1
|
Tomisch J, Busse V, Rosato F, Makshakova ON, Salavei P, Kittel AS, Gillon E, Lataster L, Imberty A, Meléndez AV, Römer W. A Shiga Toxin B-Subunit-Based Lectibody Boosts T Cell Cytotoxicity towards Gb3-Positive Cancer Cells. Cells 2023; 12:1896. [PMID: 37508560 PMCID: PMC10378424 DOI: 10.3390/cells12141896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Aberrant glycosylation plays a crucial role in tumour progression and invasiveness. Tumour-associated carbohydrate antigens (TACAs) represent a valuable set of targets for immunotherapeutic approaches. The poor immunogenicity of glycan structures, however, requires a more effective and well-directed way of targeting TACAs on the surface of cancer cells than antibodies. The glycosphingolipid globotriaosylceramide (Gb3) is a well-established TACA present in a multitude of cancer types. Its overexpression has been linked to metastasis, invasiveness, and multidrug resistance. In the present study, we propose to use a dimeric fragment of the Shiga toxin B-subunit (StxB) to selectively target Gb3-positive cancer cells in a StxB-scFv UCHT1 lectibody. The lectibody, comprised of a lectin and the UCHT1 antibody fragment, was produced in E. coli and purified via Ni-NTA affinity chromatography. Specificity of the lectibody towards Gb3-positive cancer cell lines and specificity towards the CD3 receptor on T cells, was assessed using flow cytometry. We evaluated the efficacy of the lectibody in redirecting T cell cytotoxicity towards Gb3-overexpressing cancer cells in luciferase-based cytotoxicity in vitro assays. The StxB-scFv UCHT1 lectibody has proven specific for Gb3 and could induce the killing of up to 80% of Gb3-overexpressing cancer cells in haemorrhagic and solid tumours. The lectibody developed in this study, therefore, highlights the potential that lectibodies and lectins in general have for usage in immunotherapeutic approaches to boost the efficacy of established cancer treatments.
Collapse
Affiliation(s)
- Jana Tomisch
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Vincent Busse
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Francesca Rosato
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Olga N Makshakova
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Kazan Institute for Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia
| | - Pavel Salavei
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Core Facility Signalling Factory & Robotics, University of Freiburg, 79104 Freiburg, Germany
| | - Anna-Sophia Kittel
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Emilie Gillon
- CNRS, CERMAV, Université Grenoble Alpes, 38000 Grenoble, France
| | - Levin Lataster
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| | - Anne Imberty
- CNRS, CERMAV, Université Grenoble Alpes, 38000 Grenoble, France
| | - Ana Valeria Meléndez
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
2
|
Bernedo-Navarro RA, Romão E, Yano T, Pinto J, De Greve H, Sterckx YGJ, Muyldermans S. Structural Basis for the Specific Neutralization of Stx2a with a Camelid Single Domain Antibody Fragment. Toxins (Basel) 2018; 10:toxins10030108. [PMID: 29494518 PMCID: PMC5869396 DOI: 10.3390/toxins10030108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/08/2018] [Accepted: 02/26/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Shiga toxin-producing Escherichia coli (STEC) are a subset of pathogens leading to illnesses such as diarrhea, hemolytic uremic syndrome and even death. The Shiga toxins are the main virulence factors and divided in two groups: Stx1 and Stx2, of which the latter is more frequently associated with severe pathologies in humans. RESULTS An immune library of nanobodies (Nbs) was constructed after immunizing an alpaca with recombinant Shiga toxin-2a B subunit (rStx2aB), to retrieve multiple rStx2aB-specific Nbs. The specificity of five Nbs towards rStx2aB was confirmed in ELISA and Western blot. Nb113 had the highest affinity (9.6 nM) and its bivalent construct exhibited a 100-fold higher functional affinity. The structure of the Nb113 in complex with rStx2aB was determined via X-ray crystallography. The crystal structure of the Nb113-rStx2aB complex revealed that five copies of Nb113 bind to the rStx2aB pentamer and that the Nb113 epitope overlaps with the Gb3 binding site, thereby providing a structural basis for the neutralization of Stx2a by Nb113 that was observed on Vero cells. Finally, the tandem-repeated, bivalent Nb113₂ exhibits a higher toxin neutralization capacity compared to monovalent Nb113. CONCLUSIONS The Nb of highest affinity for rStx2aB is also the best Stx2a and Stx2c toxin neutralizing Nb, especially in a bivalent format. This lead Nb neutralizes Stx2a by competing for the Gb3 receptor. The fusion of the bivalent Nb113₂ with a serum albumin specific Nb is expected to combine high toxin neutralization potential with prolonged blood circulation.
Collapse
Affiliation(s)
- Robert Alvin Bernedo-Navarro
- Laboratory of Bacterial Genetics, Institute of Biology, University of Campinas (UNICAMP), São Paulo 13083-862, Brazil.
| | - Ema Romão
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| | - Tomomasa Yano
- Laboratory of Bacterial Genetics, Institute of Biology, University of Campinas (UNICAMP), São Paulo 13083-862, Brazil.
| | - Joar Pinto
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| | - Henri De Greve
- Structural Molecular Microbiology, Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| | - Yann G-J Sterckx
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| |
Collapse
|
3
|
Pezeshkian W, Hansen AG, Johannes L, Khandelia H, Shillcock JC, Kumar PBS, Ipsen JH. Membrane invagination induced by Shiga toxin B-subunit: from molecular structure to tube formation. SOFT MATTER 2016; 12:5164-5171. [PMID: 27070906 DOI: 10.1039/c6sm00464d] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The bacterial Shiga toxin is composed of an enzymatically active A-subunit, and a receptor-binding homopentameric B-subunit (STxB) that mediates intracellular toxin trafficking. Upon STxB-mediated binding to the glycolipid globotriaosylceramide (Gb3) at the plasma membrane of target cells, Shiga toxin is internalized by clathrin-dependent and independent endocytosis. The formation of tubular membrane invaginations is an essential step in the clathrin-independent STxB uptake process. However, the mechanism by which STxB induces these invaginations has remained unclear. Using a combination of all-atom molecular dynamics and Monte Carlo simulations we show that the molecular architecture of STxB enables the following sequence of events: the Gb3 binding sites on STxB are arranged such that tight avidity-based binding results in a small increment of local curvature. Membrane-mediated clustering of several toxin molecules then creates a tubular membrane invagination that drives toxin entry into the cell. This mechanism requires: (1) a precise molecular architecture of the STxB binding sites; (2) a fluid bilayer in order for the tubular invagination to form. Although, STxB binding to the membrane requires specific interactions with Gb3 lipids, our study points to a generic molecular design principle for clathrin-independent endocytosis of nanoparticles.
Collapse
Affiliation(s)
- W Pezeshkian
- Center for Biomembrane Physics (MEMPHYS), Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | | | | | | | | | | | | |
Collapse
|
4
|
Jiao Y, Legge FS, Zeng X, Treutlein HR, Zeng J. Antibody recognition of Shiga toxins (Stxs): computational identification of the epitopes of Stx2 subunit A to the antibodies 11E10 and S2C4. PLoS One 2014; 9:e88191. [PMID: 24516609 PMCID: PMC3917601 DOI: 10.1371/journal.pone.0088191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/04/2014] [Indexed: 11/18/2022] Open
Abstract
We have recently developed a new method to predict the epitopes of the antigens that are
recognized by a specific antibody. In this work, we applied the method to identify the epitopes of
the Shiga toxin (Stx2 subunit A) that were bound by two specific antibodies 11E10 and S2C4. The
predicted epitopes of Stx2 binding to the antibody 11E10 resembles the recognition surface
constructed by the regions of Stx2 identified experimentally. For the S2C4, our results indicate
that the antibody recognizes the Stx2 at two different regions on the protein surface. The first
region (residues 246-254: ARSVRAVNE) is similar to the recognition region of the 11E10, while the
second region is formed by two epitopes. The second region is particularly significant because it
includes the amino acid sequence region that is diverse between Stx2 and other Stx (residues
176-188: QREFRQALSETAPV). This new recognition region is believed to play an important role in the
experimentally observed selectivity of S2C4 to the Stx2.
Collapse
Affiliation(s)
- Yongjun Jiao
- Institute of Pathogenic Microbiology, Jiangsu Provincial
Center for Disease Prevention and Control, Key Laboratory of Enteric Pathogenic Microbiology,
Ministry Health, Nanjing, China
| | - Fiona S. Legge
- Computist Bio-Nanotech, Small Technology Clusters,
Scoresby, Victoria, Australia
| | - Xiaoyan Zeng
- Institute of Pathogenic Microbiology, Jiangsu Provincial
Center for Disease Prevention and Control, Key Laboratory of Enteric Pathogenic Microbiology,
Ministry Health, Nanjing, China
| | - Herbert R. Treutlein
- Monash Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria, Australia
- Computist Bio-Nanotech, Small Technology Clusters,
Scoresby, Victoria, Australia
- * E-mail: (HRT); (JZ)
| | - Jun Zeng
- Monash Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria, Australia
- Computist Bio-Nanotech, Small Technology Clusters,
Scoresby, Victoria, Australia
- * E-mail: (HRT); (JZ)
| |
Collapse
|
5
|
Neri P, Tokoro S, Sugiyama T, Umeda K, Shimizu T, Tsuji T, Kodama Y, Mori H. Recombinant Shiga toxin B subunit can induce neutralizing immunoglobulin Y antibody. Biol Pharm Bull 2012; 35:917-23. [PMID: 22687484 DOI: 10.1248/bpb.35.917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we have shown that chickens immunized with Shiga toxin (Stx) produce Stx-neutralizing egg yolk immunoglobulin Y (IgY) antibody. The anti-Stx-1 IgY and anti-Stx-2 IgY exert their neutralizing activity through their antibody activity against the B subunit of the toxin but not the A subunit. In the present study, chickens were immunized with recombinant Stx-1 B subunit (rStx-1B) and recombinant Stx-2 B subunit (rStx-2B). Induced anti-rStx-1B and anti-rStx-2B IgY neutralized the toxicity of Stx-1 and Stx-2 against HeLa 229 cells. The neutralizing activity of anti-rStx-1B IgY on Stx-1 was almost 10 times stronger than that of anti-Stx-1 IgY, and that of anti-rStx-2B IgY was 2.6 times stronger than that of anti-Stx-2 IgY. Anti-rStx-1B and anti-rStx-2B IgY reacted with multimeric and monomeric forms of the B subunits in contrast to anti-Stx-1 and anti-Stx-2 IgY that reacted with only the multimeric form. These results indicated that recombinant B subunits were promising antigens for induction of neutralizing antibodies in chickens.
Collapse
Affiliation(s)
- Paola Neri
- Microbiology, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Gao X, Cai K, Li T, Wang Q, Hou X, Tian R, Liu H, Tu W, Xiao L, Fang L, Luo S, Liu Y, Wang H. Novel fusion protein protects against adherence and toxicity of enterohemorrhagic Escherichia coli O157:H7 in mice. Vaccine 2011; 29:6656-63. [PMID: 21742003 DOI: 10.1016/j.vaccine.2011.06.106] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/07/2011] [Accepted: 06/25/2011] [Indexed: 12/22/2022]
Abstract
Infection with Escherichia coli (E. coli) O157:H7 may develop into bloody diarrhea, or hemorrhagic uremic syndrome (HUS), which usually causes kidney failure or even death. Considered as the pathogenesis mechanism of E. coli O157:H7 infection, attachment or adhesion that is directly mediated by intimin is the first step of E. coli O157:H7 interaction with its host, and all these serious sequelae are mainly due to Shiga toxins (Stxs) released by E. coli O157:H7. In this study, a novel SSI fusion protein that contains the critical toxin-antigens Stx2B and Stx1B, and the critical adhesion-antigen fragment Int281 was constructed. The protein induced complete immune protection, with both anti-toxin and anti-adhesion effects. The dominant increase in IgG1 and the high level of Th2-typical cytokine (IL-4 and IL-10) expression showed that SSI significantly induced Th2-mediated humoral immune response. In the mouse model, the SSI fusion protein not only elicited neutralizing antibodies against both Stx1 and Stx2 toxins, but also induced a high level of anti-adhesion antibodies. The SSI-immunized mice did not show any pathologic changes. SSI provides evident protection with two-time immunization against a highly lethal dose of E. coli O157:H7.
Collapse
Affiliation(s)
- Xiang Gao
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongdajie, Fengtai District, Beijing 100071, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kim SH, Ryu SH, Lee SH, Lee YH, Lee SR, Huh JW, Kim SU, Kim E, Kim S, Jon S, Bishop RE, Chang KT. Instability of toxin A subunit of AB(5) toxins in the bacterial periplasm caused by deficiency of their cognate B subunits. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2359-65. [PMID: 21762677 DOI: 10.1016/j.bbamem.2011.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/03/2011] [Accepted: 06/23/2011] [Indexed: 10/18/2022]
Abstract
Shiga toxin (STx) belongs to the AB(5) toxin family and is transiently localized in the periplasm before secretion into the extracellular milieu. While producing outer membrane vesicles (OMVs) containing only A subunit of the toxin (STxA), we created specific STx1B- and STx2B-deficient mutants of E. coli O157:H7. Surprisingly, STxA subunit was absent in the OMVs and periplasm of the STxB-deficient mutants. In parallel, the A subunit of heat-labile toxin (LT) of enterotoxigenic E. coli (ETEC) was absent in the periplasm of the LT-B-deficient mutant, suggesting that instability of toxin A subunit in the absence of the B subunit is a common phenomenon in the AB(5) bacterial toxins. Moreover, STx2A was barely detectable in the periplasm of E. coli JM109 when stx2A was overexpressed alone, while it was stably present when stxB was co-expressed. Compared with STx2 holotoxin, purified STx2A was degraded rapidly by periplasmic proteases when assessed for in vitro proteolytic susceptibility, suggesting that the B subunit contributes to stability of the toxin A subunit in the periplasm. We propose a novel role for toxin B subunits of AB(5) toxins in protection of the A subunit from proteolysis during holotoxin assembly in the periplasm.
Collapse
Affiliation(s)
- Sang-Hyun Kim
- The National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Chungbuk 363-883, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wang Q, Hou XJ, Cai K, Li T, Liu YN, Tu W, Xiao L, Bao SZ, Shi J, Gao X, Liu H, Tian RM, Wang H. Passive protection of purified yolk immunoglobulin administered against Shiga toxin 1 in mouse models. Can J Microbiol 2011; 56:1003-10. [PMID: 21164570 DOI: 10.1139/w10-087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Shiga toxins produced by Escherichia coli O157:H7 cause a wide spectrum of enteric diseases, such as lethal hemorrhagic colitis and hemolytic uremic syndrome. In this study, the B subunit protein of Shiga toxin type 1 (Stx1) was produced in the E. coli system, was further purified by Ni-column Affinity Chromatography method, and was then used as an immunogen to immunize laying hens for yolk immunoglobulin (IgY) production. Titers of IgY increased gradually with boosting vaccination and, finally, reached a level of 105, remaining steady over 1 year. Then the protective efficacy of IgY against Stx1 was evaluated by in vitro and in vivo experiments. It was shown that the anti-Stx1 IgY could effectively block the binding of Stx1 to the Hela cells and could protect BALB/c mice from toxin challenges. The data indicates the facility of using egg yolk IgY as a therapeutic intervention in cases of Shiga toxin intoxication.
Collapse
Affiliation(s)
- Qin Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, No. 20 Dongdajie, Fengtai District, Beijing 100071, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cai K, Gao X, Li T, Wang Q, Hou X, Tu W, Xiao L, Tian M, Liu Y, Wang H. Enhanced immunogenicity of a novel Stx2Am-Stx1B fusion protein in a mice model of enterohemorrhagic Escherichia coli O157:H7 infection. Vaccine 2011; 29:946-52. [DOI: 10.1016/j.vaccine.2010.11.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 10/22/2010] [Accepted: 11/14/2010] [Indexed: 10/18/2022]
|
10
|
Dowd SE, Crippen TL, Sun Y, Gontcharova V, Youn E, Muthaiyan A, Wolcott RD, Callaway TR, Ricke SC. Microarray Analysis and Draft Genomes of TwoEscherichia coliO157:H7 Lineage II Cattle Isolates FRIK966 and FRIK2000 Investigating Lack of Shiga Toxin Expression. Foodborne Pathog Dis 2010; 7:763-73. [DOI: 10.1089/fpd.2009.0482] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Tawni L. Crippen
- Food and Feed Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, College Station, Texas
| | - Yan Sun
- Research and Testing Laboratory, Lubbock, Texas
| | | | - Eun Youn
- Computer Science Department, Texas Tech University, Lubbock, Texas
| | - Arunachalam Muthaiyan
- Center for Food Safety—IFSE and Department of Food Science, University of Arkansas, Fayetteville, Arkansas
| | | | - Todd R. Callaway
- Food and Feed Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, College Station, Texas
| | - Steven C. Ricke
- Center for Food Safety—IFSE and Department of Food Science, University of Arkansas, Fayetteville, Arkansas
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
11
|
Baibakov B, Murtazina R, Elowsky C, Giardiello FM, Kovbasnjuk O. Shiga toxin is transported into the nucleoli of intestinal epithelial cells via a carrier-dependent process. Toxins (Basel) 2010; 2:1318-35. [PMID: 22069640 PMCID: PMC3153243 DOI: 10.3390/toxins2061318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 05/19/2010] [Accepted: 06/03/2010] [Indexed: 12/13/2022] Open
Abstract
Shiga toxin (Stx) produced by the invasive Shigella dysenteriae serotype 1 (S. dysenteriae1) causes gastrointestinal and kidney complications. It has been assumed that Stx is released intracellularly after enterocyte invasion by S. dysenteriae1. However, there is little information about Stx distribution inside S. dysenteriae1-infected enterocytes. Here, we use intestinal epithelial T84 cells to characterize the trafficking of Stx delivered into the cytosol, in ways that mimic aspects of S. dysenteriae1 infection. We find that cytoplasmic Stx is transported into nucleoli. Stx nucleolar movement is carrier- and energy-dependent. Stx binding to the nucleoli of normal human enterocytes in vitro supports possible roles for nucleolar trafficking in toxin-induced intestinal pathology.
Collapse
Affiliation(s)
- Boris Baibakov
- GI Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
12
|
Johannes L, Römer W. Shiga toxins--from cell biology to biomedical applications. Nat Rev Microbiol 2009; 8:105-16. [PMID: 20023663 DOI: 10.1038/nrmicro2279] [Citation(s) in RCA: 359] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Shiga toxin-producing Escherichia coli is an emergent pathogen that can induce haemolytic uraemic syndrome. The toxin has received considerable attention not only from microbiologists but also in the field of cell biology, where it has become a powerful tool to study intracellular trafficking. In this Review, we summarize the Shiga toxin family members and their structures, receptors, trafficking pathways and cellular targets. We discuss how Shiga toxin affects cells not only by inhibiting protein biosynthesis but also through the induction of signalling cascades that lead to apoptosis. Finally, we discuss how Shiga toxins might be exploited in cancer therapy and immunotherapy.
Collapse
Affiliation(s)
- Ludger Johannes
- Institut Curie - Centre de Recherche and CNRS UMR144, Traffic, Signalling and Delivery Laboratory, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | | |
Collapse
|
13
|
|
14
|
Liu L, Zeng H, Luo P, Wu J, Chen H, Shi Y, Zhang W, Mao X, Xiao B, Zou Q. Cloning a Truncated Fragment (stx2a1) of the Shiga-Like Toxin 2A1 Subunit of EHEC O157:H7: Candidate Immunogen for a Subunit Vaccine. Mol Biotechnol 2009; 43:8-14. [DOI: 10.1007/s12033-009-9171-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 03/19/2009] [Indexed: 11/28/2022]
|
15
|
Malyukova I, Murray KF, Zhu C, Boedeker E, Kane A, Patterson K, Peterson JR, Donowitz M, Kovbasnjuk O. Macropinocytosis in Shiga toxin 1 uptake by human intestinal epithelial cells and transcellular transcytosis. Am J Physiol Gastrointest Liver Physiol 2009; 296:G78-92. [PMID: 18974311 PMCID: PMC2636932 DOI: 10.1152/ajpgi.90347.2008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Shiga toxin 1 and 2 production is a cardinal virulence trait of enterohemorrhagic Escherichia coli infection that causes a spectrum of intestinal and systemic pathology. However, intestinal sites of enterohemorrhagic E. coli colonization during the human infection and how the Shiga toxins are taken up and cross the globotriaosylceramide (Gb3) receptor-negative intestinal epithelial cells remain largely uncharacterized. We used samples of human intestinal tissue from patients with E. coli O157:H7 infection to detect the intestinal sites of bacterial colonization and characterize the distribution of Shiga toxins. We further used a model of largely Gb3-negative T84 intestinal epithelial monolayers treated with B-subunit of Shiga toxin 1 to determine the mechanisms of non-receptor-mediated toxin uptake. We now report that E. coli O157:H7 were found at the apical surface of epithelial cells only in the ileocecal valve area and that both toxins were present in large amounts inside surface and crypt epithelial cells in all tested intestinal samples. Our in vitro data suggest that macropinocytosis mediated through Src activation significantly increases toxin endocytosis by intestinal epithelial cells and also stimulates toxin transcellular transcytosis. We conclude that Shiga toxin is taken up by human intestinal epithelial cells during E. coli O157:H7 infection regardless of the presence of bacterial colonies. Macropinocytosis might be responsible for toxin uptake by Gb3-free intestinal epithelial cells and transcytosis. These observations provide new insights into the understanding of Shiga toxin contribution to enterohemorrhagic E. coli-related intestinal and systemic diseases.
Collapse
Affiliation(s)
- Irina Malyukova
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pediatrics, Division of Gastroenterology and Nutrition, Children's Hospital and Regional Medical Center, Seattle, Washington; Department of Medicine, Division of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, New Mexico; Division of Geographic Medicine/Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, Washington; and Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Karen F. Murray
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pediatrics, Division of Gastroenterology and Nutrition, Children's Hospital and Regional Medical Center, Seattle, Washington; Department of Medicine, Division of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, New Mexico; Division of Geographic Medicine/Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, Washington; and Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Chengru Zhu
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pediatrics, Division of Gastroenterology and Nutrition, Children's Hospital and Regional Medical Center, Seattle, Washington; Department of Medicine, Division of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, New Mexico; Division of Geographic Medicine/Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, Washington; and Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Edgar Boedeker
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pediatrics, Division of Gastroenterology and Nutrition, Children's Hospital and Regional Medical Center, Seattle, Washington; Department of Medicine, Division of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, New Mexico; Division of Geographic Medicine/Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, Washington; and Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Anne Kane
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pediatrics, Division of Gastroenterology and Nutrition, Children's Hospital and Regional Medical Center, Seattle, Washington; Department of Medicine, Division of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, New Mexico; Division of Geographic Medicine/Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, Washington; and Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kathleen Patterson
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pediatrics, Division of Gastroenterology and Nutrition, Children's Hospital and Regional Medical Center, Seattle, Washington; Department of Medicine, Division of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, New Mexico; Division of Geographic Medicine/Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, Washington; and Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jeffrey R. Peterson
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pediatrics, Division of Gastroenterology and Nutrition, Children's Hospital and Regional Medical Center, Seattle, Washington; Department of Medicine, Division of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, New Mexico; Division of Geographic Medicine/Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, Washington; and Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pediatrics, Division of Gastroenterology and Nutrition, Children's Hospital and Regional Medical Center, Seattle, Washington; Department of Medicine, Division of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, New Mexico; Division of Geographic Medicine/Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, Washington; and Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Olga Kovbasnjuk
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pediatrics, Division of Gastroenterology and Nutrition, Children's Hospital and Regional Medical Center, Seattle, Washington; Department of Medicine, Division of Gastroenterology, University of New Mexico School of Medicine, Albuquerque, New Mexico; Division of Geographic Medicine/Infectious Diseases, Tufts Medical Center, Boston, Massachusetts; Department of Pathology, Children's Hospital and Regional Medical Center, Seattle, Washington; and Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Dowd SE, Williams JB. Comparison of Shiga-like toxin II expression between two genetically diverse lineages of Escherichia coli O157:H7. J Food Prot 2008; 71:1673-8. [PMID: 18724763 DOI: 10.4315/0362-028x-71.8.1673] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The existence of two separate lineages of Escherichia coli O157:H7 has previously been reported, and research indicates that one of these lineages (lineage I) might be more pathogenic toward human hosts. We postulated that the lineage more pathogenic expresses higher levels of Shiga toxin 2 (Stx2) than do the nonpathogenic lineage II. A comprehensive set of methodologies were used to investigate the difference in Stx2 protein and mRNA expression between the two lineages. An initial Stx2-specific enzyme-linked immunosorbent assay was conducted, and lineage I overall demonstrated significantly more toxin proteins expressed (P < 0.01). Gene expression analyses all showed significantly higher stx2 gene expression in lineage I (P = 0.02). PCR mapping revealed a possible explanation for decreased amounts of stx2 transcripts in the potentially nonpathogenic lineage II isolates, suggesting that genomic changes have modified the toxin-encoding region of the phage. This study provides additional data to support the existence of two diverse lineages of E. coli O157:H7, one of which may have lower pathogenic potential in relation to human hosts. The PCR described also provides a possible screening tool for E. coli O157 populations to differentiate these lineages. This study provides useful information on the ecology of E. coli O157, with broad implications within the clinical, scientific, and livestock industries.
Collapse
Affiliation(s)
- Scot E Dowd
- U.S. Department of Agriculture, Agricultural Research Service Livestock Issues Research Unit, 1604 West FM 1294, Lubbock, Texas 79403, USA.
| | | |
Collapse
|
17
|
Tsuji T, Shimizu T, Sasaki K, Tsukamoto K, Arimitsu H, Ochi S, Shimizu T, Taniguchi K, Noda M, Neri P, Mori H. A nasal vaccine comprising B-subunit derivative of Shiga toxin 2 for cross-protection against Shiga toxin types 1 and 2. Vaccine 2008; 26:2092-9. [DOI: 10.1016/j.vaccine.2008.02.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/17/2008] [Accepted: 02/19/2008] [Indexed: 11/15/2022]
|
18
|
Wen SX, Teel LD, Judge NA, O’Brien AD. A plant-based oral vaccine to protect against systemic intoxication by Shiga toxin type 2. Proc Natl Acad Sci U S A 2006; 103:7082-7. [PMID: 16641102 PMCID: PMC1459021 DOI: 10.1073/pnas.0510843103] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Indexed: 12/21/2022] Open
Abstract
Hemolytic uremic syndrome, the leading cause of kidney failure in children, often follows infection with enterohemorrhagic Escherichia coli and is mediated by the Shiga type toxins, particularly type 2 (Stx2), produced by such strains. The challenge in protecting against this life-threatening syndrome is to stimulate an immune response at the site of infection while also protecting against Shiga intoxication at distal sites such as the kidney. As one approach to meeting this challenge, we sought to develop and characterize a prototypic orally delivered, plant-based vaccine against Stx2, an AB5 toxin. First, we genetically inactivated the Stx2 active A subunit gene and then optimized both subunit genes for expression in plants. The toxoid genes were then transformed into the Nicotiana tabacum (tobacco) cell line NT-1 by Agrobacterium tumefaciens-mediated transformation. Toxoid expression was detected in NT-1 cell extracts, and the assembly of the holotoxoid was confirmed. Finally, mice were immunized by feeding with the toxoid-expressing NT-1 cells or by parenteral immunization followed by oral vaccination (prime-boost strategy). The immunized mice produced Stx2-specific mucosal IgA and Stx2-neutralizing serum IgG. The protective efficacy of these responses was assessed by challenging the immunized mice with E. coli O91:H21 strain B2F1, an isolate that produces an activatable variant of Stx2 (Stx2d) and is lethal to mice. The oral immunization fully protected mice from the challenge. Results of this study demonstrated that a plant-based oral vaccine can confer protection against lethal systemic intoxication.
Collapse
Affiliation(s)
- Sharon X. Wen
- *Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799; and
| | - Louise D. Teel
- *Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799; and
| | - Nicole A. Judge
- Department of Biology, Augusta State University, 2500 Walton Way, Augusta, GA 30904-2200
| | - Alison D. O’Brien
- *Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799; and
| |
Collapse
|
19
|
De Baets L, Van der Taelen I, De Filette M, Piérard D, Allison L, De Greve H, Hernalsteens JP, Imberechts H. Genetic typing of shiga toxin 2 variants of Escherichia coli by PCR-restriction fragment length polymorphism analysis. Appl Environ Microbiol 2004; 70:6309-14. [PMID: 15466582 PMCID: PMC522131 DOI: 10.1128/aem.70.10.6309-6314.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxins Stx1 and Stx2 play a prominent role in the pathogenesis of Shiga toxin-producing Escherichia coli (STEC) infections. Several variants of the stx(2) gene, encoding Stx2, have been described. In this study, we developed a PCR-restriction fragment length polymorphism system for typing stx(2) genes of STEC strains. The typing system discriminates eight described variants and allows the identification of new stx(2) variants and STEC isolates carrying multiple stx(2) genes. A phylogenetic tree, based on the nucleotide sequences of the toxin-encoding genes, demonstrates that stx(2) sequences with the same PvuII HaeIII HincII AccI type generally cluster together.
Collapse
Affiliation(s)
- Liesbet De Baets
- Dienst Algemene Bacteriologie, Centrum voor Onderzoek in Diergeneeskunde en Agrochemie, Groeselenberg 99, B-1180 Ukkel, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Tzipori S, Sheoran A, Akiyoshi D, Donohue-Rolfe A, Trachtman H. Antibody therapy in the management of shiga toxin-induced hemolytic uremic syndrome. Clin Microbiol Rev 2004; 17:926-41, table of contents. [PMID: 15489355 PMCID: PMC523565 DOI: 10.1128/cmr.17.4.926-941.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hemolytic uremic syndrome (HUS) is a disease that can lead to acute renal failure and often to other serious sequelae, including death. The majority of cases are attributed to infections with Escherichia coli, serotype O157:H7 strains in particular, which cause bloody diarrhea and liberate one or two toxins known as Shiga toxins 1 and 2. These toxins are thought to directly be responsible for the manifestations of HUS. Currently, supportive nonspecific treatment is the only available option for the management of individuals presenting with HUS. The benefit of antimicrobial therapy remains uncertain because of several reports which claim that such intervention can in fact exacerbate the syndrome. There have been only a few specific therapies directed against neutralizing the activities of these toxins, but none so far has been shown to be effective. This article reviews the literature on the mechanism of action of these toxins and the clinical manifestations and current management and treatment of HUS. The major focus of the article, however, is the development and rationale for using neutralizing human antibodies to combat this toxin-induced disease. Several groups are currently pursuing this approach with either humanized, chimeric, or human antitoxin antibodies produced in transgenic mice. They are at different phases of development, ranging from preclinical evaluation to human clinical trials. The information available from preclinical studies indicates that neutralizing specific antibodies directed against the A subunit of the toxin can be highly protective. Such antibodies, even when administered well after exposure to bacterial infection and onset of diarrhea, can prevent the occurrence of systemic complications.
Collapse
Affiliation(s)
- Saul Tzipori
- Division of Infectious Diseases, Tufts University School of Veterinary Medicine, 200 Westborough Rd., North Grafton, MA 01536, USA.
| | | | | | | | | |
Collapse
|
21
|
Eisenhauer PB, Jacewicz MS, Conn KJ, Koul O, Wells JM, Fine RE, Newburg DS. Escherichia coli Shiga toxin 1 and TNF-α induce cytokine release by human cerebral microvascular endothelial cells. Microb Pathog 2004; 36:189-96. [PMID: 15001224 DOI: 10.1016/j.micpath.2003.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2003] [Revised: 11/17/2003] [Accepted: 11/19/2003] [Indexed: 10/26/2022]
Abstract
Infection with Shiga toxin (Stx)-producing Escherichia coli can lead to development of hemolytic uremic syndrome (HUS). Patients with severe HUS often exhibit central nervous system (CNS) pathology, which is thought to involve damage to brain endothelium, a component of the blood-brain barrier. We hypothesized that this neuropathology occurs when cerebral endothelial cells of the blood-brain barrier, sensitized by exogenous TNF-alpha and stimulated by Stx1, produce and release proinflammatory cytokines. This was tested by measuring changes in cytokine mRNA and protein expression in human brain endothelial cells (hBEC) in vitro when challenged by TNF-alpha and/or Stx. High doses of Stx1 alone were somewhat cytotoxic to hBEC; Stx1-treated cells produced increased amounts of IL-6 mRNA and secreted this cytokine. IL-1beta and TNF-alpha mRNA, but not protein, were increased, and IL-8 secretion increased without an observed increase in mRNA. Cells pretreated with TNF-alpha were more sensitive to Stx1, displaying greater Stx1-induction of mRNA for TNF-alpha, IL-1beta, and IL-6, and secretion of IL-6 and IL-8. These observations suggest that in the pathogenesis of HUS, Stx can induce cytokine release from hBEC, which may contribute toward the characteristic CNS neuropathology.
Collapse
Affiliation(s)
- Patricia B Eisenhauer
- Program in Glycobiology, Shriver Center, University of Massachusetts Medical School, Waltham, MA, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Cooling LLW, Zhang DS, Naides SJ, Koerner TAW. Glycosphingolipid expression in acute nonlymphocytic leukemia: common expression of shiga toxin and parvovirus B19 receptors on early myeloblasts. Blood 2003; 101:711-21. [PMID: 12393713 DOI: 10.1182/blood-2002-03-0718] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycosphingolipids (GSLs) are complex macromolecules on cell membranes that have been shown to play a role in neutrophil differentiation, activation, phagocytosis, and adhesion to both microorganisms and vascular endothelium. Because GSLs are often cryptic antigens on cell membranes, little is known regarding GSL expression in early myelopoiesis. To study the latter, myeloblasts were collected from patients with acute nonlymphocytic leukemia (ANLL) who required therapeutic leukocytopheresis for hyperleukocytosis. The neutral GSLs were isolated and identified by high-performance thin-layer chromatography (HPTLC), HPTLC immunostaining, gas chromatography, nuclear magnetic resonance, and fast atom bombardment-mass spectrometry. Like mature peripheral blood neutrophils, myeloblasts expressed glucosylceramide, lactosylceramide, and the neolacto-family GSLs, lactotriaosylceramide and neolactotetraosylceramide. Unlike neutrophils and chronic myeloid leukemia, most ANLL samples also expressed the globo-series GSLs, globotriaosylceramide and globotetraosylceramide. Globo GSL expression was strongly associated with a myeloblastic (ANLL M0-M2) and monoblastic phenotype (M5). A weak association was also noted with expression of either lymphoid (P <.10) or early hematopoietic markers (terminal deoxynucleotidyl transferase [TdT], CD34; P <.10). Globo-positive ANLL samples bound both shiga toxin and parvovirus B19 on HPTLC immunostaining. Based on these findings, we propose that neolacto and globo GSLs are expressed during early myeloid differentiation. Globotriaosylceramide expression on myeloblasts, and possibly myeloid stem cells, may have important implications for the use of shiga toxin as an ex vivo purging agent in autologous stem cell transplantation. Expression of globotetraosylceramide, the parvovirus B19 receptor, on myeloblasts may also explain the association between B19 infection, aplastic anemia, and chronic neutropenia of childhood.
Collapse
Affiliation(s)
- Laura L W Cooling
- Department of Pathology, The University of Michigan, Ann Arbor 48109, USA.
| | | | | | | |
Collapse
|
23
|
Marcato P, Mulvey G, Armstrong GD. Cloned Shiga toxin 2 B subunit induces apoptosis in Ramos Burkitt's lymphoma B cells. Infect Immun 2002; 70:1279-86. [PMID: 11854211 PMCID: PMC127801 DOI: 10.1128/iai.70.3.1279-1286.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Shiga toxins (Stx1 and Stx2), produced by Shigella dysenteriae type 1 and enterohemorrhagic Escherichia coli, consist of one A subunit and five B subunits. The Stx1 and Stx2 B subunits form a pentameric structure that binds to globotriaosylceramide (Gb3-Cer) receptors on eukaryotic cells and promotes endocytosis. The A subunit then inhibits protein biosynthesis, which triggers apoptosis in the affected cell. In addition to its Gb3-Cer binding activity, the data in the following report demonstrate that the Stx2 B pentamer induces apoptosis in Ramos Burkitt's lymphoma B cells independently of A subunit activity. Apoptosis was not observed in A subunit-free preparations of the Stx1 B pentamer which competitively inhibited Stx2 B pentamer-mediated apoptosis. The pancaspase inhibitor, Z-VAD-fmk, prevented apoptosis in Ramos cells exposed to the Stx2 B subunit, Stx1 or Stx2. Brefeldin A, an inhibitor of the Golgi transport system, also prevented Stx2 B subunit-mediated apoptosis. These observations suggest that the Stx2 B subunit must be internalized, via Gb3-Cer receptors, to induce Ramos cell apoptosis. Moreover, unlike the two holotoxins, Stx2 B subunit-mediated apoptosis does not involve inhibition of protein biosynthesis. This study provides further insight into the pathogenic potential of this family of potent bacterial exotoxins.
Collapse
Affiliation(s)
- Paola Marcato
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
24
|
Soltyk AM, MacKenzie CR, Wolski VM, Hirama T, Kitov PI, Bundle DR, Brunton JL. A mutational analysis of the globotriaosylceramide-binding sites of verotoxin VT1. J Biol Chem 2002; 277:5351-9. [PMID: 11723119 DOI: 10.1074/jbc.m107472200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli verotoxin, also known as Shiga-like toxin, binds to eukaryotic cell membranes via the glycolipid Gb(3) receptors which present the P(k) trisaccharide Galalpha(1-4)Galbeta(1-4)Glcbeta. Crystallographic studies have identified three P(k) trisaccharide (P(k)-glycoside) binding sites per verotoxin 1B subunit (VT1B) monomer while NMR studies have identified binding of P(k)-glycoside only at site 2. To understand the basis for this difference, we studied binding of wild type VT1B and VT1B mutants, defective at one or more of the three sites, to P(k)-glycoside and pentavalent P(k) trisaccharide (pentaSTARFISH) in solution and Gb(3) presented on liposomal membranes using surface plasmon resonance. Site 2 was the key site in terms of free trisaccharide binding since mutants altered at sites 1 and 3 bound this ligand with wild type affinity. However, effective binding of the pentaSTARFISH molecule also required a functional site 3, suggesting that site 3 promotes pentavalent binding of linked trisaccharides at site 1 and site 2. Optimal binding to membrane-associated Gb(3) involved all three sites. Binding of all single site mutants to liposomal Gb(3) was weaker than wild type VT1B binding. Site 3 mutants behaved as if they had reduced ability to enter into high avidity interactions with Gb(3) in the membrane context. Double mutants at site 1/site 3 and site 2/site 3 were completely inactive in terms of binding to liposomal Gb(3,) even though the site 1/site 3 mutant bound trisaccharide with almost wild type affinity. Thus site 2 alone is not sufficient to confer high avidity binding to membrane-localized Gb(3). Cytotoxic activity paralleled membrane glycolipid binding. Our data show that the interaction of verotoxin with the Gb(3) trisaccharide is highly context dependent and that a membrane environment is required for biologically relevant studies of the interaction.
Collapse
Affiliation(s)
- Anna M Soltyk
- Clinical Science Division, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Thorpe CM, Smith WE, Hurley BP, Acheson DW. Shiga toxins induce, superinduce, and stabilize a variety of C-X-C chemokine mRNAs in intestinal epithelial cells, resulting in increased chemokine expression. Infect Immun 2001; 69:6140-7. [PMID: 11553553 PMCID: PMC98744 DOI: 10.1128/iai.69.10.6140-6147.2001] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2001] [Accepted: 06/22/2001] [Indexed: 11/20/2022] Open
Abstract
Exposure of humans to Shiga toxins (Stxs) is a risk factor for hemolytic-uremic syndrome (HUS). Because Stx-producing Escherichia coli (STEC) is a noninvasive enteric pathogen, the extent to which Stxs can cross the host intestinal epithelium may affect the risk of developing HUS. We have previously shown that Stxs can induce and superinduce IL-8 mRNA and protein in intestinal epithelial cells (IECs) in vitro via a ribotoxic stress response. We used cytokine expression arrays to determine the effect of Stx1 on various C-X-C chemokine genes in IECs. We observed that Stx1 induces multiple C-X-C chemokines at the mRNA level, including interleukin-8 (IL-8), GRO-alpha, GRO-beta, GRO-gamma, and ENA-78. Like that of IL-8, GRO-alpha and ENA-78 mRNAs are both induced and superinduced by Stx1. Furthermore, Stx1 induces both IL-8 and GRO-alpha protein in a dose-response fashion, despite an overall inhibition in host cell protein synthesis. Stx1 treatment stabilizes both IL-8 and GRO-alpha mRNA. We conclude that Stxs are able to increase mRNA and protein levels of multiple C-X-C chemokines in IECs, with increased mRNA stability at least one mechanism involved. We hypothesize that ribotoxic stress is a pathway by which Stxs can alter host signal transduction in IECs, resulting in the production of multiple chemokine mRNAs, leading to increased expression of specific proteins. Taken together, these data suggest that exposing IECs to Stxs may stimulate a proinflammatory response, resulting in influx of acute inflammatory cells and thus contributing to the intestinal tissue damage seen in STEC infection.
Collapse
Affiliation(s)
- C M Thorpe
- Division of Geographic Medicine and Infectious Diseases, Department of Medicine, Tufts University School of Medicine, New England Medical Center, Boston, Massachusetts, USA.
| | | | | | | |
Collapse
|
26
|
Abstract
BACKGROUND Altered arachidonic acid (AA) metabolism has been implicated in the pathogenesis of renal injury in the hemolytic uremic syndrome (HUS). However, there is very little information of the effect of shigatoxin (Stx; the putative mediator of renal damage in HUS) on AA release or metabolism by renal cells. Since recent studies have demonstrated that glomerular epithelial cells (GECs) may be important early targets of Stx, the current study was undertaken to examine the effects of Stx on AA release and metabolism by GECs. METHODS Cultured human GECs were exposed to Stx1 +/- lipopolysaccharide (LPS) for 4 to 48 hours followed by determination of (3)H-arachidonate release, thromboxane A(2) (TxA(2)) and prostacyclin (PGI(2)) production, cyclooxygenase (COX) activity, and Western and Northern analyses for phospholipase A(2) (PLA(2)) and COX protein and mRNA levels, respectively. RESULTS Stx1 increased arachidonate release by GECs. LPS alone had no such effect, but increased arachidonate release in response to Stx1. Stx1-stimulated arachidonate release correlated with elevations in cPLA(2) and sPLA(2) protein and cPLA(2) mRNA levels. Stx1 also increased both TxA(2) and PGI(2) production by GECs; LPS alone did not alter eicosanoid production, but augmented Stx1 effects. Both Stx1 and LPS stimulated COX activity; however, these effects were not additive. Although there was an accompanying elevation of COX-1 and COX-2 mRNA, Stx1 decreased and LPS did not change COX1 and COX2 protein levels. CONCLUSIONS Stx1 alone or in conjunction with LPS increases arachidonate release and eicosanoid production by human GECs; this effect correlates with increased PLA(2) protein and mRNA levels. To our knowledge, this is the first study identifying the mechanisms of Stx1-stimulated AA release. These results raise the possibility that arachidonate release and metabolism by GECs, and conceivably other renal cell types, are involved in renal injury in HUS.
Collapse
Affiliation(s)
- D I Schmid
- Division of Nephrology, University of Utah School of Medicine and Salt Lake Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | | |
Collapse
|
27
|
Abstract
A growing number of important molecular recognition events are being shown to involve the interactions between proteins and glycolipids. Glycolipids are molecules in which one or more monosaccharides are glycosidically linked to a lipid moiety. The lipid moiety is generally buried in the cell membrane or other bilayer, leaving the oligosaccharide moiety exposed but in close proximity to the bilayer surface. This presents a unique environment for protein-carbohydrate interactions, and studies to determine the influence of the bilayer on these phenomena are in their infancy. One important property of the bilayer is the ability to orient and cluster glycolipid species, as strong interactions in biological systems are often achieved through multivalency arising from the simultaneous association of two or more proteins and receptors. This is especially true of protein-carbohydrate binding because of the unusually low affinities that characterize the monovalent interactions. More recent studies have also shown that the composition of the lipid bilayer is a critical parameter in protein-glycolipid recognition. The fluidity of the bilayer allows for correct geometric positioning of the oligosaccharide head group relative to the binding sites on the protein. In addition, there are activity-based and structural data demonstrating the impact of the bilayer microenvironment on the modulation of oligosaccharide presentation. The use of model membranes in biosensor-based methods has supplied decisive evidence of the importance of the membrane in receptor presentation. These data can be correlated with three-dimensional structural information from X-ray crystallography, NMR, and molecular mechanics to provide insight into specific protein-carbohydrate inter--actions at the bilayer.
Collapse
Affiliation(s)
- S V Evans
- Department of Biochemistry, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada, K1H 8M5
| | | |
Collapse
|
28
|
Han Z, Su G, Huang C. Screening and identification of receptor antagonist for shiga toxin from random peptides displayed on filamentous bacteriophages. ACTA ACUST UNITED AC 1999; 42:43-9. [DOI: 10.1007/bf02881746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/1998] [Indexed: 11/24/2022]
|
29
|
Cooling LL, Walker KE, Gille T, Koerner TA. Shiga toxin binds human platelets via globotriaosylceramide (Pk antigen) and a novel platelet glycosphingolipid. Infect Immun 1998; 66:4355-66. [PMID: 9712788 PMCID: PMC108526 DOI: 10.1128/iai.66.9.4355-4366.1998] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/1998] [Accepted: 06/26/1998] [Indexed: 11/20/2022] Open
Abstract
Hemolytic-uremic syndrome is a clinical syndrome characterized by acute renal failure, microangiopathic hemolytic anemia, and thrombocytopenia that often follows infection by Shiga toxin- or verotoxin-producing strains of Escherichia coli. Because thrombocytopenia and platelet activation are hallmark features of hemolytic-uremic syndrome, we examined the ability of Shiga toxin to bind platelets by flow cytometry and high-performance thin-layer chromatography (HPTLC) of isolated platelet glycosphingolipids. By HPTLC, Shiga toxin was shown to bind globotriaosylceramide (Gb3) and a minor platelet glycolipid with an Rf of 0.03, band 0.03. In a survey of 20 human tissues, band 0.03 was identified only in platelets. In individuals, band 0.03 was expressed by 20% of donors and was specifically associated with increased platelet Gb3 expression. Based on glycosidase digestion and epitope mapping, band 0.03 was hypothesized to represent a novel glycosphingolipid, IV3-beta-Galalpha1-4galactosylglobotetraosylceramide. Based on incidence, structure, and association with increased Gb3 expression, band 0.03 may represent the antithetical Luke blood group antigen. By flow cytometry, Shiga toxin bound human platelets, although the amount of Shiga toxin bound varied in donors. Differences in Shiga toxin binding to platelet membranes did not reflect differences in platelet Gb3 expression. In contrast, there was a loose association between Shiga toxin binding and decreasing forward scatter, suggesting that Shiga toxin and verotoxins bind more efficiently to smaller, older platelets. In summary, Shiga and Shiga-like toxins may bind platelets via specific glycosphingolipid receptors. Such binding may contribute to the thrombocytopenia, platelet activation, and microthrombus formation observed in hemolytic-uremic syndrome.
Collapse
Affiliation(s)
- L L Cooling
- Department of Pathology, SUNY Health Science Center at Syracuse, Syracuse, New York, USA
| | | | | | | |
Collapse
|
30
|
Gunzer F, Bohn U, Fuchs S, Mühldorfer I, Hacker J, Tzipori S, Donohue-Rolfe A. Construction and characterization of an isogenic slt-ii deletion mutant of enterohemorrhagic Escherichia coli. Infect Immun 1998; 66:2337-41. [PMID: 9573126 PMCID: PMC108200 DOI: 10.1128/iai.66.5.2337-2341.1998] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1997] [Accepted: 02/06/1998] [Indexed: 02/07/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) produces Shiga-like toxins (SLT), potent protein synthesis inhibitors. To further dissect the role of SLT-II in the course of disease, we have constructed E. coli TUV86-2, an isogenic SLT-II-negative mutant of EHEC strain 86-24. The slt-ii gene was inactivated by suicide vector mutagenesis. We also isolated derivatives of strain 86-24 that were cured of the phage carrying the toxin genes.
Collapse
Affiliation(s)
- F Gunzer
- Division of Infectious Diseases, Tufts University School of Veterinary Medicine, North Grafton, Massachusetts 01536, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Kitov PI, Railton C, Bundle DR. The synthesis of 16-mercaptohexadecanyl glycosides for biosensor applications. Carbohydr Res 1998; 307:361-9. [PMID: 9675372 DOI: 10.1016/s0008-6215(98)00053-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The Pk trisaccharide and the central disaccharide element of asialo GM1 activated as their trichloroacetimidates were each used to glycosylate 16-(p-toluensulfonyloxy) hexadecanol 1. Displacement of the tosyl group by thiocyanate followed by sodium borohydride reduction and saponification afforded oligosaccharide 16-mercaptohexadecanyl glycosides that were isolated as the corresponding disulfides 6 and 17 unless oxygen was rigorously excluded from the solvents used for work-up. Dithiothreitol reduction of disulfides and subsequent isolation under an inert atmosphere with degassed solvents gave the thiols 7 and 18. Chemisorption of omega-glycosyl alkanethiols and alkanethiols onto gold electrodes produces self-assembled monolayers that can act as amperometric biosensors for the detection of proteins that bind to the immobilized oligosaccharide epitope.
Collapse
Affiliation(s)
- P I Kitov
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
32
|
Mühldorfer I, Hacker J, Keusch GT, Acheson DW, Tschäpe H, Kane AV, Ritter A, Olschläger T, Donohue-Rolfe A. Regulation of the Shiga-like toxin II operon in Escherichia coli. Infect Immun 1996; 64:495-502. [PMID: 8550198 PMCID: PMC173792 DOI: 10.1128/iai.64.2.495-502.1996] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Investigations of the regulation of the bacteriophage-encoded Shiga-like toxin II (SLT-II) in Escherichia coli demonstrated that bacteriophages exhibit a regulatory impact on toxin production by two mechanisms. Firstly, replication of the toxin-converting bacteriophages brings about an increase in toxin production due to concomitant multiplication of toxin gene copies. Secondly, an influence of a phage-encoded regulatory molecule was demonstrated by using low-copy-number plasmid pADR-28, carrying a translational gene fusion between the promoter and proximal portion of slt-IIA and the structural gene for bacterial alkaline phosphatase (phoA). PhoA activity, reflecting the slt-II promoter activity, was significantly enhanced in E. coli strains which and been lysogenized with an SLT-I or SLT-II-converting bacteriophage (H-19B or 933W, respectively) or bacteriophage lambda. Both mechanisms are dependent on bacteriophage induction and hence are recA dependent. Moreover, the study revealed that the DNA-binding protein H-NS has a regulatory impact on both bacteriophage-mediated SLT-II synthesis and the activity of the slt-II promoter of plasmid pADR-28. While a slight impact of growth temperature on SLT-II expression was observed, no impact of either osmolarity, pH, oxygen tension, acetates, iron level, or utilized carbon source could be demonstrated.
Collapse
Affiliation(s)
- I Mühldorfer
- Lehrstuhl fäur Molekulare Infektionsbiologie, Universität Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
St Hilaire PM, Boyd MK, Toone EJ. Interaction of the Shiga-like toxin type 1 B-subunit with its carbohydrate receptor. Biochemistry 1994; 33:14452-63. [PMID: 7981205 DOI: 10.1021/bi00252a011] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A study of the binding of the Shiga-like toxin 1 (SLT-1) to the P(k) trisaccharide [methyl 4-O-(4-O-alpha-D-galactopyranosyl)-4-O-beta-D- glucopyranoside] and its constituent dissacharides was carried out. The trisaccharide represents the carbohydrate recognition domain of the neutral glycolipid receptor of the SLT-1, globotriosylceramide (GbOse3). The binding constant for soluble trisaccharide to the soluble pentameric B-subunit is weak, with a K(a) of (0.5-1) x 10(3) M-1 for B-subunit monomer. Scatchard analysis of the binding data indicates five identical non-interacting carbohydrate binding sites per B-subunit pentamer and no cooperativity in binding. Despite weak binding (delta G = -3.6 kcal mol-1), the enthalpy of binding (delta H = -12 kcal mol-1) and the change in molar heat capacity accompanying binding (delta C(p) = -40 eu) are comparable to other protein-carbohydrate interactions. Dynamic light scattering studies indicate that carbohydrate binding induces protein aggregation. At carbohydrate concentrations where > 90% of B-subunit monomers are bound, the far-UV CD spectra were unchanged, whereas a change in the near-UV CD, maximal near 270 nm, titrated to give an apparent binding constant in good agreement with that obtained by isothermal microcalorimetry. Steady-state fluorescence and fluorescence lifetime measurements indicated that the environments of the central tryptophans are perturbed during saccharide binding, and the changes correlate with the extent of protein aggregation. On the basis of the thermodynamics of binding, optical spectroscopy, and binding-induced aggregation, we propose a model of SLT-1-membrane interaction that relies on protein-carbohydrate interaction for specificity and protein-lipid interaction for tight binding.
Collapse
Affiliation(s)
- P M St Hilaire
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346
| | | | | |
Collapse
|
34
|
Maloney MD, Lingwood CA. CD19 has a potential CD77 (globotriaosyl ceramide)-binding site with sequence similarity to verotoxin B-subunits: implications of molecular mimicry for B cell adhesion and enterohemorrhagic Escherichia coli pathogenesis. J Exp Med 1994; 180:191-201. [PMID: 7516406 PMCID: PMC2191568 DOI: 10.1084/jem.180.1.191] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The glycosphingolipid globotriaosyl ceramide (CD77) and other globo-series glycolipids containing terminal galactose (Gal)alpha 1-4Gal residues function as receptors for the verotoxin (Shiga-like toxin) family of Escherichia coli-elaborated toxins. CD77 is also a marker for germinal center B lymphocytes and Burkitt's lymphoma cells. The pan B cell marker CD19 is a 95-kD membrane protein that appears early in B cell differentiation and is only lost upon terminal differentiation to plasma cells. CD19 is involved in signal transduction and has a regulatory role in B cell proliferation and differentiation in response to activation in vitro. However, an endogenous ligand for CD19 has not yet been identified. We report herein that the extracellular domain of CD19 has a potential CD77-binding site with extensive sequence similarity to the verotoxin B-subunits. These B-subunit-like sequences on CD19 are in close proximity following the organization of intervening amino acids into disulfide-linked domains. Cocapping of CD19 and CD77 on Burkitt's lymphoma-derived Daudi cells with anti-CD19 antibodies indicates that CD19 and CD77 are associated on the B cell surface. Cell surface binding of anti-CD19 antibodies is decreased on CD77-deficient mutant Daudi cells, suggesting that CD77 expression influences the surface expression of CD19. Wild-type Daudi cells, but not the CD19/CD77-deficient mutants, bind to matrices expressing the carbohydrate moiety of CD77 or other Gal alpha 1-4Gal containing glycolipids. This binding can be inhibited by anti-CD77 antibodies, the CD77-binding verotoxin B-subunit or anti-CD19 antibodies. Daudi cells exhibit a degree of spontaneous homotypic adhesion in culture while the CD77/CD19-deficient Daudi mutants grow as single cells. The stronger homotypic adhesion that occurs in B cells after antibody ligation of CD19 and that involves, to some extent, the integrin system, is also dramatically lower in the mutant cells relative to the parent cell line. However, reconstitution of mutant cells with CD77 restores the anti-CD19 mAb-induced adhesion to wild-type Daudi cell levels. These studies represent the first time that CD19-mediated signaling has been reconstituted in a low-responder B cell line. These convergent observations provide compelling evidence that CD19/CD77 interactions function in adhesion and signal transduction at a specific stage in B cell development and suggest that such interactions have a role in B lymphocyte homing and germinal center formation in vivo. By targeting CD77+ B cells, verotoxins may suppress the humoral arm of the immune response during infection.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M D Maloney
- Department of Microbiology, Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
35
|
|
36
|
Burgess BJ, Roberts LM. Proteolytic cleavage at arginine residues within the hydrophilic disulphide loop of the Escherichia coli Shiga-like toxin I A subunit is not essential for cytotoxicity. Mol Microbiol 1993; 10:171-9. [PMID: 7968513 DOI: 10.1111/j.1365-2958.1993.tb00913.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Escherichia coli Shiga-like toxin I is a type II ribosome-inactivating protein composed of an A subunit with RNA-specific N-glycosidase activity, non-covalently associated with a pentamer of B subunits possessing affinity for galabiose-containing glycolipids. The A subunit contains a single intrachain disulphide bond encompassing a hydrophilic sequence containing two trypsin-sensitive arginine residues. By analogy with other bacterial toxins it has been proposed that proteolytic nicking, deemed essential for a cytotoxic effect, occurs within this disulphide-bonded loop to generate the A1 and A2 fragments. Reduced A1 is then believed to translocate an internal membrane to inactivate protein synthesis in the cytosol. In this report, the disulphide-loop arginines of the SLT I A subunit were mutated to block the specific proteolysis presumed to occur. However, the mutant generated remained an effective toxin having similar catalytic activity to wild-type toxin and only a marginally reduced cytotoxicity towards cultured cells. We conclude that the disulphide-loop arginine residues are not the unique and essential processing sites previously assumed, but that processing may occur at alternative accessible sites to compensate for loss of target sites within the loop.
Collapse
Affiliation(s)
- B J Burgess
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | |
Collapse
|
37
|
Takeda Y, Kurazono H, Yamasaki S. Vero toxins (Shiga-like toxins) produced by enterohemorrhagic Escherichia coli (verocytotoxin-producing E. coli). Microbiol Immunol 1993; 37:591-9. [PMID: 8246822 DOI: 10.1111/j.1348-0421.1993.tb01681.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Y Takeda
- Department of Microbiology, Faculty of Medicine, Kyoto University, Japan
| | | | | |
Collapse
|
38
|
Acheson DW, Calderwood SB, Boyko SA, Lincicome LL, Kane AV, Donohue-Rolfe A, Keusch GT. Comparison of Shiga-like toxin I B-subunit expression and localization in Escherichia coli and Vibrio cholerae by using trc or iron-regulated promoter systems. Infect Immun 1993; 61:1098-104. [PMID: 8432592 PMCID: PMC302844 DOI: 10.1128/iai.61.3.1098-1104.1993] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Shiga-like toxin I (SLT-I) B-subunit expression was examined by using the trc promoter in two different constructs, pSBC32 and pSBC54, in which 710 bp of DNA downstream of the B subunit in pSBC32 was deleted. The trc promoter in pSBC54 was replaced also with the SLT-I iron-regulated promoter to create a third plasmid, pSBC61. SLT-I B-subunit expression was examined from all three plasmids following transfer into Escherichia coli JM105 and the cholera toxin A-subunit gene deletion mutant Vibrio cholerae 0395-N1. The SLT-I B subunit was expressed from all constructs. pSBC61 was regulated by elemental iron and produced equivalent amounts of SLT-I B subunit from both E. coli and V. cholerae. In contrast to the cholera toxin B subunit, virtually all released into the medium, the SLT-I B subunit was predominantly cell associated in the pSBC61 constructs. Both pSBC32 and pSBC54 were inducible with isopropyl-beta-D-thiogalactopyranoside (IPTG) in the E. coli background but not the V. cholerae background; however, when E. coli cultures were allowed to grow for 24 h, the yield of SLT-I B subunit was not increased by IPTG induction. Both pSBC32 and -54 expressed more SLT-I B subunit in the V. cholerae host than in the E. coli host. Scale-up to a 9.9-liter fermentor culture of V. cholerae 0395 N1 (pSBC32) resulted in the isolation of 220 mg of SLT-I B. The purified B subunit was identical, in terms of binding to Vero cells, stoichiometry after chemical cross-linking, and ability to inhibit cytotoxicity of intact Shiga toxin, to native SLT-I B subunit from E. coli O157:H7.
Collapse
Affiliation(s)
- D W Acheson
- Division of Geographic Medicine and Infectious Diseases, New England Medical Center, Boston, Massachusetts 02111
| | | | | | | | | | | | | |
Collapse
|
39
|
Ryd M, Verma N, Lindberg AA. Induction of a humoral immune response to a Shiga toxin B subunit epitope expressed as a chimeric LamB protein in a Shigella flexneri live vaccine strain. Microb Pathog 1992; 12:399-407. [PMID: 1381804 DOI: 10.1016/0882-4010(92)90002-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Shigella flexneri vaccine strain (SFL124) given orally, evokes humoral immune response in human volunteers. Such a strain, expressing antigenic epitope of B subunit of Shiga toxin, would also provide immunity to the toxin produced by some species of Shigella. A synthetic oligonucleotide, specifying an epitope [13-26 amino acids (aa)] of the B subunit of Shiga toxin, was inserted into the lamB gene of Escherichia coli and expressed in the S. flexneri vaccine strain. The chimeric LamB protein functioned normally and the epitope was expressed at the surface of the bacteria. The animals immunized with the live bacteria, expressing the epitope or sonicated lysates, showed a humoral response that was specific to the peptide (13-26 aa) and to the whole B subunit molecule. The elicited antisera neutralized the toxin activity on HeLa cells up to 40%, while the purified IgG fractions from the sera gave 90% neutralization.
Collapse
Affiliation(s)
- M Ryd
- Karolinska Institute, Department of Clinical Bacteriology, Huddinge, Sweden
| | | | | |
Collapse
|
40
|
Identification of three amino acid residues in the B subunit of Shiga toxin and Shiga-like toxin type II that are essential for holotoxin activity. J Bacteriol 1991; 173:1151-60. [PMID: 1991714 PMCID: PMC207236 DOI: 10.1128/jb.173.3.1151-1160.1991] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Shiga toxin of Shigella dysenteriae type I and Shiga-like toxins I and II (SLT-I and SLT-II, respectively) of enterohemorrhagic Escherichia coli are functionally similar protein cytotoxins. These toxin molecules have a bipartite molecular structure which consists of an enzymatically active A subunit that inhibits protein synthesis in eukaryotic cells and an oligomeric B subunit that binds to globotriaosylceramide glycolipid receptors on eukaryotic cells. Regionally directed chemical mutagenesis of the B subunit of SLT-II was used to identify amino acids in the B subunit that are critical for SLT-II holotoxin cytotoxic activity. Three noncytotoxic mutants were isolated, and their mutations were mapped. The substitutions of arginine with cysteine at codon 32, alanine with threonine at codon 42, and glycine with aspartic acid at codon 59 in the 70-amino-acid mature SLT-II B polypeptide resulted in the complete abolition of cytotoxicity. The analogous arginine, alanine, and glycine residues were conserved at codons 33, 43, and 60 in the 69-amino-acid mature B polypeptide of Shiga toxin. Comparable mutations induced in the B-subunit gene of Shiga toxin by oligonucleotide-directed, site-specific mutagenesis resulted in drastically decreased cytotoxicity (10(3)- to 10(6)-fold) as compared with that of wild-type Shiga toxin. The mutant SLT-II and Shiga toxin B subunits were characterized for stability, receptor binding, immunoreactivity, and ability to be assembled into holotoxin.
Collapse
|
41
|
Preparation of VT1 and VT2 hybrid toxins from their purified dissociated subunits. Evidence for B subunit modulation of a subunit function. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67839-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
42
|
Ramotar K, Boyd B, Tyrrell G, Gariepy J, Lingwood C, Brunton J. Characterization of Shiga-like toxin I B subunit purified from overproducing clones of the SLT-I B cistron. Biochem J 1990; 272:805-11. [PMID: 2268304 PMCID: PMC1149779 DOI: 10.1042/bj2720805] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cistron encoding the B subunit of Escherichia coli Shiga-like toxin I (SLT-I) was cloned under control of the tac promoter in the expression vector pKK223-3 and the SLT-I B subunit was expressed constitutively in a wild-type background and inducibly in a lacIq background. The B subunit was located in the periplasmic space, and less than 10% was found in the culture medium after 24 h incubation. Polymyxin B extracts contained as much as 160 micrograms of B subunit/ml of culture. B subunit was purified to homogeneity by ion-exchange chromatography followed by chromatofocusing. Cross-linking analysis of purified native B subunit showed that it exists as a pentamer. In gels containing 0.1% SDS the native protein dissociated into monomers. B subunit was found to have the same glycolipid-receptor-specificity as SLT-I holotoxin. Competitive binding studies showed that B subunit and holotoxin had the same affinity for the globotriosylceramide receptor. We conclude that this recombinant plasmid is a convenient source of large amounts of purified SLT-I B subunit, which could be used for biophysical and structural studies or as a natural toxoid.
Collapse
Affiliation(s)
- K Ramotar
- Samuel Lunenfield Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Calderwood SB, Acheson DW, Goldberg MB, Boyko SA, Donohue-Rolfe A. A system for production and rapid purification of large amounts of the Shiga toxin/Shiga-like toxin I B subunit. Infect Immun 1990; 58:2977-82. [PMID: 2201641 PMCID: PMC313598 DOI: 10.1128/iai.58.9.2977-2982.1990] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have constructed a plasmid expression vector (pSBC32) that encodes the B subunit of Shiga toxin/Shiga-like toxin I under control of the inducible trc promoter. The encoded B subunit is transported to the periplasmic space, allowing single-step purification of milligram amounts of this protein from periplasmic extracts by using receptor analog affinity chromatography. The purified B subunit interacts normally with both polyclonal antiserum to Shiga toxin and a monoclonal antibody specific for B subunit. B subunit purified in this system is pentameric (as in native holotoxin) and biologically active in blocking binding of Shiga holotoxin to HeLa cells. This expression system may allow rapid purification of sufficient amounts of Shiga toxin B subunit to attempt crystallization or to study its efficacy as a vaccine, either by itself or coupled to an appropriate polysaccharide antigen.
Collapse
Affiliation(s)
- S B Calderwood
- Infectious Disease Unit, Massachusetts General Hospital, Boston 02114
| | | | | | | | | |
Collapse
|