1
|
Wei K, Silva-Arias GA, Tellier A. Selective sweeps linked to the colonization of novel habitats and climatic changes in a wild tomato species. THE NEW PHYTOLOGIST 2023; 237:1908-1921. [PMID: 36419182 DOI: 10.1111/nph.18634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Positive selection is the driving force underpinning local adaptation and leaves footprints of selective sweeps on the underlying major genes. Quantifying the timing of selection and revealing the genetic bases of adaptation in plant species occurring in steep and varying environmental gradients are crucial to predict a species' ability to colonize new niches. We use whole-genome sequence data from six populations across three different habitats of the wild tomato species Solanum chilense to infer the past demographic history and search for genes under strong positive selection. We then correlate current and past climatic projections with the demographic history, allele frequencies, the age of selection events and distribution shifts. Several selective sweeps occur at regulatory networks involved in root-hair development in low altitude and response to photoperiod and vernalization in high-altitude populations. These sweeps appear to occur in a concerted fashion in a given regulatory gene network at particular periods of substantial climatic change. Using a unique combination of genome scans and modelling of past climatic data, we quantify the timing of selection at genes likely underpinning local adaptation to semiarid habitats.
Collapse
Affiliation(s)
- Kai Wei
- Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Liesel-Beckmann Strasse 2, 85354, Freising, Germany
| | - Gustavo A Silva-Arias
- Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Liesel-Beckmann Strasse 2, 85354, Freising, Germany
| | - Aurélien Tellier
- Population Genetics, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Liesel-Beckmann Strasse 2, 85354, Freising, Germany
| |
Collapse
|
2
|
Eshel G, Duppen N, Wang G, Oh D, Kazachkova Y, Herzyk P, Amtmann A, Gordon M, Chalifa‐Caspi V, Oscar MA, Bar‐David S, Marshall‐Colon A, Dassanayake M, Barak S. Positive selection and heat-response transcriptomes reveal adaptive features of the Brassicaceae desert model, Anastatica hierochuntica. THE NEW PHYTOLOGIST 2022; 236:1006-1026. [PMID: 35909295 PMCID: PMC9804903 DOI: 10.1111/nph.18411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Plant adaptation to a desert environment and its endemic heat stress is poorly understood at the molecular level. The naturally heat-tolerant Brassicaceae species Anastatica hierochuntica is an ideal extremophyte model to identify genetic adaptations that have evolved to allow plants to tolerate heat stress and thrive in deserts. We generated an A. hierochuntica reference transcriptome and identified extremophyte adaptations by comparing Arabidopsis thaliana and A. hierochuntica transcriptome responses to heat, and detecting positively selected genes in A. hierochuntica. The two species exhibit similar transcriptome adjustment in response to heat and the A. hierochuntica transcriptome does not exist in a constitutive heat 'stress-ready' state. Furthermore, the A. hierochuntica global transcriptome as well as heat-responsive orthologs, display a lower basal and higher heat-induced expression than in A. thaliana. Genes positively selected in multiple extremophytes are associated with stomatal opening, nutrient acquisition, and UV-B induced DNA repair while those unique to A. hierochuntica are consistent with its photoperiod-insensitive, early-flowering phenotype. We suggest that evolution of a flexible transcriptome confers the ability to quickly react to extreme diurnal temperature fluctuations characteristic of a desert environment while positive selection of genes involved in stress tolerance and early flowering could facilitate an opportunistic desert lifestyle.
Collapse
Affiliation(s)
- Gil Eshel
- Albert Katz International School for Desert StudiesBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Nick Duppen
- Albert Katz International School for Desert StudiesBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Guannan Wang
- Department of Biological SciencesLouisiana State UniversityBaton RougeLA70803USA
| | - Dong‐Ha Oh
- Department of Biological SciencesLouisiana State UniversityBaton RougeLA70803USA
| | - Yana Kazachkova
- Albert Katz International School for Desert StudiesBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Pawel Herzyk
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Anna Amtmann
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowG12 8QQUK
| | - Michal Gordon
- Bioinformatics Core Facility, The National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
| | - Vered Chalifa‐Caspi
- Bioinformatics Core Facility, The National Institute for Biotechnology in the NegevBen‐Gurion University of the NegevBeer‐Sheva8410501Israel
| | - Michelle Arland Oscar
- Blaustein Center for Scientific CooperationBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Shirli Bar‐David
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| | - Amy Marshall‐Colon
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Maheshi Dassanayake
- Department of Biological SciencesLouisiana State UniversityBaton RougeLA70803USA
| | - Simon Barak
- French Associates' Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevSde Boqer CampusMidreshet Ben‐Gurion8499000Israel
| |
Collapse
|
3
|
Comparison of Drought and Heat Resistance Strategies among Six Populations of Solanum chilense and Two Cultivars of Solanum lycopersicum. PLANTS 2021; 10:plants10081720. [PMID: 34451764 PMCID: PMC8398976 DOI: 10.3390/plants10081720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/02/2022]
Abstract
Within the tomato clade, Solanum chilense is considered one of the most promising sources of genes for tomato (S. lycopersicum) selection to biotic and abiotic stresses. In this study, we compared the effects of drought, high temperature, and their combination in two cultivars of S. lycopersicum and six populations of S. chilense, differing in their local habitat. Plants were grown at 21/19 °C or 28/26 °C under well-watered and water-stressed conditions. Plant growth, physiological responses, and expression of stress-responsive genes were investigated. Our results demonstrated strong variability among accessions. Differences in plant growth parameters were even higher among S. chilense populations than between species. The effects of water stress, high temperature, and their combination also differed according to the accession, suggesting differences in stress resistance between species and populations. Overall, water stress affected plants more negatively than temperature from a morpho-physiological point of view, while the expression of stress-responsive genes was more affected by temperature than by water stress. Accessions clustered in two groups regarding resistance to water stress and high temperature. The sensitive group included the S. lycopersicum cultivars and the S. chilense populations LA2931 and LA1930, and the resistant group included the S. chilense populations LA1958, LA2880, LA2765, and LA4107. Our results suggested that resistance traits were not particularly related to the environmental conditions in the natural habitat of the populations. The expression of stress-responsive genes was more stable in resistant accessions than in sensitive ones in response to water stress and high temperature. Altogether, our results suggest that water stress and high temperature resistance in S. chilense did not depend on single traits but on a combination of morphological, physiological, and genetic traits.
Collapse
|
4
|
Kahlon PS, Verin M, Hückelhoven R, Stam R. Quantitative resistance differences between and within natural populations of Solanum chilense against the oomycete pathogen Phytophthora infestans. Ecol Evol 2021; 11:7768-7778. [PMID: 34188850 PMCID: PMC8216925 DOI: 10.1002/ece3.7610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 01/01/2023] Open
Abstract
The wild tomato species Solanum chilense is divided into geographically and genetically distinct populations that show signs of defense gene selection and differential phenotypes when challenged with several phytopathogens, including the oomycete causal agent of late blight Phytophthora infestans. To better understand the phenotypic diversity of this disease resistance in S. chilense and to assess the effect of plant genotype versus pathogen isolate, respectively, we evaluated infection frequency in a systematic approach and with large sample sizes. We studied 85 genetically distinct individuals representing nine geographically separated populations of S. chilense. This showed that differences in quantitative resistance can be observed between but also within populations at the level of individual plants. Our data also did not reveal complete immunity in any of the genotypes. We further evaluated the resistance of a subset of the plants against P. infestans isolates with diverse virulence properties. This confirmed that the relative differences in resistance phenotypes between individuals were mainly determined by the plant genotype under consideration with modest effects of pathogen isolate used in the study. Thus, our report suggests that the observed quantitative resistance against P. infestans in natural populations of a wild tomato species S. chilense is the result of basal defense responses that depend on the host genotype and are pathogen isolate-unspecific.
Collapse
Affiliation(s)
| | - Melissa Verin
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Ralph Hückelhoven
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Remco Stam
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| |
Collapse
|
5
|
Songsomboon K, Brenton Z, Heuser J, Kresovich S, Shakoor N, Mockler T, Cooper EA. Genomic patterns of structural variation among diverse genotypes of Sorghum bicolor and a potential role for deletions in local adaptation. G3-GENES GENOMES GENETICS 2021; 11:6265466. [PMID: 33950177 PMCID: PMC8495935 DOI: 10.1093/g3journal/jkab154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/23/2021] [Indexed: 12/04/2022]
Abstract
Genomic structural mutations, especially deletions, are an important source of variation in many species and can play key roles in phenotypic diversification and evolution. Previous work in many plant species has identified multiple instances of structural variations (SVs) occurring in or near genes related to stress response and disease resistance, suggesting a possible role for SVs in local adaptation. Sorghum [Sorghum bicolor (L.) Moench] is one of the most widely grown cereal crops in the world. It has been adapted to an array of different climates as well as bred for multiple purposes, resulting in a striking phenotypic diversity. In this study, we identified genome-wide SVs in the Biomass Association Panel, a collection of 347 diverse sorghum genotypes collected from multiple countries and continents. Using Illumina-based, short-read whole-genome resequencing data from every genotype, we found a total of 24,648 SVs, including 22,359 deletions. The global site frequency spectrum of deletions and other types of SVs fit a model of neutral evolution, suggesting that the majority of these mutations were not under any types of selection. Clustering results based on single nucleotide polymorphisms separated the genotypes into eight clusters which largely corresponded with geographic origins, with many of the large deletions we uncovered being unique to a single cluster. Even though most deletions appeared to be neutral, a handful of cluster-specific deletions were found in genes related to biotic and abiotic stress responses, supporting the possibility that at least some of these deletions contribute to local adaptation in sorghum.
Collapse
Affiliation(s)
- Kittikun Songsomboon
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223 USA.,North Carolina Research Campus, Kannapolis, NC 28081 USA
| | - Zachary Brenton
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634 USA
| | - James Heuser
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223 USA.,North Carolina Research Campus, Kannapolis, NC 28081 USA
| | - Stephen Kresovich
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, 29634 USA
| | - Nadia Shakoor
- Donald Danforth Plant Science Center, St. Louis, MO, 63132 USA
| | - Todd Mockler
- Donald Danforth Plant Science Center, St. Louis, MO, 63132 USA
| | - Elizabeth A Cooper
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, 28223 USA.,North Carolina Research Campus, Kannapolis, NC 28081 USA
| |
Collapse
|
6
|
Schwarzenberger A, Hasselmann M, Elert E. Positive selection of digestive proteases inDaphnia: A mechanism for local adaptation to cyanobacterial protease inhibitors. Mol Ecol 2020; 29:912-919. [DOI: 10.1111/mec.15375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Anke Schwarzenberger
- Limnological Institute Konstanz University Konstanz Germany
- Cologne Biocenter Aquatic Chemical Ecology University of Cologne Cologne Germany
| | - Martin Hasselmann
- Department of Livestock Population Genomics Institute of Animal Science University of Hohenheim Stuttgart Germany
| | - Eric Elert
- Cologne Biocenter Aquatic Chemical Ecology University of Cologne Cologne Germany
| |
Collapse
|
7
|
The de Novo Reference Genome and Transcriptome Assemblies of the Wild Tomato Species Solanum chilense Highlights Birth and Death of NLR Genes Between Tomato Species. G3-GENES GENOMES GENETICS 2019; 9:3933-3941. [PMID: 31604826 PMCID: PMC6893187 DOI: 10.1534/g3.119.400529] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Wild tomato species, like Solanum chilense, are important germplasm resources for enhanced biotic and abiotic stress resistance in tomato breeding. S. chilense also serves as a model to study adaptation of plants to drought and the evolution of seed banks. The absence of a well-annotated reference genome in this compulsory outcrossing, very diverse species limits in-depth studies on the genes involved. We generated ∼134 Gb of DNA and 157 Gb of RNA sequence data for S chilense, which yielded a draft genome with an estimated length of 914 Mb, encoding 25,885 high-confidence predicted gene models, which show homology to known protein-coding genes of other tomato species. Approximately 71% of these gene models are supported by RNA-seq data derived from leaf tissue samples. Benchmarking with Universal Single-Copy Orthologs (BUSCO) analysis of predicted gene models retrieved 93.3% of BUSCO genes. To further verify the genome annotation completeness and accuracy, we manually inspected the NLR resistance gene family and assessed its assembly quality. We find subfamilies of NLRs unique to S. chilense. Synteny analysis suggests significant degree of the gene order conservation between the S. chilense, S. lycopersicum and S. pennellii genomes. We generated the first genome and transcriptome sequence assemblies for the wild tomato species Solanum chilense and demonstrated their value in comparative genomics analyses. These data are an important resource for studies on adaptation to biotic and abiotic stress in Solanaceae, on evolution of self-incompatibility and for tomato breeding.
Collapse
|
8
|
Stam R, Silva-Arias GA, Tellier A. Subsets of NLR genes show differential signatures of adaptation during colonization of new habitats. THE NEW PHYTOLOGIST 2019; 224:367-379. [PMID: 31230368 DOI: 10.1111/nph.16017] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
Nucleotide binding site, leucine-rich repeat receptors (NLRs) are canonical resistance (R) genes in plants, fungi and animals, functioning as central (helper) and peripheral (sensor) genes in a signalling network. We investigate NLR evolution during the colonization of novel habitats in a model tomato species, Solanum chilense. We used R-gene enrichment sequencing to obtain polymorphism data at NLRs of 140 plants sampled across 14 populations covering the whole species range. We inferred the past demographic history of habitat colonization by resequencing whole genomes from three S. chilense plants from three key populations and performing approximate Bayesian computation using data from the 14 populations. Using these parameters, we simulated the genetic differentiation statistics distribution expected under neutral NLR evolution and identified small subsets of outlier NLRs exhibiting signatures of selection across populations. NLRs under selection between habitats are more often helper genes, whereas those showing signatures of adaptation in single populations are more often sensor-NLRs. Thus, centrality in the NLR network does not constrain NLR evolvability, and new mutations in central genes in the network are key for R-gene adaptation during colonization of different habitats.
Collapse
Affiliation(s)
- Remco Stam
- Phytopathology, Technical University Munich, 85354, Freising, Germany
- Population Genetics, Technical University Munich, 85354, Freising, Germany
| | | | - Aurelien Tellier
- Population Genetics, Technical University Munich, 85354, Freising, Germany
| |
Collapse
|
9
|
Böndel KB, Nosenko T, Stephan W. Signatures of natural selection in abiotic stress-responsive genes of Solanum chilense. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171198. [PMID: 29410831 PMCID: PMC5792908 DOI: 10.1098/rsos.171198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/04/2017] [Indexed: 06/01/2023]
Abstract
Environmental conditions are strong selective forces, which may influence adaptation and speciation. The wild tomato species Solanum chilense, native to South America, is exposed to a range of abiotic stress factors. To identify signatures of natural selection and local adaptation, we analysed 16 genes involved in the abiotic stress response and compared the results to a set of reference genes in 23 populations across the entire species range. The abiotic stress-responsive genes are characterized by elevated nonsynonymous nucleotide diversity and divergence. We detected signatures of positive selection in several abiotic stress-responsive genes on both the population and species levels. Local adaptation to abiotic stresses is particularly apparent at the boundary of the species distribution in populations from coastal low-altitude and mountainous high-altitude regions.
Collapse
|
10
|
Beddows I, Reddy A, Kloesges T, Rose LE. Population Genomics in Wild Tomatoes-The Interplay of Divergence and Admixture. Genome Biol Evol 2017; 9:3023-3038. [PMID: 29077853 PMCID: PMC5714242 DOI: 10.1093/gbe/evx224] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2017] [Indexed: 01/03/2023] Open
Abstract
Hybridization between closely related plant species is widespread, but the outcomes of hybridization are not fully understood. This study investigates phylogenetic relationships and the history of hybridization in the wild tomato clade (Solanum sect. Lycopersicon). We sequenced RNA from individuals of 38 different populations and, by combining this with published data, build a comprehensive genomic data set for the entire clade. The data indicate that many taxa are not monophyletic and many individuals are admixed due to repeated hybridization. The most polymorphic species, Solanum peruvianum, has two genetic and geographical subpopulations, while its sister species, Solanum chilense, has distinct coastal populations and reduced heterozygosity indicating a recent expansion south following speciation from S. peruvianum circa 1.25 Ma. Discontinuous populations west of 72° are currently described as S. chilense, but are genetically intermediate between S. chilense and S. peruvianum. Based upon molecular, morphological, and crossing data, we test the hypothesis that these discontinuous "S. chilense" populations are an example of recombinational speciation. Recombinational speciation is rarely reported, and we discuss the difficulties in identifying it and differentiating between alternative demographic scenarios. This discovery presents a new opportunity to understand the genomic outcomes of hybridization in plants.
Collapse
Affiliation(s)
- Ian Beddows
- Institute of Population Genetics, Heinrich Heine University, Duesseldorf, Germany
- International Graduate School in Plant Sciences (iGRAD-Plant), Duesseldorf, Germany
| | - Aparna Reddy
- Institute of Population Genetics, Heinrich Heine University, Duesseldorf, Germany
| | - Thorsten Kloesges
- Institute of Population Genetics, Heinrich Heine University, Duesseldorf, Germany
| | - Laura E Rose
- Institute of Population Genetics, Heinrich Heine University, Duesseldorf, Germany
- International Graduate School in Plant Sciences (iGRAD-Plant), Duesseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Duesseldorf, Germany
| |
Collapse
|
11
|
Gharbi E, Martínez JP, Benahmed H, Fauconnier ML, Lutts S, Quinet M. Salicylic acid differently impacts ethylene and polyamine synthesis in the glycophyte Solanum lycopersicum and the wild-related halophyte Solanum chilense exposed to mild salt stress. PHYSIOLOGIA PLANTARUM 2016; 158:152-67. [PMID: 27105808 DOI: 10.1111/ppl.12458] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/26/2016] [Accepted: 03/16/2016] [Indexed: 05/22/2023]
Abstract
This study aimed to determine the effects of exogenous application of salicylic acid (SA) on the toxic effects of salt in relation to ethylene and polyamine synthesis, and to correlate these traits with the expression of genes involved in ethylene and polyamine metabolism in two tomato species differing in their sensitivity to salt stress, Solanum lycopersicum cv Ailsa Craig and its wild salt-resistant relative Solanum chilense. In S. chilense, treatment with 125 mM NaCl improved plant growth, increased production of ethylene, endogenous salicylic acid and spermine. The production was related to a modification of expression of genes involved in ethylene and polyamine metabolism. In contrast, salinity decreased plant growth in S. lycopersicum without affecting endogenous ethylene, salicylic or polyamine concentrations. Exogenous application of salicylic acid at 0.01 mM enhanced shoot growth in both species and affected ethylene and polyamine production in S. chilense. Concomitant application of NaCl and salicylic acid improved osmotic adjustment, thus suggesting that salt and SA may act in synergy on osmolyte synthesis. However, the beneficial impact of exogenous application of salicylic acid was mitigated by salt stress since NaCl impaired endogenous SA accumulation in the shoot and salicylic acid did not improve plant growth in salt-treated plants. Our results thus revealed that both species respond differently to salinity and that salicylic acid, ethylene and polyamine metabolisms are involved in salt resistance in S. chilense.
Collapse
Affiliation(s)
- Emna Gharbi
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Laboratoire d'Ecologie Végétale, Faculté des Sciences, Université de Tunis El Manar, Tunis, Tunisia
| | - Juan-Pablo Martínez
- Laboratorio de Fisiología Vegetal, Instituto de Investigaciones Agropecuarias (INIA - La Cruz), La Cruz, Chile
| | - Hela Benahmed
- Laboratoire d'Ecologie Végétale, Faculté des Sciences, Université de Tunis El Manar, Tunis, Tunisia
| | - Marie-Laure Fauconnier
- Unité de Chimie Générale et Organique, Faculté des Sciences Agronomiques, Université de Liège, Liège, Belgium
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
12
|
Böndel KB, Lainer H, Nosenko T, Mboup M, Tellier A, Stephan W. North–South Colonization Associated with Local Adaptation of the Wild Tomato SpeciesSolanum chilense. Mol Biol Evol 2015; 32:2932-43. [DOI: 10.1093/molbev/msv166] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
13
|
Hübner S, Korol AB, Schmid KJ. RNA-Seq analysis identifies genes associated with differential reproductive success under drought-stress in accessions of wild barley Hordeum spontaneum. BMC PLANT BIOLOGY 2015; 15:134. [PMID: 26055625 PMCID: PMC4459662 DOI: 10.1186/s12870-015-0528-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 05/20/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND The evolutionary basis of reproductive success in different environments is of major interest in the study of plant adaptation. Since the reproductive stage is particularly sensitive to drought, genes affecting reproductive success during this stage are key players in the evolution of adaptive mechanisms. We used an ecological genomics approach to investigate the reproductive response of drought-tolerant and sensitive wild barley accessions originating from different habitats in the Levant. RESULTS We sequenced mRNA extracted from spikelets at the flowering stage in drought-treated and control plants. The barley genome was used for a reference-guided assembly and differential expression analysis. Our approach enabled to detect biological processes affecting grain production under drought stress. We detected novel candidate genes and differentially expressed alleles associated with drought tolerance. Drought associated genes were shown to be more conserved than non-associated genes, and drought-tolerance genes were found to evolve more rapidly than other drought associated genes. CONCLUSIONS We show that reproductive success under drought stress is not a habitat-specific trait but a shared physiological adaptation that appeared to evolve recently in the evolutionary history of wild barley. Exploring the genomic basis of reproductive success under stress in crop wild progenitors is expected to have considerable ecological and economical applications.
Collapse
Affiliation(s)
- Sariel Hübner
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel 31905, Haifa, Israel.
- Current address: Department of Botany, University of British Columbia, Vancouver, Canada.
| | - Abraham B Korol
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel 31905, Haifa, Israel.
| | - Karl J Schmid
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, D-70593, Stuttgart, Germany.
| |
Collapse
|
14
|
Liu H, Yu C, Li H, Ouyang B, Wang T, Zhang J, Wang X, Ye Z. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:198-211. [PMID: 25576005 DOI: 10.1016/j.plantsci.2014.12.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 12/04/2014] [Accepted: 12/06/2014] [Indexed: 05/02/2023]
Abstract
Dehydrins (DHNs) play important roles in plant adaptation to abiotic stress. In this study, a cold-induced SK3-type DHN gene (ShDHN) isolated from wild tomato species Solanum habrochaites was characterized for its function in abiotic stress tolerance. ShDHN was constitutively expressed in root, leaf, stem, flower and fruit. ShDHN was continuously up-regulated during cold stress and showed higher expression level in the cold-tolerant S. habrochaites than in the susceptible S. lycopersicum. Moreover, ShDHN expression was also regulated by drought, salt, osmotic stress, and exogenous signaling molecules. Overexpression of ShDHN in cultivated tomato increased tolerance to cold and drought stresses and improved seedling growth under salt and osmotic stresses. Compared with the wild-type, the transgenic plants accumulated more proline, maintained higher enzymatic activities of superoxide dismutase and catalase, and suffered less membrane damage under cold and drought stresses. Moreover, the transgenic plants accumulated lower levels of H2O2 and O2(-) under cold stress, and had higher relative water contents and lower water loss rates under dehydration conditions. Furthermore, overexpression of ShDHN in tomato led to the up- or down-regulated expression of several genes involved in ROS scavenging and JA signaling pathway, including SOD1, GST, POD, LOX, PR1 and PR2. Taken together, these results indicate that ShDHN has pleiotropic effects on improving plant adaptation to abiotic stresses and that it possesses potential usefulness in genetic improvement of stress tolerance in tomato.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China; Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Chuying Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China
| | - Hanxia Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China
| | - Bo Ouyang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China
| | - Xin Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China.
| |
Collapse
|
15
|
Choudhury BI, Khan ML, Dayanandan S. Genetic relatedness among indigenous rice varieties in the Eastern Himalayan region based on nucleotide sequences of the Waxy gene. BMC Res Notes 2014; 7:953. [PMID: 25547027 PMCID: PMC4320456 DOI: 10.1186/1756-0500-7-953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 12/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Indigenous rice varieties in the Eastern Himalayan region of Northeast India are traditionally classified into sali, boro and jum ecotypes based on geographical locality and the season of cultivation. In this study, we used DNA sequence data from the Waxy (Wx) gene to infer the genetic relatedness among indigenous rice varieties in Northeast India and to assess the genetic distinctiveness of ecotypes. FINDINGS The results of all three analyses (Bayesian, Maximum Parsimony and Neighbor Joining) were congruent and revealed two genetically distinct clusters of rice varieties in the region. The large group comprised several varieties of sali and boro ecotypes, and all agronomically improved varieties. The small group consisted of only traditionally cultivated indigenous rice varieties, which included one boro, few sali and all jum varieties. The fixation index analysis revealed a very low level of differentiation between sali and boro (F(ST) = 0.005), moderate differentiation between sali and jum (F(ST) = 0.108) and high differentiation between jum and boro (F(ST) = 0.230) ecotypes. CONCLUSION The genetic relatedness analyses revealed that sali, boro and jum ecotypes are genetically heterogeneous, and the current classification based on cultivation type is not congruent with the genetic background of rice varieties. Indigenous rice varieties chosen from genetically distinct clusters could be used in breeding programs to improve genetic gain through heterosis, while maintaining high genetic diversity.
Collapse
Affiliation(s)
- Baharul I Choudhury
- Biology Department, Forest and Evolutionary Genomics Laboratory, and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St, West, Montreal, Quebec H4B 1R6, Canada.
| | | | | |
Collapse
|
16
|
Xia H, Zheng X, Chen L, Gao H, Yang H, Long P, Rong J, Lu B, Li J, Luo L. Genetic differentiation revealed by selective loci of drought-responding EST-SSRs between upland and lowland rice in China. PLoS One 2014; 9:e106352. [PMID: 25286109 PMCID: PMC4186790 DOI: 10.1371/journal.pone.0106352] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 08/05/2014] [Indexed: 12/02/2022] Open
Abstract
Upland and lowland rice (Oryza sativa L.) represent two of the most important rice ecotypes adapted to ago-ecosystems with contrasting soil-water conditions. Upland rice, domesticated in the water-limited environment, contains valuable drought-resistant characters that can be used in water-saving breeding. Knowledge about the divergence between upland and lowland rice will provide valuable cues for the evolution of drought-resistance in rice. Genetic differentiation between upland and lowland rice was explored by 47 Simple Sequence Repeats (SSRs) located in drought responding expressed sequence tags (ESTs) among 377 rice landraces. The morphological traits of drought-resistance were evaluated in the field experiments. Different outlier loci were detected in the japonica and indica subspecies, respectively. Considerable genetic differentiation between upland and lowland rice on these outlier loci was estimated in japonica (Fst = 0.258) and indica (Fst = 0.127). Furthermore, populations of the upland and lowland ecotypes were clustered separately on these outlier loci. A significant correlation between genetic distance matrices and the dissimilarity matrices of drought-resistant traits was determined, indicating a certain relationship between the upland-lowland rice differentiation and the drought-resistance. Divergent selections occur between upland and lowland rice on the drought-resistance as the Qsts of some drought-resistant traits are significantly higher than the neutral Fst. In addition, the upland- and lowland-preferable alleles responded differently among ecotypes or allelic types under osmotic stress. This shows the evolutionary signature of drought resistance at the gene expression level. The findings of this study can strengthen our understanding of the evolution of drought-resistance in rice with significant implications in the improvement of rice drought-resistance.
Collapse
Affiliation(s)
- Hui Xia
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Xiaoguo Zheng
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Huan Gao
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Hua Yang
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Ping Long
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Jun Rong
- Center for Watershed Ecology, Institute of Life Science and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Baorong Lu
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, Fudan University, Shanghai, China
| | - Jiajia Li
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai, China
- * E-mail:
| |
Collapse
|
17
|
Schwarzenberger A, Sadler T, Motameny S, Ben-Khalifa K, Frommolt P, Altmüller J, Konrad K, von Elert E. Deciphering the genetic basis of microcystin tolerance. BMC Genomics 2014; 15:776. [PMID: 25199885 PMCID: PMC4168211 DOI: 10.1186/1471-2164-15-776] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyanobacteria constitute a serious threat to freshwater ecosystems by producing toxic secondary metabolites, e.g. microcystins. These microcystins have been shown to harm livestock, pets and humans and to affect ecosystem service and functioning. Cyanobacterial blooms are increasing worldwide in intensity and frequency due to eutrophication and global warming. However, Daphnia, the main grazer of planktonic algae and cyanobacteria, has been shown to be able to suppress bloom-forming cyanobacteria and to adapt to cyanobacteria that produce microcystins. Since Daphnia's genome was published only recently, it is now possible to elucidate the underlying molecular mechanisms of microcystin tolerance of Daphnia. RESULTS Daphnia magna was fed with either a cyanobacterial strain that produces microcystins or its genetically engineered microcystin knock-out mutant. Thus, it was possible to distinguish between effects due to the ingestion of cyanobacteria and effects caused specifically by microcystins. By using RNAseq the differentially expressed genes between the different treatments were analyzed and affected KOG-categories were calculated. Here we show that the expression of transporter genes in Daphnia was regulated as a specific response to microcystins. Subsequent qPCR and dietary supplementation with pure microcystin confirmed that the regulation of transporter gene expression was correlated with the tolerance of several Daphnia clones. CONCLUSIONS Here, we were able to identify new candidate genes that specifically respond to microcystins by separating cyanobacterial effects from microcystin effects. The involvement of these candidate genes in tolerance to microcystins was validated by correlating the difference in transporter gene expression with clonal tolerance. Thus, the prevention of microcystin uptake most probably constitutes a key mechanism in the development of tolerance and adaptation of Daphnia. With the availability of clear candidate genes, future investigations examining the process of local adaptation of Daphnia populations to microcystins are now possible.
Collapse
Affiliation(s)
- Anke Schwarzenberger
- University of Cologne, Cologne Biocenter, Aquatic Chemical Ecology, Zuelpicher Str, 47b, 50674 Cologne, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Dillon S, McEvoy R, Baldwin DS, Rees GN, Parsons Y, Southerton S. Characterisation of adaptive genetic diversity in environmentally contrasted populations of Eucalyptus camaldulensis Dehnh. (river red gum). PLoS One 2014; 9:e103515. [PMID: 25093589 PMCID: PMC4122390 DOI: 10.1371/journal.pone.0103515] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/30/2014] [Indexed: 12/02/2022] Open
Abstract
As an increasing number of ecosystems face departures from long standing environmental conditions under climate change, our understanding of the capacity of species to adapt will become important for directing conservation and management of biodiversity. Insights into the potential for genetic adaptation might be gained by assessing genomic signatures of adaptation to historic or prevailing environmental conditions. The river red gum (Eucalyptus camaldulensis Dehnh.) is a widespread Australian eucalypt inhabiting riverine and floodplain habitats which spans strong environmental gradients. We investigated the effects of adaptation to environment on population level genetic diversity of E. camaldulensis, examining SNP variation in candidate gene loci sampled across 20 climatically diverse populations approximating the species natural distribution. Genetic differentiation among populations was high (F(ST) = 17%), exceeding previous estimates based on neutral markers. Complementary statistical approaches identified 6 SNP loci in four genes (COMT, Dehydrin, ERECTA and PIP2) which, after accounting for demographic effects, exhibited higher than expected levels of genetic differentiation among populations and whose allelic variation was associated with local environment. While this study employs but a small proportion of available diversity in the eucalyptus genome, it draws our attention to the potential for application of wide spread eucalypt species to test adaptive hypotheses.
Collapse
Affiliation(s)
| | - Rachel McEvoy
- Department of Genetics, La Trobe University, Bundoora, VIC, Australia
| | - Darren S. Baldwin
- Murray Darling Freshwater Research Centre, Wodonga, VIC, Australia
- CSIRO Land and Water Flagship, Wodonga, VIC, Australia
| | - Gavin N. Rees
- Murray Darling Freshwater Research Centre, Wodonga, VIC, Australia
- CSIRO Land and Water Flagship, Wodonga, VIC, Australia
| | - Yvonne Parsons
- Department of Genetics, La Trobe University, Bundoora, VIC, Australia
| | | |
Collapse
|
19
|
Pavy N, Deschênes A, Blais S, Lavigne P, Beaulieu J, Isabel N, Mackay J, Bousquet J. The landscape of nucleotide polymorphism among 13,500 genes of the conifer picea glauca, relationships with functions, and comparison with medicago truncatula. Genome Biol Evol 2014; 5:1910-25. [PMID: 24065735 PMCID: PMC3814201 DOI: 10.1093/gbe/evt143] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gene families differ in composition, expression, and chromosomal organization between conifers and angiosperms, but little is known regarding nucleotide polymorphism. Using various sequencing strategies, an atlas of 212k high-confidence single nucleotide polymorphisms (SNPs) with a validation rate of more than 92% was developed for the conifer white spruce (Picea glauca). Nonsynonymous and synonymous SNPs were annotated over the corresponding 13,498 white spruce genes representative of 2,457 known gene families. Patterns of nucleotide polymorphisms were analyzed by estimating the ratio of nonsynonymous to synonymous numbers of substitutions per site (A/S). A general excess of synonymous SNPs was expected and observed. However, the analysis from several perspectives enabled to identify groups of genes harboring an excess of nonsynonymous SNPs, thus potentially under positive selection. Four known gene families harbored such an excess: dehydrins, ankyrin-repeats, AP2/DREB, and leucine-rich repeat. Conifer-specific sequences were also generally associated with the highest A/S ratios. A/S values were also distributed asymmetrically across genes specifically expressed in megagametophytes, roots, or in both, harboring on average an excess of nonsynonymous SNPs. These patterns confirm that the breadth of gene expression is a contributing factor to the evolution of nucleotide polymorphism. The A/S ratios of Medicago truncatula genes were also analyzed: several gene families shared between P. glauca and M. truncatula data sets had similar excess of synonymous or nonsynonymous SNPs. However, a number of families with high A/S ratios were found specific to P. glauca, suggesting cases of divergent evolution at the functional level.
Collapse
Affiliation(s)
- Nathalie Pavy
- Canada Research Chair in Forest and Environmental Genomics, Centre for Forest Research and Institute for Systems and Integrative Biology, Université Laval, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Labate JA, Robertson LD, Strickler SR, Mueller LA. Genetic structure of the four wild tomato species in the Solanum peruvianum s.l. species complex. Genome 2014; 57:169-80. [PMID: 24884691 DOI: 10.1139/gen-2014-0003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The most diverse wild tomato species Solanum peruvianum sensu lato (s.l.) has been reclassified into four separate species: Solanum peruvianum sensu stricto (s.s.), Solanum corneliomuelleri, Solanum huaylasense, and Solanum arcanum. However, reproductive barriers among the species are incomplete and this can lead to discrepancies regarding genetic identity of germplasm. We used genotyping by sequencing (GBS) of S. peruvianum s.l., Solanum neorickii, and Solanum chmielewskii to develop tens of thousands of mapped single nucleotide polymorphisms (SNPs) to analyze genetic relationships within and among species. The data set was condensed to 14,043 SNPs with no missing data across 46 sampled plants. Origins of accessions were mapped using geographical information systems (GIS). Isolation by distance, pairwise genetic distances, and number of clusters were estimated using population genetics approaches. Isolation by distance was strongly supported, especially between interspecific pairs. Eriopersicon (S. peruvianum s.s., S. corneliomuelleri, S. huaylasense) and Arcanum (S. arcanum, S. neorickii, S. chmielewskii) species groups were genetically distinct, except for S. huaylasense which showed 50% membership proportions in each group. Solanum peruvianum and S. corneliomuelleri were not significantly differentiated from each other. Many thousands of SNP markers were identified that could potentially be used to distinguish pairs of species, including S. peruvianum versus S. corneliomuelleri, if they are verified on larger numbers of samples. Diagnostic markers will be valuable for delimiting morphologically similar and interfertile species in germplasm management. Approximately 12% of the SNPs rejected a genome-wide test of selective neutrality based on differentiation among species of S. peruvianum s.l. These are candidates for more comprehensive studies of microevolutionary processes within this species complex.
Collapse
Affiliation(s)
- Joanne A Labate
- a Plant Genetic Resources Unit, US Department of Agriculture, Agricultural Research Service, 630 W. North Street, Geneva, NY 14456, USA
| | | | | | | |
Collapse
|
21
|
Fischer I, Steige KA, Stephan W, Mboup M. Sequence evolution and expression regulation of stress-responsive genes in natural populations of wild tomato. PLoS One 2013; 8:e78182. [PMID: 24205149 PMCID: PMC3799731 DOI: 10.1371/journal.pone.0078182] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/09/2013] [Indexed: 11/19/2022] Open
Abstract
The wild tomato species Solanum chilense and S. peruvianum are a valuable non-model system for studying plant adaptation since they grow in diverse environments facing many abiotic constraints. Here we investigate the sequence evolution of regulatory regions of drought and cold responsive genes and their expression regulation. The coding regions of these genes were previously shown to exhibit signatures of positive selection. Expression profiles and sequence evolution of regulatory regions of members of the Asr (ABA/water stress/ripening induced) gene family and the dehydrin gene pLC30-15 were analyzed in wild tomato populations from contrasting environments. For S. chilense, we found that Asr4 and pLC30-15 appear to respond much faster to drought conditions in accessions from very dry environments than accessions from more mesic locations. Sequence analysis suggests that the promoter of Asr2 and the downstream region of pLC30-15 are under positive selection in some local populations of S. chilense. By investigating gene expression differences at the population level we provide further support of our previous conclusions that Asr2, Asr4, and pLC30-15 are promising candidates for functional studies of adaptation. Our analysis also demonstrates the power of the candidate gene approach in evolutionary biology research and highlights the importance of wild Solanum species as a genetic resource for their cultivated relatives.
Collapse
Affiliation(s)
- Iris Fischer
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany
- * E-mail:
| | - Kim A. Steige
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany
| | - Wolfgang Stephan
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany
| | - Mamadou Mboup
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany
| |
Collapse
|
22
|
Alexandre H, Ponsard S, Bourguet D, Vitalis R, Audiot P, Cros-Arteil S, Streiff R. When history repeats itself: exploring the genetic architecture of host-plant adaptation in two closely related lepidopteran species. PLoS One 2013; 8:e69211. [PMID: 23874914 PMCID: PMC3709918 DOI: 10.1371/journal.pone.0069211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 06/11/2013] [Indexed: 11/18/2022] Open
Abstract
The genus Ostrinia includes two allopatric maize pests across Eurasia, namely the European corn borer (ECB, O. nubilalis) and the Asian corn borer (ACB, O. furnacalis). A third species, the Adzuki bean borer (ABB, O. scapulalis), occurs in sympatry with both the ECB and the ACB. The ABB mostly feeds on native dicots, which probably correspond to the ancestral host plant type for the genus Ostrinia. This situation offers the opportunity to characterize the two presumably independent adaptations or preadaptations to maize that occurred in the ECB and ACB. In the present study, we aimed at deciphering the genetic architecture of these two adaptations to maize, a monocot host plant recently introduced into Eurasia. To this end, we performed a genome scan analysis based on 684 AFLP markers in 12 populations of ECB, ACB and ABB. We detected 2 outlier AFLP loci when comparing French populations of the ECB and ABB, and 9 outliers when comparing Chinese populations of the ACB and ABB. These outliers were different in both countries, and we found no evidence of linkage disequilibrium between any two of them. These results suggest that adaptation or preadaptation to maize relies on a different genetic architecture in the ECB and ACB. However, this conclusion must be considered in light of the constraints inherent to genome scan approaches and of the intricate evolution of adaptation and reproductive isolation in the Ostrinia spp. complex.
Collapse
Affiliation(s)
- Hermine Alexandre
- INRA, UMR CBGP (INRA, IRD, CIRAD, Montpellier SupAgro), Montferrier-sur-Lez, France
- Université de Toulouse, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France
- CNRS, Université Paul Sabatier, UMR5174 EDB, Toulouse, France
| | - Sergine Ponsard
- Université de Toulouse, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France
- CNRS, Université Paul Sabatier, UMR5174 EDB, Toulouse, France
| | - Denis Bourguet
- INRA, UMR CBGP (INRA, IRD, CIRAD, Montpellier SupAgro), Montferrier-sur-Lez, France
| | - Renaud Vitalis
- INRA, UMR CBGP (INRA, IRD, CIRAD, Montpellier SupAgro), Montferrier-sur-Lez, France
| | - Philippe Audiot
- INRA, UMR CBGP (INRA, IRD, CIRAD, Montpellier SupAgro), Montferrier-sur-Lez, France
| | - Sandrine Cros-Arteil
- INRA, UMR CBGP (INRA, IRD, CIRAD, Montpellier SupAgro), Montferrier-sur-Lez, France
| | - Réjane Streiff
- INRA, UMR CBGP (INRA, IRD, CIRAD, Montpellier SupAgro), Montferrier-sur-Lez, France
- * E-mail:
| |
Collapse
|
23
|
New Approaches for Crop Genetic Adaptation to the Abiotic Stresses Predicted with Climate Change. AGRONOMY-BASEL 2013. [DOI: 10.3390/agronomy3020419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Cortés AJ, This D, Chavarro C, Madriñán S, Blair MW. Nucleotide diversity patterns at the drought-related DREB2 encoding genes in wild and cultivated common bean (Phaseolus vulgaris L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1069-85. [PMID: 22772725 DOI: 10.1007/s00122-012-1896-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 05/11/2012] [Indexed: 05/25/2023]
Abstract
Common beans are an important food legume faced with a series of abiotic stresses the most severe of which is drought. The crop is interesting as a model for the analysis of gene phylogenies due to its domestication process, race structure, and origins in a group of wild common beans found along the South American Andes and the region of Mesoamerica. Meanwhile, the DREB2 transcription factors have been implicated in controlling non-ABA dependent responses to drought stress. With this in mind our objective was to study in depth the genetic diversity for two DREB2 genes as possible candidates for association with drought tolerance through a gene phylogenetic analysis. In this genetic diversity assessment, we analyzed nucleotide diversity at the two candidate genes Dreb2A and Dreb2B, in partial core collections of 104 wild and 297 cultivated common beans with a total of 401 common bean genotypes from world-wide germplasm analyzed. Our wild population sample covered a range of semi-mesic to very dry habitats, while our cultivated samples presented a wide spectrum of low to high drought tolerance. Both genes showed very different patterns of nucleotide variation. Dreb2B exhibited very low nucleotide diversity relative to neutral reference loci previously surveyed in these populations. This suggests that strong purifying selection has been acting on this gene. In contrast, Dreb2A exhibited higher levels of nucleotide diversity, which is indicative of adaptive selection and population expansion. These patterns were more distinct in wild compared to cultivated common beans. These approximations suggested the importance of Dreb2 genes in the context of drought tolerance, and constitute the first steps towards an association study between genetic polymorphism of this gene family and variation in drought tolerance traits. We discuss the utility of allele mining in the DREB gene family for the discovery of new drought tolerance traits from wild common bean.
Collapse
Affiliation(s)
- Andrés J Cortés
- Evolutionary Biology Centre, Uppsala University, 75105 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
25
|
Cortés AJ, Chavarro MC, Madriñán S, This D, Blair MW. Molecular ecology and selection in the drought-related Asr gene polymorphisms in wild and cultivated common bean (Phaseolus vulgaris L.). BMC Genet 2012; 13:58. [PMID: 22799462 PMCID: PMC3473318 DOI: 10.1186/1471-2156-13-58] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 06/11/2012] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The abscisic acid (ABA) pathway plays an important role in the plants' reaction to drought stress and ABA-stress response (Asr) genes are important in controlling this process. In this sense, we accessed nucleotide diversity at two candidate genes for drought tolerance (Asr1 and Asr2), involved in an ABA signaling pathway, in the reference collection of cultivated common bean (Phaseolus vulgaris L.) and a core collection of wild common bean accessions. RESULTS Our wild population samples covered a range of mesic (semi-arid) to very dry (desert) habitats, while our cultivated samples presented a wide spectrum of drought tolerance. Both genes showed very different patterns of nucleotide variation. Asr1 exhibited very low nucleotide diversity relative to the neutral reference loci that were previously surveyed in these populations. This suggests that strong purifying selection has been acting on this gene. In contrast, Asr2 exhibited higher levels of nucleotide diversity, which is indicative of adaptive selection. These patterns were more notable in wild beans than in cultivated common beans indicting that natural selection has played a role over long time periods compared to farmer selection since domestication. CONCLUSIONS Together these results suggested the importance of Asr1 in the context of drought tolerance, and constitute the first steps towards an association study between genetic polymorphism of this gene family and variation in drought tolerance traits. Furthermore, one of our major successes was to find that wild common bean is a reservoir of genetic variation and selection signatures at Asr genes, which may be useful for breeding drought tolerance in cultivated common bean.
Collapse
Affiliation(s)
- Andrés J Cortés
- Departamento de Biologia, Universidad de los Andes, Carrera 1 N° 18A - 12, J302 Bogotá, Colombia.
| | | | | | | | | |
Collapse
|
26
|
Mboup M, Fischer I, Lainer H, Stephan W. Trans-species polymorphism and allele-specific expression in the CBF gene family of wild tomatoes. Mol Biol Evol 2012; 29:3641-52. [PMID: 22787283 DOI: 10.1093/molbev/mss176] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abiotic stresses such as drought, extreme temperatures, and salinity have a strong impact on plant adaptation. They act as selective forces on plant physiology and morphology. These selective pressures leave characteristic footprints that can be detected at the DNA sequence level using population genetic tools. On the basis of a candidate gene approach, we investigated signatures of adaptation in two wild tomato species, Solanum peruvianum and S. chilense. These species are native to western South America and constitute a model system for studying adaptation, due to their ability to colonize diverse habitats and the available genetic resources. We have determined the selective forces acting on the C-repeat binding factor (CBF) gene family, which consists of three genes, and is known to be involved in tolerance to abiotic stresses, in particular in cold tolerance. We also analyzed the expression pattern of these genes after drought and cold stresses. We found that CBF3 evolves under very strong purifying selection, CBF2 is under balancing selection in some populations of both species (S. peruvianum/Quicacha and S. chilense/Nazca) maintaining a trans-species polymorphism, and CBF1 is a pseudogene. In contrast to previous studies of cultivated tomatoes showing that only CBF1 was cold induced, we found that all three CBF genes are cold induced in wild tomatoes. All three genes are also drought induced. CBF2 exhibits an allele-specific expression pattern associated with the trans-species polymorphism.
Collapse
Affiliation(s)
- Mamadou Mboup
- Section of Evolutionary Biology, Department of Biology II, University of Munich, Planegg-Martinsried, Germany.
| | | | | | | |
Collapse
|
27
|
Keller SR, Levsen N, Olson MS, Tiffin P. Local Adaptation in the Flowering-Time Gene Network of Balsam Poplar, Populus balsamifera L. Mol Biol Evol 2012; 29:3143-52. [DOI: 10.1093/molbev/mss121] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
28
|
LE CORRE VALÉRIE, KREMER ANTOINE. The genetic differentiation at quantitative trait loci under local adaptation. Mol Ecol 2012; 21:1548-66. [DOI: 10.1111/j.1365-294x.2012.05479.x] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Ometto L, Li M, Bresadola L, Varotto C. Rates of evolution in stress-related genes are associated with habitat preference in two Cardamine lineages. BMC Evol Biol 2012; 12:7. [PMID: 22257588 PMCID: PMC3398273 DOI: 10.1186/1471-2148-12-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 01/18/2012] [Indexed: 12/04/2022] Open
Abstract
Background Elucidating the selective and neutral forces underlying molecular evolution is fundamental to understanding the genetic basis of adaptation. Plants have evolved a suite of adaptive responses to cope with variable environmental conditions, but relatively little is known about which genes are involved in such responses. Here we studied molecular evolution on a genome-wide scale in two species of Cardamine with distinct habitat preferences: C. resedifolia, found at high altitudes, and C. impatiens, found at low altitudes. Our analyses focussed on genes that are involved in stress responses to two factors that differentiate the high- and low-altitude habitats, namely temperature and irradiation. Results High-throughput sequencing was used to obtain gene sequences from C. resedifolia and C. impatiens. Using the available A. thaliana gene sequences and annotation, we identified nearly 3,000 triplets of putative orthologues, including genes involved in cold response, photosynthesis or in general stress responses. By comparing estimated rates of molecular substitution, codon usage, and gene expression in these species with those of Arabidopsis, we were able to evaluate the role of positive and relaxed selection in driving the evolution of Cardamine genes. Our analyses revealed a statistically significant higher rate of molecular substitution in C. resedifolia than in C. impatiens, compatible with more efficient positive selection in the former. Conversely, the genome-wide level of selective pressure is compatible with more relaxed selection in C. impatiens. Moreover, levels of selective pressure were heterogeneous between functional classes and between species, with cold responsive genes evolving particularly fast in C. resedifolia, but not in C. impatiens. Conclusions Overall, our comparative genomic analyses revealed that differences in effective population size might contribute to the differences in the rate of protein evolution and in the levels of selective pressure between the C. impatiens and C. resedifolia lineages. The within-species analyses also revealed evolutionary patterns associated with habitat preference of two Cardamine species. We conclude that the selective pressures associated with the habitats typical of C. resedifolia may have caused the rapid evolution of genes involved in cold response.
Collapse
Affiliation(s)
- Lino Ometto
- Department of Biodiversity and Molecular Ecology, IASMA Research and Innovation Centre, Fondazione Edmund Mach, Via E, Mach 1, 38010 San Michele all'Adige (TN), Italy
| | | | | | | |
Collapse
|
30
|
Inference of seed bank parameters in two wild tomato species using ecological and genetic data. Proc Natl Acad Sci U S A 2011; 108:17052-7. [PMID: 21949404 DOI: 10.1073/pnas.1111266108] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Seed and egg dormancy is a prevalent life-history trait in plants and invertebrates whose storage effect buffers against environmental variability, modulates species extinction in fragmented habitats, and increases genetic variation. Experimental evidence for reliable differences in dormancy over evolutionary scales (e.g., differences in seed banks between sister species) is scarce because complex ecological experiments in the field are needed to measure them. To cope with these difficulties, we developed an approximate Bayesian computation (ABC) framework that integrates ecological information on population census sizes in the priors of the parameters, along with a coalescent model accounting simultaneously for seed banks and spatial genetic structuring of populations. We collected SNP data at seven nuclear loci (over 300 SNPs) using a combination of three spatial sampling schemes: population, pooled, and species-wide samples. We provide evidence for the existence of a seed bank in two wild tomato species (Solanum chilense and Solanum peruvianum) found in western South America. Although accounting for uncertainties in ecological data, we infer for each species (i) the past demography and (ii) ecological parameters, such as the germination rate, migration rates, and minimum number of demes in the metapopulation. The inferred difference in germination rate between the two species may reflect divergent seed dormancy adaptations, in agreement with previous population genetic analyses and the ecology of these two sister species: Seeds spend, on average, a shorter time in the soil in the specialist species (S. chilense) than in the generalist species (S. peruvianum).
Collapse
|
31
|
Cortés AJ, Chavarro MC, Blair MW. SNP marker diversity in common bean (Phaseolus vulgaris L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:827-45. [PMID: 21785951 DOI: 10.1007/s00122-011-1630-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 05/31/2011] [Indexed: 05/18/2023]
Abstract
Single nucleotide polymorphism (SNP) markers have become a genetic technology of choice because of their automation and high precision of allele calls. In this study, our goal was to develop 94 SNPs and test them across well-chosen common bean (Phaseolus vulgaris L.) germplasm. We validated and accessed SNP diversity at 84 gene-based and 10 non-genic loci using KASPar technology in a panel of 70 genotypes that have been used as parents of mapping populations and have been previously evaluated for SSRs. SNPs exhibited high levels of genetic diversity, an excess of middle frequency polymorphism, and a within-genepool mismatch distribution as expected for populations affected by sudden demographic expansions after domestication bottlenecks. This set of markers was useful for distinguishing Andean and Mesoamerican genotypes but less useful for distinguishing within each gene pool. In summary, slightly greater polymorphism and race structure was found within the Andean gene pool than within the Mesoamerican gene pool but polymorphism rate between genotypes was consistent with genepool and race identity. Our survey results represent a baseline for the choice of SNP markers for future applications because gene-associated SNPs could themselves be causative SNPs for traits. Finally, we discuss that the ideal genetic marker combination with which to carry out diversity, mapping and association studies in common bean should consider a mix of both SNP and SSR markers.
Collapse
Affiliation(s)
- Andrés J Cortés
- Centro Internacional de Agricultura Tropical (CIAT), Apartado Aéreo 6713, Cali, Colombia
| | | | | |
Collapse
|
32
|
Fischer I, Camus-Kulandaivelu L, Allal F, Stephan W. Adaptation to drought in two wild tomato species: the evolution of the Asr gene family. THE NEW PHYTOLOGIST 2011; 190:1032-1044. [PMID: 21323928 DOI: 10.1111/j.1469-8137.2011.03648.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Wild tomato species are a valuable system in which to study local adaptation to drought: they grow in diverse environments ranging from mesic to extremely arid conditions. Here, we investigate the evolution of members of the Asr (ABA/water stress/ripening induced) gene family, which have been reported to be involved in the water stress response. We analysed molecular variation in the Asr gene family in populations of two closely related species, Solanum chilense and Solanum peruvianum. We concluded that Asr1 has evolved under strong purifying selection. In contrast to previous reports, we did not detect evidence for positive selection at Asr2. However, Asr4 shows patterns consistent with local adaptation in an S. chilense population that lives in an extremely dry environment. We also discovered a new member of the gene family, Asr5. Our results show that the Asr genes constitute a dynamic gene family and provide an excellent example of tandemly arrayed genes that are of importance in adaptation. Taking the potential distribution of the species into account, it appears that S. peruvianum can cope with a great variety of environmental conditions without undergoing local adaptation, whereas S. chilense undergoes local adaptation more frequently.
Collapse
Affiliation(s)
- Iris Fischer
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Létizia Camus-Kulandaivelu
- CIRAD, Biological System Department - Research Unit 39 'Genetic Diversity and Breeding of Forest Tree Species', Campus international de Baillarguet TA A-39/C, 34398 Montpellier Cedex 5, France
| | - François Allal
- CIRAD, Biological System Department - Research Unit 39 'Genetic Diversity and Breeding of Forest Tree Species', Campus international de Baillarguet TA A-39/C, 34398 Montpellier Cedex 5, France
| | - Wolfgang Stephan
- Section of Evolutionary Biology, Department of Biology II, University of Munich (LMU), Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
33
|
Tellier A, Fischer I, Merino C, Xia H, Camus-Kulandaivelu L, Städler T, Stephan W. Fitness effects of derived deleterious mutations in four closely related wild tomato species with spatial structure. Heredity (Edinb) 2011; 107:189-99. [PMID: 21245893 DOI: 10.1038/hdy.2010.175] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A key issue in evolutionary biology is an improved understanding of the genetic mechanisms by which species adapt to various environments. Using DNA sequence data, it is possible to quantify the number of adaptive and deleterious mutations, and the distribution of fitness effects of new mutations (its mean and variance) by simultaneously taking into account the demography of a given species. We investigated how selection functions at eight housekeeping genes of four closely related, outcrossing species of wild tomatoes that are native to diverse environments in western South America (Solanum arcanum, S. chilense, S. habrochaites and S. peruvianum). We found little evidence for adaptive mutations but pervasive evidence for strong purifying selection in coding regions of the four species. In contrast, the strength of purifying selection seems to vary among the four species in non-coding (NC) regions (introns). Using F(ST)-based measures of fixation in subdivided populations, we suggest that weak purifying selection has affected the NC regions of S. habrochaites, S. chilense and S. peruvianum. In contrast, NC regions in S. arcanum show a distribution of fitness effects with mutations being either nearly neutral or very strongly deleterious. These results suggest that closely related species with similar genetic backgrounds but experiencing contrasting environments differ in the variance of deleterious fitness effects.
Collapse
Affiliation(s)
- A Tellier
- Section of Evolutionary Biology, Department Biology II, University of Munich (LMU), Planegg-Martinsried, Germany.
| | | | | | | | | | | | | |
Collapse
|