1
|
Mayorova TD, Koch TL, Kachar B, Jung JH, Reese TS, Smith CL. Placozoan secretory cell types implicated in feeding, innate immunity and regulation of behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613768. [PMID: 39372748 PMCID: PMC11452194 DOI: 10.1101/2024.09.18.613768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Placozoa are millimeter-sized, flat, irregularly shaped ciliated animals that crawl on surfaces in warm oceans feeding on biofilms, which they digest externally. They stand out from other animals due to their simple body plans. They lack organs, body cavities, muscles and a nervous system and have only seven broadly defined morphological cell types, each with a unique distribution. Analyses of single cell transcriptomes of four species of placozoans revealed greater diversity of secretory cell types than evident from morphological studies, but the locations of many of these new cell types were unknown and it was unclear which morphological cell types they represent. Furthermore, there were contradictions between the conclusions of previous studies and the single cell RNAseq studies. To address these issues, we used mRNA probes for genes encoding secretory products expressed in different metacells in Trichoplax adhaerens to localize cells in whole mounts and in dissociated cell cultures, where their morphological features could be visualized and identified. The nature and functions of their secretory granules were further investigated with electron microscopic techniques and by imaging secretion in live animals during feeding episodes. We found that two cell types participate in disintegrating prey, one resembling a lytic cell type in mammals and another combining features of zymogen gland cells and enterocytes. We identified secretory epithelial cells expressing glycoproteins or short peptides implicated in defense. We located seven peptidergic cell types and two types of mucocytes. Our findings reveal mechanisms that placozoans use to feed and protect themselves from pathogens and clues about neuropeptidergic signaling. We compare placozoan secretory cell types with cell types in other animal phyla to gain insight about general evolutionary trends in cell type diversification, as well as pathways leading to the emergence of synapomorphies.
Collapse
Affiliation(s)
- Tatiana D. Mayorova
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Thomas Lund Koch
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Bechara Kachar
- Section on Structural Cell Biology, Laboratory of Cell Structure and Dynamics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States of America
| | - Jae Hoon Jung
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Thomas S. Reese
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| | - Carolyn L. Smith
- Light Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
2
|
Eitel M, Osigus H, Brenzinger B, Wörheide G. Beauty in the beast - Placozoan biodiversity explored through molluscan predator genomics. Ecol Evol 2024; 14:e11220. [PMID: 38606341 PMCID: PMC11007570 DOI: 10.1002/ece3.11220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
The marine animal phylum Placozoa is characterized by a poorly explored cryptic biodiversity combined with very limited knowledge of their ecology. While placozoans are typically found as part of the epibenthos of coastal waters, known placozoan predators, namely small, shell-less sea slugs belonging to the family Rhodopidae (Mollusca: Gastropoda: Heterobranchia), inhabit the interstitium of seafloor sediment. In order to gain further insights into this predator-prey relationship and to expand our understanding of placozoan ecological niches, we screened publicly available whole-body metagenomic data from two rhodopid specimens collected from coastal sediments. Our analysis not only revealed the signatures of three previously unknown placozoan lineages in these sea slug samples but also enabled the assembly of three complete and two partial mitochondrial chromosomes belonging to four previously described placozoan genera, substantially extending the picture of placozoan biodiversity. Our findings further refine the molecular phylogeny of the Placozoa, corroborate the recently established taxonomic ranks in this phylum, and provide molecular support that known placozoan clades should be referred to as genera. We finally discuss the main finding of our study - the presence of placozoans in the sea floor sediment interstitium - in the context of their ecological, biological, and natural history implications.
Collapse
Affiliation(s)
- Michael Eitel
- GeoBio‐CenterLudwig‐Maximilians‐Universität MünchenMünchenDeutschland
- Department of Earth and Environmental Sciences, Paleontology and GeobiologyLudwig‐Maximilians‐Universität‐MünchenMünchenDeutschland
| | - Hans‐Jürgen Osigus
- Institut für TierökologieStiftung Tierärztliche Hochschule HannoverHannoverDeutschland
- Present address:
Hochschulbibliothek, Stiftung Tierärztliche Hochschule HannoverHannoverDeutschland
| | - Bastian Brenzinger
- Staatliche Naturwissenschaftliche Sammlungen Bayerns (SNSB) – Zoologische StaatssammlungMünchenDeutschland
| | - Gert Wörheide
- GeoBio‐CenterLudwig‐Maximilians‐Universität MünchenMünchenDeutschland
- Department of Earth and Environmental Sciences, Paleontology and GeobiologyLudwig‐Maximilians‐Universität‐MünchenMünchenDeutschland
- Staatliche Naturwissenschaftliche Sammlungen Bayerns (SNSB) – Bayerische Staatssammlung für Paläontologie und GeologieMünchenDeutschland
| |
Collapse
|
3
|
Romanova DY, Varoqueaux F, Eitel M, Yoshida MA, Nikitin MA, Moroz LL. Long-Term Culturing of Placozoans (Trichoplax and Hoilungia). Methods Mol Biol 2024; 2757:509-529. [PMID: 38668981 DOI: 10.1007/978-1-0716-3642-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The phylum Placozoa remains one of the least explored among early-branching metazoan lineages. For over 130 years, this phylum had been represented by the single species Trichoplax adhaerens-an animal with the simplest known body plan (three cell layers without any organs) but complex behaviors. Recently, extensive sampling of placozoans across the globe and their subsequent genetic analysis have revealed incredible biodiversity with numerous cryptic species worldwide. However, only a few culture protocols are available to date, and all are for one species only. Here, we describe the breeding of four different species representing two placozoan genera: Trichoplax adhaerens, Trichoplax sp. H2, Hoilungia sp. H4, and Hoilungia hongkongensis originating from diverse biotopes. Our protocols allow to culture all species under comparable conditions. Next, we outlined various food sources and optimized strain-specific parameters enabling long-term culturing. These protocols can facilitate comparative analyses of placozoan biology and behaviors, which together will contribute to deciphering general principles of animal organization.
Collapse
Affiliation(s)
- Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia.
| | - Frédérique Varoqueaux
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| | - Michael Eitel
- Department of Earth and Environmental Sciences Palaeontology & Geobiology, LMU München, Munich, Germany
| | - Masa-Aki Yoshida
- Marine Biological Science Section, Education and Research Center for Biological Resources, Faculty of Life and Environmental Science, Shimane University, Okinoshima, Oki, Shimane, Japan
| | - Mikhail A Nikitin
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
| | - Leonid L Moroz
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA.
| |
Collapse
|
4
|
Romanova DY, Moroz LL. Brief History of Placozoa. Methods Mol Biol 2024; 2757:103-122. [PMID: 38668963 DOI: 10.1007/978-1-0716-3642-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Placozoans are morphologically the simplest free-living animals. They represent a unique window of opportunities to understand both the origin of the animal organization and the rules of life for the system and synthetic biology of the future. However, despite more than 100 years of their investigations, we know little about their organization, natural habitats, and life strategies. Here, we introduce this unique animal phylum and highlight some directions vital to broadening the frontiers of the biomedical sciences. In particular, understanding the genomic bases of placozoan biodiversity, cell identity, connectivity, reproduction, and cellular bases of behavior are critical hot spots for future studies.
Collapse
Affiliation(s)
- Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russian Federation.
| | - Leonid L Moroz
- Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Whitney Laboratory for Marine Biosciences University of Florida, St. Augustine, FL, USA.
| |
Collapse
|
5
|
Najle SR, Grau-Bové X, Elek A, Navarrete C, Cianferoni D, Chiva C, Cañas-Armenteros D, Mallabiabarrena A, Kamm K, Sabidó E, Gruber-Vodicka H, Schierwater B, Serrano L, Sebé-Pedrós A. Stepwise emergence of the neuronal gene expression program in early animal evolution. Cell 2023; 186:4676-4693.e29. [PMID: 37729907 PMCID: PMC10580291 DOI: 10.1016/j.cell.2023.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/13/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
The assembly of the neuronal and other major cell type programs occurred early in animal evolution. We can reconstruct this process by studying non-bilaterians like placozoans. These small disc-shaped animals not only have nine morphologically described cell types and no neurons but also show coordinated behaviors triggered by peptide-secreting cells. We investigated possible neuronal affinities of these peptidergic cells using phylogenetics, chromatin profiling, and comparative single-cell genomics in four placozoans. We found conserved cell type expression programs across placozoans, including populations of transdifferentiating and cycling cells, suggestive of active cell type homeostasis. We also uncovered fourteen peptidergic cell types expressing neuronal-associated components like the pre-synaptic scaffold that derive from progenitor cells with neurogenesis signatures. In contrast, earlier-branching animals like sponges and ctenophores lacked this conserved expression. Our findings indicate that key neuronal developmental and effector gene modules evolved before the advent of cnidarian/bilaterian neurons in the context of paracrine cell signaling.
Collapse
Affiliation(s)
- Sebastián R Najle
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Navarrete
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Damiano Cianferoni
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Cristina Chiva
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Didac Cañas-Armenteros
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Arrate Mallabiabarrena
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Kai Kamm
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Eduard Sabidó
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Harald Gruber-Vodicka
- Max Planck Institute for Marine Microbiology, Bremen, Germany; Zoological Institute, Christian Albrechts University, Kiel, Germany
| | - Bernd Schierwater
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany; American Museum of Natural History, Richard Gilder Graduate School, NY, USA
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Barcelona, Spain.
| |
Collapse
|
6
|
Tessler M, Galen SC, DeSalle R, Schierwater B. Let’s end taxonomic blank slates with molecular morphology. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1016412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many known evolutionary lineages have yet to be described formally due to a lack of traditional morphological characters. This is true for genetically distinctive groups within the amoeboid Placozoa animals, the protists in ponds, and the bacteria that cover nearly everything. These taxonomic tabula rasae, or blank slates, are problematic; without names, communication is hampered and other scientific progress is slowed. We suggest that the morphology of molecules be used to help alleviate this issue. Molecules, such as proteins, have structure. Proteins are even visualizable with X-ray crystallography, albeit more easily detected by and easier to work with using genomic sequencing. Given their structured nature, we believe they should not be considered as anything less than traditional morphology. Protein-coding gene content (presence/absence) can also be used easily with genomic sequences, and is a convenient binary character set. With molecular morphology, we believe that each taxonomic tabula rasa can be solved.
Collapse
|
7
|
Tessler M, Neumann JS, Kamm K, Osigus HJ, Eshel G, Narechania A, Burns JA, DeSalle R, Schierwater B. Phylogenomics and the first higher taxonomy of Placozoa, an ancient and enigmatic animal phylum. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1016357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Placozoa is an ancient phylum of extraordinarily unusual animals: miniscule, ameboid creatures that lack most fundamental animal features. Despite high genetic diversity, only recently have the second and third species been named. While prior genomic studies suffer from incomplete placozoan taxon sampling, we more than double the count with protein sequences from seven key genomes and produce the first nuclear phylogenomic reconstruction of all major placozoan lineages. This leads us to the first complete Linnaean taxonomic classification of Placozoa, over a century after its discovery: This may be the only time in the 21st century when an entire higher taxonomy for a whole animal phylum is formalized. Our classification establishes 2 new classes, 4 new orders, 3 new families, 1 new genus, and 1 new species, namely classes Polyplacotomia and Uniplacotomia; orders Polyplacotomea, Trichoplacea, Cladhexea, and Hoilungea; families Polyplacotomidae, Cladtertiidae, and Hoilungidae; and genus Cladtertia with species Cladtertia collaboinventa, nov. Our likelihood and gene content tree topologies refine the relationships determined in previous studies. Adding morphological data into our phylogenomic matrices suggests sponges (Porifera) as the sister to other animals, indicating that modest data addition shifts this node away from comb jellies (Ctenophora). Furthermore, by adding the first genomic protein data of the exceptionally distinct and branching Polyplacotoma mediterranea, we solidify its position as sister to all other placozoans; a divergence we estimate to be over 400 million years old. Yet even this deep split sits on a long branch to other animals, suggesting a bottleneck event followed by diversification. Ancestral state reconstructions indicate large shifts in gene content within Placozoa, with Hoilungia hongkongensis and its closest relatives having the most unique genetics.
Collapse
|
8
|
Romanova DY, Nikitin MA, Shchenkov SV, Moroz LL. Expanding of Life Strategies in Placozoa: Insights From Long-Term Culturing of Trichoplax and Hoilungia. Front Cell Dev Biol 2022; 10:823283. [PMID: 35223848 PMCID: PMC8864292 DOI: 10.3389/fcell.2022.823283] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/20/2022] [Indexed: 12/05/2022] Open
Abstract
Placozoans are essential reference species for understanding the origins and evolution of animal organization. However, little is known about their life strategies in natural habitats. Here, by maintaining long-term culturing for four species of Trichoplax and Hoilungia, we extend our knowledge about feeding and reproductive adaptations relevant to the diversity of life forms and immune mechanisms. Three modes of population dynamics depended upon feeding sources, including induction of social behaviors, morphogenesis, and reproductive strategies. In addition to fission, representatives of all species produced “swarmers” (a separate vegetative reproduction stage), which could also be formed from the lower epithelium with greater cell-type diversity. We monitored the formation of specialized spheroid structures from the upper cell layer in aging culture. These “spheres” could be transformed into juvenile animals under favorable conditions. We hypothesize that spheroid structures represent a component of the innate immune defense response with the involvement of fiber cells. Finally, we showed that regeneration could be a part of the adaptive reproductive strategies in placozoans and a unique experimental model for regenerative biology.
Collapse
Affiliation(s)
- Daria Y. Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
- *Correspondence: Daria Y. Romanova, ; Leonid L. Moroz,
| | - Mikhail A. Nikitin
- Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Sergey V. Shchenkov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Leonid L. Moroz
- Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
- *Correspondence: Daria Y. Romanova, ; Leonid L. Moroz,
| |
Collapse
|
9
|
Osigus HJ, Eitel M, Horn K, Kamm K, Kosubek-Langer J, Schmidt MJ, Hadrys H, Schierwater B. Studying Placozoa WBR in the Simplest Metazoan Animal, Trichoplax adhaerens. Methods Mol Biol 2022; 2450:121-133. [PMID: 35359305 PMCID: PMC9761494 DOI: 10.1007/978-1-0716-2172-1_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Placozoans are a promising model system to study fundamental regeneration processes in a morphologically and genetically very simple animal. We here provide a brief introduction to the enigmatic Placozoa and summarize the state of the art of animal handling and experimental manipulation possibilities.
Collapse
Affiliation(s)
- Hans-Jürgen Osigus
- Institut für Tierökologie, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Michael Eitel
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, GeoBio-Center, Ludwig-Maximilians Universität München, Munich, Germany
| | - Karolin Horn
- Institut für Tierökologie, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Kai Kamm
- Institut für Tierökologie, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Jennifer Kosubek-Langer
- Institut für Tierökologie, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
- Department of Animal Behavior, Freie Universität Berlin, Berlin, Germany
| | | | - Heike Hadrys
- Institut für Tierökologie, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Bernd Schierwater
- Institut für Tierökologie, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany.
| |
Collapse
|
10
|
Fortunato A, Fleming A, Aktipis A, Maley CC. Upregulation of DNA repair genes and cell extrusion underpin the remarkable radiation resistance of Trichoplax adhaerens. PLoS Biol 2021; 19:e3001471. [PMID: 34788294 PMCID: PMC8635375 DOI: 10.1371/journal.pbio.3001471] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/01/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Trichoplax adhaerens is the simplest multicellular animal with tissue differentiation and somatic cell turnover. Like all other multicellular organisms, it should be vulnerable to cancer, yet there have been no reports of cancer in T. adhaerens or any other placozoan. We investigated the cancer resistance of T. adhaerens, discovering that they are able to tolerate high levels of radiation damage (218.6 Gy). To investigate how T. adhaerens survive levels of radiation that are lethal to other animals, we examined gene expression after the X-ray exposure, finding overexpression of genes involved in DNA repair and apoptosis including the MDM2 gene. We also discovered that T. adhaerens extrudes clusters of inviable cells after X-ray exposure. T. adhaerens is a valuable model organism for studying the molecular, genetic, and tissue-level mechanisms underlying cancer suppression. The placozoan Trichoplax adhaerens is able to tolerate high levels of radiation and is resilient to DNA damage; this study reveals that exposure to X-rays triggers the extrusion of cell clusters which subsequently die, and that radiation exposure induces the overexpression of genes involved in DNA repair.
Collapse
Affiliation(s)
- Angelo Fortunato
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona, United States of America.,Biodesign Center for Biocomputing, Security and Society, Arizona State University, Arizona, United States of America.,School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Alexis Fleming
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona, United States of America.,Biodesign Center for Biocomputing, Security and Society, Arizona State University, Arizona, United States of America
| | - Athena Aktipis
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona, United States of America.,Department of Psychology, Arizona State University, Tempe, Arizona, United States of America
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, Arizona, United States of America.,Biodesign Center for Biocomputing, Security and Society, Arizona State University, Arizona, United States of America.,School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
11
|
Schierwater B, Osigus HJ, Bergmann T, Blackstone NW, Hadrys H, Hauslage J, Humbert PO, Kamm K, Kvansakul M, Wysocki K, DeSalle R. The enigmatic Placozoa part 1: Exploring evolutionary controversies and poor ecological knowledge. Bioessays 2021; 43:e2100080. [PMID: 34472126 DOI: 10.1002/bies.202100080] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/21/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022]
Abstract
The placozoan Trichoplax adhaerens is a tiny hairy plate and more simply organized than any other living metazoan. After its original description by F.E. Schulze in 1883, it attracted attention as a potential model for the ancestral state of metazoan organization, the "Urmetazoon". Trichoplax lacks any kind of symmetry, organs, nerve cells, muscle cells, basal lamina, and extracellular matrix. Furthermore, the placozoan genome is the smallest (not secondarily reduced) genome of all metazoan genomes. It harbors a remarkably rich diversity of genes and has been considered the best living surrogate for a metazoan ancestor genome. The phylum Placozoa presently harbors three formally described species, while several dozen "cryptic" species are yet awaiting their description. The phylogenetic position of placozoans has recently become a contested arena for modern phylogenetic analyses and view-driven claims. Trichoplax offers unique prospects for understanding the minimal requirements of metazoan animal organization and their corresponding malfunctions.
Collapse
Affiliation(s)
- Bernd Schierwater
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Hans-Jürgen Osigus
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Tjard Bergmann
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Neil W Blackstone
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Heike Hadrys
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jens Hauslage
- Gravitational Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Patrick O Humbert
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Kai Kamm
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Marc Kvansakul
- Department of Biochemistry & Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Kathrin Wysocki
- Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Rob DeSalle
- American Museum of Natural History, New York, New York, USA
| |
Collapse
|
12
|
Romanova DY, Varoqueaux F, Daraspe J, Nikitin MA, Eitel M, Fasshauer D, Moroz LL. Hidden cell diversity in Placozoa: ultrastructural insights from Hoilungia hongkongensis. Cell Tissue Res 2021; 385:623-637. [PMID: 33876313 PMCID: PMC8523601 DOI: 10.1007/s00441-021-03459-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
From a morphological point of view, placozoans are among the most simple free-living animals. This enigmatic phylum is critical for our understanding of the evolution of animals and their cell types. Their millimeter-sized, disc-like bodies consist of only three cell layers that are shaped by roughly seven major cell types. Placozoans lack muscle cells and neurons but are able to move using their ciliated lower surface and take up food in a highly coordinated manner. Intriguingly, the genome of Trichoplax adhaerens, the founding member of the enigmatic phylum, has disclosed a surprising level of genetic complexity. Moreover, recent molecular and functional investigations have uncovered a much larger, so-far hidden cell-type diversity. Here, we have extended the microanatomical characterization of a recently described placozoan species-Hoilungia hongkongensis. In H. hongkongensis, we recognized the established canonical three-layered placozoan body plan but also came across several morphologically distinct and potentially novel cell types, among them novel gland cells and "shiny spheres"-bearing cells at the upper epithelium. Thus, the diversity of cell types in placozoans is indeed higher than anticipated.
Collapse
Affiliation(s)
- Daria Y Romanova
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland.
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Moscow, 117485, Russia.
| | - Frédérique Varoqueaux
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Jean Daraspe
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Mikhail A Nikitin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994, Russia
| | - Michael Eitel
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians Universität München, Munich, Germany
| | - Dirk Fasshauer
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland.
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Leonid L Moroz
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA.
- Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
13
|
Hernández-Hernández T, Miller EC, Román-Palacios C, Wiens JJ. Speciation across the Tree of Life. Biol Rev Camb Philos Soc 2021; 96:1205-1242. [PMID: 33768723 DOI: 10.1111/brv.12698] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023]
Abstract
Much of what we know about speciation comes from detailed studies of well-known model systems. Although there have been several important syntheses on speciation, few (if any) have explicitly compared speciation among major groups across the Tree of Life. Here, we synthesize and compare what is known about key aspects of speciation across taxa, including bacteria, protists, fungi, plants, and major animal groups. We focus on three main questions. Is allopatric speciation predominant across groups? How common is ecological divergence of sister species (a requirement for ecological speciation), and on what niche axes do species diverge in each group? What are the reproductive isolating barriers in each group? Our review suggests the following patterns. (i) Based on our survey and projected species numbers, the most frequent speciation process across the Tree of Life may be co-speciation between endosymbiotic bacteria and their insect hosts. (ii) Allopatric speciation appears to be present in all major groups, and may be the most common mode in both animals and plants, based on non-overlapping ranges of sister species. (iii) Full sympatry of sister species is also widespread, and may be more common in fungi than allopatry. (iv) Full sympatry of sister species is more common in some marine animals than in terrestrial and freshwater ones. (v) Ecological divergence of sister species is widespread in all groups, including ~70% of surveyed species pairs of plants and insects. (vi) Major axes of ecological divergence involve species interactions (e.g. host-switching) and habitat divergence. (vii) Prezygotic isolation appears to be generally more widespread and important than postzygotic isolation. (viii) Rates of diversification (and presumably speciation) are strikingly different across groups, with the fastest rates in plants, and successively slower rates in animals, fungi, and protists, with the slowest rates in prokaryotes. Overall, our study represents an initial step towards understanding general patterns in speciation across all organisms.
Collapse
Affiliation(s)
- Tania Hernández-Hernández
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A.,Catedrática CONACYT asignada a LANGEBIO-UGA Cinvestav, Libramiento Norte Carretera León Km 9.6, 36821, Irapuato, Guanajuato, Mexico
| | - Elizabeth C Miller
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - Cristian Román-Palacios
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721-0088, U.S.A
| |
Collapse
|
14
|
Miyazawa H, Osigus HJ, Rolfes S, Kamm K, Schierwater B, Nakano H. Mitochondrial Genome Evolution of Placozoans: Gene Rearrangements and Repeat Expansions. Genome Biol Evol 2020; 13:5919586. [PMID: 33031489 PMCID: PMC7813641 DOI: 10.1093/gbe/evaa213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Placozoans, nonbilaterian animals with the simplest known metazoan bauplan, are currently classified into 20 haplotypes belonging to three genera, Polyplacotoma, Trichoplax, and Hoilungia. The latter two comprise two and five clades, respectively. In Trichoplax and Hoilungia, previous studies on six haplotypes belonging to four different clades have shown that their mtDNAs are circular chromosomes of 32–43 kb in size, which encode 12 protein-coding genes, 24 tRNAs, and two rRNAs. These mitochondrial genomes (mitogenomes) also show unique features rarely seen in other metazoans, including open reading frames (ORFs) of unknown function, and group I and II introns. Here, we report seven new mitogenomes, covering the five previously described haplotypes H2, H17, H19, H9, and H11, as well as two new haplotypes, H23 (clade III) and H24 (clade VII). The overall gene content is shared between all placozoan mitochondrial genomes, but genome sizes, gene orders, and several exon–intron boundaries vary among clades. Phylogenomic analyses strongly support a tree topology different from previous 16S rRNA analyses, with clade VI as the sister group to all other Hoilungia clades. We found small inverted repeats in all 13 mitochondrial genomes of the Trichoplax and Hoilungia genera and evaluated their distribution patterns among haplotypes. Because Polyplacotoma mediterranea (H0), the sister to the remaining haplotypes, has a small mitochondrial genome with few small inverted repeats and ORFs, we hypothesized that the proliferation of inverted repeats and ORFs substantially contributed to the observed increase in the size and GC content of the Trichoplax and Hoilungia mitochondrial genomes.
Collapse
Affiliation(s)
- Hideyuki Miyazawa
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, Japan.,Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | - Hans-Jürgen Osigus
- Division of Molecular Evolution, Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Sarah Rolfes
- Division of Molecular Evolution, Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Kai Kamm
- Division of Molecular Evolution, Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Bernd Schierwater
- Division of Molecular Evolution, Institute of Animal Ecology, University of Veterinary Medicine Hannover, Foundation, Germany
| | - Hiroaki Nakano
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| |
Collapse
|
15
|
Popgeorgiev N, Sa JD, Jabbour L, Banjara S, Nguyen TTM, Akhavan-E-Sabet A, Gadet R, Ralchev N, Manon S, Hinds MG, Osigus HJ, Schierwater B, Humbert PO, Rimokh R, Gillet G, Kvansakul M. Ancient and conserved functional interplay between Bcl-2 family proteins in the mitochondrial pathway of apoptosis. SCIENCE ADVANCES 2020; 6:6/40/eabc4149. [PMID: 32998881 PMCID: PMC7527217 DOI: 10.1126/sciadv.abc4149] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/10/2020] [Indexed: 06/10/2023]
Abstract
In metazoans, Bcl-2 family proteins are major regulators of mitochondrially mediated apoptosis; however, their evolution remains poorly understood. Here, we describe the molecular characterization of the four members of the Bcl-2 family in the most primitive metazoan, Trichoplax adhaerens All four trBcl-2 homologs are multimotif Bcl-2 group, with trBcl-2L1 and trBcl-2L2 being highly divergent antiapoptotic Bcl-2 members, whereas trBcl-2L3 and trBcl-2L4 are homologs of proapoptotic Bax and Bak, respectively. trBax expression permeabilizes the mitochondrial outer membrane, while trBak operates as a BH3-only sensitizer repressing antiapoptotic activities of trBcl-2L1 and trBcl-2L2. The crystal structure of a trBcl-2L2:trBak BH3 complex reveals that trBcl-2L2 uses the canonical Bcl-2 ligand binding groove to sequester trBak BH3, indicating that the structural basis for apoptosis control is conserved from T. adhaerens to mammals. Finally, we demonstrate that both trBax and trBak BH3 peptides bind selectively to human Bcl-2 homologs to sensitize cancer cells to chemotherapy treatment.
Collapse
Affiliation(s)
- Nikolay Popgeorgiev
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France.
| | - Jaison D Sa
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Lea Jabbour
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | - Suresh Banjara
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Trang Thi Minh Nguyen
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | - Aida Akhavan-E-Sabet
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Rudy Gadet
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | - Nikola Ralchev
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | - Stéphen Manon
- Institut de Biochimie et de Génétique Cellulaires, UMR5095, CNRS et Université de Bordeaux, CS61390, 1 Rue Camille Saint-Saëns, 33000 Bordeaux, France
| | - Mark G Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne 3050, Australia
| | - Hans-Jürgen Osigus
- Institute of Animal Ecology, Division of Molecular Evolution, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Bernd Schierwater
- Institute of Animal Ecology, Division of Molecular Evolution, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Patrick O Humbert
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Ruth Rimokh
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | - Germain Gillet
- Université de Lyon, Centre de recherche en cancérologie de Lyon, U1052 INSERM, UMR CNRS 5286, Université Lyon I, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France.
| | - Marc Kvansakul
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
16
|
Osigus HJ, Rolfes S, Herzog R, Kamm K, Schierwater B. Polyplacotoma mediterranea is a new ramified placozoan species. Curr Biol 2020; 29:R148-R149. [PMID: 30836080 DOI: 10.1016/j.cub.2019.01.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enigmatic phylum Placozoa is harboring an unknown number of cryptic species and has become a challenge for modern systematics. Only recently, a second species has been described [1], while the presence of more than a hundred additional species has been suggested [2]. The original placozoan species Trichoplax adhaerens[3], the second species Hoilungia hongkongensis[1] and all yet undescribed species are morphologically indistinguishable (i.e. no species diagnostic characters are available [4]). Here, we report on a new placozoan species, Polyplacotoma mediterranea gen. nov., spec. nov., which differs from other placozoans in its completely different morphological habitus, including long polytomous body branches and a maximum body length of more than 10 mm. Polyplacotoma mediterranea also necessitates a different view of placozoan mitochondrial genetics. P. mediterranea harbors a highly compact mitochondrial genome with overlapping mitochondrial tRNA and protein coding genes. Furthermore, the new species lacks typical placozoan features, including the cox1 micro exon and cox1 barcode intron. As phylogenetic analyses suggest a sister group relationship of P. mediterranea to all other placozoans, this new species may also be relevant for studies addressing the relationships at the base of the metazoan tree of life.
Collapse
Affiliation(s)
- Hans-Jürgen Osigus
- Stiftung Tierärztliche Hochschule Hannover, ITZ, Ecology & Evolution, Bünteweg 17d, 30559 Hannover, Germany.
| | - Sarah Rolfes
- Stiftung Tierärztliche Hochschule Hannover, ITZ, Ecology & Evolution, Bünteweg 17d, 30559 Hannover, Germany
| | - Rebecca Herzog
- Stiftung Tierärztliche Hochschule Hannover, ITZ, Ecology & Evolution, Bünteweg 17d, 30559 Hannover, Germany
| | - Kai Kamm
- Stiftung Tierärztliche Hochschule Hannover, ITZ, Ecology & Evolution, Bünteweg 17d, 30559 Hannover, Germany
| | - Bernd Schierwater
- Stiftung Tierärztliche Hochschule Hannover, ITZ, Ecology & Evolution, Bünteweg 17d, 30559 Hannover, Germany; American Museum of Natural History, Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, New York, NY, USA; Yale University, Department of Ecology & Evolutionary Biology, New Haven, CT, USA.
| |
Collapse
|
17
|
Kamm K, Osigus HJ, Stadler PF, DeSalle R, Schierwater B. Genome analyses of a placozoan rickettsial endosymbiont show a combination of mutualistic and parasitic traits. Sci Rep 2019; 9:17561. [PMID: 31772223 PMCID: PMC6879607 DOI: 10.1038/s41598-019-54037-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
Symbiotic relationships between eukaryotic hosts and bacteria range from parasitism to mutualism and may deeply influence both partners' fitness. The presence of intracellular bacteria in the metazoan phylum Placozoa has been reported several times, but without any knowledge about the nature of this relationship and possible implications for the placozoan holobiont. This information may be of crucial significance since little is known about placozoan ecology and how different species adapt to different environmental conditions, despite being almost invariable at the morphological level. We here report on the novel genome of the rickettsial endosymbiont of Trichoplax sp. H2 (strain "Panama"). The combination of eliminated and retained metabolic pathways of the bacterium indicates a potential for a mutualistic as well as for a parasitic relationship, whose outcome could depend on the environmental context. In particular we show that the endosymbiont is dependent on the host for growth and reproduction and that the latter could benefit from a supply with essential amino acids and important cofactors. These findings call for further studies to clarify the actual benefit for the placozoan host and to investigate a possible role of the endosymbiont for ecological separation between placozoan species.
Collapse
Affiliation(s)
- Kai Kamm
- University of Veterinary Medicine Hannover, Foundation, Institute of Animal Ecology, Bünteweg 17d, D-30559, Hannover, Germany.
| | - Hans-Jürgen Osigus
- University of Veterinary Medicine Hannover, Foundation, Institute of Animal Ecology, Bünteweg 17d, D-30559, Hannover, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107, Leipzig, Germany
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | - Bernd Schierwater
- University of Veterinary Medicine Hannover, Foundation, Institute of Animal Ecology, Bünteweg 17d, D-30559, Hannover, Germany. .,Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, USA.
| |
Collapse
|
18
|
Phylogenetic, genomic, and biogeographic characterization of a novel and ubiquitous marine invertebrate-associated Rickettsiales parasite, Candidatus Aquarickettsia rohweri, gen. nov., sp. nov. ISME JOURNAL 2019; 13:2938-2953. [PMID: 31384012 PMCID: PMC6863919 DOI: 10.1038/s41396-019-0482-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 07/10/2019] [Accepted: 07/13/2019] [Indexed: 12/14/2022]
Abstract
Bacterial symbionts are integral to the health and homeostasis of invertebrate hosts. Notably, members of the Rickettsiales genus Wolbachia influence several aspects of the fitness and evolution of their terrestrial hosts, but few analogous partnerships have been found in marine systems. We report here the genome, phylogenetics, and biogeography of a ubiquitous and novel Rickettsiales species that primarily associates with marine organisms. We previously showed that this bacterium was found in scleractinian corals, responds to nutrient exposure, and is associated with reduced host growth and increased mortality. This bacterium, like other Rickettsiales, has a reduced genome indicative of a parasitic lifestyle. Phylogenetic analysis places this Rickettsiales within a new genus we define as “Candidatus Aquarickettsia.” Using data from the Earth Microbiome Project and SRA databases, we also demonstrate that members of “Ca. Aquarickettsia” are found globally in dozens of invertebrate lineages. The coral-associated “Candidatus A. rohweri” is the first finished genome in this new clade. “Ca. A. rohweri” lacks genes to synthesize most sugars and amino acids but possesses several genes linked to pathogenicity including Tlc, an antiporter that exchanges host ATP for ADP, and a complete Type IV secretion system. Despite its inability to metabolize nitrogen, “Ca. A. rohweri” possesses the NtrY-NtrX two-component system involved in sensing and responding to extracellular nitrogen. Given these data, along with visualization of the parasite in host tissues, we hypothesize that “Ca. A. rohweri” reduces coral health by consuming host nutrients and energy, thus weakening and eventually killing host cells. Last, we hypothesize that nutrient enrichment, which is increasingly common on coral reefs, encourages unrestricted growth of “Ca. A. rohweri” in its host by providing abundant N-rich metabolites to be scavenged.
Collapse
|
19
|
Albertini MC, Fraternale D, Semprucci F, Cecchini S, Colomba M, Rocchi MB, Sisti D, Di Giacomo B, Mari M, Sabatini L, Cesaroni L, Balsamo M, Guidi L. Bioeffects of Prunus spinosa L. fruit ethanol extract on reproduction and phenotypic plasticity of Trichoplax adhaerens Schulze, 1883 (Placozoa). PeerJ 2019; 7:e6789. [PMID: 31024778 PMCID: PMC6475577 DOI: 10.7717/peerj.6789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/14/2019] [Indexed: 12/17/2022] Open
Abstract
The aim of this work was to test and analyse the bioeffects of Prunus spinosa L. (Rosacaee) fruit ethanol extract on Trichoplax adhaerens Schulze, 1883 (Placozoa) laboratory cultures which-for the first time-were employed as in vivo biological model to assess the bioactivity of a natural extract. The ethanol extract of P. spinosa was administrated during a 46 day experimental period; ultrastructural (by optical, confocal, TEM and SEM microscopy) and morphometric analyses indicated that treated Trichoplax adhaerens showed significant differences in viability, reproductive modalities, body shape and colour with respect to the control group. Finally, P. spinosa bioactive compounds seem to exert profound protective effects on T. adhaerens reproduction and phenotype. Our results may support additional investigations related to other bioactive compounds properties useful for nutraceutical preparations to be used as food supplements.
Collapse
Affiliation(s)
| | - Daniele Fraternale
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| | - Federica Semprucci
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| | - Silvio Cecchini
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| | - Mariastella Colomba
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| | - Marco B.L. Rocchi
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| | - Davide Sisti
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| | - Barbara Di Giacomo
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| | - Michele Mari
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| | - Luigia Sabatini
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| | - Lucia Cesaroni
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| | - Maria Balsamo
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| | - Loretta Guidi
- Department of Biomolecular Sciences, University of Urbino, Urbino, Pesaro-Urbino, Italia
| |
Collapse
|
20
|
Laumer CE, Gruber-Vodicka H, Hadfield MG, Pearse VB, Riesgo A, Marioni JC, Giribet G. Support for a clade of Placozoa and Cnidaria in genes with minimal compositional bias. eLife 2018; 7:e36278. [PMID: 30373720 PMCID: PMC6277202 DOI: 10.7554/elife.36278] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022] Open
Abstract
The phylogenetic placement of the morphologically simple placozoans is crucial to understanding the evolution of complex animal traits. Here, we examine the influence of adding new genomes from placozoans to a large dataset designed to study the deepest splits in the animal phylogeny. Using site-heterogeneous substitution models, we show that it is possible to obtain strong support, in both amino acid and reduced-alphabet matrices, for either a sister-group relationship between Cnidaria and Placozoa, or for Cnidaria and Bilateria as seen in most published work to date, depending on the orthologues selected to construct the matrix. We demonstrate that a majority of genes show evidence of compositional heterogeneity, and that support for the Cnidaria + Bilateria clade can be assigned to this source of systematic error. In interpreting these results, we caution against a peremptory reading of placozoans as secondarily reduced forms of little relevance to broader discussions of early animal evolution.
Collapse
Affiliation(s)
- Christopher E Laumer
- Wellcome Trust Sanger InstituteHinxtonUnited Kingdom
- European Molecular Biology Laboratories-European Bioinformatics InstituteHinxtonUnited Kingdom
| | | | - Michael G Hadfield
- Kewalo Marine LaboratoryPacific Biosciences Research Center and the University of Hawaii-ManoaHonoluluUnited States
| | - Vicki B Pearse
- Institute of Marine SciencesUniversity of CaliforniaSanta CruzUnited States
| | - Ana Riesgo
- Invertebrate Division, Life Sciences DepartmentThe Natural History MuseumLondonUnited Kingdom
| | - John C Marioni
- Wellcome Trust Sanger InstituteHinxtonUnited Kingdom
- European Molecular Biology Laboratories-European Bioinformatics InstituteHinxtonUnited Kingdom
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUnited States
| |
Collapse
|
21
|
Kamm K, Osigus HJ, Stadler PF, DeSalle R, Schierwater B. Trichoplax genomes reveal profound admixture and suggest stable wild populations without bisexual reproduction. Sci Rep 2018; 8:11168. [PMID: 30042472 PMCID: PMC6057997 DOI: 10.1038/s41598-018-29400-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/09/2018] [Indexed: 12/24/2022] Open
Abstract
The phylum Placozoa officially consists of only a single described species, Trichoplax adhaerens, although several lineages can be separated by molecular markers, geographical distributions and environmental demands. The placozoan 16S haplotype H2 (Trichoplax sp. H2) is the most robust and cosmopolitan lineage of placozoans found to date. In this study, its genome was found to be distinct but highly related to the Trichoplax adhaerens reference genome, for remarkably unique reasons. The pattern of variation and allele distribution between the two lineages suggests that both originate from a single interbreeding event in the wild, dating back at least several decades ago, and both seem not to have engaged in sexual reproduction since. We conclude that populations of certain placozoan haplotypes remain stable for long periods without bisexual reproduction. Furthermore, allelic variation within and between the two Trichoplax lineages indicates that successful bisexual reproduction between related placozoan lineages might serve to either counter accumulated negative somatic mutations or to cope with changing environmental conditions. On the other hand, enrichment of neutral or beneficial somatic mutations by vegetative reproduction, combined with rare sexual reproduction, could instantaneously boost genetic variation, generating novel ecotypes and eventually species.
Collapse
Affiliation(s)
- Kai Kamm
- University of Veterinary Medicine Hannover, Foundation, ITZ Ecology and Evolution, Bünteweg 17d, D-30559, Hannover, Germany.
| | - Hans-Jürgen Osigus
- University of Veterinary Medicine Hannover, Foundation, ITZ Ecology and Evolution, Bünteweg 17d, D-30559, Hannover, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107, Leipzig, Germany
| | - Rob DeSalle
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | - Bernd Schierwater
- University of Veterinary Medicine Hannover, Foundation, ITZ Ecology and Evolution, Bünteweg 17d, D-30559, Hannover, Germany. .,Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, USA. .,Yale University, Molecular, Cellular and Developmental Biology, New Haven, CT, 06520, USA.
| |
Collapse
|
22
|
Eitel M, Francis WR, Varoqueaux F, Daraspe J, Osigus HJ, Krebs S, Vargas S, Blum H, Williams GA, Schierwater B, Wörheide G. Comparative genomics and the nature of placozoan species. PLoS Biol 2018; 16:e2005359. [PMID: 30063702 PMCID: PMC6067683 DOI: 10.1371/journal.pbio.2005359] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/28/2018] [Indexed: 12/30/2022] Open
Abstract
Placozoans are a phylum of nonbilaterian marine animals currently represented by a single described species, Trichoplax adhaerens, Schulze 1883. Placozoans arguably show the simplest animal morphology, which is identical among isolates collected worldwide, despite an apparently sizeable genetic diversity within the phylum. Here, we use a comparative genomics approach for a deeper appreciation of the structure and causes of the deeply diverging lineages in the Placozoa. We generated a high-quality draft genome of the genetic lineage H13 isolated from Hong Kong and compared it to the distantly related T. adhaerens. We uncovered substantial structural differences between the two genomes that point to a deep genomic separation and provide support that adaptation by gene duplication is likely a crucial mechanism in placozoan speciation. We further provide genetic evidence for reproductively isolated species and suggest a genus-level difference of H13 to T. adhaerens, justifying the designation of H13 as a new species, Hoilungia hongkongensis nov. gen., nov. spec., now the second described placozoan species and the first in a new genus. Our multilevel comparative genomics approach is, therefore, likely to prove valuable for species distinctions in other cryptic microscopic animal groups that lack diagnostic morphological characters, such as some nematodes, copepods, rotifers, or mites.
Collapse
Affiliation(s)
- Michael Eitel
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- Stiftung Tierärztliche Hochschule Hannover, Institut für Tierökologie und Zellbiologie, Ecology and Evolution, Hannover, Germany
| | - Warren R. Francis
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Frédérique Varoqueaux
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Jean Daraspe
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Hans-Jürgen Osigus
- Stiftung Tierärztliche Hochschule Hannover, Institut für Tierökologie und Zellbiologie, Ecology and Evolution, Hannover, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sergio Vargas
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gray A. Williams
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Bernd Schierwater
- Stiftung Tierärztliche Hochschule Hannover, Institut für Tierökologie und Zellbiologie, Ecology and Evolution, Hannover, Germany
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
- Department of Ecology & Evolution, Yale University, New Haven, Connecticut, United States of America
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Staatliche Naturwissenschaftliche Sammlungen Bayerns (SNSB)–Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| |
Collapse
|
23
|
Miyazawa H, Nakano H. Multiple surveys employing a new sample-processing protocol reveal the genetic diversity of placozoans in Japan. Ecol Evol 2018; 8:2407-2417. [PMID: 29531663 PMCID: PMC5838039 DOI: 10.1002/ece3.3861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/19/2017] [Accepted: 01/02/2018] [Indexed: 11/08/2022] Open
Abstract
Placozoans, flat free-living marine invertebrates, possess an extremely simple bauplan lacking neurons and muscle cells and represent one of the earliest-branching metazoan phyla. They are widely distributed from temperate to tropical oceans. Based on mitochondrial 16S rRNA sequences, 19 haplotypes forming seven distinct clades have been reported in placozoans to date. In Japan, placozoans have been found at nine locations, but 16S genotyping has been performed at only two of these locations. Here, we propose a new processing protocol, "ethanol-treated substrate sampling," for collecting placozoans from natural environments. We also report the collection of placozoans from three new locations, the islands of Shikine-jima, Chichi-jima, and Haha-jima, and we present the distribution of the 16S haplotypes of placozoans in Japan. Multiple surveys conducted at multiple locations yielded five haplotypes that were not reported previously, revealing high genetic diversity in Japan, especially at Shimoda and Shikine-jima Island. The observed geographic distribution patterns were different among haplotypes; some were widely distributed, while others were sampled only from a single location. However, samplings conducted on different dates at the same sites yielded different haplotypes, suggesting that placozoans of a given haplotype do not inhabit the same site constantly throughout the year. Continued sampling efforts conducted during all seasons at multiple locations worldwide and the development of molecular markers within the haplotypes are needed to reveal the geographic distribution pattern and dispersal history of placozoans in greater detail.
Collapse
Affiliation(s)
- Hideyuki Miyazawa
- Shimoda Marine Research CenterUniversity of TsukubaShimodaShizuokaJapan
| | - Hiroaki Nakano
- Shimoda Marine Research CenterUniversity of TsukubaShimodaShizuokaJapan
| |
Collapse
|
24
|
Osigus HJ, Eitel M, Schierwater B. Deep RNA sequencing reveals the smallest known mitochondrial micro exon in animals: The placozoan cox1 single base pair exon. PLoS One 2017; 12:e0177959. [PMID: 28542197 PMCID: PMC5436844 DOI: 10.1371/journal.pone.0177959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 05/05/2017] [Indexed: 11/18/2022] Open
Abstract
The phylum Placozoa holds a key position for our understanding of the evolution of mitochondrial genomes in Metazoa. Placozoans possess large mitochondrial genomes which harbor several remarkable characteristics such as a fragmented cox1 gene and trans-splicing cox1 introns. A previous study also suggested the existence of cox1 mRNA editing in Trichoplax adhaerens, yet the only formally described species in the phylum Placozoa. We have analyzed RNA-seq data of the undescribed sister species, Placozoa sp. H2 ("Panama" clone), with special focus on the mitochondrial mRNA. While we did not find support for a previously postulated cox1 mRNA editing mechanism, we surprisingly found two independent transcripts representing intermediate cox1 mRNA splicing stages. Both transcripts consist of partial cox1 exon as well as overlapping intron fragments. The data suggest that the cox1 gene harbors a single base pair (cytosine) micro exon. Furthermore, conserved group I intron structures flank this unique micro exon also in other placozoans. We discuss the evolutionary origin of this micro exon in the context of a self-splicing intron gain in the cox1 gene of the last common ancestor of extant placozoans.
Collapse
Affiliation(s)
- Hans-Jürgen Osigus
- ITZ, Ecology & Evolution, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Michael Eitel
- ITZ, Ecology & Evolution, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Bernd Schierwater
- ITZ, Ecology & Evolution, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| |
Collapse
|
25
|
Schleicherová D, Dulias K, Osigus HJ, Paknia O, Hadrys H, Schierwater B. The most primitive metazoan animals, the placozoans, show high sensitivity to increasing ocean temperatures and acidities. Ecol Evol 2017; 7:895-904. [PMID: 28168026 PMCID: PMC5288258 DOI: 10.1002/ece3.2678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 11/09/2016] [Accepted: 11/13/2016] [Indexed: 01/14/2023] Open
Abstract
The increase in atmospheric carbon dioxide (CO2) leads to rising temperatures and acidification in the oceans, which directly or indirectly affects all marine organisms, from bacteria to animals. We here ask whether the simplest-and possibly also the oldest-metazoan animals, the placozoans, are particularly sensitive to ocean warming and acidification. Placozoans are found in all warm and temperate oceans and are soft-bodied, microscopic invertebrates lacking any calcified structures, organs, or symmetry. We here show that placozoans respond highly sensitive to temperature and acidity stress. The data reveal differential responses in different placozoan lineages and encourage efforts to develop placozoans as a potential biomarker system.
Collapse
Affiliation(s)
| | - Katharina Dulias
- ITZ, Ecology and EvolutionTiHo Hannover Hannover Germany; Present address: Department of Biological Sciences School of Applied Sciences University of Huddersfield Huddersfield UK
| | | | - Omid Paknia
- ITZ, Ecology and Evolution TiHo Hannover Hannover Germany
| | - Heike Hadrys
- ITZ, Ecology and Evolution TiHo Hannover Hannover Germany
| | | |
Collapse
|
26
|
Keijzer F, Arnellos A. The animal sensorimotor organization: a challenge for the environmental complexity thesis. BIOLOGY & PHILOSOPHY 2017; 32:421-441. [PMID: 28713189 PMCID: PMC5491640 DOI: 10.1007/s10539-017-9565-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/08/2017] [Indexed: 05/16/2023]
Abstract
Godfrey-Smith's environmental complexity thesis (ECT) is most often applied to multicellular animals and the complexity of their macroscopic environments to explain how cognition evolved. We think that the ECT may be less suited to explain the origins of the animal bodily organization, including this organization's potentiality for dealing with complex macroscopic environments. We argue that acquiring the fundamental sensorimotor features of the animal body may be better explained as a consequence of dealing with internal bodily-rather than environmental complexity. To press and elucidate this option, we develop the notion of an animal sensorimotor organization (ASMO) that derives from an internal coordination account for the evolution of early nervous systems. The ASMO notion is a reply to the question how a collection of single cells can become integrated such that the resulting multicellular organization becomes sensitive to and can manipulate macroscopic features of both the animal body and its environment. In this account, epithelial contractile tissues play the central role in the organization behind complex animal bodies. In this paper, we relate the ASMO concept to recent work on epithelia, which provides empirical evidence that supports central assumptions behind the ASMO notion. Second, we discuss to what extent the notion applies to basic animal architectures, exemplified by sponges and jellyfish. We conclude that the features exhibited by the ASMO are plausibly explained by internal constraints acting on and within this multicellular organization, providing a challenge for the role the ECT plays in this context.
Collapse
Affiliation(s)
- Fred Keijzer
- Department of Theoretical Philosophy, University of Groningen, Groningen, The Netherlands
| | - Argyris Arnellos
- Department of Logic and Philosophy of Science, IAS-Research Centre for Life, Mind and Society, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Spain
| |
Collapse
|
27
|
Affiliation(s)
- Gonzalo Giribet
- Museum of Comparative Zoology & Department of Organismic and Evolutionary Biology Harvard University 26 Oxford Street Cambridge MA 02138 USA
- Department of Life Sciences The Natural History Museum Cromwell Road London SW7 5BD UK
| |
Collapse
|
28
|
Schierwater B, Holland PWH, Miller DJ, Stadler PF, Wiegmann BM, Wörheide G, Wray GA, DeSalle R. Never Ending Analysis of a Century Old Evolutionary Debate: “Unringing” the Urmetazoon Bell. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Paknia O, Schierwater B. Global Habitat Suitability and Ecological Niche Separation in the Phylum Placozoa. PLoS One 2015; 10:e0140162. [PMID: 26580806 PMCID: PMC4651326 DOI: 10.1371/journal.pone.0140162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/10/2015] [Indexed: 02/02/2023] Open
Abstract
The enigmatic placozoans, which hold a key position in the metazoan Tree of Life, have attracted substantial attention in many areas of biological and biomedical research. While placozoans have become an emerging model system, their ecology and particularly biogeography remain widely unknown. In this study, we use modelling approaches to explore habitat preferences, and distribution pattern of the placozoans phylum. We provide hypotheses for discrete ecological niche separation between genetic placozoan lineages, which may also help to understand biogeography patterns in other small marine invertebrates. We, here, used maximum entropy modelling to predict placozoan distribution using 20 environmental grids of 9.2 km2 resolution. In addition, we used recently developed metrics of niche overlap to compare habitat suitability models of three genetic clades. The predicted distributions range from 55°N to 44°S and are restricted to regions of intermediate to warm sea surface temperatures. High concentrations of salinity and low nutrient concentrations appear as secondary factors. Tests of niche equivalency reveal the largest differences between placozoan clades I and III. Interestingly, the genetically well-separated clades I and V appear to be ecologically very similar. Our habitat suitability models predict a wider latitudinal distribution for placozoans, than currently described, especially in the northern hemisphere. With respect to biogeography modelling, placozoans show patterns somewhere between higher metazoan taxa and marine microorganisms, with the first group usually showing complex biogeographies and the second usually showing “no biogeography.”
Collapse
Affiliation(s)
- Omid Paknia
- ITZ, Ecology and Evolution, TiHo Hannover, Hannover, Germany
- * E-mail:
| | - Bernd Schierwater
- ITZ, Ecology and Evolution, TiHo Hannover, Hannover, Germany
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Sackler Institute for Comparative Genomics and Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| |
Collapse
|
30
|
Whelan NV, Kocot KM, Halanych KM. Employing Phylogenomics to Resolve the Relationships among Cnidarians, Ctenophores, Sponges, Placozoans, and Bilaterians. Integr Comp Biol 2015; 55:1084-95. [PMID: 25972566 DOI: 10.1093/icb/icv037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite an explosion in the amount of sequence data, phylogenomics has failed to settle controversy regarding some critical nodes on the animal tree of life. Understanding relationships among Bilateria, Ctenophora, Cnidaria, Placozoa, and Porifera is essential for studying how complex traits such as neurons, muscles, and gastrulation have evolved. Recent studies have cast doubt on the historical viewpoint that sponges are sister to all other animal lineages with recent studies recovering ctenophores as sister. However, the ctenophore-sister hypothesis has been criticized as unrealistic and caused by systematic error. We review past phylogenomic studies and potential causes of systematic error in an effort to identify areas that can be improved in future studies. Increased sampling of taxa, less missing data, and a priori removal of sequences and taxa that may cause systematic error in phylogenomic inference will likely be the most fruitful areas of focus when assembling future datasets. Ultimately, we foresee metazoan relationships being resolved with higher support in the near future, and we caution against dismissing novel hypotheses merely because they conflict with historical viewpoints of animal evolution.
Collapse
Affiliation(s)
- Nathan V Whelan
- *Department of Biological Sciences, Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, 101 Life Sciences Building, Auburn, AL 36849, USA;
| | - Kevin M Kocot
- School of Biological Sciences, The University of Queensland, 325 Goddard Building, St Lucia, QLD 4101, Australia
| | - Kenneth M Halanych
- *Department of Biological Sciences, Molette Biology Laboratory for Environmental and Climate Change Studies, Auburn University, 101 Life Sciences Building, Auburn, AL 36849, USA
| |
Collapse
|
31
|
Nikitin M. Bioinformatic prediction of Trichoplax adhaerens regulatory peptides. Gen Comp Endocrinol 2015; 212:145-55. [PMID: 24747483 DOI: 10.1016/j.ygcen.2014.03.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 03/29/2014] [Accepted: 03/31/2014] [Indexed: 01/29/2023]
Abstract
Trichoplax adhaerens (phylum Placozoa) is a very simple organism that lacks a nervous system. However, its genome contains many genes essential for neuronal function and development. I report the results of regulatory peptide predictions for this enigmatic animal. Extensive transcriptome, genome, and predicted proteome mining allowed us to predict four insulins, at least five short peptide precursors, one granulin, one paracrine regulator of cell growth, and one complex temptin-attractin pheromone signaling system. The expression of three insulins, four short peptide precursors, granulin, and one out of the six temptin genes was detected. Five predicted regulatory peptide precursors could potentially release over 60 different mature peptides. Some of the predicted peptides are somewhat similar to anthozoan RW amides, Aplysia pedal peptide 3, and PRQFV amide. Other predicted short peptides could not readily be classified into established families. These data provide the foundation for the molecular, biochemical, physiological, and behavioral studies of one the most primitive animal coordination systems, and give unique insight into the origins and early evolution of the nervous system.
Collapse
Affiliation(s)
- Mikhail Nikitin
- Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119991, Russia.
| |
Collapse
|
32
|
Bracken-Grissom H, Collins AG, Collins T, Crandall K, Distel D, Dunn C, Giribet G, Haddock S, Knowlton N, Martindale M, Medina M, Messing C, O'Brien SJ, Paulay G, Putnam N, Ravasi T, Rouse GW, Ryan JF, Schulze A, Wörheide G, Adamska M, Bailly X, Breinholt J, Browne WE, Diaz MC, Evans N, Flot JF, Fogarty N, Johnston M, Kamel B, Kawahara AY, Laberge T, Lavrov D, Michonneau F, Moroz LL, Oakley T, Osborne K, Pomponi SA, Rhodes A, Santos SR, Satoh N, Thacker RW, Van de Peer Y, Voolstra CR, Welch DM, Winston J, Zhou X. The Global Invertebrate Genomics Alliance (GIGA): developing community resources to study diverse invertebrate genomes. J Hered 2014; 105:1-18. [PMID: 24336862 DOI: 10.1093/jhered/est084] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Over 95% of all metazoan (animal) species comprise the "invertebrates," but very few genomes from these organisms have been sequenced. We have, therefore, formed a "Global Invertebrate Genomics Alliance" (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site (http://giga.nova.edu) has been launched to facilitate this collaborative venture.
Collapse
|
33
|
Survey of the Japanese coast reveals abundant placozoan populations in the Northern Pacific Ocean. Sci Rep 2014; 4:5356. [PMID: 24942227 PMCID: PMC4062898 DOI: 10.1038/srep05356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/22/2014] [Indexed: 11/27/2022] Open
Abstract
Placozoans are the simplest extant free-living animals consisting of only five cell types and lacking neurons and muscle cells. Their phylogenetic position implies they are important for uncovering the origins of metazoans. Although recent studies show multiple groups within the phylum, most placozoan research has been performed on laboratory-cultured clones deriving from a single specimen. Reports of placozoan discovery are concentrated in the tropic and subtropic seas, especially in the Mediterranean and the Caribbean. Here, I report the unexpected abundance of placozoans from the Japanese coast. They were found from all six studied sites, even during winter for two sites, suggesting that they are more tolerant to low temperatures than previously regarded. These results suggest an unknown abundance of placozoans in the Northern Pacific Ocean and further studies on these populations may be essential in solving important biological problems of the phylum.
Collapse
|
34
|
Integrated metagenomic and metatranscriptomic analyses of microbial communities in the meso- and bathypelagic realm of north pacific ocean. Mar Drugs 2013; 11:3777-801. [PMID: 24152557 PMCID: PMC3826135 DOI: 10.3390/md11103777] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 11/30/2022] Open
Abstract
Although emerging evidence indicates that deep-sea water contains an untapped reservoir of high metabolic and genetic diversity, this realm has not been studied well compared with surface sea water. The study provided the first integrated meta-genomic and -transcriptomic analysis of the microbial communities in deep-sea water of North Pacific Ocean. DNA/RNA amplifications and simultaneous metagenomic and metatranscriptomic analyses were employed to discover information concerning deep-sea microbial communities from four different deep-sea sites ranging from the mesopelagic to pelagic ocean. Within the prokaryotic community, bacteria is absolutely dominant (~90%) over archaea in both metagenomic and metatranscriptomic data pools. The emergence of archaeal phyla Crenarchaeota, Euryarchaeota, Thaumarchaeota, bacterial phyla Actinobacteria, Firmicutes, sub-phyla Betaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria, and the decrease of bacterial phyla Bacteroidetes and Alphaproteobacteria are the main composition changes of prokaryotic communities in the deep-sea water, when compared with the reference Global Ocean Sampling Expedition (GOS) surface water. Photosynthetic Cyanobacteria exist in all four metagenomic libraries and two metatranscriptomic libraries. In Eukaryota community, decreased abundance of fungi and algae in deep sea was observed. RNA/DNA ratio was employed as an index to show metabolic activity strength of microbes in deep sea. Functional analysis indicated that deep-sea microbes are leading a defensive lifestyle.
Collapse
|
35
|
Osigus HJ, Eitel M, Bernt M, Donath A, Schierwater B. Mitogenomics at the base of Metazoa. Mol Phylogenet Evol 2013; 69:339-51. [PMID: 23891951 DOI: 10.1016/j.ympev.2013.07.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 05/29/2013] [Accepted: 07/09/2013] [Indexed: 11/25/2022]
Abstract
Unraveling the base of metazoan evolution is of crucial importance for rooting the metazoan Tree of Life. This subject has attracted substantial attention for more than a century and recently fueled a burst of modern phylogenetic studies. Conflicting scenarios from different studies and incongruent results from nuclear versus mitochondrial markers challenge current molecular phylogenetic approaches. Here we analyze the presently most comprehensive data sets of mitochondrial genomes from non-bilaterian animals to illuminate the phylogenetic relationships among early branching metazoan phyla. The results of our analyses illustrate the value of mitogenomics and support previously known topologies between animal phyla but also identify several problematic taxa, which are sensitive to long branch artifacts or missing data.
Collapse
Affiliation(s)
- Hans-Jürgen Osigus
- Stiftung Tierärztliche Hochschule Hannover, ITZ, Ecology and Evolution, Buenteweg 17d, D-30559 Hannover, Germany.
| | | | | | | | | |
Collapse
|
36
|
Eitel M, Osigus HJ, DeSalle R, Schierwater B. Global diversity of the Placozoa. PLoS One 2013; 8:e57131. [PMID: 23565136 PMCID: PMC3614897 DOI: 10.1371/journal.pone.0057131] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 01/17/2013] [Indexed: 11/18/2022] Open
Abstract
The enigmatic animal phylum Placozoa holds a key position in the metazoan Tree of Life. A simple bauplan makes it appear to be the most basal metazoan known and genetic evidence also points to a position close to the last common metazoan ancestor. Trichoplax adhaerens is the only formally described species in the phylum to date, making the Placozoa the only monotypic phylum in the animal kingdom. However, recent molecular genetic as well as morphological studies have identified a high level of diversity, and hence a potential high level of taxonomic diversity, within this phylum. Different taxa, possibly at different taxonomic levels, are awaiting description. In this review we firstly summarize knowledge on the morphology, phylogenetic position and ecology of the Placozoa. Secondly, we give an overview of placozoan morphological and genetic diversity and finally present an updated distribution of placozoan populations. We conclude that there is great potential and need to erect new taxa and to establish a firm system for this taxonomic tabula rasa.
Collapse
Affiliation(s)
- Michael Eitel
- Stiftung Tierärztliche Hochschule Hannover, Institut für Tierökologie und Zellbiologie, Ecology and Evolution, Hannover, Germany.
| | | | | | | |
Collapse
|
37
|
Vij S, Rink JC, Ho HK, Babu D, Eitel M, Narasimhan V, Tiku V, Westbrook J, Schierwater B, Roy S. Evolutionarily ancient association of the FoxJ1 transcription factor with the motile ciliogenic program. PLoS Genet 2012; 8:e1003019. [PMID: 23144623 PMCID: PMC3493443 DOI: 10.1371/journal.pgen.1003019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 08/22/2012] [Indexed: 01/03/2023] Open
Abstract
It is generally believed that the last eukaryotic common ancestor (LECA) was a unicellular organism with motile cilia. In the vertebrates, the winged-helix transcription factor FoxJ1 functions as the master regulator of motile cilia biogenesis. Despite the antiquity of cilia, their highly conserved structure, and their mechanism of motility, the evolution of the transcriptional program controlling ciliogenesis has remained incompletely understood. In particular, it is presently not known how the generation of motile cilia is programmed outside of the vertebrates, and whether and to what extent the FoxJ1-dependent regulation is conserved. We have performed a survey of numerous eukaryotic genomes and discovered that genes homologous to foxJ1 are restricted only to organisms belonging to the unikont lineage. Using a mis-expression assay, we then obtained evidence of a conserved ability of FoxJ1 proteins from a number of diverse phyletic groups to activate the expression of a host of motile ciliary genes in zebrafish embryos. Conversely, we found that inactivation of a foxJ1 gene in Schmidtea mediterranea, a platyhelminth (flatworm) that utilizes motile cilia for locomotion, led to a profound disruption in the differentiation of motile cilia. Together, all of these findings provide the first evolutionary perspective into the transcriptional control of motile ciliogenesis and allow us to propose a conserved FoxJ1-regulated mechanism for motile cilia biogenesis back to the origin of the metazoans. Cilia are microtubule-based, hair-like organelles that project from the surfaces of eukaryotic cells. Protists use motile cilia for locomotion as well as for sensory perception. In metazoans, motile cilia also function in fluid transport over epithelia, such as in the mammalian lungs. Most vertebrate and some invertebrate cell-types differentiate non-motile primary cilia, which function exclusively in sensory transduction. It is believed that primary cilia arose from motile cilia through the loss of the motility apparatus. Cilia are complex organelles: a large number of proteins are involved in their assembly and maintenance. FoxJ1, a forkhead-domain transcription factor, is the master regulator of motile ciliogenesis in vertebrates. It is not known to what extent this transcriptional control is conserved and how it may have evolved. Here, we document the existence of FoxJ1 orthologs in several eukaryotic groups besides the vertebrates. FoxJ1 proteins from three representative phyla—Placozoa, Platyhelminthes, and Echinodermata—were able to activate the expression of ciliary genes when mis-expressed in zebrafish embryos. Moreover, inactivation of FoxJ1 in planaria (Platyhelminthes) abolished motile cilia differentiation. These results provide new insights into the transcriptional regulation of motile cilia biogenesis outside the vertebrates and demonstrate a remarkable conservation of the activity of FoxJ1.
Collapse
Affiliation(s)
- Shubha Vij
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Jochen C. Rink
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Hao Kee Ho
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
| | - Deepak Babu
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Michael Eitel
- ITZ Division of Ecology and Evolution, Stiftung Tierärztliche Hochschule, Hannover, Germany
| | | | - Varnesh Tiku
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jody Westbrook
- Department of Molecular and Cell Biology and Center for Integrative Genomics, University of California Berkeley, Berkeley, California, United States of America
| | - Bernd Schierwater
- ITZ Division of Ecology and Evolution, Stiftung Tierärztliche Hochschule, Hannover, Germany
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
38
|
Bernt M, Braband A, Schierwater B, Stadler PF. Genetic aspects of mitochondrial genome evolution. Mol Phylogenet Evol 2012; 69:328-38. [PMID: 23142697 DOI: 10.1016/j.ympev.2012.10.020] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 10/20/2012] [Accepted: 10/22/2012] [Indexed: 11/30/2022]
Abstract
Many years of extensive studies of metazoan mitochondrial genomes have established differences in gene arrangements and genetic codes as valuable phylogenetic markers. Understanding the underlying mechanisms of replication, transcription and the role of the control regions which cause e.g. different gene orders is important to assess the phylogenetic signal of such events. This review summarises and discusses, for the Metazoa, the general aspects of mitochondrial transcription and replication with respect to control regions as well as several proposed models of gene rearrangements. As whole genome sequencing projects accumulate, more and more observations about mitochondrial gene transfer to the nucleus are reported. Thus occurrence and phylogenetic aspects concerning nuclear mitochondrial-like sequences (NUMTS) is another aspect of this review.
Collapse
Affiliation(s)
- Matthias Bernt
- Parallel Computing and Complex Systems Group, Department of Computer Science, University of Leipzig, Augustusplatz 10, D-04109 Leipzig, Germany.
| | | | | | | |
Collapse
|
39
|
Miyazawa H, Yoshida MA, Tsuneki K, Furuya H. Mitochondrial genome of a Japanese placozoan. Zoolog Sci 2012; 29:223-8. [PMID: 22468831 DOI: 10.2108/zsj.29.223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Placozoans are marine invertebrates found in tropical and subtropical waters. Their body plan is among the simplest of free-living animals. The present study determined the mitochondrial genome sequence of a placozoan collected on the coast of Shirahama, Wakayama, Honshu, Japan, and compared it with those of Trichoplax adhaerens from the Red Sea and of three strains from the Caribbean Sea. The sequences of mitochondrial respiratory chain of the Japanese placozoan genes are very similar to those of the BZ49 strain from the Caribbean Sea. However, there are distinct differences in gene arrangement, such as the location of two open reading frames. This Japanese placozoan is therefore distinguishable from the other strains. Based on current knowledge of placozoan 16S diversity our 'Shirahama' strain most likely represents the H15 lineage, known from the Philippines. In the mitochondrial genome of placozoans, substitution rates are slower than in bilaterians, whereas the rate of rearrangements is faster.
Collapse
Affiliation(s)
- Hideyuki Miyazawa
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
| | | | | | | |
Collapse
|
40
|
Eitel M, Guidi L, Hadrys H, Balsamo M, Schierwater B. New insights into placozoan sexual reproduction and development. PLoS One 2011; 6:e19639. [PMID: 21625556 PMCID: PMC3098260 DOI: 10.1371/journal.pone.0019639] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 04/13/2011] [Indexed: 11/18/2022] Open
Abstract
Unraveling animal life cycles and embryonic development is basic to understanding animal biology and often sheds light on phylogenetic relationships. A key group for understanding the evolution of the Metazoa is the early branching phylum Placozoa, which has attracted rapidly increasing attention. Despite over a hundred years of placozoan research the life cycle of this enigmatic phylum remains unknown. Placozoa are a unique model system for which the nuclear genome was published before the basic biology (i.e. life cycle and development) has been unraveled. Four organismal studies have reported the development of oocytes and one genetic study has nourished the hypothesis of sexual reproduction in natural populations at least in the past. Here we report new observations on sexual reproduction and embryonic development in the Placozoa and support the hypothesis of current sexual reproduction. The regular observation of oocytes and expressed sperm markers provide support that placozoans reproduce sexually in the field. Using whole genome and EST sequences and additional cDNA cloning we identified five conserved sperm markers, characteristic for different stages in spermatogenesis. We also report details on the embryonic development up to a 128-cell stage and new ultrastructural features occurring during early development. These results suggest that sperm and oocyte generation and maturation occur in different placozoans and that clonal lineages reproduce bisexually in addition to the standard mode of vegetative reproduction. The sum of observations is best congruent with the hypothesis of a simple life cycle with an alternation of reproductive modes between bisexual and vegetative reproduction.
Collapse
Affiliation(s)
- Michael Eitel
- Stiftung Tierärztliche Hochschule Hannover, ITZ, Ecology and Evolution, Hannover, Germany.
| | | | | | | | | |
Collapse
|
41
|
Evolution of sodium channels predates the origin of nervous systems in animals. Proc Natl Acad Sci U S A 2011; 108:9154-9. [PMID: 21576472 DOI: 10.1073/pnas.1106363108] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Voltage-dependent sodium channels are believed to have evolved from calcium channels at the origin of the nervous system. A search of the genome of a single-celled choanoflagellate (the sister group of animals) identified a gene that is homologous to animal sodium channels and has a putative ion selectivity filter intermediate between calcium and sodium channels. Searches of a wide variety of animal genomes, including representatives of each basal lineage, revealed that similar homologs were retained in most lineages. One of these, the Placozoa, does not possess a nervous system. We cloned and sequenced the full choanoflagellate channel and parts of two placozoan channels from mRNA, showing that they are expressed. Phylogenetic analysis clusters the genes for these channels with other known sodium channels. From this phylogeny we infer ancestral states of the ion selectivity filter and show that this state has been retained in the choanoflagellate and placozoan channels. We also identify key gene duplications and losses and show convergent amino acid replacements at important points along the animal lineage.
Collapse
|
42
|
Guidi L, Eitel M, Cesarini E, Schierwater B, Balsamo M. Ultrastructural analyses support different morphological lineages in the phylum Placozoa Grell, 1971. J Morphol 2011; 272:371-8. [PMID: 21246596 DOI: 10.1002/jmor.10922] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/01/2010] [Accepted: 10/03/2010] [Indexed: 11/12/2022]
Abstract
The morphology and ultrastructure of 10 clonal placozoan lineages were studied. We scored several morphological characters at a cellular and intracellular level and identified a number of morphological differences among clones. Some differences appear clone specific and allow recognizing five distinct lineages based on morphological criteria only. These data will be crucial for a yet to be established placozoan systematics. Furthermore, we here describe three new diagnostic morphological characters for Placozoa: a new structure in the upper epithelium, called "concave disc," two distinct subpopulations of fiber cells, and especially small cells in the body margin. Besides the fiber cells appear to be arranged in several layers forming a complex, three-dimensional net not previously described. We also describe the marginal cells as the formerly suggested potential stem-cell type. The basic morphology is revised.
Collapse
Affiliation(s)
- Loretta Guidi
- Dipartimento di Scienze dell'Uomo, dell'Ambiente e della Natura, Università degli Studi di Urbino Carlo Bo, Campus Scientifico, Località Crocicchia, 61029 Urbino, Italy.
| | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Eldon E Ball
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | | |
Collapse
|