1
|
Kazilas C, Dufresnes C, France J, Kalaentzis K, Martínez-Solano I, de Visser MC, Arntzen JW, Wielstra B. Spatial genetic structure in European marbled newts revealed with target enrichment by sequence capture. Mol Phylogenet Evol 2024; 194:108043. [PMID: 38382821 DOI: 10.1016/j.ympev.2024.108043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/21/2023] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
European marbled newts come in two species that have abutting ranges. The northern species, Triturus marmoratus, is found in France and the northern part of the Iberian Peninsula, whereas the southern species, T. pygmaeus, is found in the southwestern corner of the Iberian Peninsula. We study the intraspecific genetic differentiation of the group because morphological data show geographical variation and because the Iberian Peninsula is a recognized center of speciation and intraspecific genetic diversity for all kinds of organisms, amphibians included. We use target enrichment by sequence capture to generate c. 7 k nuclear DNA markers. We observe limited genetic exchange between the species, which confirms their distinctiveness. Both species show substantial genetic structuring that is only in part mirrored by morphological variation. Genetically differentiated groups are found in the south (T. marmoratus) and west (T. pygmaeus) of the species ranges. Our observations highlight the position of the Iberian Peninsula as a hotspot for genetic differentiation.
Collapse
Affiliation(s)
- Christos Kazilas
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands.
| | - Christophe Dufresnes
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China; Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - James France
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Konstantinos Kalaentzis
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Iñigo Martínez-Solano
- Museo Nacional de Ciencias Naturales, MNCN-CSIC, c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Manon C de Visser
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Jan W Arntzen
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Ben Wielstra
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| |
Collapse
|
2
|
Ambu J, Martínez-Solano Í, Suchan T, Hernandez A, Wielstra B, Crochet PA, Dufresnes C. Genomic phylogeography illuminates deep cyto-nuclear discordances in midwife toads (Alytes). Mol Phylogenet Evol 2023; 183:107783. [PMID: 37044190 DOI: 10.1016/j.ympev.2023.107783] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
The advent of genomic methods allows us to revisit the evolutionary history of organismal groups for which robust phylogenies are still lacking, particularly in species complexes that frequently hybridize. In this study, we conduct RAD-sequencing (RAD-seq) analyses of midwife toads (genus Alytes), an iconic group of western Mediterranean amphibians famous for their parental care behavior, but equally infamous for the difficulties to reconstruct their evolutionary history. Through admixture and phylogenetic analyses of thousands of loci, we provide the most comprehensive phylogeographic framework for the A. obstetricans complex to date, as well as the first fully resolved phylogeny for the entire genus. As part of this effort, we carefully explore the influence of different sampling schemes and data filtering thresholds on tree reconstruction, showing that several, slightly different, yet robust topologies may be retrieved with small datasets obtained by stringent SNP calling parameters, especially when admixed individuals are included. In contrast, analyses of incomplete but larger datasets converged on the same phylogeny, irrespective of the reconstruction method used or the proportion of missing data. The Alytes tree features three Miocene-diverged clades corresponding to the proposed subgenera Ammoryctis (A. cisternasii), Baleaphryne (A. maurus, A. dickhilleni and A. muletensis), and Alytes (A. obstetricans complex). The latter consists of six evolutionary lineages, grouped into three clades of Pliocene origin, and currently delimited as two species: (1) A. almogavarii almogavarii and A. a. inigoi; (2) A. obstetricans obstetricans and A. o. pertinax; (3) A. o. boscai and an undescribed taxon (A. o. cf. boscai). These results contradict the mitochondrial tree, due to past mitochondrial captures in A. a. almogavarii (central Pyrenees) and A. o. boscai (central Iberia) by A. obstetricans ancestors during the Pleistocene. Patterns of admixture between subspecies appear far more extensive than previously assumed from microsatellites, causing nomenclatural uncertainties, and even underlying the reticulate evolution of one taxon (A. o. pertinax). All Ammoryctis and Baleaphryne species form shallow clades, so their taxonomy should remain stable. Amid the prevalence of cyto-nuclear discordance among terrestrial vertebrates and the usual lack of resolution of conventional nuclear markers, our study advocates for phylogeography based on next-generation sequencing, but also encourages properly exploring parameter space and sampling schemes when building and analyzing genomic datasets.
Collapse
Affiliation(s)
- Johanna Ambu
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Íñigo Martínez-Solano
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Tomasz Suchan
- W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| | - Axel Hernandez
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | - Ben Wielstra
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | | | - Christophe Dufresnes
- LASER, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Paúl MJ, Rosauer D, Tarroso P, Velo‐Antón G, Carvalho SB. Environmental and topographic drivers of amphibian phylogenetic diversity and endemism in the Iberian Peninsula. Ecol Evol 2023; 13:e9666. [PMID: 36620407 PMCID: PMC9817204 DOI: 10.1002/ece3.9666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 01/09/2023] Open
Abstract
Understanding the ecological and evolutionary processes driving biodiversity patterns and allowing their persistence is of utmost importance. Many hypotheses have been proposed to explain spatial diversity patterns, including water-energy availability, habitat heterogeneity, and historical climatic refugia. The main goal of this study is to identify if general spatial drivers of species diversity patterns of phylogenetic diversity (PD) and phylogenetic endemism (PE) at the global scale are also predictive of PD and PE at regional scales, using Iberian amphibians as a case study. Our main hypothesis assumes that topography along with contemporary and historical climate are drivers of phylogenetic diversity and endemism, but that the strength of these predictors may be weaker at the regional scale than it tends to be at the global scale. We mapped spatial patterns of Iberian amphibians' phylogenetic diversity and endemism, using previously published phylogenetic and distribution data. Furthermore, we compiled spatial data on topographic and climatic variables related to the water-energy availability, topography, and historical climatic instability hypotheses. To test our hypotheses, we used Spatial Autoregressive Models and selected the best model to explain diversity patterns based on Akaike Information Criterion. Our results show that, out of the variables tested in our study, water-energy availability and historical climate instability are the most important drivers of amphibian diversity in Iberia. However, as predicted, the strength of these predictors in our case study is weaker than it tends to be at global scales. Thus, additional drivers should also be investigated and we suggest caution when interpreting these predictors as surrogates for different components of diversity.
Collapse
Affiliation(s)
- Maria João Paúl
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de VairãoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
- Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal
| | - Dan Rosauer
- Division of Ecology and Evolution, Research School of Biology and Centre for Biodiversity AnalysisThe Australian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Pedro Tarroso
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de VairãoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
| | - Guillermo Velo‐Antón
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de VairãoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
- Departamento de Ecoloxía e Bioloxía Animal, Grupo de Ecoloxía Animal, Torre Cacti (Lab 97)Universidade de VigoVigoSpain
| | - Sílvia B. Carvalho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de VairãoUniversidade do PortoVairãoPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIOVairãoPortugal
| |
Collapse
|
4
|
Mendes SL, Machado MP, Coelho MM, Sousa VC. Genomic data and multi-species demographic modelling uncover past hybridization between currently allopatric freshwater species. Heredity (Edinb) 2021; 127:401-412. [PMID: 34462578 PMCID: PMC8478877 DOI: 10.1038/s41437-021-00466-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Evidence for ancient interspecific gene flow through hybridization has been reported in many animal and plant taxa based on genetic markers. The study of genomic patterns of closely related species with allopatric distributions allows the assessment of the relative importance of vicariant isolating events and past gene flow. Here, we investigated the role of gene flow in the evolutionary history of four closely related freshwater fish species with currently allopatric distributions in western Iberian rivers-Squalius carolitertii, S. pyrenaicus, S. torgalensis and S. aradensis-using a population genomics dataset of 23,562 SNPs from 48 individuals, obtained through genotyping by sequencing (GBS). We uncovered a species tree with two well-differentiated clades: (i) S. carolitertii and S. pyrenaicus; and (ii) S. torgalensis and S. aradensis. By using D-statistics and demographic modelling based on the site frequency spectrum, comparing alternative demographic scenarios of hybrid origin, secondary contact and isolation, we found that the S. pyrenaicus North lineage is likely the result of an ancient hybridization event between S. carolitertii (contributing ~84%) and S. pyrenaicus South lineage (contributing ~16%), consistent with a hybrid speciation scenario. Furthermore, in the hybrid lineage, we identify outlier loci potentially affected by selection favouring genes from each parental lineage at different genomic regions. Our results suggest that ancient hybridization can affect speciation and that freshwater fish species currently in allopatry are useful to study these processes.
Collapse
Affiliation(s)
- Sofia L. Mendes
- grid.9983.b0000 0001 2181 4263cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Miguel P. Machado
- grid.9983.b0000 0001 2181 4263cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Maria M. Coelho
- grid.9983.b0000 0001 2181 4263cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Vitor C. Sousa
- grid.9983.b0000 0001 2181 4263cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Hanson JO, Veríssimo A, Velo‐Antón G, Marques A, Camacho‐Sanchez M, Martínez‐Solano Í, Gonçalves H, Sequeira F, Possingham HP, Carvalho SB. Evaluating surrogates of genetic diversity for conservation planning. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2021; 35:634-642. [PMID: 32761662 PMCID: PMC8048567 DOI: 10.1111/cobi.13602] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/16/2020] [Accepted: 07/23/2020] [Indexed: 05/13/2023]
Abstract
Protected-area systems should conserve intraspecific genetic diversity. Because genetic data require resources to obtain, several approaches have been proposed for generating plans for protected-area systems (prioritizations) when genetic data are not available. Yet such surrogate-based approaches remain poorly tested. We evaluated the effectiveness of potential surrogate-based approaches based on microsatellite genetic data collected across the Iberian Peninsula for 7 amphibian and 3 reptilian species. Long-term environmental suitability did not effectively represent sites containing high genetic diversity (allelic richness). Prioritizations based on long-term environmental suitability had similar performance to random prioritizations. Geographic distances and resistance distances based on contemporary environmental suitability were not always effective surrogates for identification of combinations of sites that contain individuals with different genetic compositions. Our results demonstrate that population genetic data based on commonly used neutral markers can inform prioritizations, and we could not find an adequate substitute. Conservation planners need to weigh the potential benefits of genetic data against their acquisition costs.
Collapse
Affiliation(s)
- Jeffrey O. Hanson
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoCampus de Vairão, Rua Padre Armando Quintas, no. 7Vairão4485‐661Portugal
| | - Ana Veríssimo
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoCampus de Vairão, Rua Padre Armando Quintas, no. 7Vairão4485‐661Portugal
| | - Guillermo Velo‐Antón
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoCampus de Vairão, Rua Padre Armando Quintas, no. 7Vairão4485‐661Portugal
| | - Adam Marques
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoCampus de Vairão, Rua Padre Armando Quintas, no. 7Vairão4485‐661Portugal
| | - Miguel Camacho‐Sanchez
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoCampus de Vairão, Rua Padre Armando Quintas, no. 7Vairão4485‐661Portugal
| | - Íñigo Martínez‐Solano
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoCampus de Vairão, Rua Padre Armando Quintas, no. 7Vairão4485‐661Portugal
- Museo Nacional de Ciencias Naturales‐CSICCalle de José Gutiérrez Abascal2Madrid28006Spain
| | - Helena Gonçalves
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoCampus de Vairão, Rua Padre Armando Quintas, no. 7Vairão4485‐661Portugal
- Museu de História Natural e da CiênciaUniversidade do PortoPraça Gomes TeixeiraPorto4099‐002Portugal
| | - Fernando Sequeira
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoCampus de Vairão, Rua Padre Armando Quintas, no. 7Vairão4485‐661Portugal
| | - Hugh P. Possingham
- The Nature ConservancyMinneapolisMN55415U.S.A.
- Centre for Biodiversity and Conservation Science, School of Biological SciencesThe University of QueenslandBrisbaneQLD 4072Australia
| | - Silvia B. Carvalho
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoCampus de Vairão, Rua Padre Armando Quintas, no. 7Vairão4485‐661Portugal
| |
Collapse
|
6
|
Rosas-Ramos N, Mas-Peinado P, Gil-Tapetado D, Recuero E, Ruiz JL, García-París M. Catalogue, distribution, taxonomic notes, and conservation of the Western Palearctic endemic hunchback beetles (Tenebrionidae, Misolampus). Zookeys 2020; 963:81-129. [PMID: 32922132 PMCID: PMC7458947 DOI: 10.3897/zookeys.963.53500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/10/2020] [Indexed: 11/12/2022] Open
Abstract
Hunchback darkling beetles of the Ibero-Maghrebian genus Misolampus Latreille, 1807 (Tenebrionidae, Stenochiinae) encompass six species: M. gibbulus (Herbst, 1799), M. goudotii Guérin-Méneville, 1834, M. lusitanicus Brême, 1842, M. ramburii Brême, 1842, M. scabricollis Graells, 1849, and M. subglaber Rosenhauer, 1856. Previously known distribution ranges of the species were delineated using many old records, the persistence of such populations being questionable under the current situation of global biodiversity loss. Additionally, the status of geographically isolated populations of the genus have been the subject of taxonomic controversy. An exhaustive bibliographical revision and field search was undertaken, and the Misolampus collection of the Museo Nacional de Ciencias Naturales (MNCN-CSIC) was revised. The aims are to (i) provide an updated geographic distribution range for the species of Misolampus; (ii) to determine the taxonomic status of controversial populations; (iii) to provide a catalogue for Misolampus; and (iv) to discuss the conservation status of these saproxylic beetles. As a result, a catalogue including synonymies and type localities, geographical records, diagnoses, and information on natural history for all species of Misolampus is presented. The results reveal that the distribution ranges of the species of Misolampus have not undergone a reduction in the last century, and indicate the presence of the genus in areas where it had never been recorded before. The morphological variability of M. goudotii drove the proposal of different taxa that are here formally synonymised as follows: M. goudotii Guérin-Méneville, 1834 = M. erichsoni Vauloger de Beaupré, 1900, syn. nov. = M. peyerimhoffi Antoine, 1926, syn. nov.
Collapse
Affiliation(s)
- Natalia Rosas-Ramos
- Departamento de Biología Animal (Área de Zoología), Facultad de Biología (Edificio de Farmacia, planta 5), Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, SpainMuseo Nacional de Ciencias NaturalesMadridSpain
- Departamento de Biodiversidad y Biología Evolutiva. Museo Nacional de Ciencias Naturales, MNCN-CSIC. c/ José Gutiérrez Abascal, 2. 28006, Madrid, SpainUniversidad de SalamancaSalamancaSpain
| | - Paloma Mas-Peinado
- Departamento de Biodiversidad y Biología Evolutiva. Museo Nacional de Ciencias Naturales, MNCN-CSIC. c/ José Gutiérrez Abascal, 2. 28006, Madrid, SpainUniversidad de SalamancaSalamancaSpain
- Centro de Investigación en Biodiversidad y Cambio Global CIBC-UAM, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049-Madrid, SpainUniversidad Autónoma de MadridMadridSpain
| | - Diego Gil-Tapetado
- Departamento de Biodiversidad y Biología Evolutiva. Museo Nacional de Ciencias Naturales, MNCN-CSIC. c/ José Gutiérrez Abascal, 2. 28006, Madrid, SpainUniversidad de SalamancaSalamancaSpain
- Departamento de Biología, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, c/ José Antonio Novais, 12, 28040-Madrid, SpainUniversidad Complutense de MadridMadridSpain
| | - Ernesto Recuero
- Departamento de Biodiversidad y Biología Evolutiva. Museo Nacional de Ciencias Naturales, MNCN-CSIC. c/ José Gutiérrez Abascal, 2. 28006, Madrid, SpainUniversidad de SalamancaSalamancaSpain
| | - José L. Ruiz
- Instituto de Estudios Ceutíes. Paseo del Revellín, 30. 51001 Ceuta, SpainInstituto de Estudios CeutíesCeutaSpain
| | - Mario García-París
- Departamento de Biodiversidad y Biología Evolutiva. Museo Nacional de Ciencias Naturales, MNCN-CSIC. c/ José Gutiérrez Abascal, 2. 28006, Madrid, SpainUniversidad de SalamancaSalamancaSpain
| |
Collapse
|
7
|
Niche models at inter- and intraspecific levels reveal hierarchical niche differentiation in midwife toads. Sci Rep 2020; 10:10942. [PMID: 32616878 PMCID: PMC7331615 DOI: 10.1038/s41598-020-67992-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/15/2020] [Indexed: 11/09/2022] Open
Abstract
Variation and population structure play key roles in the speciation process, but adaptive intraspecific genetic variation is commonly ignored when forecasting species niches. Amphibians serve as excellent models for testing how climate and local adaptations shape species distributions due to physiological and dispersal constraints and long generational times. In this study, we analysed the climatic factors driving the evolution of the genus Alytes at inter- and intraspecific levels that may limit realized niches. We tested for both differences among the five recognized species and among intraspecific clades for three of the species (Alytes obstetricans, A. cisternasii, and A. dickhilleni). We employed ecological niche models with an ordination approach to perform niche overlap analyses and test hypotheses of niche conservatism or divergence. Our results showed strong differences in the environmental variables affecting species climatic requirements. At the interspecific level, tests of equivalence and similarity revealed that sister species were non-identical in their environmental niches, although they neither were entirely dissimilar. This pattern was also consistent at the intraspecific level, with the exception of A. cisternasii, whose clades appeared to have experienced a lower degree of niche divergence than clades of the other species. In conclusion, our results support that Alytes toads, examined at both the intra- and interspecific levels, tend to occupy similar, if not identical, climatic environments.
Collapse
|
8
|
|
9
|
Demırtaş S, Silsüpür M, Searle JB, Bilton D, Gündüz İ. What should we call the Levant mole? Unravelling the systematics and demography of Talpa levantis Thomas, 1906 sensu lato (Mammalia: Talpidae). Mamm Biol 2020. [DOI: 10.1007/s42991-020-00010-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Carvalho SB, Torres J, Tarroso P, Velo-Antón G. Genes on the edge: A framework to detect genetic diversity imperiled by climate change. GLOBAL CHANGE BIOLOGY 2019; 25:4034-4047. [PMID: 31230387 DOI: 10.1111/gcb.14740] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 05/10/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
Ongoing global warming is disrupting several ecological and evolutionary processes, spanning different levels of biological organization. Species are expected to shift their ranges as a response to climate change, with relevant implications to peripheral populations at the trailing and leading edges. Several studies have analyzed the exposure of species to climate change but few have explored exposure at the intraspecific level. We introduce a framework to forecast exposure to climate change at the intraspecific level. We build on existing methods by combining correlative species distribution models, a model of species range dynamics, and a model of phylogeographic interpolation. We demonstrate the framework by applying it to 20 Iberian amphibian and reptile species. Our aims were to: (a) identify which species and intraspecific lineages will be most exposed to future climate change; (b) test if nucleotide diversity at the edges of species ranges are significantly higher or lower than on the overall range; and (c) analyze if areas of higher species gain, loss, and turnover coincide with those predicted for lineages richness and nucleotide diversity. We found that about 80% of the studied species are predicted to contract their range. Within each species, some lineages were predicted to contract their range, while others were predicted to maintain or expand it. Therefore, estimating the impacts of climate change at the species level only can underestimate losses at the intraspecific level. Some species had significant high amount of nucleotide at the trailing or leading edge, or both, but we did not find a consistent pattern across species. Spatial patterns of species richness, gain, loss, and turnover were fairly concurrent with lineages richness and nucleotide diversity. Our results support the need for increased attention to intraspecific diversity regarding monitoring and conservation strategies under climate change.
Collapse
Affiliation(s)
- Sílvia Benoliel Carvalho
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão, Portugal
| | - João Torres
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão, Portugal
| | - Pedro Tarroso
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão, Portugal
| | - Guillermo Velo-Antón
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto, Vairão, Portugal
| |
Collapse
|
11
|
Reconstructing evolution at the community level: A case study on Mediterranean amphibians. Mol Phylogenet Evol 2019; 134:211-225. [PMID: 30797941 DOI: 10.1016/j.ympev.2019.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/14/2019] [Accepted: 02/16/2019] [Indexed: 11/22/2022]
Abstract
Reconstructing reliable timescales for species evolution is an important and indispensable goal of modern biogeography. However, many factors influence the estimation of divergence times, and uncertainty in the inferred time trees remains a major issue that is often insufficiently acknowledged. We here focus on a fundamental problem of time tree analysis: the combination of slow-evolving (nuclear DNA) and fast-evolving (mitochondrial DNA) markers in a single time tree. Both markers differ in their suitability to infer divergences at different time scales (the 'genome-timescale-dilemma'). However, strategies to infer shallow and deep divergences in a single time tree have rarely been compared empirically. Using Mediterranean amphibians as model system that is exceptional in its geographic and taxonomic completeness of available genetic information, we analyze 202 lineages of western Palearctic amphibians across the entire Mediterranean region. We compiled data of four nuclear and five mitochondrial genes and used twelve fossil calibration points widely acknowledged for amphibian evolution. We reconstruct time trees for an extensive lineage-level data set and compare the performances of the different trees: the first tree is based on primary fossil calibration and mitochondrial DNA, while the second tree is based on a combination of primary fossil and on secondary calibrations taken from a nuclear tree using mitochondrial DNA (two-step protocol). Focusing on a set of nodes that are most likely explained by vicariance, we statistically compare the reconstructed alternative time trees by applying a biogeographical plausibility test. Our two-step protocol outperformed the alternative approach in terms of spatial and temporal plausibility. It allows us to infer scenarios for Mediterranean amphibian evolution in eight geographic provinces. We identified several tectonic and climatic events explaining the majority of Mediterranean amphibian divergences, with Plio-Pleistocene climatic fluctuations being the dominant driver for intrageneric evolution. However, often more than one event could be invoked for a specific split. We give recommendations for the use of secondary calibrations in future molecular clock analyses at the community level.
Collapse
|
12
|
Iannella M, D'Alessandro P, Biondi M. Evidences for a shared history for spectacled salamanders, haplotypes and climate. Sci Rep 2018; 8:16507. [PMID: 30405202 PMCID: PMC6220306 DOI: 10.1038/s41598-018-34854-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/27/2018] [Indexed: 11/30/2022] Open
Abstract
The so-called glacial refugia, formed during the Pleistocene climatic oscillations, played a major role in shaping the distribution of European species, triggering migrations or isolating populations. Many of these events were recently investigated by genetic data, mainly for the European Last Glacial stage, in the Iberic, Italian and Greek-Balkan peninsulas. The amphibian genus Salamandrina, the most ancient living salamandrid lineage, was widespread in Europe until the climatic oscillations of Miocene probably forced it to shelter in the only suitable territory at that time, the Apennines. Nowadays this genus is endemic of peninsular Italy with two parapatric species, S. perspicillata and S. terdigitata, sharing an area of secondary contact formed after the Last Glacial Maximum. Climate is generally identified as the key factor for the interpretation of genetic data. In this research, we directly measure climate influences on the two Salamandrina known species through Ensemble Modelling techniques and post-modelling GIS analyses, integrating updated genetic data in this process. Our results confirm the hypotheses of southwards (and subsequent northwards) shifts, identify glacial refugia and corridors used for the post-glacial re-colonization. Finally, we map a contact zone deserving more sampling effort to disentangle the introgression and hybridization observed.
Collapse
Affiliation(s)
- Mattia Iannella
- University of L'Aquila, Department of Health, Life, and Environmental Sciences, L'Aquila, 67100, Italy.
| | - Paola D'Alessandro
- University of L'Aquila, Department of Health, Life, and Environmental Sciences, L'Aquila, 67100, Italy
| | - Maurizio Biondi
- University of L'Aquila, Department of Health, Life, and Environmental Sciences, L'Aquila, 67100, Italy
| |
Collapse
|
13
|
Querejeta M, Castresana J. Evolutionary history of the endemic water shrew Neomys anomalus: Recurrent phylogeographic patterns in semi-aquatic mammals of the Iberian Peninsula. Ecol Evol 2018; 8:10138-10146. [PMID: 30397453 PMCID: PMC6206195 DOI: 10.1002/ece3.4487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/27/2018] [Accepted: 08/08/2018] [Indexed: 11/10/2022] Open
Abstract
The Cabrera's water shrew (Neomys anomalus) is a small semi-aquatic mammal whose taxonomic status was recently elevated from subspecies to species; as a consequence of this change, this species is now endemic to the Iberian Peninsula. In this study, we looked at its evolutionary history by combining phylogeography, the spatial distribution of genetic diversity, and species distribution modeling. To perform these analyses, we used noninvasive samples collected across the species distribution range and sequenced partial mitochondrial cytochrome b and D-loop genes. Maximum-likelihood and Bayesian phylogenetic trees derived from these sequences indicated that N. anomalus is divided into two main phylogroups that correlate strongly with geography, with two contact zones between the groups that showed limited spatial mixing between them. River basins were responsible for only a small percentage of the structure of the genetic diversity of this species despite its riparian habitat. The nucleotide diversity variation map showed the highest genetic diversity to be in the north of the Iberian Peninsula. Finally, species distribution modeling allowed the inference of an optimal area during the Last Interglacial in the north of the Iberian Peninsula, and multiple glacial refugia during the Last Glacial Maximum. The phylogeographic pattern of N. anomalus is strikingly similar to that of another semi-aquatic Iberian mammal, the Pyrenean desman (Galemys pyrenaicus), revealing how Pleistocene glaciations could have had equivalent effects on species of similar ecology and distribution. This phylogeographic structure is consistent with N. anomalus having been isolated for long periods in multiple glacial refugia within the Iberian Peninsula, in agreement with the "refugia-within-refugia" hypothesis, and further supporting its status as a distinct species.
Collapse
Affiliation(s)
- Marina Querejeta
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
- Bavarian State Collection of ZoologyMünchenGermany
| | - Jose Castresana
- Institute of Evolutionary Biology (CSIC‐Universitat Pompeu Fabra)BarcelonaSpain
| |
Collapse
|
14
|
Combining phylogeography and landscape genetics to infer the evolutionary history of a short-range Mediterranean relict, Salamandra salamandra longirostris. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1110-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Unraveling climate influences on the distribution of the parapatric newts Lissotriton vulgaris meridionalis and L. italicus. Front Zool 2017; 14:55. [PMID: 29255477 PMCID: PMC5727953 DOI: 10.1186/s12983-017-0239-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/27/2017] [Indexed: 11/18/2022] Open
Abstract
Background Climate is often considered as a key ecological factor limiting the capability of expansion of most species and the extent of suitable habitats. In this contribution, we implement Species Distribution Models (SDMs) to study two parapatric amphibians, Lissotriton vulgaris meridionalis and L. italicus, investigating if and how climate has influenced their present and past (Last Glacial Maximum and Holocene) distributions. A database of 901 GPS presence records was generated for the two newts. SDMs were built through Boosted Regression Trees and Maxent, using the Worldclim bioclimatic variables as predictors. Results Precipitation-linked variables and the temperature annual range strongly influence the current occurrence patterns of the two Lissotriton species analyzed. The two newts show opposite responses to the most contributing variables, such as BIO7 (temperature annual range), BIO12 (annual precipitation), BIO17 (precipitation of the driest quarter) and BIO19 (precipitation of the coldest quarter). The hypothesis of climate influencing the distributions of these species is also supported by the fact that the co-occurrences within the sympatric area fall in localities characterized by intermediate values of these predictors. Projections to the Last Glacial Maximum and Holocene scenarios provided a coherent representation of climate influences on the past distributions of the target species. Computation of pairwise variables interactions and the discriminant analysis allowed a deeper interpretation of SDMs’ outputs. Further, we propose a multivariate environmental dissimilarity index (MEDI), derived through a transformation of the multivariate environmental similarity surface (MESS), to deal with extrapolation-linked uncertainties in model projections to past climate. Finally, the niche equivalency and niche similarity tests confirmed the link between SDMs outputs and actual differences in the ecological niches of the two species. Conclusions The different responses of the two species to climatic factors have significantly contributed to shape their current distribution, through contractions, expansions and shifts over time, allowing to maintain two wide allopatric areas with an area of sympatry in Central Italy. Moreover, our SDMs hindcasting shows many concordances with previous phylogeographic studies carried out on the same species, thus corroborating the scenarios of potential distribution during the Last Glacial Maximum and the Holocene emerging from the models obtained. Electronic supplementary material The online version of this article (10.1186/s12983-017-0239-4) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Querejeta M, Fernández-González A, Romero R, Castresana J. Postglacial dispersal patterns and mitochondrial genetic structure of the Pyrenean desman ( Galemys pyrenaicus) in the northwestern region of the Iberian Peninsula. Ecol Evol 2017. [PMID: 28649358 PMCID: PMC5478051 DOI: 10.1002/ece3.3034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The genetic structure of small semiaquatic animals may be influenced by dispersal across both rivers and land. The relative importance of these two modes of dispersal may vary across different species and with ecological conditions and evolutionary periods. The Pyrenean desman (Galemys pyrenaicus) is an endemic mammal of the Iberian Peninsula with a strong phylogeographic structure and semiaquatic habits, thus making it an ideal model to study the effects of river and overland dispersal on its genetic structure. Thanks to different types of noninvasive samples, we obtained an extensive sampling of the Pyrenean desman from the northwestern region of the Iberian Peninsula and sequenced two mitochondrial DNA fragments. We then analyzed, using an isolation‐by‐distance approach, the correlation between phylogenetic distances and geographical distances measured along both river networks and land to infer the relative importance of river and overland dispersal. We found that the correlations in the whole area and in a large basin were consistent with an effect of overland dispersal, which may be due to the postglacial colonization of new territories using terrestrial corridors and, possibly, a more extensive fluvial network that may have been present during the Holocene. However, in a small basin, likely to be less influenced by the impact of ancient postglacial dispersal, the correlations suggested significant overall effects of both overland and river dispersal, as expected for a semiaquatic mammal. Therefore, different scales and geographical regions reflect different aspects of the evolutionary history and ecology of this semiaquatic species using this isolation‐by‐distance method. The results we obtained may have crucial implications for the conservation of the Pyrenean desman because they reinforce the importance of interbasin dispersal for this species in the studied area and the need to protect the whole riverine ecosystem, including rivers, upland streams and terrestrial corridors between basins.
Collapse
Affiliation(s)
- Marina Querejeta
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Barcelona Spain
| | | | - Rafael Romero
- Calle Presidente Salvador Allende 13 Santiago de Compostela Spain
| | - Jose Castresana
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Barcelona Spain
| |
Collapse
|
17
|
Gutiérrez-Rodríguez J, Barbosa AM, Martínez-Solano Í. Integrative inference of population history in the Ibero-Maghrebian endemic Pleurodeles waltl (Salamandridae). Mol Phylogenet Evol 2017; 112:122-137. [PMID: 28454930 DOI: 10.1016/j.ympev.2017.04.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 03/01/2017] [Accepted: 04/04/2017] [Indexed: 11/16/2022]
Abstract
Inference of population histories from the molecular signatures of past demographic processes is challenging, but recent methodological advances in species distribution models and their integration in time-calibrated phylogeographic studies allow detailed reconstruction of complex biogeographic scenarios. We apply an integrative approach to infer the evolutionary history of the Iberian ribbed newt (Pleurodeles waltl), an Ibero-Maghrebian endemic with populations north and south of the Strait of Gibraltar. We analyzed an extensive multilocus dataset (mitochondrial and nuclear DNA sequences and ten polymorphic microsatellite loci) and found a deep east-west phylogeographic break in Iberian populations dating back to the Plio-Pleistocene. This break is inferred to result from vicariance associated with the formation of the Guadalquivir river basin. In contrast with previous studies, North African populations showed exclusive mtDNA haplotypes, and formed a monophyletic clade within the Eastern Iberian lineage in the mtDNA genealogy. On the other hand, microsatellites failed to recover Moroccan populations as a differentiated genetic cluster. This is interpreted to result from post-divergence gene flow based on the results of IMA2 and Migrate analyses. Thus, Moroccan populations would have originated after overseas dispersal from the Iberian Peninsula in the Pleistocene, with subsequent gene flow in more recent times, implying at least two trans-marine dispersal events. We modeled the distribution of the species and of each lineage, and projected these models back in time to infer climatically favourable areas during the mid-Holocene, the last glacial maximum (LGM) and the last interglacial (LIG), to reconstruct more recent population dynamics. We found minor differences in climatic favourability across lineages, suggesting intraspecific niche conservatism. Genetic diversity was significantly correlated with the intersection of environmental favourability in the LIG and LGM, indicating that populations of P. waltl are genetically more diverse in regions that have remained environmentally favourable through the last glacial cycle, particularly southern Iberia and northern Morocco. This study provides novel insights into the relative roles of geology and climate on the biogeography of a biodiversity hotspot.
Collapse
Affiliation(s)
| | - A Márcia Barbosa
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO/InBIO) - Universidade de Évora, 7004-516 Évora, Portugal
| | - Íñigo Martínez-Solano
- Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal, 2, 28006 Madrid, Spain; Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo, s/n, 13071 Ciudad Real, Spain; CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, R. Padre Armando Quintas, 4485-661 Vairão, Portugal; Ecology, Evolution, and Development Group, Department of Wetland Ecology, Doñana Biological Station, CSIC, c/ Américo Vespucio, s/n, 41092 Seville, Spain.
| |
Collapse
|
18
|
Chávez-Galarza J, Henriques D, Johnston JS, Carneiro M, Rufino J, Patton JC, Pinto MA. Revisiting the Iberian honey bee (Apis mellifera iberiensis) contact zone: maternal and genome-wide nuclear variations provide support for secondary contact from historical refugia. Mol Ecol 2015; 24:2973-92. [PMID: 25930679 DOI: 10.1111/mec.13223] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 04/16/2015] [Accepted: 04/21/2015] [Indexed: 12/30/2022]
Abstract
Dissecting diversity patterns of organisms endemic to Iberia has been truly challenging for a variety of taxa, and the Iberian honey bee is no exception. Surveys of genetic variation in the Iberian honey bee are among the most extensive for any honey bee subspecies. From these, differential and complex patterns of diversity have emerged, which have yet to be fully resolved. Here, we used a genome-wide data set of 309 neutrally tested single nucleotide polymorphisms (SNPs), scattered across the 16 honey bee chromosomes, which were genotyped in 711 haploid males. These SNPs were analysed along with an intergenic locus of the mtDNA, to reveal historical patterns of population structure across the entire range of the Iberian honey bee. Overall, patterns of population structure inferred from nuclear loci by multiple clustering approaches and geographic cline analysis were consistent with two major clusters forming a well-defined cline that bisects Iberia along a northeastern-southwestern axis, a pattern that remarkably parallels that of the mtDNA. While a mechanism of primary intergradation or isolation by distance could explain the observed clinal variation, our results are more consistent with an alternative model of secondary contact between divergent populations previously isolated in glacial refugia, as proposed for a growing list of other Iberian taxa. Despite current intense honey bee management, human-mediated processes have seemingly played a minor role in shaping Iberian honey bee genetic structure. This study highlights the complexity of the Iberian honey bee patterns and reinforces the importance of Iberia as a reservoir of Apis mellifera diversity.
Collapse
Affiliation(s)
- Julio Chávez-Galarza
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança, Campus de Sta. Apolónia, Apartado 1172, 5301-855, Bragança, Portugal.,Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Dora Henriques
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança, Campus de Sta. Apolónia, Apartado 1172, 5301-855, Bragança, Portugal.,Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | - Miguel Carneiro
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - José Rufino
- Polytechnic Institute of Bragança, 5301-857, Bragança, Portugal
| | - John C Patton
- Department of Forestry and Natural Resources, Purdue University, 715 W State St., West Lafayette, IN, 4797-2061, USA
| | - M Alice Pinto
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança, Campus de Sta. Apolónia, Apartado 1172, 5301-855, Bragança, Portugal
| |
Collapse
|
19
|
Gonçalves H, Maia-Carvalho B, Sousa-Neves T, García-París M, Sequeira F, Ferrand N, Martínez-Solano I. Multilocus phylogeography of the common midwife toad, Alytes obstetricans (Anura, Alytidae): Contrasting patterns of lineage diversification and genetic structure in the Iberian refugium. Mol Phylogenet Evol 2015; 93:363-79. [PMID: 26282950 DOI: 10.1016/j.ympev.2015.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
Abstract
Recent investigations on the evolutionary history of the common midwife toad (Alytes obstetricans) revealed high levels of geographically structured genetic diversity but also a situation where delineation of major historical lineages and resolution of their relationships are much more complex than previously thought. We studied sequence variation in one mitochondrial and four nuclear genes throughout the entire distribution range of all recognized A. obstetricans subspecies to infer the evolutionary processes that shaped current patterns of genetic diversity and population subdivision. We found six divergent, geographically structured mtDNA haplogroups diagnosing population lineages, and varying levels of admixture in nuclear markers. Given the timeframe inferred for the splits between major lineages, the climatic and environmental changes that occurred during the Pleistocene seem to have shaped the diversification history of A. obstetricans. Survival of populations in allopatric refugia through the Ice Ages supports the generality of the "refugia-within-refugia" scenario for the Iberian Peninsula. However, lineages corresponding to subspecies A. o. almogavarii, A. o. pertinax, A. o. obstetricans, and A. o. boscai responded differently to Pleistocene climatic oscillations after diverging from a common ancestor. Alytes o. obstetricans expanded northward from a northern Iberian refugium through the western Pyrenees, leaving a signal of contrasting patterns of genetic diversity, with a single mtDNA haplotype north of the Pyrenees from SW France to Germany. Both A. o. pertinax and A. o. boscai are widespread and genetically diverse in Iberia, the latter comprising two divergent lineages with a long independent history. Finally, A. o. almogavarii is mostly restricted to the north-eastern corner of Iberia north of the Ebro river, with additional populations in a small region in south-eastern France. This taxon exhibits unparalleled levels of genetic diversity and little haplotype sharing with other lineages, suggesting a process of incipient speciation.
Collapse
Affiliation(s)
- H Gonçalves
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal.
| | - B Maia-Carvalho
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4099-002 Porto, Portugal
| | - T Sousa-Neves
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal; Museu Paraense Emílio Goeldi, Caixa Postal 399, Belém, PA 66040-170, Brazil
| | - M García-París
- Museo Nacional de Ciencias Naturales, MNCN-CSIC, c/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - F Sequeira
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal
| | - N Ferrand
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4099-002 Porto, Portugal; Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - I Martínez-Solano
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal; Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo, s/n, 13005 Ciudad Real, Spain; Ecology, Evolution and Development Group, Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), Avenida Américo Vespucio, s/n, 41092 Sevilla, Spain
| |
Collapse
|
20
|
Díaz-Rodríguez J, Gonçalves H, Sequeira F, Sousa-Neves T, Tejedo M, Ferrand N, Martínez-Solano I. Molecular evidence for cryptic candidate species in Iberian Pelodytes (Anura, Pelodytidae). Mol Phylogenet Evol 2015; 83:224-41. [DOI: 10.1016/j.ympev.2014.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/03/2014] [Accepted: 12/14/2014] [Indexed: 11/16/2022]
|
21
|
Limited gene flow and high genetic diversity in the threatened Betic midwife toad (Alytes dickhilleni): evolutionary and conservation implications. CONSERV GENET 2014. [DOI: 10.1007/s10592-014-0672-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Maia-Carvalho B, Gonçalves H, Ferrand N, Martínez-Solano I. Multilocus assessment of phylogenetic relationships in Alytes (Anura, Alytidae). Mol Phylogenet Evol 2014; 79:270-8. [DOI: 10.1016/j.ympev.2014.05.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
|
23
|
Dufresnes C, Wassef J, Ghali K, Brelsford A, Stöck M, Lymberakis P, Crnobrnja-Isailovic J, Perrin N. Conservation phylogeography: does historical diversity contribute to regional vulnerability in European tree frogs (Hyla arborea)? Mol Ecol 2013; 22:5669-84. [PMID: 24102652 DOI: 10.1111/mec.12513] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 08/24/2013] [Accepted: 08/28/2013] [Indexed: 11/28/2022]
Abstract
Documenting and preserving the genetic diversity of populations, which conditions their long-term survival, have become a major issue in conservation biology. The loss of diversity often documented in declining populations is usually assumed to result from human disturbances; however, historical biogeographic events, otherwise known to strongly impact diversity, are rarely considered in this context. We apply a multilocus phylogeographic study to investigate the late-Quaternary history of a tree frog (Hyla arborea) with declining populations in the northern and western part of its distribution range. Mitochondrial and nuclear polymorphisms reveal high genetic diversity in the Balkan Peninsula, with a spatial structure moulded by the last glaciations. While two of the main refugial lineages remained limited to the Balkans (Adriatic coast, southern Balkans), a third one expanded to recolonize Northern and Western Europe, loosing much of its diversity in the process. Our findings show that mobile and a priori homogeneous taxa may also display substructure within glacial refugia ('refugia within refugia') and emphasize the importance of the Balkans as a major European biodiversity centre. Moreover, the distribution of diversity roughly coincides with regional conservation situations, consistent with the idea that historically impoverished genetic diversity may interact with anthropogenic disturbances, and increase the vulnerability of populations. Phylogeographic models seem important to fully appreciate the risks of local declines and inform conservation strategies.
Collapse
Affiliation(s)
- Christophe Dufresnes
- Department of Ecology & Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Milá B, Surget-Groba Y, Heulin B, Gosá A, Fitze PS. Multilocus phylogeography of the common lizard Zootoca vivipara at the Ibero-Pyrenean suture zone reveals lowland barriers and high-elevation introgression. BMC Evol Biol 2013; 13:192. [PMID: 24021154 PMCID: PMC3847509 DOI: 10.1186/1471-2148-13-192] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 09/06/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The geographic distribution of evolutionary lineages and the patterns of gene flow upon secondary contact provide insight into the process of divergence and speciation. We explore the evolutionary history of the common lizard Zootoca vivipara (= Lacerta vivipara) in the Iberian Peninsula and test the role of the Pyrenees and the Cantabrian Mountains in restricting gene flow and driving lineage isolation and divergence. We also assess patterns of introgression among lineages upon secondary contact, and test for the role of high-elevation trans-mountain colonisations in explaining spatial patterns of genetic diversity. We use mtDNA sequence data and genome-wide AFLP loci to reconstruct phylogenetic relationships among lineages, and measure genetic structure. RESULTS The main genetic split in mtDNA corresponds generally to the French and Spanish sides of the Pyrenees as previously reported, in contrast to genome-wide AFLP data, which show a major division between NW Spain and the rest. Both types of markers support the existence of four distinct and geographically congruent genetic groups, which are consistent with major topographic barriers. Both datasets reveal the presence of three independent contact zones between lineages in the Pyrenean region, one in the Basque lowlands, one in the low-elevation mountains of the western Pyrenees, and one in the French side of the central Pyrenees. The latter shows genetic evidence of a recent, high-altitude trans-Pyrenean incursion from Spain into France. CONCLUSIONS The distribution and age of major lineages is consistent with a Pleistocene origin and a role for both the Pyrenees and the Cantabrian Mountains in driving isolation and differentiation of Z. vivipara lineages at large geographic scales. However, mountain ranges are not always effective barriers to dispersal, and have not prevented a recent high-elevation trans-Pyrenean incursion that has led to asymmetrical introgression among divergent lineages. Cytonuclear discordance in patterns of genetic structure and introgression at contact zones suggests selection may be involved at various scales. Suture zones are important areas for the study of lineage formation and speciation, and our results show that biogeographic barriers can yield markedly different phylogeographic patterns in different vertebrate and invertebrate taxa.
Collapse
Affiliation(s)
- Borja Milá
- National Museum of Natural Sciences, Spanish Research Council (CSIC), José Gutiérrez Abascal 2, Madrid 28006, Spain
| | - Yann Surget-Groba
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, P. R China
| | - Benoît Heulin
- Station Biologique, CNRS UMR 6553, Paimpont 35380, France
| | - Alberto Gosá
- Herpetology Department, Sociedad de Ciencias Aranzadi, San Sebastián 20014, Spain
| | - Patrick S Fitze
- National Museum of Natural Sciences, Spanish Research Council (CSIC), José Gutiérrez Abascal 2, Madrid 28006, Spain
- ARAID Foundation, Zaragoza 50004, Spain
- Instituto Pirenaico de Ecología (IPE-CSIC), Jaca 22700, Spain
- Université de Lausanne, Department of Ecology and Evolution (DEE), Biophore, Lausanne 1015, Switzerland
| |
Collapse
|
25
|
Llusia D, Márquez R, Beltrán JF, Benítez M, do Amaral JP. Calling behaviour under climate change: geographical and seasonal variation of calling temperatures in ectotherms. GLOBAL CHANGE BIOLOGY 2013; 19:2655-2674. [PMID: 23712567 DOI: 10.1111/gcb.12267] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 04/09/2013] [Indexed: 06/02/2023]
Abstract
Calling behaviour is strongly temperature-dependent and critical for sexual selection and reproduction in a variety of ectothermic taxa, including anuran amphibians, which are the most globally threatened vertebrates. However, few studies have explored how species respond to distinct thermal environments at time of displaying calling behaviour, and thus it is still unknown whether ongoing climate change might compromise the performance of calling activity in ectotherms. Here, we used new audio-trapping techniques (automated sound recording and detection systems) between 2006 and 2009 to examine annual calling temperatures of five temperate anurans and their patterns of geographical and seasonal variation at the thermal extremes of species ranges, providing insights into the thermal breadths of calling activity of species, and the mechanisms that enable ectotherms to adjust to changing thermal environments. All species showed wide thermal breadths during calling behaviour (above 15 °C) and increases in calling temperatures in extremely warm populations and seasons. Thereby, calling temperatures differed both geographically and seasonally, both in terrestrial and aquatic species, and were 8-22 °C below the specific upper critical thermal limits (CTmax ) and strongly associated with the potential temperatures of each thermal environment (operative temperatures during the potential period of breeding). This suggests that calling behaviour in ectotherms may take place at population-specific thermal ranges, diverging when species are subjected to distinct thermal environments, and might imply plasticity of thermal adjustment mechanisms (seasonal and developmental acclimation) that supply species with means of coping with climate change. Furthermore, the thermal thresholds of calling at the onset of the breeding season were dissimilar between conspecific populations, suggesting that other factors besides temperature are needed to trigger the onset of reproduction. Our findings imply that global warming would not directly inhibit calling behaviour in the study species, although might affect other temperature-dependent features of their acoustic communication system.
Collapse
Affiliation(s)
- Diego Llusia
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, Madrid, Spain.
| | | | | | | | | |
Collapse
|
26
|
Igea J, Aymerich P, Fernández-González A, González-Esteban J, Gómez A, Alonso R, Gosálbez J, Castresana J. Phylogeography and postglacial expansion of the endangered semi-aquatic mammal Galemys pyrenaicus. BMC Evol Biol 2013; 13:115. [PMID: 23738626 PMCID: PMC3682870 DOI: 10.1186/1471-2148-13-115] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/28/2013] [Indexed: 01/20/2023] Open
Abstract
Background Species with strict ecological requirements may provide new insights into the forces that shaped the geographic variation of genetic diversity. The Pyrenean desman, Galemys pyrenaicus, is a small semi-aquatic mammal that inhabits clean streams of the northern half of the Iberian Peninsula and is endangered in most of its geographic range, but its genetic structure is currently unknown. While the stringent ecological demands derived from its aquatic habitat might have caused a partition of the genetic diversity among river basins, Pleistocene glaciations would have generated a genetic pattern related to glacial refugia. Results To study the relative importance of historical and ecological factors in the genetic structure of G. pyrenaicus, we used mitochondrial and intronic sequences of specimens covering most of the species range. We show, first, that the Pyrenean desman has very low levels of genetic diversity compared to other mammals. In addition, phylogenetic and dating analyses of the mitochondrial sequences reveal a strong phylogeographic structure of a Middle Pleistocene origin, suggesting that the main lineages arose during periods of glacial isolation. Furthermore, both the spatial distribution of nuclear and mitochondrial diversity and the results of species distribution modeling suggest the existence of a major glacial refugium in the northwestern part of the Iberian Peninsula. Finally, the main mitochondrial lineages show a striking parapatric distribution without any apparent exchange of mitochondrial haplotypes between the lineages that came into secondary contact (although with certain permeability to nuclear genes), indicating incomplete mixing after the post-glacial recolonization. On the other hand, when we analyzed the partition of the genetic diversity among river basins, the Pyrenean desman showed a lower than expected genetic differentiation among main rivers. Conclusions The analysis of mitochondrial and intronic markers in G. pyrenaicus showed the predominant effects of Pleistocene glaciations on the genetic structure of this species, while the distribution of the genetic diversity was not greatly influenced by the main river systems. These results and, particularly, the discovery of a marked phylogeographic structure, may have important implications for the conservation of the Pyrenean desman.
Collapse
Affiliation(s)
- Javier Igea
- Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta 37, Barcelona 08003, Spain
| | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Velo-Antón G, Godinho R, Harris D, Santos X, Martínez-Freiria F, Fahd S, Larbes S, Pleguezuelos J, Brito J. Deep evolutionary lineages in a Western Mediterranean snake (Vipera latastei/monticola group) and high genetic structuring in Southern Iberian populations. Mol Phylogenet Evol 2012; 65:965-73. [DOI: 10.1016/j.ympev.2012.08.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/14/2012] [Accepted: 08/21/2012] [Indexed: 11/24/2022]
|
29
|
Canestrelli D, Salvi D, Maura M, Bologna MA, Nascetti G. One species, three Pleistocene evolutionary histories: phylogeography of the Italian crested newt, Triturus carnifex. PLoS One 2012; 7:e41754. [PMID: 22848590 PMCID: PMC3406094 DOI: 10.1371/journal.pone.0041754] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/25/2012] [Indexed: 11/19/2022] Open
Abstract
Phylogeographic patterns of temperate species from the Mediterranean peninsulas have been investigated intensively. Nevertheless, as more phylogeographies become available, either unique patterns or new lines of concordance continue to emerge, providing new insights on the evolution of regional biotas. Here, we investigated the phylogeography and evolutionary history of the Italian crested newt, Triturus carnifex, through phylogenetic, molecular dating and population structure analyses of two mitochondrial gene fragments (ND2 and ND4; overall 1273 bp). We found three main mtDNA lineages having parapatric distribution and estimated divergence times between Late Pliocene and Early Pleistocene. One lineage (S) was widespread south of the northern Apennine chain and was further geographically structured into five sublineages, likely of Middle Pleistocene origin. The second lineage (C) was widespread throughout the Padano-Venetian plain and did not show a clear phylogeographic structure. The third lineage (N) was observed in only two populations located on western Croatia/Slovenia. Results of analysis of molecular variance suggested that partitioning populations according to the geographic distribution of these lineages and sublineages explains 76% of the observed genetic variation. The phylogeographic structure observed within T. carnifex and divergence time estimates among its lineages, suggest that responses to Pleistocene environmental changes in this single species have been as diverse as those found previously among several codistributed temperate species combined. Consistent with the landscape heterogeneity, physiographic features, and palaeogeographical evolution of its distribution range, these responses encompass multiple refugia along the Apennine chain, lowland refugia in large peri-coastal plains, and a 'cryptic' northern refugium.
Collapse
Affiliation(s)
- Daniele Canestrelli
- Dipartimento di Scienze Ecologiche e Biologiche, Università della Tuscia, Viterbo, Italy.
| | | | | | | | | |
Collapse
|
30
|
Neiva J, Pearson GA, Valero M, Serrão EA. Fine-scale genetic breaks driven by historical range dynamics and ongoing density-barrier effects in the estuarine seaweed Fucus ceranoides L. BMC Evol Biol 2012; 12:78. [PMID: 22672720 PMCID: PMC3483196 DOI: 10.1186/1471-2148-12-78] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 05/14/2012] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Factors promoting the emergence of sharp phylogeographic breaks include restricted dispersal, habitat discontinuity, physical barriers, disruptive selection, mating incompatibility, genetic surfing and secondary contact. Disentangling the role of each in any particular system can be difficult, especially when species are evenly distributed across transition zones and dispersal barriers are not evident. The estuarine seaweed Fucus ceranoides provides a good example of highly differentiated populations along its most persistent distributional range at the present rear edge of the species distribution, in NW Iberia. Intrinsic dispersal restrictions are obvious in this species, but have not prevented F. ceranoides from vastly expanding its range northwards following the last glaciation, implying that additional factors are responsible for the lack of connectivity between neighbouring southern populations. In this study we analyze 22 consecutive populations of F. ceranoides along NW Iberia to investigate the processes generating and maintaining the observed high levels of regional genetic divergence. RESULTS Variation at seven microsatellite loci and at mtDNA spacer sequences was concordant in revealing that Iberian F. ceranoides is composed of three divergent genetic clusters displaying nearly disjunct geographical distributions. Structure and AFC analyses detected two populations with an admixed nuclear background. Haplotypic diversity was high in the W sector and very low in the N sector. Within each genetic cluster, population structure was also pervasive, although shallower. CONCLUSIONS The deep divergence between sectors coupled with the lack of support for a role of oceanographic barriers in defining the location of breaks suggested 1) that the parapatric genetic sectors result from the regional reassembly of formerly vicariant sub-populations, and 2) that the genetic discontinuities at secondary contact zones (and elsewhere) are maintained despite normal migration rates. We conclude that colonization and immigration, as sources of gene-flow, have very different genetic effects. Migration between established populations is effectively too low to prevent their differentiation by drift or to smooth historical differences inherited from the colonization process. F. ceranoides, but possibly low-dispersal species in general, appear to be unified to a large extent by historical, non-equilibrium processes of extinction and colonization, rather than by contemporary patterns of gene flow.
Collapse
Affiliation(s)
- João Neiva
- Centro de Ciências do Mar, Centro de Investigação Marinha e Ambiental - Laboratório Associado, Universidade do Algarve, Gambelas, Faro, 8005-139, Portugal
- Unité Mixte de Recherche 7144, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Station Biologique de Roscoff, Place Georges-Teissier, BP 74, Roscoff Cedex, 29682, France
| | - Gareth A Pearson
- Centro de Ciências do Mar, Centro de Investigação Marinha e Ambiental - Laboratório Associado, Universidade do Algarve, Gambelas, Faro, 8005-139, Portugal
| | - Myriam Valero
- Unité Mixte de Recherche 7144, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Station Biologique de Roscoff, Place Georges-Teissier, BP 74, Roscoff Cedex, 29682, France
| | - Ester A Serrão
- Centro de Ciências do Mar, Centro de Investigação Marinha e Ambiental - Laboratório Associado, Universidade do Algarve, Gambelas, Faro, 8005-139, Portugal
| |
Collapse
|
31
|
CANESTRELLI DANIELE, SACCO FLORINDA, NASCETTI GIUSEPPE. On glacial refugia, genetic diversity, and microevolutionary processes: deep phylogeographical structure in the endemic newt Lissotriton italicus1. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2011.01767.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
MATTOCCIA MARCO, MARTA SILVIO, ROMANO ANTONIO, SBORDONI VALERIO. Phylogeography of an Italian endemic salamander (genus Salamandrina): glacial refugia, postglacial expansions, and secondary contact. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2011.01747.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Reis DM, Cunha RL, Patrão C, Rebelo R, Castilho R. Salamandra salamandra (Amphibia: Caudata: Salamandridae) in Portugal: not all black and yellow. Genetica 2011; 139:1095-105. [DOI: 10.1007/s10709-011-9609-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/05/2011] [Indexed: 11/27/2022]
|
34
|
Evolutionary history of Lissotriton helveticus: Multilocus assessment of ancestral vs. recent colonization of the Iberian Peninsula. Mol Phylogenet Evol 2011; 60:170-82. [DOI: 10.1016/j.ympev.2011.04.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/04/2011] [Accepted: 04/12/2011] [Indexed: 11/21/2022]
|
35
|
COLBECK GABRIELJ, TURGEON JULIE, SIROIS PASCAL, DODSON JULIANJ. Historical introgression and the role of selective vs. neutral processes in structuring nuclear genetic variation (AFLP) in a circumpolar marine fish, the capelin (Mallotus villosus). Mol Ecol 2011; 20:1976-87. [DOI: 10.1111/j.1365-294x.2011.05069.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
36
|
Melo-Ferreira J, Alves PC, Rocha J, Ferrand N, Boursot P. Interspecific X-chromosome and mitochondrial DNA introgression in the Iberian hare: selection or allele surfing? Evolution 2011; 65:1956-68. [PMID: 21729051 DOI: 10.1111/j.1558-5646.2011.01261.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introgression from a resident species into an invading one is predicted to occur through the demographic process of "allele surfing," and to particularly affect genomic regions transmitted by the lower migrating sex, such as mtDNA. This could explain that northern Iberian populations of Lepus granatensis harbor high frequencies of mtDNA from L. timidus, an arctic hare it replaced there after deglaciation. We report that variation of introgressed timidus-like mtDNA reflects several predicted effects of this process: increasing frequency and diversity in the direction of expansion, strong perpendicular phylogeographic structure and signs of postglacial demographic growth. However, demographic inferences for the granatensis and timidus-like mtDNA lineages suggest the latter may have outcompeted the former in northern Iberia. Autosomal introgression occurs at low frequencies and species-wide rather than only in the north. If this difference with mtDNA resulted from sex-biased migration, an intermediate pattern should prevail for the X-chromosome, but we report species-wide and high-frequency introgression of an X-fragment. Either selection favored this ubiquitous X-introgression, or more complex postglacial expansion patterns prevailed, with different consequences depending on the genomic and geographic region. This illustrates the difficulty of distinguishing demographic and selective effects and the need for genome and species-wide based demographic models.
Collapse
Affiliation(s)
- José Melo-Ferreira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal
| | | | | | | | | |
Collapse
|
37
|
|
38
|
Canestrelli D, Aloise G, Cecchetti S, Nascetti G. Birth of a hotspot of intraspecific genetic diversity: notes from the underground. Mol Ecol 2010; 19:5432-51. [PMID: 21059127 DOI: 10.1111/j.1365-294x.2010.04900.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hotspots of intraspecific diversity have been observed in most species, often within areas of putative Pleistocene refugia. They have thus mostly been viewed as the outcome of prolonged stability of large populations within the refugia. However, recent evidence has suggested that several other microevolutionary processes could also be involved in their formation. Here, we investigate the contribution of these processes to current range-wide patterns of genetic diversity in the Italian endemic mole Talpa romana, using both nuclear (30 allozyme loci) and mitochondrial markers (cytochrome b sequences). Southern populations of this species showed an allozyme variation that is amongst the highest observed in small mammals (most populations had an expected heterozygosity of 0.10 or above), which was particularly unexpected for a subterranean species. Population genetic, phylogeographic and historical demographic analyses indicated that T. romana populations repeatedly underwent allopatric differentiations followed by secondary admixture within the refugial range in southern Italy. A prolonged demographic stability was reliably inferred from the mitochondrial DNA data only for a population group located north and east of the Calabrian peninsula, showing comparatively lower levels of allozyme variability, and lacking evidence of secondary admixture with other groups. Thus, our results point to the admixture between differentiated lineages as the main cause of the higher levels of diversity of refugial populations. When compared with the Pleistocene evolutionary history recently inferred for species from both the same and other geographic regions, these results suggest the need for a reappraisal of the role of gene exchange in the formation of intraspecific hotspots of genetic diversity.
Collapse
Affiliation(s)
- Daniele Canestrelli
- Dipartimento di Ecologia e Sviluppo Economico Sostenibile, Università della Tuscia, Viterbo, Italy.
| | | | | | | |
Collapse
|
39
|
The confounding effects of population structure, genetic diversity and the sampling scheme on the detection and quantification of population size changes. Genetics 2010; 186:983-95. [PMID: 20739713 DOI: 10.1534/genetics.110.118661] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The idea that molecular data should contain information on the recent evolutionary history of populations is rather old. However, much of the work carried out today owes to the work of the statisticians and theoreticians who demonstrated that it was possible to detect departures from equilibrium conditions (e.g., panmictic population/mutation-drift equilibrium) and interpret them in terms of deviations from neutrality or stationarity. During the last 20 years the detection of population size changes has usually been carried out under the assumption that samples were obtained from populations that can be approximated by a Wright-Fisher model (i.e., assuming panmixia, demographic stationarity, etc.). However, natural populations are usually part of spatial networks and are interconnected through gene flow. Here we simulated genetic data at mutation and migration-drift equilibrium under an n-island and a stepping-stone model. The simulated populations were thus stationary and not subject to any population size change. We varied the level of gene flow between populations and the scaled mutation rate. We also used several sampling schemes. We then analyzed the simulated samples using the Bayesian method implemented in MSVAR, the Markov Chain Monte Carlo simulation program, to detect and quantify putative population size changes using microsatellite data. Our results show that all three factors (genetic differentiation/gene flow, genetic diversity, and the sampling scheme) play a role in generating false bottleneck signals. We also suggest an ad hoc method to counter this effect. The confounding effect of population structure and of the sampling scheme has practical implications for many conservation studies. Indeed, if population structure is creating "spurious" bottleneck signals, the interpretation of bottleneck signals from genetic data might be less straightforward than it would seem, and several studies may have overestimated or incorrectly detected bottlenecks in endangered species.
Collapse
|