralty Bay, King George Island, Antarctica, with new records. Polar Biol 2017. [DOI: 10.1007/s00300-017-2220-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Abstract
Understanding how geography, oceanography, and climate have ultimately shaped marine biodiversity requires aligning the distributions of genetic diversity across multiple taxa. Here, we examine phylogeographic partitions in the sea against a backdrop of biogeographic provinces defined by taxonomy, endemism, and species composition. The taxonomic identities used to define biogeographic provinces are routinely accompanied by diagnostic genetic differences between sister species, indicating interspecific concordance between biogeography and phylogeography. In cases where individual species are distributed across two or more biogeographic provinces, shifts in genotype frequencies often align with biogeographic boundaries, providing intraspecific concordance between biogeography and phylogeography. Here, we provide examples of comparative phylogeography from (i) tropical seas that host the highest marine biodiversity, (ii) temperate seas with high productivity but volatile coastlines, (iii) migratory marine fauna, and (iv) plankton that are the most abundant eukaryotes on earth. Tropical and temperate zones both show impacts of glacial cycles, the former primarily through changing sea levels, and the latter through coastal habitat disruption. The general concordance between biogeography and phylogeography indicates that the population-level genetic divergences observed between provinces are a starting point for macroevolutionary divergences between species. However, isolation between provinces does not account for all marine biodiversity; the remainder arises through alternative pathways, such as ecological speciation and parapatric (semiisolated) divergences within provinces and biodiversity hotspots.
Collapse
|
36
|
Strugnell JM, Allcock AL, Watts PC. Closely related octopus species show different spatial genetic structures in response to the Antarctic seascape. Ecol Evol 2017; 7:8087-8099. [PMID: 29043058 PMCID: PMC5632630 DOI: 10.1002/ece3.3327] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/18/2017] [Accepted: 07/23/2017] [Indexed: 01/28/2023] Open
Abstract
Determining whether comparable processes drive genetic divergence among marine species is relevant to molecular ecologists and managers alike. Sympatric species with similar life histories might be expected to show comparable patterns of genetic differentiation and a consistent influence of environmental factors in shaping divergence. We used microsatellite loci to quantify genetic differentiation across the Scotia Arc in three species of closely related benthic octopods, Pareledone turqueti, P. charcoti, and Adelieledone polymorpha. The relative importance of environmental factors (latitude, longitude, depth, and temperature) in shaping genetic structure was investigated when significant spatial genetic structure was uncovered. Isolated populations of P. turqueti and A. polymorpha at these species' range margins were genetically different to samples close to mainland Antarctica; however, these species showed different genetic structures at a regional scale. Samples of P. turqueti from the Antarctic Peninsula, Elephant Island, and Signy Island were genetically different, and this divergence was associated primarily with sample collection depth. By contrast, weak or nonsignificant spatial genetic structure was evident across the Antarctic Peninsula, Elephant Island, and Signy Island region for A. polymorpha, and slight associations between population divergence and temperature or depth (and/or longitude) were detected. Pareledone charcoti has a limited geographic range, but exhibited no genetic differentiation between samples from a small region of the Scotia Arc (Elephant Island and the Antarctic Peninsula). Thus, closely related species with similar life history strategies can display contrasting patterns of genetic differentiation depending on spatial scale; moreover, depth may drive genetic divergence in Southern Ocean benthos.
Collapse
Affiliation(s)
- Jan M. Strugnell
- Centre for Sustainable Tropical Fisheries and AquacultureMarine Biology and Aquaculture James Cook UniversityTownsvilleQldAustralia
- Department of Ecology, Environment and EvolutionSchool of Life SciencesLa Trobe UniversityMelbourneVic.Australia
| | - A. Louise Allcock
- Ryan Institute and School of Natural SciencesNational University of Ireland GalwayGalwayIreland
| | | |
Collapse
|
37
|
Galaska MP, Sands CJ, Santos SR, Mahon AR, Halanych KM. Crossing the Divide: Admixture Across the Antarctic Polar Front Revealed by the Brittle Star Astrotoma agassizii. THE BIOLOGICAL BULLETIN 2017; 232:198-211. [PMID: 28898598 DOI: 10.1086/693460] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The Antarctic Polar Front (APF) is one of the most well-defined and persistent oceanographic features on the planet and serves as a barrier to dispersal between the Southern Ocean and lower latitudes. High levels of endemism in the Southern Ocean have been attributed to this barrier, whereas the accompanying Antarctic Circumpolar Current (ACC) likely promotes west-to-east dispersal. Previous phylogeographic work on the brittle star Astrotoma agassizii Lyman, 1875 based on mitochondrial genes suggested isolation across the APF, even though populations in both South American waters and the Southern Ocean are morphologically indistinguishable. Here, we revisit this finding using a high-resolution 2b-RAD (restriction-site-associated DNA) single-nucleotide polymorphism (SNP)-based approach, in addition to enlarged mitochondrial DNA data sets (16S rDNA, COI, and COII), for comparison to previous work. In total, 955 biallelic SNP loci confirmed the existence of strongly divergent populations on either side of the Drake Passage. Interestingly, genetic admixture was detected between South America and the Southern Ocean in five individuals on both sides of the APF, revealing evidence of recent or ongoing genetic contact. We also identified two differentiated populations on the Patagonian Shelf with six admixed individuals from these two populations. These findings suggest that the APF is a strong but imperfect barrier. Fluctuations in location and strength of the APF and ACC due to climate shifts may have profound consequences for levels of admixture or endemism in this region of the world.
Collapse
|
38
|
Moon KL, Chown SL, Fraser CI. Reconsidering connectivity in the sub-Antarctic. Biol Rev Camb Philos Soc 2017; 92:2164-2181. [DOI: 10.1111/brv.12327] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Katherine L. Moon
- School of Biological Sciences; Monash University; Clayton 3800 Australia
- Fenner School of Environment and Society; Australian National University; Acton 2601 Australia
| | - Steven L. Chown
- School of Biological Sciences; Monash University; Clayton 3800 Australia
| | - Ceridwen I. Fraser
- Fenner School of Environment and Society; Australian National University; Acton 2601 Australia
| |
Collapse
|
39
|
Dömel JS, Melzer RR, Harder AM, Mahon AR, Leese F. Nuclear and Mitochondrial Gene Data Support Recent Radiation within the Sea Spider Species Complex Pallenopsis patagonica. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2016.00139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
40
|
Galaska MP, Sands CJ, Santos SR, Mahon AR, Halanych KM. Geographic structure in the Southern Ocean circumpolar brittle star Ophionotus victoriae (Ophiuridae) revealed from mtDNA and single-nucleotide polymorphism data. Ecol Evol 2016; 7:475-485. [PMID: 28116044 PMCID: PMC5243193 DOI: 10.1002/ece3.2617] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/14/2016] [Accepted: 10/20/2016] [Indexed: 01/13/2023] Open
Abstract
Marine systems have traditionally been thought of as “open” with few barriers to gene flow. In particular, many marine organisms in the Southern Ocean purportedly possess circumpolar distributions that have rarely been well verified. Here, we use the highly abundant and endemic Southern Ocean brittle star Ophionotus victoriae to examine genetic structure and determine whether barriers to gene flow have existed around the Antarctic continent. Ophionotus victoriae possesses feeding planktotrophic larvae with presumed high dispersal capability, but a previous study revealed genetic structure along the Antarctic Peninsula. To test the extent of genetic differentiation within O. victoriae, we sampled from the Ross Sea through the eastern Weddell Sea. Whereas two mitochondrial DNA markers (16S rDNA and COI) were employed to allow comparison to earlier work, a 2b‐RAD single‐nucleotide polymorphism (SNP) approach allowed sampling of loci across the genome. Mitochondrial data from 414 individuals suggested three major lineages, but 2b‐RAD data generated 1,999 biallelic loci that identified four geographically distinct groups from 89 samples. Given the greater resolution by SNP data, O. victoriae can be divided into geographically distinct populations likely representing multiple species. Specific historical scenarios that explain current population structure were examined with approximate Bayesian computation (ABC) analyses. Although the Bransfield Strait region shows high diversity possibly due to mixing, our results suggest that within the recent past, dispersal processes due to strong currents such as the Antarctic Circumpolar Current have not overcome genetic subdivision presumably due to historical isolation, questioning the idea of large open circumpolar populations in the Southern Ocean.
Collapse
Affiliation(s)
| | - Chester J Sands
- Natural Environment Research Council British Antarctic Survey Cambridge UK
| | - Scott R Santos
- Department of Biological Sciences Auburn University Auburn AL USA
| | - Andrew R Mahon
- Department of Biology Central Michigan University Mount Pleasant MI USA
| | | |
Collapse
|
41
|
Brasier MJ, Wiklund H, Neal L, Jeffreys R, Linse K, Ruhl H, Glover AG. DNA barcoding uncovers cryptic diversity in 50% of deep-sea Antarctic polychaetes. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160432. [PMID: 28018624 PMCID: PMC5180122 DOI: 10.1098/rsos.160432] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/30/2016] [Indexed: 05/20/2023]
Abstract
The Antarctic marine environment is a diverse ecosystem currently experiencing some of the fastest rates of climatic change. The documentation and management of these changes requires accurate estimates of species diversity. Recently, there has been an increased recognition of the abundance and importance of cryptic species, i.e. those that are morphologically identical but genetically distinct. This article presents the largest genetic investigation into the prevalence of cryptic polychaete species within the deep Antarctic benthos to date. We uncover cryptic diversity in 50% of the 15 morphospecies targeted through the comparison of mitochondrial DNA sequences, as well as 10 previously overlooked morphospecies, increasing the total species richness in the sample by 233%. Our ability to describe universal rules for the detection of cryptic species within polychaetes, or normalization to expected number of species based on genetic data is prevented by taxon-specific differences in phylogenetic outputs and genetic variation between and within potential cryptic species. These data provide the foundation for biogeographic and functional analysis that will provide insight into the drivers of species diversity and its role in ecosystem function.
Collapse
Affiliation(s)
- Madeleine J. Brasier
- School of Environmental Science, University of Liverpool, L69 3BX, Liverpool, UK
| | - Helena Wiklund
- Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Lenka Neal
- Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Rachel Jeffreys
- School of Environmental Science, University of Liverpool, L69 3BX, Liverpool, UK
| | - Katrin Linse
- BioSciences, British Antarctic Survey, Cambridge CB3 OET, UK
| | - Henry Ruhl
- National Oceanography Centre, University of Southampton, Waterfront Campus, Southampton SO14 3ZH, UK
| | - Adrian G. Glover
- Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
42
|
Cryptic species diversity in sub-Antarctic islands: A case study of Lepidonotothen. Mol Phylogenet Evol 2016; 104:32-43. [DOI: 10.1016/j.ympev.2016.07.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/20/2016] [Accepted: 07/11/2016] [Indexed: 12/28/2022]
|
43
|
Soto Àngel JJ, Peña Cantero ÁL. A new piece in the puzzle of the Antarctic Biogeography: What do benthic hydroids tell us about the Scotia Arc affinities? Polar Biol 2016. [DOI: 10.1007/s00300-016-2013-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Beers JM, Jayasundara N. Antarctic notothenioid fish: what are the future consequences of 'losses' and 'gains' acquired during long-term evolution at cold and stable temperatures? ACTA ACUST UNITED AC 2016; 218:1834-45. [PMID: 26085661 DOI: 10.1242/jeb.116129] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Antarctic notothenioids dominate the fish fauna of the Southern Ocean. Evolution for millions of years at cold and stable temperatures has led to the acquisition of numerous biochemical traits that allow these fishes to thrive in sub-zero waters. The gain of antifreeze glycoproteins has afforded notothenioids the ability to avert freezing and survive at temperatures often hovering near the freezing point of seawater. Additionally, possession of cold-adapted proteins and membranes permits them to sustain appropriate metabolic rates at exceptionally low body temperatures. The notothenioid genome is also distinguished by the disappearance of traits in some species, losses that might prove costly in a warmer environment. Perhaps the best-illustrated example is the lack of expression of hemoglobin in white-blooded icefishes from the family Channichthyidae. Loss of key elements of the cellular stress response, notably the heat shock response, has also been observed. Along with their attainment of cold tolerance, notothenioids have developed an extreme stenothermy and many species perish at temperatures only a few degrees above their habitat temperatures. Thus, in light of today's rapidly changing climate, it is critical to evaluate how these extreme stenotherms will respond to rising ocean temperatures. It is conceivable that the remarkable cold specialization of notothenioids may ultimately leave them vulnerable to future thermal increases and threaten their fitness and survival. Within this context, our review provides a current summary of the biochemical losses and gains that are known for notothenioids and examines these cold-adapted traits with a focus on processes underlying thermal tolerance and acclimation capacity.
Collapse
Affiliation(s)
- Jody M Beers
- Hopkins Marine Station, Stanford University, 120 Ocean View Boulevard, Pacific Grove, CA 93950, USA
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, 450 Research Drive, Durham, NC 27708, USA
| |
Collapse
|
45
|
Park T, Fitzgerald EMG, Gallagher SJ, Tomkins E, Allan T. New Miocene Fossils and the History of Penguins in Australia. PLoS One 2016; 11:e0153915. [PMID: 27115739 PMCID: PMC4845988 DOI: 10.1371/journal.pone.0153915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 04/06/2016] [Indexed: 11/18/2022] Open
Abstract
Australia has a fossil record of penguins reaching back to the Eocene, yet today is inhabited by just one breeding species, the little penguin Eudyptula minor. The description of recently collected penguin fossils from the re-dated upper Miocene Port Campbell Limestone of Portland (Victoria), in addition to reanalysis of previously described material, has allowed the Cenozoic history of penguins in Australia to be placed into a global context for the first time. Australian pre-Quaternary fossil penguins represent stem taxa phylogenetically disparate from each other and E. minor, implying multiple dispersals and extinctions. Late Eocene penguins from Australia are closest to contemporaneous taxa in Antarctica, New Zealand and South America. Given current material, the Miocene Australian fossil penguin fauna is apparently unique in harbouring 'giant penguins' after they went extinct elsewhere; and including stem taxa until at least 6 Ma, by which time crown penguins dominated elsewhere in the southern hemisphere. Separation of Australia from Antarctica during the Palaeogene, and its subsequent drift north, appears to have been a major event in Australian penguin biogeography. Increasing isolation through the Cenozoic may have limited penguin dispersal to Australia from outside the Australasian region, until intensification of the eastwards-flowing Antarctic Circumpolar Current in the mid-Miocene established a potential new dispersal vector to Australia.
Collapse
Affiliation(s)
- Travis Park
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- Palaeontology, Museum Victoria, Melbourne, Victoria, Australia
- * E-mail:
| | | | | | - Ellyn Tomkins
- Palaeontology, Museum Victoria, Melbourne, Victoria, Australia
- School of Earth Sciences, University of Melbourne, Victoria, Australia
| | - Tony Allan
- CSIRO Radiogenic Isotope Facility, North Ryde, Sydney, New South Wales, Australia
| |
Collapse
|
46
|
Verheye ML, Backeljau T, d’Udekem d’Acoz C. Looking beneath the tip of the iceberg: diversification of the genus Epimeria on the Antarctic shelf (Crustacea, Amphipoda). Polar Biol 2016. [DOI: 10.1007/s00300-016-1910-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Schiffer PH, Herbig HG. Endorsing Darwin: global biogeography of the epipelagic goose barnaclesLepas spp. (Cirripedia, Lepadomorpha) proves cryptic speciation. Zool J Linn Soc 2016. [DOI: 10.1111/zoj.12373] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Philipp H. Schiffer
- Institute for Genetics; University of Cologne; Zülpicher Strasse 47 D-50674 Köln Germany
- EMBL; Meyerhofstraße 1 D-69117 Heidelberg Germany
| | - Hans-Georg Herbig
- Institute of Geology and Mineralogy; University of Cologne; Zülpicher Strasse 49a D-50674 Köln Germany
| |
Collapse
|
48
|
Eastwood EK, López EH, Drew JA. Population Connectivity Measures of Fishery-Targeted Coral Reef Species to Inform Marine Reserve Network Design in Fiji. Sci Rep 2016; 6:19318. [PMID: 26805954 PMCID: PMC4726325 DOI: 10.1038/srep19318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/07/2015] [Indexed: 11/09/2022] Open
Abstract
Coral reef fish serve as food sources to coastal communities worldwide, yet are vulnerable to mounting anthropogenic pressures like overfishing and climate change. Marine reserve networks have become important tools for mitigating these pressures, and one of the most critical factors in determining their spatial design is the degree of connectivity among different populations of species prioritized for protection. To help inform the spatial design of an expanded reserve network in Fiji, we used rapidly evolving mitochondrial genes to investigate connectivity patterns of three coral reef species targeted by fisheries in Fiji: Epinephelus merra (Serranidae), Halichoeres trimaculatus (Labridae), and Holothuria atra (Holothuriidae). The two fish species, E. merra and Ha. trimaculatus, exhibited low genetic structuring and high amounts of gene flow, whereas the sea cucumber Ho. atra displayed high genetic partitioning and predominantly westward gene flow. The idiosyncratic patterns observed among these species indicate that patterns of connectivity in Fiji are likely determined by a combination of oceanographic and ecological characteristics. Our data indicate that in the cases of species with high connectivity, other factors such as representation or political availability may dictate where reserves are placed. In low connectivity species, ensuring upstream and downstream connections is critical.
Collapse
Affiliation(s)
- Erin K. Eastwood
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, NY
| | - Elora H. López
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, NY
| | - Joshua A. Drew
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, NY
- Department of Vertebrate Zoology, American Museum of Natural History, NY
| |
Collapse
|
49
|
Dueñas LF, Tracey DM, Crawford AJ, Wilke T, Alderslade P, Sánchez JA. The Antarctic Circumpolar Current as a diversification trigger for deep-sea octocorals. BMC Evol Biol 2016; 16:2. [PMID: 26727928 PMCID: PMC4700699 DOI: 10.1186/s12862-015-0574-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 12/19/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Antarctica is surrounded by the Antarctic Circumpolar Current (ACC), the largest and strongest current in the world. Despite its potential importance for shaping biogeographical patterns, the distribution and connectivity of deep-sea populations across the ACC remain poorly understood. In this study we conducted the first assessment of phylogeographical patterns in deep-sea octocorals in the South Pacific and Southern Ocean, specifically a group of closely related bottlebrush octocorals (Primnoidae: Tokoprymno and Thourella), as a test case to study the effect of the ACC on the population structure of brooding species. We assessed the degree to which the ACC constitutes a barrier to gene flow between northern and southern populations and whether the onset of diversification of these corals coincides with the origin of the ACC (Oligocene-Miocene boundary). RESULTS Based on DNA sequences of two nuclear genes from 80 individuals and a combination of phylogeographic model-testing approaches we found a phylogenetic break corresponding to the spatial occurrence of the ACC. We also found significant genetic structure among our four regional populations. However, we uncovered shared haplotypes among certain population pairs, suggesting long-distance, asymmetrical migration. Our divergence time analyses indicated that the separation of amphi-ACC populations took place during the Middle Miocene around 12.6 million years ago, i.e., after the formation of the ACC. CONCLUSION We suggest that the ACC constitutes a semi-permeable barrier to these deep-sea octocorals capable of separating and structuring populations, while allowing short periods of gene flow. The fluctuations in latitudinal positioning of the ACC during the Miocene likely contributed to the diversification of these octocorals. Additionally, we provide evidence that the populations from each of our four sampling regions could actually constitute different species.
Collapse
Affiliation(s)
- Luisa F Dueñas
- Department of Biological Sciences, Universidad de los Andes, A.A. 4976, Bogotá, Colombia.
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany.
| | - Dianne M Tracey
- National Institute of Water and Atmospheric Research-NIWA, Wellington, New Zealand.
| | - Andrew J Crawford
- Department of Biological Sciences, Universidad de los Andes, A.A. 4976, Bogotá, Colombia.
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Panama City, Republic of Panama.
| | - Thomas Wilke
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany.
| | - Phil Alderslade
- CSIRO Marine and Atmospheric Research, PO Box 1538, Hobart, Tasmania, 7001, Australia.
| | - Juan A Sánchez
- Department of Biological Sciences, Universidad de los Andes, A.A. 4976, Bogotá, Colombia.
- Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
50
|
Introduction to the special issue on the Life in Antarctica: Boundaries and Gradients in a Changing Environment (XIth SCAR Biology Symposium). Polar Biol 2015. [DOI: 10.1007/s00300-015-1852-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|