1
|
Vannozzi A, Perin C, Palumbo F, Sandri M, Zuccolotto P, Zenoni S, Farinati S, Barcaccia G, Pindo M, Sonego P, Cestaro A, Lucchin M. Dissecting the effect of soil on plant phenology and berry transcriptional plasticity in two Italian grapevine varieties ( Vitis vinifera L.). HORTICULTURE RESEARCH 2023; 10:uhad056. [PMID: 37213682 PMCID: PMC10199706 DOI: 10.1093/hr/uhad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/23/2023] [Indexed: 05/23/2023]
Abstract
Grapevine embodies a fascinating species as regards phenotypic plasticity and genotype-per-environment interactions. The terroir, namely the set of agri-environmental factors to which a variety is subjected, can influence the phenotype at the physiological, molecular, and biochemical level, representing an important phenomenon connected to the typicality of productions. We investigated the determinants of plasticity by conducting a field-experiment where all terroir variables, except soil, were kept as constant as possible. We isolated the effect of soils collected from different areas, on phenology, physiology, and transcriptional responses of skin and flesh of a red and a white variety of great economic value: Corvina and Glera. Molecular results, together with physio-phenological parameters, suggest a specific effect of soil on grapevine plastic response, highlighting a higher transcriptional plasticity of Glera in respect to Corvina and a marked response of skin compared to flesh. Using a novel statistical approach, we identified clusters of plastic genes subjected to the specific influence of soil. These findings could represent an issue of applicative value, posing the basis for targeted agricultural practices to enhance the desired characteristics for any soil/cultivar combination, to improve vineyards management for a better resource usage and to valorize vineyards uniqueness maximizing the terroir-effect.
Collapse
Affiliation(s)
| | - Corrado Perin
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova Agripolis, 35020 Legnaro, Italy
| | - Fabio Palumbo
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova Agripolis, 35020 Legnaro, Italy
| | - Marco Sandri
- Department of biotechnology, University of Verona, I-37034, Verona, Italy
| | - Paola Zuccolotto
- Big&Open Data Innovation Laboratory, University of Brescia, 25122 Brescia, Italy
| | - Sara Zenoni
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Silvia Farinati
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova Agripolis, 35020 Legnaro, Italy
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova Agripolis, 35020 Legnaro, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Paolo Sonego
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Alessandro Cestaro
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Margherita Lucchin
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padova Agripolis, 35020 Legnaro, Italy
| |
Collapse
|
2
|
Grupstra CGB, Howe-Kerr LI, Veglia AJ, Bryant RL, Coy SR, Blackwelder PL, Correa AMS. Thermal stress triggers productive viral infection of a key coral reef symbiont. THE ISME JOURNAL 2022; 16:1430-1441. [PMID: 35046559 PMCID: PMC9038915 DOI: 10.1038/s41396-022-01194-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 04/27/2023]
Abstract
Climate change-driven ocean warming is increasing the frequency and severity of bleaching events, in which corals appear whitened after losing their dinoflagellate endosymbionts (family Symbiodiniaceae). Viral infections of Symbiodiniaceae may contribute to some bleaching signs, but little empirical evidence exists to support this hypothesis. We present the first temporal analysis of a lineage of Symbiodiniaceae-infecting positive-sense single-stranded RNA viruses ("dinoRNAVs") in coral colonies, which were exposed to a 5-day heat treatment (+2.1 °C). A total of 124 dinoRNAV major capsid protein gene "aminotypes" (unique amino acid sequences) were detected from five colonies of two closely related Pocillopora-Cladocopium (coral-symbiont) combinations in the experiment; most dinoRNAV aminotypes were shared between the two coral-symbiont combinations (64%) and among multiple colonies (82%). Throughout the experiment, seventeen dinoRNAV aminotypes were found only in heat-treated fragments, and 22 aminotypes were detected at higher relative abundances in heat-treated fragments. DinoRNAVs in fragments of some colonies exhibited higher alpha diversity and dispersion under heat stress. Together, these findings provide the first empirical evidence that exposure to high temperatures triggers some dinoRNAVs to switch from a persistent to a productive infection mode within heat-stressed corals. Over extended time frames, we hypothesize that cumulative dinoRNAV production in the Pocillopora-Cladocopium system could affect colony symbiotic status, for example, by decreasing Symbiodiniaceae densities within corals. This study sets the stage for reef-scale investigations of dinoRNAV dynamics during bleaching events.
Collapse
Affiliation(s)
| | | | - Alex J Veglia
- BioSciences at Rice, Rice University, Houston, TX, USA
| | - Reb L Bryant
- BioSciences at Rice, Rice University, Houston, TX, USA
- Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, KS, USA
| | | | - Patricia L Blackwelder
- Department of Chemistry, University of Miami Center for Advanced Microscopy (UMCAM), 1301 Memorial Dr, Coral Gables, FL, 33146-0630, USA
| | | |
Collapse
|
3
|
Bollati E, Rosenberg Y, Simon-Blecher N, Tamir R, Levy O, Huang D. Untangling the molecular basis of coral response to sedimentation. Mol Ecol 2021; 31:884-901. [PMID: 34738686 DOI: 10.1111/mec.16263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022]
Abstract
Urbanized coral reefs are often chronically affected by sedimentation and reduced light levels, yet many species of corals appear to be able to thrive under these highly disturbed conditions. Recently, these marginal ecosystems have gained attention as potential climate change refugia due to the shading effect of suspended sediment, as well as potential reservoirs for stress-tolerant species. However, little research exists on the impact of sedimentation on coral physiology, particularly at the molecular level. Here, we investigated the transcriptomic response to sediment stress in corals of the family Merulinidae from a chronically turbid reef (one genet each of Goniastrea pectinata and Mycedium elephantotus from Singapore) and a clear-water reef (multiple genets of G. pectinata from the Gulf of Aqaba/Eilat). In two ex-situ experiments, we exposed corals to either natural sediment or artificial sediment enriched with organic matter and used whole-transcriptome sequencing (RNA sequencing) to quantify gene expression. Analysis revealed a shared basis for the coral transcriptomic response to sediment stress, which involves the expression of genes broadly related to energy metabolism and immune response. In particular, sediment exposure induced upregulation of anaerobic glycolysis and glyoxylate bypass enzymes, as well as genes involved in hydrogen sulphide metabolism and in pathogen pattern recognition. Our results point towards hypoxia as a probable driver of this transcriptomic response, providing a molecular basis to previous work that identified hypoxia as a primary cause of tissue necrosis in sediment-stressed corals. Potential metabolic and immunity trade-offs of corals living under chronic sedimentation should be considered in future studies on the ecology and conservation of turbid reefs.
Collapse
Affiliation(s)
- Elena Bollati
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Department of Biology, Marine Biology Section, University of Copenhagen, Helsingør, Denmark
| | - Yaeli Rosenberg
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Noa Simon-Blecher
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Raz Tamir
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore.,Centre for Nature-based Climate Solutions, National University of Singapore, Singapore, Singapore
| |
Collapse
|
4
|
Gene Expression and Photophysiological Changes in Pocillopora acuta Coral Holobiont Following Heat Stress and Recovery. Microorganisms 2020; 8:microorganisms8081227. [PMID: 32806647 PMCID: PMC7463449 DOI: 10.3390/microorganisms8081227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/25/2022] Open
Abstract
The ability of corals to withstand changes in their surroundings is a critical survival mechanism for coping with environmental stress. While many studies have examined responses of the coral holobiont to stressful conditions, its capacity to reverse responses and recover when the stressor is removed is not well-understood. In this study, we investigated among-colony responses of Pocillopora acuta from two sites with differing distance to the mainland (Kusu (closer to the mainland) and Raffles Lighthouse (further from the mainland)) to heat stress through differential expression analysis of target genes and quantification of photophysiological metrics. We then examined how these attributes were regulated after the stressor was removed to assess the recovery potential of P. acuta. The fragments that were subjected to heat stress (2 °C above ambient levels) generally exhibited significant reduction in their endosymbiont densities, but the extent of recovery following stress removal varied depending on natal site and colony. There were minimal changes in chl a concentration and maximum quantum yield (Fv/Fm, the proportion of variable fluorescence (Fv) to maximum fluorescence (Fm)) in heat-stressed corals, suggesting that the algal endosymbionts’ Photosystem II was not severely compromised. Significant changes in gene expression levels of selected genes of interest (GOI) were observed following heat exposure and stress removal among sites and colonies, including Actin, calcium/calmodulin-dependent protein kinase type IV (Camk4), kinesin-like protein (KIF9), and small heat shock protein 16.1 (Hsp16.1). The most responsive GOIs were Actin, a major component of the cytoskeleton, and the adaptive immune-related Camk4 which both showed significant reduction following heat exposure and subsequent upregulation during the recovery phase. Our findings clearly demonstrate specific responses of P. acuta in both photophysiological attributes and gene expression levels, suggesting differential capacity of P. acuta corals to tolerate heat stress depending on the colony, so that certain colonies may be more resilient than others.
Collapse
|
5
|
Studivan MS, Voss JD. Transcriptomic plasticity of mesophotic corals among natural populations and transplants of
Montastraea cavernosa
in the Gulf of Mexico and Belize. Mol Ecol 2020; 29:2399-2415. [DOI: 10.1111/mec.15495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Michael S. Studivan
- Harbor Branch Oceanographic Institute Florida Atlantic University Fort Pierce FL USA
- Cooperative Institute for Marine and Atmospheric Studies University of Miami Rosenstiel School of Marine and Atmospheric Sciences Miami FL USA
| | - Joshua D. Voss
- Harbor Branch Oceanographic Institute Florida Atlantic University Fort Pierce FL USA
| |
Collapse
|
6
|
Drury C. Resilience in reef-building corals: The ecological and evolutionary importance of the host response to thermal stress. Mol Ecol 2020; 29:448-465. [PMID: 31845413 DOI: 10.1111/mec.15337] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
Coral reefs are under extreme threat due to a number of stressors, but temperature increases due to changing climate are the most severe. Rising ocean temperatures coupled with local extremes lead to extensive bleaching, where the coral-algal symbiosis breaks down and corals may die, compromising the structure and function of reefs. Although the symbiotic nature of the coral colony has historically been a focus of research on coral resilience, the host itself is a foundational component in the response to thermal stress. Fixed effects in the coral host set trait baselines through evolutionary processes, acting on many loci of small effect to create mosaics of thermal tolerance across latitudes and individual coral reefs. These genomic differences can be strongly heritable, producing wide variation among clones of different genotypes or families of a specific larval cross. Phenotypic plasticity is overlaid on these baselines and a growing body of knowledge demonstrates the potential for acclimatization of reef-building corals through a variety of mechanisms that promote resilience and stress tolerance. The long-term persistence of coral reefs will require many of these mechanisms to adjust to warmer temperatures within a generation, bridging the gap to reproductive events that allow recombination of standing diversity and adaptive change. Business-as-usual climate scenarios will probably lead to the loss of some coral populations or species in the future, so the interaction between intragenerational effects and evolutionary pressure is critical for the survival of reefs.
Collapse
|
7
|
Plasticity in Three-Dimensional Geometry of Branching Corals Along a Cross-Shelf Gradient. DIVERSITY 2019. [DOI: 10.3390/d11030044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Scleractinian corals often exhibit high levels of morphological plasticity, which is potentially important in enabling individual species to occupy benthic spaces across a wide range of environmental gradients. This study tested for differences in the three-dimensional (3D) geometry of three branching corals, Acropora nasuta, Pocillopora spp. and Stylophora pistillata among inner-, mid- and outer-shelf reefs in the central Great Barrier Reef, Australia. Important attributes of coral morphology (e.g., surface area to volume ratio) were expected to vary linearly across the shelf in accordance with marked gradients in environmental conditions, but instead, we detected non-linear trends in the colony structure of A. nasuta and Pocillopora spp. The surface area to volume ratio of both A. nasuta and Pocillopora spp. was highest at mid-shelf locations, (reflecting higher colony complexity) and was significantly lower at both inner-shelf and outer-shelf reefs. The branching structure of these corals was also far more tightly packed at inner-shelf and outer-shelf reefs, compared to mid-shelf reefs. Apparent declines in complexity and inter-branch spacing at inner and outer-shelf reefs (compared to conspecifics from mid-shelf reefs) may reflect changes driven by gradients of sedimentation and hydrodynamics. The generality and explanations of observed patterns warrant further investigation, which is very feasible using the 3D-photogrammetry techniques used in this study.
Collapse
|
8
|
Quigley KM, Strader ME, Matz MV. Relationship between Acropora millepora juvenile fluorescence and composition of newly established Symbiodinium assemblage. PeerJ 2018; 6:e5022. [PMID: 29922515 PMCID: PMC6005160 DOI: 10.7717/peerj.5022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/30/2018] [Indexed: 11/20/2022] Open
Abstract
Coral-dinoflagellate symbiosis is the key biological interaction enabling existence of modern-type coral reefs, but the mechanisms regulating initial host-symbiont attraction, recognition and symbiont proliferation thus far remain largely unclear. A common reef-building coral, Acropora millepora, displays conspicuous fluorescent polymorphism during all phases of its life cycle, due to the differential expression of fluorescent proteins (FPs) of the green fluorescent protein family. In this study, we examine whether fluorescent variation in young coral juveniles exposed to natural sediments is associated with the uptake of disparate Symbiodinium assemblages determined using ITS-2 deep sequencing. We found that Symbiodinium assemblages varied significantly when redness values varied, specifically in regards to abundances of clades A and C. Whether fluorescence was quantified as a categorical or continuous trait, clade A was found at higher abundances in redder juveniles. These preliminary results suggest juvenile fluorescence may be associated with Symbiodinium uptake, potentially acting as either an attractant to ecologically specific types or as a mechanism to modulate the internal light environment to control Symbiodinium physiology within the host.
Collapse
Affiliation(s)
- Kate M. Quigley
- College of Marine and Environmental Sciences, and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- AIMS@JCU, Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Marie E. Strader
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States of America
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| | - Mikhail V. Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
9
|
Morgan MB, Edge SE, Venn AA, Jones RJ. Developing transcriptional profiles in Orbicella franksi exposed to copper: Characterizing responses associated with a spectrum of laboratory-controlled environmental conditions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 189:60-76. [PMID: 28599170 DOI: 10.1016/j.aquatox.2017.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/23/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Michael B Morgan
- Department of Biology, Berry College, School of Mathematics and Natural Sciences, 2277 Martha Berry Hwy, Mount Berry, GA, 30149, USA.
| | - Sara E Edge
- Hawaii Pacific University, 45-045 Kamehameha Hwy, Kaneohe, HI, 96744, USA
| | - Alexander A Venn
- Marine Biology Department et Laboratoire International Associé 647 "BIOSENSIB", Centre Scientifique de Monaco, 8 Quai Antoine 1er, MC98000, Monaco
| | - Ross J Jones
- Australian Institute of Marine Science (AIMS), Perth, 6009, Australia
| |
Collapse
|
10
|
Ruiz-Jones LJ, Palumbi SR. Tidal heat pulses on a reef trigger a fine-tuned transcriptional response in corals to maintain homeostasis. SCIENCE ADVANCES 2017; 3:e1601298. [PMID: 28345029 PMCID: PMC5342658 DOI: 10.1126/sciadv.1601298] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 01/30/2017] [Indexed: 05/20/2023]
Abstract
For reef-building corals, extreme stress exposure can result in loss of endosymbionts, leaving colonies bleached. However, corals in some habitats are commonly exposed to natural cycles of sub-bleaching stress, often leading to higher stress tolerance. We monitored transcription in the tabletop coral Acropora hyacinthus daily for 17 days over a strong tidal cycle that included extreme temperature spikes, and show that increases in temperature above 30.5°C triggered a strong transcriptional response. The transcriptomic time series data allowed us to identify a set of genes with coordinated expression that were activated only on days with strong tides, high temperature, and large diel pH and oxygen changes. The responsive genes are enriched for gene products essential to the unfolded protein response, an ancient cellular response to endoplasmic reticulum stress. After the temporary heat pulses passed, expression of these genes immediately decreased, suggesting that homeostasis was restored to the endoplasmic reticulum. In a laboratory temperature stress experiment, we found that the expression of these environmentally responsive genes increased as corals bleached, showing that the unfolded protein response becomes more intense during more severe stress. Our results point to the unfolded protein response as a first line of defense that acroporid corals use when coping with environmental stress on the reef, thus enhancing our understanding of coral stress physiology during a time of major concern for reefs.
Collapse
|
11
|
Wessels W, Sprungala S, Watson SA, Miller DJ, Bourne DG. The microbiome of the octocoral Lobophytum pauciflorum: minor differences between sexes and resilience to short-term stress. FEMS Microbiol Ecol 2017; 93:2975567. [DOI: 10.1093/femsec/fix013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/02/2017] [Indexed: 11/13/2022] Open
|
12
|
van de Water JAJM, Lamb JB, Heron SF, van Oppen MJH, Willis BL. Temporal patterns in innate immunity parameters in reef‐building corals and linkages with local climatic conditions. Ecosphere 2016. [DOI: 10.1002/ecs2.1505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Jeroen A. J. M. van de Water
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Queensland 4811 Australia
- College of Marine and Environmental Sciences James Cook University Townsville Queensland 4811 Australia
- AIMS@JCU James Cook University Townsville Queensland 4811 Australia
- Australian Institute of Marine Science PMB 3, Townsville MC Townsville Queensland 4810 Australia
- Centre Scientifique de Monaco MC 98000 Monaco
| | - Joleah B. Lamb
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Queensland 4811 Australia
- College of Marine and Environmental Sciences James Cook University Townsville Queensland 4811 Australia
- AIMS@JCU James Cook University Townsville Queensland 4811 Australia
- Department of Ecology and Evolutionary Biology Cornell University Ithaca New York 14850 USA
| | - Scott F. Heron
- National Oceanic and Atmospheric Administration–Coral Reef Watch James Cook University Townsville Queensland 4811 Australia
- Marine Geophysical Laboratory Physics Department College of Science, Technology and Engineering James Cook University Townsville Queensland 4811 Australia
| | - Madeleine J. H. van Oppen
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Queensland 4811 Australia
- AIMS@JCU James Cook University Townsville Queensland 4811 Australia
- Australian Institute of Marine Science PMB 3, Townsville MC Townsville Queensland 4810 Australia
- School of BioSciences The University of Melbourne Parkville Victoria 3010 Australia
| | - Bette L. Willis
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Queensland 4811 Australia
- College of Marine and Environmental Sciences James Cook University Townsville Queensland 4811 Australia
- AIMS@JCU James Cook University Townsville Queensland 4811 Australia
| |
Collapse
|
13
|
Strader ME, Aglyamova GV, Matz MV. Red fluorescence in coral larvae is associated with a diapause‐like state. Mol Ecol 2016; 25:559-69. [DOI: 10.1111/mec.13488] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Marie E. Strader
- Department of Integrative Biology The University of Texas at Austin 1 University Station C0930 Austin TX 78712 USA
| | - Galina V. Aglyamova
- Department of Integrative Biology The University of Texas at Austin 1 University Station C0930 Austin TX 78712 USA
| | - Mikhail V. Matz
- Department of Integrative Biology The University of Texas at Austin 1 University Station C0930 Austin TX 78712 USA
| |
Collapse
|
14
|
Bertucci A, Forêt S, Ball EE, Miller DJ. Transcriptomic differences between day and night in Acropora millepora provide new insights into metabolite exchange and light-enhanced calcification in corals. Mol Ecol 2015. [PMID: 26198296 DOI: 10.1111/mec.13328] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The evolutionary success of reef-building corals is often attributed to their symbiotic relationship with photosynthetic dinoflagellates of the genus Symbiodinium, but metabolic interactions between the partners and the molecular bases of light-enhanced calcification (LEC) are not well understood. Here, the metabolic bases of the interaction between the coral Acropora millepora and its dinoflagellate symbiont were investigated by comparing gene expression levels under light and dark conditions at the whole transcriptome level. Among the 497 differentially expressed genes identified, a suite of genes involved in cholesterol transport was found to be upregulated under light conditions, confirming the significance of this compound in the coral symbiosis. Although ion transporters likely to have roles in calcification were not differentially expressed in this study, expression levels of many genes associated with skeletal organic matrix composition and organization were higher in light conditions. This implies that the rate of organic matrix synthesis is one factor limiting calcification at night. Thus, LEC during the day is likely to be a consequence of increases in both matrix synthesis and the supply of precursor molecules as a result of photosynthetic activity.
Collapse
Affiliation(s)
- A Bertucci
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, 4811, Australia
| | - S Forêt
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, 4811, Australia.,Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Bldg. 46, Canberra, ACT, 0200, Australia
| | - E E Ball
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, 4811, Australia.,Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Bldg. 46, Canberra, ACT, 0200, Australia
| | - D J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, 4811, Australia.,Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Qld, 4811, Australia
| |
Collapse
|
15
|
Rocker MM, Noonan S, Humphrey C, Moya A, Willis BL, Bay LK. Expression of calcification and metabolism-related genes in response to elevated pCO2 and temperature in the reef-building coral Acropora millepora. Mar Genomics 2015; 24 Pt 3:313-8. [PMID: 26275825 DOI: 10.1016/j.margen.2015.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 02/07/2023]
Abstract
Declining health of scleractinian corals in response to deteriorating environmental conditions is widely acknowledged, however links between physiological and functional genomic responses of corals are less well understood. Here we explore growth and the expression of 20 target genes with putative roles in metabolism and calcification in the branching coral, Acropora millepora, in two separate experiments: 1) elevated pCO2 (464, 822, 1187 and 1638 μatm) and ambient temperature (27°C), and 2) elevated pCO2 (490 and 822 μatm) and temperature (28 and 31 °C). After 14 days of exposure to elevated pCO2 and ambient temperatures, no evidence of differential expression of either calcification or metabolism genes was detected between control and elevated pCO2 treatments. After 37 days of exposure to control and elevated pCO2, Ubiquinol-Cytochrome-C Reductase Subunit 2 gene (QCR2; a gene involved in complex III of the electron chain transport within the mitochondria and critical for generation of ATP) was significantly down-regulated in the elevated pCO2 treatment in both ambient and elevated temperature treatments. Overall, the general absence of a strong response to elevated pCO2 and temperature by the other 19 targeted calcification and metabolism genes suggests that corals may not be affected by these stressors on longer time scales (37 days). These results also highlight the potential for QCR2 to act as a biomarker of coral genomic responses to changing environments.
Collapse
Affiliation(s)
- Melissa M Rocker
- Australian Institute of Marine Science, PMB #3, Townsville MC, QLD 4810, Australia; AIMS@JCU, Australian Institute of Marine Science, James Cook University, Townsville, QLD 4811, Australia; College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia.
| | - Sam Noonan
- Australian Institute of Marine Science, PMB #3, Townsville MC, QLD 4810, Australia
| | - Craig Humphrey
- Australian Institute of Marine Science, PMB #3, Townsville MC, QLD 4810, Australia
| | - Aurelie Moya
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Bette L Willis
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Line K Bay
- Australian Institute of Marine Science, PMB #3, Townsville MC, QLD 4810, Australia; ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
16
|
Wright RM, Aglyamova GV, Meyer E, Matz MV. Gene expression associated with white syndromes in a reef building coral, Acropora hyacinthus. BMC Genomics 2015; 16:371. [PMID: 25956907 PMCID: PMC4425862 DOI: 10.1186/s12864-015-1540-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corals are capable of launching diverse immune defenses at the site of direct contact with pathogens, but the molecular mechanisms of this activity and the colony-wide effects of such stressors remain poorly understood. Here we compared gene expression profiles in eight healthy Acropora hyacinthus colonies against eight colonies exhibiting tissue loss commonly associated with white syndromes, all collected from a natural reef environment near Palau. Two types of tissues were sampled from diseased corals: visibly affected and apparently healthy. RESULTS Tag-based RNA-Seq followed by weighted gene co-expression network analysis identified groups of co-regulated differentially expressed genes between all health states (disease lesion, apparently healthy tissues of diseased colonies, and fully healthy). Differences between healthy and diseased tissues indicate activation of several innate immunity and tissue repair pathways accompanied by reduced calcification and the switch towards metabolic reliance on stored lipids. Unaffected parts of diseased colonies, although displaying a trend towards these changes, were not significantly different from fully healthy samples. Still, network analysis identified a group of genes, suggestive of altered immunity state, that were specifically up-regulated in unaffected parts of diseased colonies. CONCLUSIONS Similarity of fully healthy samples to apparently healthy parts of diseased colonies indicates that systemic effects of white syndromes on A. hyacinthus are weak, which implies that the coral colony is largely able to sustain its physiological performance despite disease. The genes specifically up-regulated in unaffected parts of diseased colonies, instead of being the consequence of disease, might be related to the originally higher susceptibility of these colonies to naturally occurring white syndromes.
Collapse
Affiliation(s)
- Rachel M Wright
- Institute for Cell and Molecular Biology, The University of Texas at Austin, Austin, USA.
| | - Galina V Aglyamova
- Department of Integrative Biology, The University of Texas at Austin, Austin, USA.
| | - Eli Meyer
- Department of Zoology, Oregon State University, Corvallis, USA.
| | - Mikhail V Matz
- Department of Integrative Biology, The University of Texas at Austin, Austin, USA.
| |
Collapse
|
17
|
Rosic N, Kaniewska P, Chan CKK, Ling EYS, Edwards D, Dove S, Hoegh-Guldberg O. Early transcriptional changes in the reef-building coral Acropora aspera in response to thermal and nutrient stress. BMC Genomics 2014; 15:1052. [PMID: 25467196 PMCID: PMC4301396 DOI: 10.1186/1471-2164-15-1052] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 11/12/2014] [Indexed: 11/10/2022] Open
Abstract
Background Changes to the environment as a result of human activities can result in a range of impacts on reef building corals that include coral bleaching (reduced concentrations of algal symbionts), decreased coral growth and calcification, and increased incidence of diseases and mortality. Understanding how elevated temperatures and nutrient concentration affect early transcriptional changes in corals and their algal endosymbionts is critically important for evaluating the responses of coral reefs to global changes happening in the environment. Here, we investigated the expression of genes in colonies of the reef-building coral Acropora aspera exposed to short-term sub-lethal levels of thermal (+6°C) and nutrient stress (ammonium-enrichment: 20 μM). Results The RNA-Seq data provided hundreds of differentially expressed genes (DEGs) corresponding to various stress regimes, with 115 up- and 78 down-regulated genes common to all stress regimes. A list of DEGs included up-regulated coral genes like cytochrome c oxidase and NADH-ubiquinone oxidoreductase and up-regulated photosynthetic genes of algal origin, whereas coral GFP-like fluorescent chromoprotein and sodium/potassium-transporting ATPase showed reduced transcript levels. Taxonomic analyses of the coral holobiont disclosed the dominant presence of transcripts from coral (~70%) and Symbiodinium (~10-12%), as well as ~15-20% of unknown sequences which lacked sequence identity to known genes. Gene ontology analyses revealed enriched pathways, which led to changes in the dynamics of protein networks affecting growth, cellular processes, and energy requirement. Conclusions In corals with preserved symbiont physiological performance (based on Fv/Fm, photo-pigment and symbiont density), transcriptomic changes and DEGs provided important insight into early stages of the stress response in the coral holobiont. Although there were no signs of coral bleaching after exposure to short-term thermal and nutrient stress conditions, we managed to detect oxidative stress and apoptotic changes on a molecular level and provide a list of prospective stress biomarkers for both partners in symbiosis. Consequently, our findings are important for understanding and anticipating impacts of anthropogenic global climate change on coral reefs. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1052) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nedeljka Rosic
- School of Biological Sciences, The University of Queensland, Brisbane Qld 4072, Australia.
| | | | | | | | | | | | | |
Collapse
|
18
|
Maor-Landaw K, Karako-Lampert S, Waldman Ben-Asher H, Goffredo S, Falini G, Dubinsky Z, Levy O. Gene expression profiles during short-term heat stress in the red sea coral Stylophora pistillata. GLOBAL CHANGE BIOLOGY 2014; 20:3026-35. [PMID: 24706387 DOI: 10.1111/gcb.12592] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 02/09/2014] [Accepted: 02/10/2014] [Indexed: 05/21/2023]
Abstract
During the past several decades, corals worldwide have been affected by severe bleaching events leading to wide-spread coral mortality triggered by global warming. The symbiotic Red Sea coral Stylophora pistillata from the Gulf of Eilat is considered an opportunistic 'r' strategist. It can thrive in relatively unstable environments and is considered a stress-tolerant species. Here, we used a S. pistillata custom microarray to examine gene expression patterns and cellular pathways during short-term (13-day) heat stress. The results allowed us to identify a two-step reaction to heat stress, which intensified significantly as the temperature was raised to a 32 °C threshold, beyond which, coping strategies failed at 34 °C. We identified potential 'early warning genes' and 'severe heat-related genes'. Our findings suggest that during short-term heat stress, S. pistillata may divert cellular energy into mechanisms such as the ER-unfolded protein response (UPR) and ER-associated degradation (ERAD) at the expense of growth and biomineralization processes in an effort to survive and subsequently recover from the stress. We suggest a mechanistic theory for the heat stress responses that may explain the success of some species which can thrive under a wider range of temperatures relative to others.
Collapse
Affiliation(s)
- Keren Maor-Landaw
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | | | | | | | | | | | | |
Collapse
|
19
|
Roth MS. The engine of the reef: photobiology of the coral-algal symbiosis. Front Microbiol 2014; 5:422. [PMID: 25202301 PMCID: PMC4141621 DOI: 10.3389/fmicb.2014.00422] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/25/2014] [Indexed: 01/09/2023] Open
Abstract
Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology, and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral-algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral-algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral-algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral-algal symbiosis, and recent advances in the field. Studies integrating physiology with the developing "omics" fields will provide new insights into the coral-algal symbiosis. Greater physiological and ecological understanding of the coral-algal symbiosis is needed for protection and conservation of coral reefs.
Collapse
Affiliation(s)
- Melissa S. Roth
- Department of Plant and Microbial Biology, University of California BerkeleyBerkeley, CA, USA
| |
Collapse
|
20
|
Roth MS, Deheyn DD. Effects of cold stress and heat stress on coral fluorescence in reef-building corals. Sci Rep 2013; 3:1421. [PMID: 23478289 PMCID: PMC3594756 DOI: 10.1038/srep01421] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/25/2013] [Indexed: 11/28/2022] Open
Abstract
Widespread temperature stress has caused catastrophic coral bleaching events that have been devastating for coral reefs. Here, we evaluate whether coral fluorescence could be utilized as a noninvasive assessment for coral health. We conducted cold and heat stress treatments on the branching coral Acropora yongei, and found that green fluorescent protein (GFP) concentration and fluorescence decreased with declining coral health, prior to initiation of bleaching. Ultimately, cold-treated corals acclimated and GFP concentration and fluorescence recovered. In contrast, heat-treated corals eventually bleached but showed strong fluorescence despite reduced GFP concentration, likely resulting from the large reduction in shading from decreased dinoflagellate density. Consequently, GFP concentration and fluorescence showed distinct correlations in non-bleached and bleached corals. Green fluorescence was positively correlated with dinoflagellate photobiology, but its closest correlation was with coral growth suggesting that green fluorescence could be used as a physiological proxy for health in some corals.
Collapse
Affiliation(s)
- Melissa S Roth
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA.
| | | |
Collapse
|
21
|
Kenkel CD, Meyer E, Matz MV. Gene expression under chronic heat stress in populations of the mustard hill coral (Porites astreoides) from different thermal environments. Mol Ecol 2013; 22:4322-4334. [DOI: 10.1111/mec.12390] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/06/2013] [Accepted: 05/08/2013] [Indexed: 11/30/2022]
Affiliation(s)
- C. D. Kenkel
- Section of Integrative Biology; The University of Texas at Austin; 1 University Station C0990 Austin TX 78712 USA
| | - E. Meyer
- Department of Zoology; Oregon State University; 3029 Cordley Hall Corvallis OR 97331 USA
| | - M. V. Matz
- Section of Integrative Biology; The University of Texas at Austin; 1 University Station C0990 Austin TX 78712 USA
| |
Collapse
|
22
|
Hume B, D'Angelo C, Burt J, Baker AC, Riegl B, Wiedenmann J. Corals from the Persian/Arabian Gulf as models for thermotolerant reef-builders: prevalence of clade C3 Symbiodinium, host fluorescence and ex situ temperature tolerance. MARINE POLLUTION BULLETIN 2013; 72:313-22. [PMID: 23352079 DOI: 10.1016/j.marpolbul.2012.11.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 11/09/2012] [Accepted: 11/17/2012] [Indexed: 05/03/2023]
Abstract
Corals in the Arabian/Persian Gulf endure summer temperatures of up to 36°C, making them ideal subjects to study the mechanisms underlying thermal tolerance. Unexpectedly, we found the "generalist" Symbiodinium clade C3 to be the prevalent symbiont among seven coral species from Abu Dhabi (UAE) waters. Moreover, C3 represented the only dominant symbiont type in Porites spp. from this region. The "thermotolerant" symbionts D1a and C15 were not encountered, indicating that the association with these symbionts cannot be the sole reason for the heat tolerance of Gulf corals. The association of Porites lobata with specific symbiont types (C3 vs. C15) in samples from habitats with very different temperature regimes (Abu Dhabi vs. Fiji) remained unaffected by laboratory culture. During temperature stress experiments specimens from both locations strongly downregulated green fluorescent protein (GFP)-like pigments. However, the Abu Dhabi samples were less prone to bleaching and showed lower mortality.
Collapse
Affiliation(s)
- B Hume
- National Oceanography Centre, Southampton (NOCS), University of Southampton, European Way, SO143ZH Southampton, UK
| | | | | | | | | | | |
Collapse
|
23
|
Dunlap WC, Starcevic A, Baranasic D, Diminic J, Zucko J, Gacesa R, van Oppen MJH, Hranueli D, Cullum J, Long PF. KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase - an open access and searchable database of a coral genome. BMC Genomics 2013; 14:509. [PMID: 23889801 PMCID: PMC3750612 DOI: 10.1186/1471-2164-14-509] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/15/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Contemporary coral reef research has firmly established that a genomic approach is urgently needed to better understand the effects of anthropogenic environmental stress and global climate change on coral holobiont interactions. Here we present KEGG orthology-based annotation of the complete genome sequence of the scleractinian coral Acropora digitifera and provide the first comprehensive view of the genome of a reef-building coral by applying advanced bioinformatics. DESCRIPTION Sequences from the KEGG database of protein function were used to construct hidden Markov models. These models were used to search the predicted proteome of A. digitifera to establish complete genomic annotation. The annotated dataset is published in ZoophyteBase, an open access format with different options for searching the data. A particularly useful feature is the ability to use a Google-like search engine that links query words to protein attributes. We present features of the annotation that underpin the molecular structure of key processes of coral physiology that include (1) regulatory proteins of symbiosis, (2) planula and early developmental proteins, (3) neural messengers, receptors and sensory proteins, (4) calcification and Ca2+-signalling proteins, (5) plant-derived proteins, (6) proteins of nitrogen metabolism, (7) DNA repair proteins, (8) stress response proteins, (9) antioxidant and redox-protective proteins, (10) proteins of cellular apoptosis, (11) microbial symbioses and pathogenicity proteins, (12) proteins of viral pathogenicity, (13) toxins and venom, (14) proteins of the chemical defensome and (15) coral epigenetics. CONCLUSIONS We advocate that providing annotation in an open-access searchable database available to the public domain will give an unprecedented foundation to interrogate the fundamental molecular structure and interactions of coral symbiosis and allow critical questions to be addressed at the genomic level based on combined aspects of evolutionary, developmental, metabolic, and environmental perspectives.
Collapse
Affiliation(s)
- Walter C Dunlap
- Centre for Marine Microbiology and Genetics, Australian Institute of Marine Science, PMB No. 3 Townsville MC, Townsville 4810, Queensland, Australia
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Antonio Starcevic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Damir Baranasic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Janko Diminic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jurica Zucko
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ranko Gacesa
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Madeleine JH van Oppen
- Centre for Marine Microbiology and Genetics, Australian Institute of Marine Science, PMB No. 3 Townsville MC, Townsville 4810, Queensland, Australia
| | - Daslav Hranueli
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - John Cullum
- Department of Genetics, University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
| | - Paul F Long
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
- Department of Chemistry King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
24
|
Weiss Y, Forêt S, Hayward DC, Ainsworth T, King R, Ball EE, Miller DJ. The acute transcriptional response of the coral Acropora millepora to immune challenge: expression of GiMAP/IAN genes links the innate immune responses of corals with those of mammals and plants. BMC Genomics 2013; 14:400. [PMID: 23768317 PMCID: PMC3723955 DOI: 10.1186/1471-2164-14-400] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 05/24/2013] [Indexed: 01/07/2023] Open
Abstract
Background As a step towards understanding coral immunity we present the first whole transcriptome analysis of the acute responses of Acropora millepora to challenge with the bacterial cell wall derivative MDP and the viral mimic poly I:C, defined immunogens provoking distinct but well characterised responses in higher animals. Results These experiments reveal similarities with the responses both of arthropods and mammals, as well as coral-specific effects. The most surprising finding was that MDP specifically induced three members of the GiMAP gene family, which has been implicated in immunity in mammals but is absent from Drosophila and Caenorhabditis. Like their mammalian homologs, GiMAP genes are arranged in a tandem cluster in the coral genome. Conclusions A phylogenomic survey of this gene family implies ancient origins, multiple independent losses and lineage-specific expansions during animal evolution. Whilst functional convergence cannot be ruled out, GiMAP expression in corals may reflect an ancestral role in immunity, perhaps in phagolysosomal processing.
Collapse
Affiliation(s)
- Yvonne Weiss
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | | | | | | | | | | | | |
Collapse
|
25
|
Dal Santo S, Tornielli GB, Zenoni S, Fasoli M, Farina L, Anesi A, Guzzo F, Delledonne M, Pezzotti M. The plasticity of the grapevine berry transcriptome. Genome Biol 2013; 14:r54. [PMID: 23759170 PMCID: PMC3706941 DOI: 10.1186/gb-2013-14-6-r54] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/15/2013] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Phenotypic plasticity refers to the range of phenotypes a single genotype can express as a function of its environment. These phenotypic variations are attributable to the effect of the environment on the expression and function of genes influencing plastic traits. We investigated phenotypic plasticity in grapevine by comparing the berry transcriptome in a single clone of the vegetatively-propagated common grapevine species Vitis vinifera cultivar Corvina through 3 consecutive growth years cultivated in 11 different vineyards in the Verona area of Italy. RESULTS Most of the berry transcriptome clustered by year of growth rather than common environmental conditions or viticulture practices, and transcripts related to secondary metabolism showed high sensitivity towards different climates, as confirmed also by metabolomic data obtained from the same samples. When analyzed in 11 vineyards during 1 growth year, the environmentally-sensitive berry transcriptome comprised 5% of protein-coding genes and 18% of the transcripts modulated during berry development. Plastic genes were particularly enriched in ontology categories such as transcription factors, translation, transport, and secondary metabolism. Specific plastic transcripts were associated with groups of vineyards sharing common viticulture practices or environmental conditions, and plastic transcriptome reprogramming was more intense in the year characterized by extreme weather conditions. We also identified a set of genes that lacked plasticity, showing either constitutive expression or similar modulation in all berries. CONCLUSIONS Our data reveal candidate genes potentially responsible for the phenotypic plasticity of grapevine and provide the first step towards the characterization of grapevine transcriptome plasticity under different agricultural systems.
Collapse
Affiliation(s)
- Silvia Dal Santo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15 - Ca' Vignal, 37134 Verona, Italy
| | | | - Sara Zenoni
- Department of Biotechnology, University of Verona, Strada Le Grazie 15 - Ca' Vignal, 37134 Verona, Italy
| | - Marianna Fasoli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15 - Ca' Vignal, 37134 Verona, Italy
| | - Lorenzo Farina
- Department of Computer, Control, and Management Engineering Antonio Ruberti, Sapienza University of Rome, Via Ariosto 25, 00185 Rome, Italy
| | - Andrea Anesi
- Department of Biotechnology, University of Verona, Strada Le Grazie 15 - Ca' Vignal, 37134 Verona, Italy
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15 - Ca' Vignal, 37134 Verona, Italy
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Strada Le Grazie 15 - Ca' Vignal, 37134 Verona, Italy
| | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Strada Le Grazie 15 - Ca' Vignal, 37134 Verona, Italy
| |
Collapse
|
26
|
Smyth GK, Altman NS. Separate-channel analysis of two-channel microarrays: recovering inter-spot information. BMC Bioinformatics 2013; 14:165. [PMID: 23705896 PMCID: PMC3673852 DOI: 10.1186/1471-2105-14-165] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 05/10/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Two-channel (or two-color) microarrays are cost-effective platforms for comparative analysis of gene expression. They are traditionally analysed in terms of the log-ratios (M-values) of the two channel intensities at each spot, but this analysis does not use all the information available in the separate channel observations. Mixed models have been proposed to analyse intensities from the two channels as separate observations, but such models can be complex to use and the gain in efficiency over the log-ratio analysis is difficult to quantify. Mixed models yield test statistics for the null distributions can be specified only approximately, and some approaches do not borrow strength between genes. RESULTS This article reformulates the mixed model to clarify the relationship with the traditional log-ratio analysis, to facilitate information borrowing between genes, and to obtain an exact distributional theory for the resulting test statistics. The mixed model is transformed to operate on the M-values and A-values (average log-expression for each spot) instead of on the log-expression values. The log-ratio analysis is shown to ignore information contained in the A-values. The relative efficiency of the log-ratio analysis is shown to depend on the size of the intraspot correlation. A new separate channel analysis method is proposed that assumes a constant intra-spot correlation coefficient across all genes. This approach permits the mixed model to be transformed into an ordinary linear model, allowing the data analysis to use a well-understood empirical Bayes analysis pipeline for linear modeling of microarray data. This yields statistically powerful test statistics that have an exact distributional theory. The log-ratio, mixed model and common correlation methods are compared using three case studies. The results show that separate channel analyses that borrow strength between genes are more powerful than log-ratio analyses. The common correlation analysis is the most powerful of all. CONCLUSIONS The common correlation method proposed in this article for separate-channel analysis of two-channel microarray data is no more difficult to apply in practice than the traditional log-ratio analysis. It provides an intuitive and powerful means to conduct analyses and make comparisons that might otherwise not be possible.
Collapse
Affiliation(s)
- Gordon K Smyth
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Vic 3052, Australia
| | | |
Collapse
|
27
|
Bay LK, Guérécheau A, Andreakis N, Ulstrup KE, Matz MV. Gene expression signatures of energetic acclimatisation in the reef building coral Acropora millepora. PLoS One 2013; 8:e61736. [PMID: 23671571 PMCID: PMC3650039 DOI: 10.1371/journal.pone.0061736] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/13/2013] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Understanding the mechanisms by which natural populations cope with environmental stress is paramount to predict their persistence in the face of escalating anthropogenic impacts. Reef-building corals are increasingly exposed to local and global stressors that alter nutritional status causing reduced fitness and mortality, however, these responses can vary considerably across species and populations. METHODOLOGY/PRINCIPAL FINDINGS We compare the expression of 22 coral host genes in individuals from an inshore and an offshore reef location using quantitative Reverse Transcription-PCR (qRT-PCR) over the course of 26 days following translocation into a shaded, filtered seawater environment. Declines in lipid content and PSII activity of the algal endosymbionts (Symbiodinium ITS-1 type C2) over the course of the experiment indicated that heterotrophic uptake and photosynthesis were limited, creating nutritional deprivation conditions. Regulation of coral host genes involved in metabolism, CO2 transport and oxidative stress could be detected already after five days, whereas PSII activity took twice as long to respond. Opposing expression trajectories of Tgl, which releases fatty acids from the triacylglycerol storage, and Dgat1, which catalyses the formation of triglycerides, indicate that the decline in lipid content can be attributed, at least in part, by mobilisation of triacylglycerol stores. Corals from the inshore location had initially higher lipid content and showed consistently elevated expression levels of two genes involved in metabolism (aldehyde dehydrogenase) and calcification (carbonic anhydrase). CONCLUSIONS/SIGNIFICANCE Coral host gene expression adjusts rapidly upon change in nutritional conditions, and therefore can serve as an early signature of imminent coral stress. Consistent gene expression differences between populations indicate that corals acclimatize and/or adapt to local environments. Our results set the stage for analysis of these processes in natural coral populations, to better understand the responses of coral communities to global climate change and to develop more efficient management strategies.
Collapse
Affiliation(s)
- Line K Bay
- Climate Change and Ocean Acidification Team, Australian Institute of Marine Science, Townsville, Queensland, Australia.
| | | | | | | | | |
Collapse
|
28
|
Granados-Cifuentes C, Bellantuono AJ, Ridgway T, Hoegh-Guldberg O, Rodriguez-Lanetty M. High natural gene expression variation in the reef-building coral Acropora millepora: potential for acclimative and adaptive plasticity. BMC Genomics 2013; 14:228. [PMID: 23565725 PMCID: PMC3630057 DOI: 10.1186/1471-2164-14-228] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 02/27/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Ecosystems worldwide are suffering the consequences of anthropogenic impact. The diverse ecosystem of coral reefs, for example, are globally threatened by increases in sea surface temperatures due to global warming. Studies to date have focused on determining genetic diversity, the sequence variability of genes in a species, as a proxy to estimate and predict the potential adaptive response of coral populations to environmental changes linked to climate changes. However, the examination of natural gene expression variation has received less attention. This variation has been implicated as an important factor in evolutionary processes, upon which natural selection can act. RESULTS We acclimatized coral nubbins from six colonies of the reef-building coral Acropora millepora to a common garden in Heron Island (Great Barrier Reef, GBR) for a period of four weeks to remove any site-specific environmental effects on the physiology of the coral nubbins. By using a cDNA microarray platform, we detected a high level of gene expression variation, with 17% (488) of the unigenes differentially expressed across coral nubbins of the six colonies (jsFDR-corrected, p < 0.01). Among the main categories of biological processes found differentially expressed were transport, translation, response to stimulus, oxidation-reduction processes, and apoptosis. We found that the transcriptional profiles did not correspond to the genotype of the colony characterized using either an intron of the carbonic anhydrase gene or microsatellite loci markers. CONCLUSION Our results provide evidence of the high inter-colony variation in A. millepora at the transcriptomic level grown under a common garden and without a correspondence with genotypic identity. This finding brings to our attention the importance of taking into account natural variation between reef corals when assessing experimental gene expression differences. The high transcriptional variation detected in this study is interpreted and discussed within the context of adaptive potential and phenotypic plasticity of reef corals. Whether this variation will allow coral reefs to survive to current challenges remains unknown.
Collapse
Affiliation(s)
- Camila Granados-Cifuentes
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Anthony J Bellantuono
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Tyrone Ridgway
- Oceanica Consulting Pty Ltd, PO Box 462, Wembley, WA, 6913, Australia
- The Oceans Institute, University of Western Australia, Crawley, WA, 6009, Australia
| | - Ove Hoegh-Guldberg
- ARC Centre of Excellence for Coral Reef Studies and Coral Genomics Group, School of Pharmacy and Molecular Sciences, James Cook University, Townsville, QLD, Australia
- Global Change Institute, The University of Queensland, St Lucia, QLD, Australia
| | | |
Collapse
|
29
|
Sun J, Chen Q, Lun JCY, Xu J, Qiu JW. PcarnBase: development of a transcriptomic database for the brain coral Platygyra carnosus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:244-251. [PMID: 22875536 DOI: 10.1007/s10126-012-9482-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/20/2012] [Indexed: 06/01/2023]
Abstract
The aims of this study were to sequence the transcriptome and organize the sequence data into a searchable database for the brain coral Platygyra carnosus, a structure-forming dominant species along the coast of southern China. We collected healthy and tumorous coral tissues from two locations, extracted RNA from each tissue sample, pooled the RNA from all tissue samples, generated a cDNA library from the pooled samples, and conducted paired-end sequencing of the cDNA library using the Illumina platform to produce 59.6 M clean sequences with a read length of 90 bp. De novo assembly of the sequence data resulted in 162,468 unigenes with an average length of 606 bp (range, 201 to 23,923 bp). This is the largest transcriptome dataset for a species of coral whose genome has not been sequenced. A BLASTx search against the NCBI protein database showed that 55,355 of the unigenes matched at least a sequence with an E-value of < 0.00001; 59 % of the matched sequences are from Metazoa, 13 % are from Alveolata to which the symbiont Symbiodinium belongs, and 7 % are from bacteria. A database (PcarnBase) was constructed to provide easy access to the unigenes with attributes such as NCBI protein annotation, GO annotation, and KEGG pathway. It will facilitate functional genomic studies of P. carnosus, such as biomarker discovery for bleaching, tumor formation, and disease development at the gene or protein level, involvement of coral symbiotic algae in the host coral's stress responses, and genetic basis of stress resistance.
Collapse
Affiliation(s)
- Jin Sun
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | | | | | | | | |
Collapse
|
30
|
Life history changes in coral fluorescence and the effects of light intensity on larval physiology and settlement in Seriatopora hystrix. PLoS One 2013; 8:e59476. [PMID: 23544072 PMCID: PMC3609816 DOI: 10.1371/journal.pone.0059476] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 02/15/2013] [Indexed: 11/19/2022] Open
Abstract
Fluorescence is common in both coral adult and larval stages, and is produced by fluorescent proteins that absorb higher energy light and emit lower energy light. This study investigated the changes of coral fluorescence in different life history stages and the effects of parental light environment on larval fluorescence, larval endosymbiotic dinoflagellate abundance, larval size and settlement in the brooding coral Seriatopora hystrix. Data showed that coral fluorescence changed during development from green in larvae to cyan in adult colonies. In larvae, two green fluorescent proteins (GFPs) co-occur where the peak emission of one GFP overlaps with the peak excitation of the second GFP allowing the potential for energy transfer. Coral larvae showed great variation in GFP fluorescence, dinoflagellate abundance, and size. There was no obvious relationship between green fluorescence intensity and dinoflagellate abundance, green fluorescence intensity and larval size, or dinoflagellate abundance and larval size. Larvae of parents from high and low light treatments showed similar green fluorescence intensity, yet small but significant differences in size, dinoflagellate abundance, and settlement. The large variation in larval physiology combined with subtle effects of parental environment on larval characteristics seem to indicate that even though adult corals produce larvae with a wide range of physiological capacities, these larvae can still show small preferences for settling in similar habitats as their parents. These data highlight the importance of environmental conditions at the onset of life history and parent colony effects on coral larvae.
Collapse
|
31
|
Klueter A, Andreakis N. Assessing genetic diversity in the scleractinian coralStylophora pistillata(Esper 1797) from the Central Great Barrier Reef and the Coral Sea. SYST BIODIVERS 2013. [DOI: 10.1080/14772000.2013.770419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Lundgren P, Vera JC, Peplow L, Manel S, van Oppen MJH. Genotype - environment correlations in corals from the Great Barrier Reef. BMC Genet 2013; 14:9. [PMID: 23433436 PMCID: PMC3599201 DOI: 10.1186/1471-2156-14-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 01/03/2013] [Indexed: 12/13/2022] Open
Abstract
Background Knowledge of genetic markers that are correlated to stress tolerance may improve spatial mapping of reef vulnerability and can inform restoration efforts, including the choice of genotypes for breeding and reseeding. In this manuscript we present two methods for screening transcriptome data for candidate genetic markers in two reef building corals, Acropora millepora and Pocillopora damicornis (types α and β). In A. millepora, Single Nucleotide Polymorphisms (SNPs) were pre-selected by targeting genes believed to be involved in the coral thermal stress responses. In P. damicornis (type α and β), SNPs showing varying allele frequencies between two populations from distinct environments were pre-selected. Allele frequencies at nine, five and eight of the pre-selected SNP loci were correlated against gradients of water clarity and temperature in a large number of populations along the Great Barrier Reef. Results A significant correlation between environmental category and SNP allele frequency was detected in up to 55% of the tested loci, which is an exceptional success rate for these types of tests. In P. damicornis, SNP allele frequencies of β-hexosaminidase and Elongation factor 1-α were significantly correlated to temperature in type α and to temperature and/or water clarity respectively in type β. Type α also showed a correlation between water clarity and SNP allele frequency in a gene of unknown function. In A. millepora, allele frequencies at five (β-gamma crystallin, Galaxin, Ubiquitin, Ligand of Numb X2 and Thioredoxin) SNP loci showed significant correlations. Conclusions After validation of these candidate loci through laboratory or field assessment of relative stress tolerance of colonies harbouring different alleles, it is anticipated that a proportion of these markers may represent the first coral candidate Quantitative Trait Loci for environmental stress tolerance and provide an important genetic tool that can be incorporated into spatial management decisions and restoration efforts of coral reefs. One pertinent example would be to combine spatial data of tolerant populations with genetic connectivity and thus identify high priority conservation reefs and implement targeted coral husbandry and active restoration efforts that use locally- and stress-adapted genotypes.
Collapse
Affiliation(s)
- Petra Lundgren
- Australian Institute of Marine Science, PMB No 3, Townsville MC, QLD, 4810, Australia.
| | | | | | | | | |
Collapse
|
33
|
Polato NR, Altman NS, Baums IB. Variation in the transcriptional response of threatened coral larvae to elevated temperatures. Mol Ecol 2013; 22:1366-82. [DOI: 10.1111/mec.12163] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 10/30/2012] [Accepted: 11/02/2012] [Indexed: 12/30/2022]
Affiliation(s)
- Nicholas R. Polato
- Department of Biology; The Pennsylvania State University; 208 Mueller Laboratory University Park PA 16802 USA
| | - Naomi S. Altman
- Department of Statistics; The Pennsylvania State University; 312 Thomas Building University Park PA 16802 USA
| | - Iliana B. Baums
- Department of Biology; The Pennsylvania State University; 208 Mueller Laboratory University Park PA 16802 USA
| |
Collapse
|
34
|
Abstract
Functional analysis of post-genomics data is essential to identify the biological processes involved in a given investigation. Although most of the ontological tools available are limited to organisms with well-annotated genomes, this chapter provides an overview of two complementary tools-MapMan and GeneBins/PathExpress-that are used to perform a functional analysis of legume gene expression data. MapMan is a stand-alone tool that displays large datasets onto diagrams of metabolic pathways or other processes. Although initially developed for Arabidopsis thaliana, MapMan can be extended to other plants by assigning new sequences to their orthologs in the current classification. GeneBins and PathExpress have been developed to perform enrichment analysis of functional groups and metabolic networks, respectively. Based on the KEGG database, these tools can be used with any organism, including the main reference legumes.
Collapse
Affiliation(s)
- Nicolas Goffard
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, Australia
| | | |
Collapse
|
35
|
The Use of Lipids and Fatty Acids to Measure the Trophic Plasticity of the Coral Stylophora subseriata. Lipids 2012; 48:275-86. [DOI: 10.1007/s11745-012-3747-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Accepted: 11/29/2012] [Indexed: 10/27/2022]
|
36
|
Wang T, Garcia JG, Zhang W. Epigenetic Regulation in Particulate Matter-Mediated Cardiopulmonary Toxicities: A Systems Biology Perspective. ACTA ACUST UNITED AC 2012. [PMID: 23185213 DOI: 10.2174/187569212803901792] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Particulate matter (PM) air pollution exerts significant adverse health effects in global populations, particularly in developing countries with extensive air pollution. Understanding of the mechanisms of PM-induced health effects including the risk for cardiovascular diseases remains limited. In addition to the direct cellular physiological responses such as mitochondrial dysfunction and oxidative stress, PM mediates remarkable dysregulation of gene expression, especially in cardiovascular tissues. The PM-mediated gene dysregulation is likely to be a complex mechanism affected by various genetic and non-genetic factors. Notably, PM is known to alter epigenetic markers (e.g., DNA methylation and histone modifications), which may contribute to air pollution-mediated health consequences including the risk for cardiovascular diseases. Notably, epigenetic changes induced by ambient PM exposure have emerged to play a critical role in gene regulation. Though the underlying mechanism(s) are not completely clear, the available evidence suggests that the modulated activities of DNA methyltransferase (DNMT), histone acetylase (HAT) and histone deacetylase (HDAC) may contribute to the epigenetic changes induced by PM or PM-related chemicals. By employing genome-wide epigenomic and systems biology approaches, PM toxicogenomics could conceivably progress greatly with the potential identification of individual epigenetic loci associated with dysregulated gene expression after PM exposure, as well the interactions between epigenetic pathways and PM. Furthermore, novel therapeutic targets based on epigenetic markers could be identified through future epigenomic studies on PM-mediated cardiopulmonary toxicities. These considerations collectively inform the future population health applications of genomics in developing countries while benefiting global personalized medicine at the same time.
Collapse
Affiliation(s)
- Ting Wang
- Section of Pulmonary, Critical Care, Allergy & Sleep Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA ; Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
37
|
Aranda M, DeSalvo MK, Bayer T, Medina M, Voolstra CR. Evolutionary insights into scleractinian corals using comparative genomic hybridizations. BMC Genomics 2012; 13:501. [PMID: 22994626 PMCID: PMC3469353 DOI: 10.1186/1471-2164-13-501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/11/2012] [Indexed: 12/04/2022] Open
Abstract
Background Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH) with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization). Results Our results showed that the current microarray platform for A. palmata is able to provide biological relevant information for a wide variety of coral species covering both the complex clade as well the robust clade. Analysis of the fraction of highly diverged genes showed a significantly higher amount of genes without annotation corroborating previous findings that point towards a higher rate of divergence for taxonomically restricted genes. Among the genes with annotation, we found many mitochondrial genes to be highly diverged in M. faveolata when compared to A. palmata, while the majority of nuclear encoded genes maintained an average divergence rate. Conclusions The use of present microarray platforms for transcriptional analyses in different coral species will greatly enhance the understanding of the molecular basis of stress and health and highlight evolutionary differences between scleractinian coral species. On a genomic basis, we show that cDNA arrays can be used to identify patterns of divergence. Mitochondrion-encoded genes seem to have diverged faster than nuclear encoded genes in robust corals. Accordingly, this needs to be taken into account when using mitochondrial markers for scleractinian phylogenies.
Collapse
Affiliation(s)
- Manuel Aranda
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | | | | | | |
Collapse
|
38
|
Settles ML, Coram T, Soule T, Robison BD. An improved algorithm for the detection of genomic variation using short oligonucleotide expression microarrays. Mol Ecol Resour 2012; 12:1079-89. [PMID: 22966828 DOI: 10.1111/1755-0998.12006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/30/2012] [Accepted: 08/01/2012] [Indexed: 11/30/2022]
Abstract
High-throughput microarray experiments often generate far more biological information than is required to test the experimental hypotheses. Many microarray analyses are considered finished after differential expression and additional analyses are typically not performed, leaving untapped biological information left undiscovered. This is especially true if the microarray experiment is from an ecological study of multiple populations. Comparisons across populations may also contain important genomic polymorphisms, and a subset of these polymorphisms may be identified with microarrays using techniques for the detection of single feature polymorphisms (SFP). SFPs are differences in microarray probe level intensities caused by genetic polymorphisms such as single-nucleotide polymorphisms and small insertions/deletions and not expression differences. In this study, we provide a new algorithm for the detection of SFPs, evaluate the algorithm using existing data from two publicly available Affymetrix Barley (Hordeum vulgare) microarray data sets and compare them to two previously published SFP detection algorithms. Results show that our algorithm provides more consistent and sensitive calling of SFPs with a lower false discovery rate. Simultaneous analysis of SFPs and differential expression is a low-cost method for the enhanced analysis of microarray data, enabling additional biological inferences to be made.
Collapse
Affiliation(s)
- Matthew L Settles
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844-3051, USA.
| | | | | | | |
Collapse
|
39
|
Mayfield AB, Chan PH, Putnam HM, Chen CS, Fan TY. The effects of a variable temperature regime on the physiology of the reef-building coral Seriatopora hystrix: results from a laboratory-based reciprocal transplant. ACTA ACUST UNITED AC 2012; 215:4183-95. [PMID: 22933614 DOI: 10.1242/jeb.071688] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To understand the effects of global climate change on reef-building corals, a thorough investigation of their physiological mechanisms of acclimatization is warranted. However, static temperature manipulations may underestimate the thermal complexity of the reefs in which many corals live. For instance, corals of Houbihu, Taiwan, experience changes in temperature of up to 10°C over the course of a day during spring-tide upwelling events. To better understand the phenotypic plasticity of these corals, a laboratory-based experiment was conducted whereby specimens of Seriatopora hystrix from an upwelling reef (Houbihu) and conspecifics from a non-upwelling reef (Houwan) were exposed to both a stable seawater temperature (26°C) regime and a regime characterized by a 6°C fluctuation (23-29°C) over a 12 h period for 7 days. A suite of physiological and molecular parameters was measured in samples of both treatments, as well as in experimental controls, to determine site of origin (SO) and temperature treatment (TT) responses. Only chlorophyll a (chl a) concentration and growth demonstrated the hypothesized trend of higher levels when exposed to a TT that mimicked SO conditions. In contrast, chl a, maximum dark-adapted quantum yield of photosystem II (F(v)/F(m)), and Symbiodinium ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL), photosystem I (psI, subunit III) and phosphoglycolate phosphatase (pgpase) mRNA expression demonstrated significant TT effects. Specifically, levels of these response variables were higher in samples exposed to a variable temperature regime, suggesting that S. hystrix may acclimate to fluctuating temperatures by increasing its capacity for photosynthesis.
Collapse
Affiliation(s)
- Anderson B Mayfield
- National Museum of Marine Biology and Aquarium, Checheng, Pingtung, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
40
|
Major cellular and physiological impacts of ocean acidification on a reef building coral. PLoS One 2012; 7:e34659. [PMID: 22509341 PMCID: PMC3324498 DOI: 10.1371/journal.pone.0034659] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 03/06/2012] [Indexed: 02/02/2023] Open
Abstract
As atmospheric levels of CO2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.
Collapse
|
41
|
Amend AS, Barshis DJ, Oliver TA. Coral-associated marine fungi form novel lineages and heterogeneous assemblages. ISME JOURNAL 2011; 6:1291-301. [PMID: 22189500 DOI: 10.1038/ismej.2011.193] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coral stress tolerance is intricately tied to the animal's association with microbial symbionts. The most well-known of these symbioses is that between corals and their dinoflagellate photobionts (Symbiodinium spp.), whose genotype indirectly affects whether a coral can survive cyclical and anthropogenic warming events. Fungi comprise a lesser-known coral symbiotic community whose taxonomy, stability and function is largely un-examined. To assess how fungal communities inside a coral host correlate with water temperature and the genotype of co-occurring Symbiodinium, we sampled Acropora hyacinthus coral colonies from adjacent natural pools with different water temperatures and Symbiodinium identities. Phylogenetic analysis of coral-associated fungal ribosomal DNA amplicons showed a high diversity of Basidiomycetes and Ascomycetes, including several clades separated from known fungal taxa by long and well-supported branches. Community similarity did not correlate with any measured variables, and total fungal community composition was highly variable among A. hyacinthus coral colonies. Colonies in the warmer pool contained more phylogenetically diverse fungal communities than the colder pool and contained statistically significant 'indicator' species. Four taxa were present in all coral colonies sampled, and may represent obligate associates. Messenger RNA sequenced from a subset of these same colonies contained an abundance of transcripts involved in metabolism of complex biological molecules. Coincidence between the taxonomic diversity found in the DNA and RNA analysis indicates a metabolically active and diverse resident marine fungal community.
Collapse
Affiliation(s)
- Anthony S Amend
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
42
|
Traylor-Knowles N, Granger BR, Lubinski TJ, Parikh JR, Garamszegi S, Xia Y, Marto JA, Kaufman L, Finnerty JR. Production of a reference transcriptome and transcriptomic database (PocilloporaBase) for the cauliflower coral, Pocillopora damicornis. BMC Genomics 2011; 12:585. [PMID: 22126435 PMCID: PMC3339375 DOI: 10.1186/1471-2164-12-585] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 11/29/2011] [Indexed: 11/21/2022] Open
Abstract
Background Motivated by the precarious state of the world's coral reefs, there is currently a keen interest in coral transcriptomics. By identifying changes in coral gene expression that are triggered by particular environmental stressors, we can begin to characterize coral stress responses at the molecular level, which should lead to the development of more powerful diagnostic tools for evaluating the health of corals in the field. Furthermore, the identification of genetic variants that are more or less resilient in the face of particular stressors will help us to develop more reliable prognoses for particular coral populations. Toward this end, we performed deep mRNA sequencing of the cauliflower coral, Pocillopora damicornis, a geographically widespread Indo-Pacific species that exhibits a great diversity of colony forms and is able to thrive in habitats subject to a wide range of human impacts. Importantly, P. damicornis is particularly amenable to laboratory culture. We collected specimens from three geographically isolated Hawaiian populations subjected to qualitatively different levels of human impact. We isolated RNA from colony fragments ("nubbins") exposed to four environmental stressors (heat, desiccation, peroxide, and hypo-saline conditions) or control conditions. The RNA was pooled and sequenced using the 454 platform. Description Both the raw reads (n = 1, 116, 551) and the assembled contigs (n = 70, 786; mean length = 836 nucleotides) were deposited in a new publicly available relational database called PocilloporaBase http://www.PocilloporaBase.org. Using BLASTX, 47.2% of the contigs were found to match a sequence in the NCBI database at an E-value threshold of ≤.001; 93.6% of those contigs with matches in the NCBI database appear to be of metazoan origin and 2.3% bacterial origin, while most of the remaining 4.1% match to other eukaryotes, including algae and amoebae. Conclusions P. damicornis now joins the handful of coral species for which extensive transcriptomic data are publicly available. Through PocilloporaBase http://www.PocilloporaBase.org, one can obtain assembled contigs and raw reads and query the data according to a wide assortment of attributes including taxonomic origin, PFAM motif, KEGG pathway, and GO annotation.
Collapse
|
43
|
Development of gene expression markers of acute heat-light stress in reef-building corals of the genus Porites. PLoS One 2011; 6:e26914. [PMID: 22046408 PMCID: PMC3202587 DOI: 10.1371/journal.pone.0026914] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 10/06/2011] [Indexed: 12/02/2022] Open
Abstract
Coral reefs are declining worldwide due to increased incidence of climate-induced coral bleaching, which will have widespread biodiversity and economic impacts. A simple method to measure the sub-bleaching level of heat-light stress experienced by corals would greatly inform reef management practices by making it possible to assess the distribution of bleaching risks among individual reef sites. Gene expression analysis based on quantitative PCR (qPCR) can be used as a diagnostic tool to determine coral condition in situ. We evaluated the expression of 13 candidate genes during heat-light stress in a common Caribbean coral Porites astreoides, and observed strong and consistent changes in gene expression in two independent experiments. Furthermore, we found that the apparent return to baseline expression levels during a recovery phase was rapid, despite visible signs of colony bleaching. We show that the response to acute heat-light stress in P. astreoides can be monitored by measuring the difference in expression of only two genes: Hsp16 and actin. We demonstrate that this assay discriminates between corals sampled from two field sites experiencing different temperatures. We also show that the assay is applicable to an Indo-Pacific congener, P. lobata, and therefore could potentially be used to diagnose acute heat-light stress on coral reefs worldwide.
Collapse
|
44
|
Leggat W, Seneca F, Wasmund K, Ukani L, Yellowlees D, Ainsworth TD. Differential responses of the coral host and their algal symbiont to thermal stress. PLoS One 2011; 6:e26687. [PMID: 22039532 PMCID: PMC3200360 DOI: 10.1371/journal.pone.0026687] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 10/02/2011] [Indexed: 01/31/2023] Open
Abstract
The success of any symbiosis under stress conditions is dependent upon the responses of both partners to that stress. The coral symbiosis is particularly susceptible to small increases of temperature above the long term summer maxima, which leads to the phenomenon known as coral bleaching, where the intracellular dinoflagellate symbionts are expelled. Here we for the first time used quantitative PCR to simultaneously examine the gene expression response of orthologs of the coral Acropora aspera and their dinoflagellate symbiont Symbiodinium. During an experimental bleaching event significant up-regulation of genes involved in stress response (HSP90 and HSP70) and carbon metabolism (glyceraldehyde-3-phosphate dehydrogenase, α-ketoglutarate dehydrogenase, glycogen synthase and glycogen phosphorylase) from the coral host were observed. In contrast in the symbiont, HSP90 expression decreased, while HSP70 levels were increased on only one day, and only the α-ketoglutarate dehydrogenase expression levels were found to increase. In addition the changes seen in expression patterns of the coral host were much larger, up to 10.5 fold, compared to the symbiont response, which in all cases was less than 2-fold. This targeted study of the expression of key metabolic and stress genes demonstrates that the response of the coral and their symbiont vary significantly, also a response in the host transcriptome was observed prior to what has previously been thought to be the temperatures at which thermal stress events occur.
Collapse
Affiliation(s)
- William Leggat
- School of Pharmacy and Molecular Sciences, James Cook University, Townsville, Australia.
| | | | | | | | | | | |
Collapse
|
45
|
MEYER E, AGLYAMOVA GV, MATZ MV. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. Mol Ecol 2011; 20:3599-616. [DOI: 10.1111/j.1365-294x.2011.05205.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Rosic NN, Pernice M, Rodriguez-Lanetty M, Hoegh-Guldberg O. Validation of housekeeping genes for gene expression studies in Symbiodinium exposed to thermal and light stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:355-65. [PMID: 20668900 DOI: 10.1007/s10126-010-9308-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 07/05/2010] [Indexed: 05/09/2023]
Abstract
Unicellular photosynthetic algae (dinoflagellate) from the genus Symbiodinium live in mutualistic symbiosis with reef-building corals. Cultured Symbiodinium sp. (clade C) were exposed to a range of environmental stresses that included elevated temperatures (29°C and 32°C) under high (100 μmol quanta m(-2) s(-1) Photosynthetic Active Radiation) and low (10 μmol quanta m(-2) s(-1)) irradiances. Using real-time RT-PCR the stability of expression for the nine selected putative housekeeping genes (HKGs) was tested. The most stable expression pattern was identified for cyclophilin and S-adenosyl methionine synthetase (SAM) followed by S4 ribosomal protein (Rp-S4), Calmodulin (Cal), and Cytochrome oxidase subunit 1 (Cox), respectively. Thermal stress alone resulted in the highest expression stability for Rp-S4 and SAM, with a minimum of two reference genes required for data normalization. For Symbiodinium exposed to both, light and thermal stresses, at least five reference genes were recommended by geNorm analysis. In parallel, the expression of Hsp90 for Symbiodinium in culture and in symbiosis within coral host (Acropora millepora) was evaluated using the most stable HKGs. Our results revealed a drop in Hsp90 expression after an 18 h-period and a 24 h-period of exposure to elevated temperatures indicating the similar Hsp90 expression profile in symbiotic and non-symbiotic environments. This study provides the first list of the HKGs and will provide a useful reference in future gene expression studies in symbiotic dinoflagellates.
Collapse
Affiliation(s)
- Nedeljka N Rosic
- Global Change Institute, University of Queensland, St. Lucia, Brisbane, 4072, QLD, Australia.
| | | | | | | |
Collapse
|
47
|
Levy O, Kaniewska P, Alon S, Eisenberg E, Karako-Lampert S, Bay LK, Reef R, Rodriguez-Lanetty M, Miller DJ, Hoegh-Guldberg O. Complex diel cycles of gene expression in coral-algal symbiosis. Science 2011; 331:175. [PMID: 21233378 DOI: 10.1126/science.1196419] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Circadian regulation of plant-animal endosymbioses is complicated by a diversity of internal and external cues. Here, we show that stress-related genes in corals are coupled to the circadian clock, anticipating major changes in the intracellular milieu. In this regard, numerous chaperones are "hard-wired" to the clock, effectively preparing the coral for the consequences of oxidative protein damage imposed by symbiont photosynthesis (when O(2) > 250% saturation), including synexpression of antioxidant genes being light-gated. Conversely, central metabolism appears to be regulated by the hypoxia-inducible factor system in coral. These results reveal the complexity of endosymbiosis as well as the plasticity regulation downstream of the circadian clock.
Collapse
Affiliation(s)
- O Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Roth MS, Latz MI, Goericke R, Deheyn DD. Green fluorescent protein regulation in the coral Acropora yongei during photoacclimation. ACTA ACUST UNITED AC 2011; 213:3644-55. [PMID: 20952612 DOI: 10.1242/jeb.040881] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reef-building corals inhabit high light environments and are dependent on photosynthetic endosymbiotic dinoflagellates for nutrition. While photoacclimation responses of the dinoflagellates to changes in illumination are well understood, host photoacclimation strategies are poorly known. This study investigated fluorescent protein expression in the shallow-water coral Acropora yongei during a 30 day laboratory photoacclimation experiment in the context of its dinoflagellate symbionts. Green fluorescent protein (GFP) concentration measured by Western blotting changed reversibly with light intensity. The first 15 days of the photoacclimation experiment led to a ∼1.6 times increase in GFP concentration for high light corals (900 μmol quanta m⁻² s⁻¹) and a ∼4 times decrease in GFP concentration for low light corals (30 μmol quanta m⁻² s⁻¹) compared with medium light corals (300 μmol quanta m⁻² s⁻¹). Green fluorescence increased ∼1.9 times in high light corals and decreased ∼1.9 times in low light corals compared with medium light corals. GFP concentration and green fluorescence intensity were significantly correlated. Typical photoacclimation responses in the dinoflagellates were observed including changes in density, photosynthetic pigment concentration and photosynthetic efficiency. Although fluorescent proteins are ubiquitous and abundant in scleractinian corals, their functions remain ambiguous. These results suggest that scleractinian corals regulate GFP to modulate the internal light environment and support the hypothesis that GFP has a photoprotective function. The success of photoprotection and photoacclimation strategies, in addition to stress responses, will be critical to the fate of scleractinian corals exposed to climate change and other stressors.
Collapse
Affiliation(s)
- Melissa S Roth
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA
| | | | | | | |
Collapse
|
49
|
Kvennefors ECE, Leggat W, Kerr CC, Ainsworth TD, Hoegh-Guldberg O, Barnes AC. Analysis of evolutionarily conserved innate immune components in coral links immunity and symbiosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:1219-1229. [PMID: 20600272 DOI: 10.1016/j.dci.2010.06.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/23/2010] [Accepted: 06/23/2010] [Indexed: 05/29/2023]
Abstract
Reef-building corals are representatives of one of the earliest diverging metazoan lineages and are experiencing increases in bleaching events (breakdown of the coral-Symbiodinium symbiosis) and disease outbreaks. The present study investigates the roles of two pattern recognition proteins, the mannose binding lectin Millectin and a complement factor C3-like protein (C3-Am), in the coral Acropora millepora. The results indicate that the innate immune functions of these molecules are conserved and arose early in evolution. C3-Am is expressed in response to injury, and may function as an opsonin. In contrast, Millectin expression is up-regulated in response to lipopolysaccharide and peptidoglycan. These observations, coupled with localization of Millectin in nematocysts in epidermal tissue, and reported binding of pathogens, are consistent with a key role for the lectin in innate immunity. Furthermore, Millectin was consistently detected binding to the symbiont Symbiodinium in vivo, indicating that the Millectin function of recognition and binding of non-self-entities may have been co-opted from an ancient innate immune system into a role in symbiosis.
Collapse
|
50
|
Seneca FO, Forêt S, Ball EE, Smith-Keune C, Miller DJ, van Oppen MJH. Patterns of gene expression in a scleractinian coral undergoing natural bleaching. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:594-604. [PMID: 20041338 DOI: 10.1007/s10126-009-9247-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 10/08/2009] [Indexed: 05/28/2023]
Abstract
Coral bleaching is a major threat to coral reefs worldwide and is predicted to intensify with increasing global temperature. This study represents the first investigation of gene expression in an Indo-Pacific coral species undergoing natural bleaching which involved the loss of algal symbionts. Quantitative real-time polymerase chain reaction experiments were conducted to select and evaluate coral internal control genes (ICGs), and to investigate selected coral genes of interest (GOIs) for changes in gene expression in nine colonies of the scleractinian coral Acropora millepora undergoing bleaching at Magnetic Island, Great Barrier Reef, Australia. Among the six ICGs tested, glyceraldehyde 3-phosphate dehydrogenase and the ribosomal protein genes S7 and L9 exhibited the most constant expression levels between samples from healthy-looking colonies and samples from the same colonies when severely bleached a year later. These ICGs were therefore utilised for normalisation of expression data for seven selected GOIs. Of the seven GOIs, homologues of catalase, C-type lectin and chromoprotein genes were significantly up-regulated as a result of bleaching by factors of 1.81, 1.46 and 1.61 (linear mixed models analysis of variance, P < 0.05), respectively. We present these genes as potential coral bleaching response genes. In contrast, three genes, including one putative ICG, showed highly variable levels of expression between coral colonies. Potential variation in microhabitat, gene function unrelated to the stress response and individualised stress responses may influence such differences between colonies and need to be better understood when designing and interpreting future studies of gene expression in natural coral populations.
Collapse
Affiliation(s)
- Francois O Seneca
- Coral Genomics Group, James Cook University, Townsville, QLD 4811, Australia
| | | | | | | | | | | |
Collapse
|