1
|
Morosov X, Davoudi CF, Baumgart M, Brocker M, Bott M. The copper-deprivation stimulon of Corynebacterium glutamicum comprises proteins for biogenesis of the actinobacterial cytochrome bc 1- aa 3 supercomplex. J Biol Chem 2018; 293:15628-15640. [PMID: 30154248 DOI: 10.1074/jbc.ra118.004117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/21/2018] [Indexed: 01/01/2023] Open
Abstract
Aerobic respiration in Corynebacterium glutamicum involves a cytochrome bc 1-aa 3 supercomplex with a diheme cytochrome c 1, which is the only c-type cytochrome in this species. This organization is considered as typical for aerobic Actinobacteria. Whereas the biogenesis of heme-copper type oxidases like cytochrome aa 3 has been studied extensively in α-proteobacteria, yeast, and mammals, nothing is known about this process in Actinobacteria. Here, we searched for assembly proteins of the supercomplex by identifying the copper-deprivation stimulon, which might include proteins that insert copper into cytochrome aa 3 Using gene expression profiling, we found two copper starvation-induced proteins for supercomplex formation. The Cg2699 protein, named CtiP, contained 16 predicted transmembrane helices, and its sequence was similar to that of the copper importer CopD of Pseudomonas syringae in the N-terminal half and to the cytochrome oxidase maturation protein CtaG of Bacillus subtilis in its C-terminal half. CtiP deletion caused a growth defect similar to that produced by deletion of subunit I of cytochrome aa 3, increased copper tolerance, triggered expression of the copper-deprivation stimulon under copper sufficiency, and prevented co-purification of the supercomplex subunits. The secreted Cg1884 protein, named CopC, had a C-terminal transmembrane helix and contained a Cu(II)-binding motif. Its absence caused a conditional growth defect, increased copper tolerance, and also prevented co-purification of the supercomplex subunits. CtiP and CopC are conserved among aerobic Actinobacteria, and we propose a model of their functions in cytochrome aa 3 biogenesis. Furthermore, we found that the copper-deprivation response involves additional regulators besides the ECF sigma factor SigC.
Collapse
Affiliation(s)
- Xenia Morosov
- From the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Cedric-Farhad Davoudi
- From the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Meike Baumgart
- From the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Melanie Brocker
- From the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Michael Bott
- From the Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
2
|
Masuda S, Hennecke H, Fischer HM. Requirements for Efficient Thiosulfate Oxidation in Bradyrhizobium diazoefficiens. Genes (Basel) 2017; 8:genes8120390. [PMID: 29244759 PMCID: PMC5748708 DOI: 10.3390/genes8120390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/07/2017] [Accepted: 12/12/2017] [Indexed: 11/19/2022] Open
Abstract
One of the many disparate lifestyles of Bradyrhizobium diazoefficiens is chemolithotrophic growth with thiosulfate as an electron donor for respiration. The employed carbon source may be CO2 (autotrophy) or an organic compound such as succinate (mixotrophy). Here, we discovered three new facets of this capacity: (i) When thiosulfate and succinate were consumed concomitantly in conditions of mixotrophy, even a high molar excess of succinate did not exert efficient catabolite repression over the use of thiosulfate. (ii) Using appropriate cytochrome mutants, we found that electrons derived from thiosulfate during chemolithoautotrophic growth are preferentially channeled via cytochrome c550 to the aa3-type heme-copper cytochrome oxidase. (iii) Three genetic regulators were identified to act at least partially in the expression control of genes for chemolithoautotrophic thiosulfate oxidation: RegR and CbbR as activators, and SoxR as a repressor.
Collapse
Affiliation(s)
- Sachiko Masuda
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan.
| | - Hauke Hennecke
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland.
| | - Hans-Martin Fischer
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland.
| |
Collapse
|
3
|
Sarkar A, Marszalkowska M, Schäfer M, Pees T, Klingenberg H, Macht F, Reinhold-Hurek B. Global expression analysis of the response to microaerobiosis reveals an important cue for endophytic establishment of Azoarcus sp. BH72. Environ Microbiol 2016; 19:198-217. [PMID: 27727497 DOI: 10.1111/1462-2920.13569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/26/2016] [Accepted: 10/01/2016] [Indexed: 11/30/2022]
Abstract
The endophyte Azoarcus sp. BH72, fixing nitrogen microaerobically, encounters low O2 tensions in flooded roots. Therefore, its transcriptome upon shift to microaerobiosis was analyzed using oligonucleotide microarrays. A total of 8.7% of the protein-coding genes were significantly modulated. Aerobic conditions induced expression of genes involved in oxidative stress protection, while under microaerobiosis, 233 genes were upregulated, encoding hypothetical proteins, transcriptional regulators, and proteins involved in energy metabolism, among them a cbb3 -type terminal oxidase contributing to but not essential for N2 fixation. A newly established sensitive transcriptional reporter system using tdTomato allowed to visualize even relatively low bacterial gene expression in association with roots. Beyond metabolic changes, low oxygen concentrations seemed to prime transcription for plant colonization: Several genes known to be required for endophytic rice interaction were induced, and novel bacterial colonization factors were identified, such as azo1653. The cargo of the type V autotransporter Azo1653 had similarities to the attachment factor pertactin. Although for short term swarming-dependent colonization, it conferred a competitive disadvantage, it contributed to endophytic long-term establishment inside roots. Proteins sharing such opposing roles in the colonization process appear to occur more generally, as we demonstrated a very similar phenotype for another attachment protein, Azo1684. This suggests distinct cellular strategies for endophyte establishment.
Collapse
Affiliation(s)
- Abhijit Sarkar
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Marta Marszalkowska
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Martin Schäfer
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Tobias Pees
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Hannah Klingenberg
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Franziska Macht
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| | - Barbara Reinhold-Hurek
- Faculty of Biology and Chemistry, Department of Microbe-Plant Interactions, University of Bremen, P.O. Box 33 04 40, Bremen, 28334, Germany
| |
Collapse
|
4
|
Lunak ZR, Noel KD. A quinol oxidase, encoded by cyoABCD, is utilized to adapt to lower O2 concentrations in Rhizobium etli CFN42. MICROBIOLOGY-SGM 2014; 161:203-212. [PMID: 25370750 PMCID: PMC4274787 DOI: 10.1099/mic.0.083386-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Bacteria have branched aerobic respiratory chains that terminate at different terminal oxidases. These terminal oxidases have varying properties such as their affinity for oxygen, transcriptional regulation and proton pumping ability. The focus of this study was a quinol oxidase encoded by cyoABCD. Although this oxidase (Cyo) is widespread among bacteria, not much is known about its role in the cell, particularly in bacteria that contain both cytochrome c oxidases and quinol oxidases. Using Rhizobium etli CFN42 as a model organism, a cyo mutant was analysed for its ability to grow in batch cultures at high (21 % O2) and low (1 and 0.1 % O2) ambient oxygen concentrations. In comparison with other oxidase mutants, the cyo mutant had a significantly longer lag phase under low-oxygen conditions. Using a cyo :: lacZ transcriptional fusion, it was shown that cyo expression in the wild type peaks between 1 and 2.5 % O2. In addition, it was shown with quantitative reverse transcriptase PCR that cyoB is upregulated approximately fivefold in 1 % O2 compared with fully aerobic (21 % O2) conditions. Analysis of the cyo mutant during symbiosis with Phaseolous vulgaris indicated that Cyo is utilized during early development of the symbiosis. Although it is commonly thought that Cyo is utilized only at higher oxygen concentrations, the results from this study indicate that Cyo is important for adaptation to and sustained growth under low oxygen.
Collapse
Affiliation(s)
- Zachary R Lunak
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - K Dale Noel
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| |
Collapse
|
5
|
Abicht HK, Schärer MA, Quade N, Ledermann R, Mohorko E, Capitani G, Hennecke H, Glockshuber R. How periplasmic thioredoxin TlpA reduces bacterial copper chaperone ScoI and cytochrome oxidase subunit II (CoxB) prior to metallation. J Biol Chem 2014; 289:32431-44. [PMID: 25274631 DOI: 10.1074/jbc.m114.607127] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two critical cysteine residues in the copper-A site (Cu(A)) on subunit II (CoxB) of bacterial cytochrome c oxidase lie on the periplasmic side of the cytoplasmic membrane. As the periplasm is an oxidizing environment as compared with the reducing cytoplasm, the prediction was that a disulfide bond formed between these cysteines must be eliminated by reduction prior to copper insertion. We show here that a periplasmic thioredoxin (TlpA) acts as a specific reductant not only for the Cu(2+) transfer chaperone ScoI but also for CoxB. The dual role of TlpA was documented best with high-resolution crystal structures of the kinetically trapped TlpA-ScoI and TlpA-CoxB mixed disulfide intermediates. They uncovered surprisingly disparate contact sites on TlpA for each of the two protein substrates. The equilibrium of CoxB reduction by TlpA revealed a thermodynamically favorable reaction, with a less negative redox potential of CoxB (E'0 = -231 mV) as compared with that of TlpA (E'0 = -256 mV). The reduction of CoxB by TlpA via disulfide exchange proved to be very fast, with a rate constant of 8.4 × 10(4) M(-1) s(-1) that is similar to that found previously for ScoI reduction. Hence, TlpA is a physiologically relevant reductase for both ScoI and CoxB. Although the requirement of ScoI for assembly of the Cu(A)-CoxB complex may be bypassed in vivo by high environmental Cu(2+) concentrations, TlpA is essential in this process because only reduced CoxB can bind copper ions.
Collapse
Affiliation(s)
- Helge K Abicht
- From the Institute of Molecular Biology and Biophysics and Institute of Microbiology, ETH Zürich, CH-8093 Zürich and
| | - Martin A Schärer
- From the Institute of Molecular Biology and Biophysics and the Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
| | - Nick Quade
- From the Institute of Molecular Biology and Biophysics and
| | | | | | - Guido Capitani
- the Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
| | - Hauke Hennecke
- Institute of Microbiology, ETH Zürich, CH-8093 Zürich and
| | | |
Collapse
|
6
|
Serventi F, Youard ZA, Murset V, Huwiler S, Bühler D, Richter M, Luchsinger R, Fischer HM, Brogioli R, Niederer M, Hennecke H. Copper starvation-inducible protein for cytochrome oxidase biogenesis in Bradyrhizobium japonicum. J Biol Chem 2012; 287:38812-23. [PMID: 23012364 DOI: 10.1074/jbc.m112.406173] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microarray analysis of Bradyrhizobium japonicum grown under copper limitation uncovered five genes named pcuABCDE, which are co-transcribed and co-regulated as an operon. The predicted gene products are periplasmic proteins (PcuA, PcuC, and PcuD), a TonB-dependent outer membrane receptor (PcuB), and a cytoplasmic membrane-integral protein (PcuE). Homologs of PcuC and PcuE had been discovered in other bacteria, namely PCu(A)C and YcnJ, where they play a role in cytochrome oxidase biogenesis and copper transport, respectively. Deletion of the pcuABCDE operon led to a pleiotropic phenotype, including defects in the aa(3)-type cytochrome oxidase, symbiotic nitrogen fixation, and anoxic nitrate respiration. Complementation analyses revealed that, under our assay conditions, the tested functions depended only on the pcuC gene and not on pcuA, pcuB, pcuD, or pcuE. The B. japonicum genome harbors a second pcuC-like gene (blr7088), which, however, did not functionally replace the mutated pcuC. The PcuC protein was overexpressed in Escherichia coli, purified to homogeneity, and shown to bind Cu(I) with high affinity in a 1:1 stoichiometry. The replacement of His(79), Met(90), His(113), and Met(115) by alanine perturbed copper binding. This corroborates the previously purported role of this protein as a periplasmic copper chaperone for the formation of the Cu(A) center on the aa(3)-type cytochrome oxidase. In addition, we provide evidence that PcuC and the copper chaperone ScoI are important for the symbiotically essential, Cu(A)-free cbb(3)-type cytochrome oxidase specifically in endosymbiotic bacteroids of soybean root nodules, which could explain the symbiosis-defective phenotype of the pcuC and scoI mutants.
Collapse
Affiliation(s)
- Fabio Serventi
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich (ETH Zürich), Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Okubo T, Tsukui T, Maita H, Okamoto S, Oshima K, Fujisawa T, Saito A, Futamata H, Hattori R, Shimomura Y, Haruta S, Morimoto S, Wang Y, Sakai Y, Hattori M, Aizawa SI, Nagashima KVP, Masuda S, Hattori T, Yamashita A, Bao Z, Hayatsu M, Kajiya-Kanegae H, Yoshinaga I, Sakamoto K, Toyota K, Nakao M, Kohara M, Anda M, Niwa R, Jung-Hwan P, Sameshima-Saito R, Tokuda SI, Yamamoto S, Yamamoto S, Yokoyama T, Akutsu T, Nakamura Y, Nakahira-Yanaka Y, Hoshino YT, Hirakawa H, Mitsui H, Terasawa K, Itakura M, Sato S, Ikeda-Ohtsubo W, Sakakura N, Kaminuma E, Minamisawa K. Complete genome sequence of Bradyrhizobium sp. S23321: insights into symbiosis evolution in soil oligotrophs. Microbes Environ 2012; 27:306-15. [PMID: 22452844 PMCID: PMC4036050 DOI: 10.1264/jsme2.me11321] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 02/28/2012] [Indexed: 11/12/2022] Open
Abstract
Bradyrhizobium sp. S23321 is an oligotrophic bacterium isolated from paddy field soil. Although S23321 is phylogenetically close to Bradyrhizobium japonicum USDA110, a legume symbiont, it is unable to induce root nodules in siratro, a legume often used for testing Nod factor-dependent nodulation. The genome of S23321 is a single circular chromosome, 7,231,841 bp in length, with an average GC content of 64.3%. The genome contains 6,898 potential protein-encoding genes, one set of rRNA genes, and 45 tRNA genes. Comparison of the genome structure between S23321 and USDA110 showed strong colinearity; however, the symbiosis islands present in USDA110 were absent in S23321, whose genome lacked a chaperonin gene cluster (groELS3) for symbiosis regulation found in USDA110. A comparison of sequences around the tRNA-Val gene strongly suggested that S23321 contains an ancestral-type genome that precedes the acquisition of a symbiosis island by horizontal gene transfer. Although S23321 contains a nif (nitrogen fixation) gene cluster, the organization, homology, and phylogeny of the genes in this cluster were more similar to those of photosynthetic bradyrhizobia ORS278 and BTAi1 than to those on the symbiosis island of USDA110. In addition, we found genes encoding a complete photosynthetic system, many ABC transporters for amino acids and oligopeptides, two types (polar and lateral) of flagella, multiple respiratory chains, and a system for lignin monomer catabolism in the S23321 genome. These features suggest that S23321 is able to adapt to a wide range of environments, probably including low-nutrient conditions, with multiple survival strategies in soil and rhizosphere.
Collapse
Affiliation(s)
- Takashi Okubo
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai, Miyagi 980–8577, Japan
| | - Takahiro Tsukui
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai, Miyagi 980–8577, Japan
| | - Hiroko Maita
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai, Miyagi 980–8577, Japan
- Laboratory for Plant Genome Informatics, Kazusa DNA Research Institute, 2–6–7 Kazusakamatari, Kisarazu, Chiba 292–0818, Japan
| | - Shinobu Okamoto
- Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), 2–11–16 Yayoi, Bunkyo-ku, Tokyo 113–0032, Japan
| | - Kenshiro Oshima
- Graduate School of Frontier Sciences, University of Tokyo, 5–1–5, Kashiwa-no-ha, Kashiwa, Chiba 277–8561, Japan
| | - Takatomo Fujisawa
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Research Organization for Information and Systems, Yata, Mishima, Shizuoka 411–85, Japan
| | - Akihiro Saito
- Department of Material and Life Science, Faculty of Science and Technology, Shizuoka Institute of Science and Technology 2200–2 Toyosawa, Fukuroi, Shizuoka 437–8555, Japan
| | - Hiroyuki Futamata
- Department of Material Science and Chemical Engineering, Shizuoka University, 3–5–1 Jyohoku, Naka-ku, Hamamatsu, Shizuoka, 432–8561, Japan
| | - Reiko Hattori
- Attic Lab, 1–6–2–401 Komegafukuro, Aobaku, Sendai, Miyagi 980–0813, Japan
| | - Yumi Shimomura
- National Institute for Agro-Environmental Sciences, 3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604, Japan
| | - Shin Haruta
- Graduate School of Science and Engineering, Tokyo Metropolitan University, 1–1 Minami-Osawa, Hachioji-shi, Tokyo 192–0397, Japan
| | - Sho Morimoto
- National Institute for Agro-Environmental Sciences, 3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604, Japan
| | - Yong Wang
- National Institute for Agro-Environmental Sciences, 3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604, Japan
| | - Yoriko Sakai
- National Institute for Agro-Environmental Sciences, 3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604, Japan
| | - Masahira Hattori
- Graduate School of Frontier Sciences, University of Tokyo, 5–1–5, Kashiwa-no-ha, Kashiwa, Chiba 277–8561, Japan
| | - Shin-ichi Aizawa
- Department of Life Sciences, Prefectural University of Hiroshima, 562 Nanatsuka, Shobara, Hiroshima 727–0023, Japan
| | - Kenji V. P. Nagashima
- Graduate School of Science and Engineering, Tokyo Metropolitan University, 1–1 Minami-Osawa, Hachioji-shi, Tokyo 192–0397, Japan
| | - Sachiko Masuda
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai, Miyagi 980–8577, Japan
| | - Tsutomu Hattori
- Attic Lab, 1–6–2–401 Komegafukuro, Aobaku, Sendai, Miyagi 980–0813, Japan
| | - Akifumi Yamashita
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai, Miyagi 980–8577, Japan
| | - Zhihua Bao
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai, Miyagi 980–8577, Japan
| | - Masahito Hayatsu
- National Institute for Agro-Environmental Sciences, 3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604, Japan
| | - Hiromi Kajiya-Kanegae
- Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), 2–11–16 Yayoi, Bunkyo-ku, Tokyo 113–0032, Japan
| | - Ikuo Yoshinaga
- Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606–8502, Japan
| | - Kazunori Sakamoto
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271–8510, Japan
| | - Koki Toyota
- Tokyo University of Agriculture and Technology, 2–24–16, Naka, Koganei, Tokyo 184–8588, Japan
| | - Mitsuteru Nakao
- Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), 2–11–16 Yayoi, Bunkyo-ku, Tokyo 113–0032, Japan
| | - Mitsuyo Kohara
- Laboratory for Plant Genome Informatics, Kazusa DNA Research Institute, 2–6–7 Kazusakamatari, Kisarazu, Chiba 292–0818, Japan
| | - Mizue Anda
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai, Miyagi 980–8577, Japan
| | - Rieko Niwa
- National Institute for Agro-Environmental Sciences, 3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604, Japan
| | - Park Jung-Hwan
- Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606–8502, Japan
| | - Reiko Sameshima-Saito
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422–8529, Japan
| | - Shin-ichi Tokuda
- National Institute of Vegetable and Tea Sciences, National Agriculture and Food Research Organization, 3–1–1 Kannondai, Tsukuba, Ibaraki 305–8666, Japan
| | - Sumiko Yamamoto
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Research Organization for Information and Systems, Yata, Mishima, Shizuoka 411–85, Japan
| | - Syuji Yamamoto
- Department of Material Science and Chemical Engineering, Shizuoka University, 3–5–1 Jyohoku, Naka-ku, Hamamatsu, Shizuoka, 432–8561, Japan
| | - Tadashi Yokoyama
- Institute of Agriculture, Tokyo university of Agriculture and Technology, 3–5–8 Saiwaicho, Fuchu, Tokyo 183–8509, Japan
| | - Tomoko Akutsu
- Laboratory for Plant Genome Informatics, Kazusa DNA Research Institute, 2–6–7 Kazusakamatari, Kisarazu, Chiba 292–0818, Japan
| | - Yasukazu Nakamura
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Research Organization for Information and Systems, Yata, Mishima, Shizuoka 411–85, Japan
| | - Yuka Nakahira-Yanaka
- Graduate School of Life and Environment Sciences, University of Tsukuba, 1–1–1 Ten-noudai, Tsukuba, Ibaraki 305–8572, Japan
| | - Yuko Takada Hoshino
- National Institute for Agro-Environmental Sciences, 3–1–3 Kannondai, Tsukuba, Ibaraki 305–8604, Japan
| | - Hideki Hirakawa
- Laboratory for Plant Genome Informatics, Kazusa DNA Research Institute, 2–6–7 Kazusakamatari, Kisarazu, Chiba 292–0818, Japan
| | - Hisayuki Mitsui
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai, Miyagi 980–8577, Japan
| | - Kimihiro Terasawa
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai, Miyagi 980–8577, Japan
| | - Manabu Itakura
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai, Miyagi 980–8577, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai, Miyagi 980–8577, Japan
- Laboratory for Plant Genome Informatics, Kazusa DNA Research Institute, 2–6–7 Kazusakamatari, Kisarazu, Chiba 292–0818, Japan
| | - Wakako Ikeda-Ohtsubo
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai, Miyagi 980–8577, Japan
| | - Natsuko Sakakura
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Research Organization for Information and Systems, Yata, Mishima, Shizuoka 411–85, Japan
| | - Eli Kaminuma
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Research Organization for Information and Systems, Yata, Mishima, Shizuoka 411–85, Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, 2–1–1 Katahira, Aoba-ku, Sendai, Miyagi 980–8577, Japan
| |
Collapse
|
8
|
Noisangiam R, Nuntagij A, Pongsilp N, Boonkerd N, Denduangboripant J, Ronson C, Teaumroong N. Heavy metal tolerant Metalliresistens boonkerdii gen. nov., sp. nov., a new genus in the family Bradyrhizobiaceae isolated from soil in Thailand. Syst Appl Microbiol 2010; 33:374-82. [PMID: 20663625 DOI: 10.1016/j.syapm.2010.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Revised: 06/02/2010] [Accepted: 06/04/2010] [Indexed: 11/22/2022]
Abstract
Bacterial strains from inoculated soybean field soil in Thailand were directly isolated using Bradyrhizobium japonicum selective medium (BJSM), on the basis of Zn(2+) and Co(2+) resistance of B. japonicum and B. elkanii. The isolates were classified into symbiotic and non-symbiotic groups by inoculation assays and Southern hybridization of nod and nif genes. In this study, a nearly full-length 16S rRNA gene sequence showed that the non-symbiotic isolates were more closely related to members of Rhodopseudomonas and to a number of uncultured bacterial clones than to members of Bradyrhizobium. Therefore, a polyphasic study was performed to determine the taxonomic positions of four representatives of the non-symbiotic isolates. Multilocus phylogenetic analysis of individual genes and a combination of the 16S rRNA and three housekeeping genes (atpD, recA and glnII) supported the placement of the non-symbiotic isolates in a different genus. The ability of heavy metal resistance in conjunction with phenotypic analyses, including cellular fatty acid content and biochemical characteristics, showed that the non-symbiotic isolates were differentiated from the other related genera in the family Bradyrhizobiaceae. Therefore, the non-symbiotic isolates represented a novel genus and species, for which the name Metalliresistens boonkerdii gen. nov., sp. nov. is proposed. The type strain is NS23 (= NBRC 106595(T)=BCC 40155(T)).
Collapse
Affiliation(s)
- Rujirek Noisangiam
- Institute of Agricultural Technology, School of Biotechnology, Suranaree University of Technology, Nakhonrachasima 30000, Thailand
| | | | | | | | | | | | | |
Collapse
|
9
|
Component identification of electron transport chains in curdlan-producing Agrobacterium sp. ATCC 31749 and its genome-specific prediction using comparative genome and phylogenetic trees analysis. J Ind Microbiol Biotechnol 2010; 38:667-77. [DOI: 10.1007/s10295-010-0810-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 08/09/2010] [Indexed: 11/25/2022]
|
10
|
Arunothayanan H, Nomura M, Hamaguchi R, Itakura M, Minamisawa K, Tajima S. Copper metallochaperones are required for the assembly of bacteroid cytochrome c oxidase which is functioning for nitrogen fixation in soybean nodules. PLANT & CELL PHYSIOLOGY 2010; 51:1242-6. [PMID: 20519277 DOI: 10.1093/pcp/pcq079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Bradyrhizobium japonicum, a symbiotic nitrogen-fixing bacterium for Glycine max, has complex respiratory electron transport chains. Bll4880 contained a copper-binding motif for metallochaperone, H(M)X(10)MX(21)HXM. A mutant strain, Bj4880, induced nodules with lower acetylene reduction activity. A double mutant, Bj4880-1131, which had inserted mutations both in blr1131, a gene of the Sco1-like protein, and in bll4880, induced nodules of significant Fix(-) phenotype and low cytochrome c oxidase (Cco) activity in the bacteroid. Our data suggest that bll4880 protein is involved in copper ion delivery to Cco through blr1131 protein, and the expression of both proteins was induced under microaerobic conditions.
Collapse
|
11
|
Bühler D, Rossmann R, Landolt S, Balsiger S, Fischer HM, Hennecke H. Disparate pathways for the biogenesis of cytochrome oxidases in Bradyrhizobium japonicum. J Biol Chem 2010; 285:15704-13. [PMID: 20335176 DOI: 10.1074/jbc.m109.085217] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This work addresses the biogenesis of heme-copper terminal oxidases in Bradyrhizobium japonicum, the nitrogen-fixing root nodule symbiont of soybean. B. japonicum has four quinol oxidases and four cytochrome oxidases. The latter include the aa(3)- and cbb(3)-type oxidases. Although both have a Cu(B) center in subunit I, the subunit II proteins differ in having either a Cu(A) center (in aa(3)) or a covalently bound heme c (in cbb(3)). Two biogenesis factors were genetically studied here, the periplasmically exposed CoxG and ScoI proteins, which are the respective homologs of the mitochondrial copper-trafficking chaperones Cox11 and Sco1 for the formation of the Cu(B) center in subunit I and the Cu(A) center in subunit II of cytochrome aa(3). We could demonstrate copper binding to ScoI in vitro, a process for which the thiols of cysteine residues 74 and 78 in the ScoI polypeptide were shown to be essential. Knock-out mutations in the B. japonicum coxG and scoI genes led to loss of cytochrome aa(3) assembly and activity in the cytoplasmic membrane, whereas the cbb(3)-type cytochrome oxidase apparently remained unaffected. This suggests that subunit I of the cbb(3)-type oxidase obtains its copper cofactor via a different pathway than cytochrome aa(3). In contrast to the coxG mutation, the scoI mutation caused a decreased symbiotic nitrogen fixation activity. We hypothesize that a periplasmic B. japonicum protein other than any of the identified Cu(A) proteins depends on ScoI and is required for an effective symbiosis.
Collapse
Affiliation(s)
- Doris Bühler
- Institute of Microbiology, Swiss Federal Institute of Technology, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
12
|
Poole RK, Cook GM. Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. Adv Microb Physiol 2001; 43:165-224. [PMID: 10907557 DOI: 10.1016/s0065-2911(00)43005-5] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bacteria are the most remarkable organisms in the biosphere, surviving and growing in environments that support no other life forms. Underlying this ability is a flexible metabolism controlled by a multitude of environmental sensors and regulators of gene expression. It is not surprising, therefore, that bacterial respiration is complex and highly adaptable: virtually all bacteria have multiple, branched pathways for electron transfer from numerous low-potential reductants to several terminal electron acceptors. Such pathways, particularly those involved in anaerobic respiration, may involve periplasmic components, but the respiratory apparatus is largely membrane-bound and organized such that electron flow is coupled to proton (or sodium ion) transport, generating a protonmotive force. It has long been supposed that the multiplicity of pathways serves to provide flexibility in the face of environmental stresses, but the existence of apparently redundant pathways for electrons to a single acceptor, say dioxygen, is harder to explain. Clues have come from studying the expression of oxidases in response to growth conditions, the phenotypes of mutants lacking one or more oxidases, and biochemical characterization of individual oxidases. Terminal oxidases that share the essential properties of substrate (cytochrome c or quinol) oxidation, dioxygen reduction and, in some cases, proton translocation, differ in subunit architecture and complement of redox centres. Perhaps more significantly, they differ in their affinities for oxidant and reductant, mode of regulation, and inhibitor sensitivity; these differences to some extent rationalize the presence of multiple oxidases. However, intriguing requirements for particular functions in certain physiological functions remain unexplained. For example, a large body of evidence demonstrates that cytochrome bd is essential for growth and survival under certain conditions. In this review, the physiological basis of the many phenotypes of Cyd-mutants is explored, particularly the requirement for this oxidase in diazotrophy, growth at low protonmotive force, survival in the stationary phase, and resistance to oxidative stress and Fe(III) chelators.
Collapse
Affiliation(s)
- R K Poole
- Krebs Institute for Biomolecular Research, University of Sheffield, UK
| | | |
Collapse
|
13
|
Reyes1 JD, Tabche1 M, Morera C, Girard ML, Romero D, Krol E, Miranda J, Soberón M. Expression pattern of Rhizobium etli ccmIEFH genes involved in c-type cytochrome maturation. Gene 2000; 250:149-57. [PMID: 10854788 DOI: 10.1016/s0378-1119(00)00176-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In different bacterial species, ccmIEFH genes have been suggested to code for subunits of a bacterial haem-lyase catalyzing the covalent attachment of haem to c-type apoproteins. In Rhizobium etli CE3 there are two copies of ccmIEFH: one in the chromosome and the other located in plasmid pf. However, the null phenotype of chromosomal ccmF mutant indicates that the gene locus of plasmid pf is not functional. Two ccmI chromosomal mutants, previously isolated, produced detectable levels of c-type cytochromes under certain culture conditions in contrast with the ccmF mutant, suggesting that ccmF could be transcribed independently. The transcriptional organization of ccmIEFH operon was established. Two promoters from the chromosomal locus were mapped by primer extension, one located upstream of ccmI and the second located upstream of ccmF. The regulation of the expression of both promoters was studied using appropriate lacZ gene fusions (ccmI-lacZ and ccmEF-lacZ). The ccmI-lacZ gene fusion was expressed in complex medium, during exponential growth, under microaerobic conditions and in a R. etli mutant that accumulates reducing power, conditions where a higher respiration rate could be limited by c-type cytochrome content. The ccmEF-lacZ fusion was also primarily expressed in complex medium and under microaerophilic conditions. The finding of two independent promoters in this gene locus could suggest that the step catalyzed by CcmFH could be a rate-limiting step for c-type cytochrome assembly under certain culture conditions.
Collapse
Affiliation(s)
- J D Reyes1
- Departamento de Biología Molecular de Plantas. Instituto de Biotecnología, U.N.A.M., Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Arslan E, Kannt A, Thöny-Meyer L, Hennecke H. The symbiotically essential cbb(3)-type oxidase of Bradyrhizobium japonicum is a proton pump. FEBS Lett 2000; 470:7-10. [PMID: 10722835 DOI: 10.1016/s0014-5793(00)01277-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Purified cbb(3)-type oxidase of Bradyrhizobium japonicum was reconstituted into phospholipid vesicles. Tight vesicles were obtained as shown by the disturbance of deltapH with CCCP and the membrane potential with valinomycin, which led to a six-fold increase in cytochrome c oxidase activity. The vesicles were thus suitable for proton translocation experiments. In the presence of valinomycin, a pulse with reduced cytochrome c caused an acidification with a subsequent alkalinization, whereas the same pulse caused only an alkalinization in the presence of valinomycin plus CCCP. We conclude that the cbb(3)-type oxidase of B. japonicum is a proton pump.
Collapse
Affiliation(s)
- E Arslan
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Schmelzbergstrasse 7, CH-8092, Zürich, Switzerland
| | | | | | | |
Collapse
|
15
|
Delgado MJ, Bedmar EJ, Downie JA. Genes involved in the formation and assembly of rhizobial cytochromes and their role in symbiotic nitrogen fixation. Adv Microb Physiol 1999; 40:191-231. [PMID: 9889979 DOI: 10.1016/s0065-2911(08)60132-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rhizobia fix nitrogen in a symbiotic association with leguminous plants and this occurs in nodules. A low-oxygen environment is needed for nitrogen fixation, which paradoxically has a requirement for rapid respiration to produce ATP. These conflicting demands are met by control of oxygen flux and production of leghaemoglobin (an oxygen carrier) by the plant, coupled with the expression of a high-affinity oxidase by the nodule bacteria (bacteroids). Many of the bacterial genes encoding cytochrome synthesis and assembly have been identified in a variety of rhizobial strains. Nitrogen-fixing bacteroids use a cytochrome cbb3-type oxidase encoded by the fixNOQP operon; electron transfer to this high-affinity oxidase is via the cytochrome bc1 complex. During free-living growth, electron transport from the cytochrome bc1 complex to cytochrome aa3 occurs via a transmembrane cytochrome c (CycM). In some rhizobia (such as Bradyrhizobium japonicum) there is a second cytochrome oxidase that also requires electron transport via the cytochrome bc1 complex. In parallel with these cytochrome c oxidases there are quinol oxidases that are expressed during free-living growth. A cytochrome bb3 quinol oxidase is thought to be present in B. japonicum; in Rhizobium leguminosarum, Rhizobium etli and Azorhizobium caulinodans cytochrome d-type oxidases have been identified. Spectroscopic data suggest the presence of a cytochrome o-type oxidase in several rhizobia, although the absence of haem O in B. japonicum may indicate that the absorption attributed to cytochrome o could be due to a high-spin cytochrome b in a cytochrome bb3-type oxidase. In some rhizobia, mutation of genes involved in cytochrome c assembly does not strongly affect growth, presumably because the bacteria utilize the cytochrome c-independent quinol oxidases. In this review, we outline the work on various rhizobial mutants affected in different components of the electron transport pathways, and the effects of these mutations on symbiotic nitrogen fixation and free-living growth.
Collapse
Affiliation(s)
- M J Delgado
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidin, CSIC, Granada, Spain
| | | | | |
Collapse
|
16
|
Symbiotic deficiencies associated with a coxWXYZ mutant of bradyrhizobium japonicum. Appl Environ Microbiol 1999; 65:339-41. [PMID: 9872805 PMCID: PMC91028 DOI: 10.1128/aem.65.1.339-341.1999] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The terminal oxidase complexes encoded by coxMNOP and coxWXYZ were studied by analysis of mutations in each of the two oxidases. Carbon monoxide difference spectra obtained from membranes of coxMNOP mutant bacteroids were like those obtained for the wild type, whereas bacteroid membranes of a coxWXYZ mutant were deficient in CO-reactive cytochrome b. Experiments involving cyanide inhibition of oxidase activity were consistent with the conclusion that the coxX mutant is deficient in a membrane-associated O2-binding component. The viable cell number (bacteria that could be recultured from crushed nodules) was 20 to 29% lower for the coxX mutant than for the wild-type or the CoxN- strain. In three separate greenhouse studies, nodules of a coxX mutant had significantly lower (28 to 34% less) acetylene reduction rates than the wild-type nodules did, and plants inoculated with a double mutant (coxMNOP coxWZYZ) had rates 30% lower than those of wild-type-inoculated plants.
Collapse
|
17
|
de Vrind JP, Brouwers GJ, Corstjens PL, den Dulk J, de Vrind-de Jong EW. The cytochrome c maturation operon is involved in manganese oxidation in Pseudomonas putida GB-1. Appl Environ Microbiol 1998; 64:3556-62. [PMID: 9758767 PMCID: PMC106464 DOI: 10.1128/aem.64.10.3556-3562.1998] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Pseudomonas putida strain, strain GB-1, oxidizes Mn2+ to Mn oxide in the early stationary growth phase. It also secretes a siderophore (identified as pyoverdine) when it is subjected to iron limitation. After transposon (Tn5) mutagenesis several classes of mutants with differences in Mn2+ oxidation and/or secretion of the Mn2+-oxidizing activity were identified. Preliminary analysis of the Tn5 insertion site in one of the nonoxidizing mutants suggested that a multicopper oxidase-related enzyme is involved in Mn2+ oxidation. The insertion site in another mutant was preliminarily identified as a gene involved in the general protein secretion pathway. Two mutants defective in Mn2+-oxidizing activity also secreted porphyrins into the medium and appeared to be derepressed for pyoverdine production. These strains were chosen for detailed analysis. Both mutants were shown to contain Tn5 insertions in the ccmF gene, which is part of the cytochrome c maturation operon. They were cytochrome oxidase negative and did not contain c-type cytochromes. Complementation with part of the ccm operon isolated from the wild type restored the phenotype of the parent strain. These results indicate that a functional ccm operon is required for Mn2+ oxidation in P. putida GB-1. A possible relationship between porphyrin secretion resulting from the ccm mutation and stimulation of pyoverdine production is discussed.
Collapse
Affiliation(s)
- J P de Vrind
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, 2300 RA Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
18
|
Surpin MA, Maier RJ. Roles of the bradyrhizobium japonicum terminal oxidase complexes in microaerobic H2-dependent growth. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1364:37-45. [PMID: 9554944 DOI: 10.1016/s0005-2728(98)00003-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Spectral, inhibitor, and O2-consumption studies on membranes from free-living and bacteroid forms of Bradyrhizobium japonicum have revealed the existence of a number of terminal oxidases, and four terminal oxidase gene clusters within the heme-copper cytochrome family have been cloned. Here the complexes encoded by coxMNOP and coxWXYZ, genes with homology to CuA-containing cytochrome c oxidases and b-type ubiquinol oxidases respectively, are studied by analysis of mutants in each of the two oxidases and a double mutant in both of the terminal oxidase genes. Membranes from microaerobically incubated strain JHK12 (which contains an insertion in coxWXYZ) were deficient in levels of CO-reactive heme b, and both strains JHK12 and Bj3430 (the latter lacks coxMNOP) were deficient in CN--reactive cytochrome b. Membranes of the double mutant (strain JHKS4) retained less than 7% of the cytochrome b3 and 25% of the total CN--reactive cytochrome b of the wild type. Cyanide inhibition curves of oxygen uptake by wild-type membranes were triphasic, and only the phases inhibited by the highest (at about 50 &mgr;M CN-, attributed to cytochrome aa3) and the lowest (at approximately 0.1 &mgr;M) CN- were identifiable in the membranes from the two individual oxidase mutants. Membrane respiratory activity of the double mutant was resistant to CN- over a broad inhibitor concentration in the micromolar range. Consistent with our findings that these oxidases are expressed when cells are incubated in a low O2 environment, the double mutant was severely deficient in H2-dependent chemolithotrophic growth. The latter growth condition requires prolonged incubation in an atmosphere of H2, CO2, and a low (1% or less) partial pressure of oxygen. The double mutant was also deficient in whole cell O2 dependent H2 oxidation, with H2 uptake rates 31% of the wild type. Copyright 1998 Elsevier Science B.V.
Collapse
Affiliation(s)
- MA Surpin
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218-2685, USA
| | | |
Collapse
|
19
|
Abstract
Biogenesis of respiratory cytochromes is defined as consisting of the posttranslational processes that are necessary to assemble apoprotein, heme, and sometimes additional cofactors into mature enzyme complexes with electron transfer functions. Different biochemical reactions take place during maturation: (i) targeting of the apoprotein to or through the cytoplasmic membrane to its subcellular destination; (ii) proteolytic processing of precursor forms; (iii) assembly of subunits in the membrane and oligomerization; (iv) translocation and/or modification of heme and covalent or noncovalent binding to the protein moiety; (v) transport, processing, and incorporation of other cofactors; and (vi) folding and stabilization of the protein. These steps are discussed for the maturation of different oxidoreductase complexes, and they are arranged in a linear pathway to best account for experimental findings from studies concerning cytochrome biogenesis. The example of the best-studied case, i.e., maturation of cytochrome c, appears to consist of a pathway that requires at least nine specific genes and more general cellular functions such as protein secretion or the control of the redox state in the periplasm. Covalent attachment of heme appears to be enzyme catalyzed and takes place in the periplasm after translocation of the precursor through the membrane. The genetic characterization and the putative biochemical functions of cytochrome c-specific maturation proteins suggest that they may be organized in a membrane-bound maturase complex. Formation of the multisubunit cytochrome bc, complex and several terminal oxidases of the bo3, bd, aa3, and cbb3 types is discussed in detail, and models for linear maturation pathways are proposed wherever possible.
Collapse
Affiliation(s)
- L Thöny-Meyer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH Zentrum, Zürich, Switzerland.
| |
Collapse
|
20
|
Surpin MA, Lübben M, Maier RJ. The Bradyrhizobium japonicum coxWXYZ gene cluster encodes a bb3-type ubiquinol oxidase. Gene 1996; 183:201-6. [PMID: 8996107 DOI: 10.1016/s0378-1119(96)00559-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bradyrhizobium japonicum, a symbiotic nitrogen-fixing bacterium, has a complex respiratory electron-transport chain, capable of functioning throughout a wide range of oxygen tensions. It does so by synthesizing a number of terminal oxidases, each appropriate for different environmental conditions. We have previously described the cloning of the large catalytic subunit, coxX, from one of the terminal oxidases from B. japonicum [Surpin, M.A., Moshiri, F., Murphy, A.M. and Maier, R.J. (1994) Genetic evidence for a fourth terminal oxidase from Bradyrhizobium japonicum. Gene 143, 73-77]. In this work, we describe the remaining subunits of this terminal oxidase complex, which is encoded by the coxWXYZ operon. The polypeptide encoded by coxW does not contain any amino acid residues that are known to bind the CuA atom of cytochrome c terminal oxidases, but contains residues thought to be involved in ubiquinol binding. Terminal oxidase cyanide inhibition titration pattern comparisons of the wild type with a coxWXYZ insertion mutant indicated the new oxidase is expressed microaerobically. However analysis of hemes extracted from microaerobically incubated cells revealed the absence of heme O in this strain (from both the wild type and the mutant) of B. japonicum. Therefore, coxWXYZ most likely encodes a microaerobically-expressed bb3-type ubiquinol oxidase.
Collapse
Affiliation(s)
- M A Surpin
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218-2685, USA
| | | | | |
Collapse
|
21
|
Thöny-Meyer L, Künzler P. The Bradyrhizobium japonicum aconitase gene (acnA) is important for free-living growth but not for an effective root nodule symbiosis. J Bacteriol 1996; 178:6166-72. [PMID: 8892815 PMCID: PMC178486 DOI: 10.1128/jb.178.21.6166-6172.1996] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Bradyrhizobium japonicum acnA gene encoding the tricarboxylic acid cycle enzyme aconitase was cloned and characterized. The gene was mapped immediately upstream of the cytochrome c biogenesis gene cycV and found to be transcribed in the opposite direction. The nucleotide sequence of acnA was determined; the derived amino acid sequence shared a significant similarity with bacterial aconitases and with the human iron-responsive-element-binding protein. The level of expression of the acnA gene under aerobic growth conditions was 10-fold higher than that under anaerobic conditions. The start of transcription was mapped by primer extension experiments, and the putative promoter was found to contain a typical -10 but no -35 consensus sequence for a sigma70-type RNA polymerase. A 5' deletion removing all but 19 nucleotides upstream of the start of transcription completely abolished gene expression. An acnA mutant was constructed by gene disruption, and the mutant phenotype was characterized. Growth of the mutant was severely affected and could not be corrected by the addition of glutamate as a supplement. Although aconitase activity in free-living cells was decreased by more than 70%, the ability of the mutant to establish an effective root nodule symbiosis with soybean plants was not affected. This suggested either the existence of a second aconitase or the compensation for the mutant defect by symbiosis-specific metabolites synthesized in the root nodules.
Collapse
Affiliation(s)
- L Thöny-Meyer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland.
| | | |
Collapse
|
22
|
Kaminski PA, Kitts CL, Zimmerman Z, Ludwig RA. Azorhizobium caulinodans uses both cytochrome bd (quinol) and cytochrome cbb3 (cytochrome c) terminal oxidases for symbiotic N2 fixation. J Bacteriol 1996; 178:5989-94. [PMID: 8830696 PMCID: PMC178456 DOI: 10.1128/jb.178.20.5989-5994.1996] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Azorhizobium caulinodans employs both cytochrome bd (cytbd; quinol oxidase) and cytcbb3 (cytc oxidase) as terminal oxidases in environments with very low O2 concentrations. To investigate physiological roles of these two terminal oxidases both in microaerobic culture and in symbiosis, knockout mutants were constructed. As evidenced by visible absorbance spectra taken from mutant bacteria carrying perfect gene replacements, both the cytbd- and cytcbb3- mutations were null alleles. In aerobic culture under 2% O2 atmosphere, Azorhizobium cytbd- and cytcbb3- single mutants both fixed N2 at 70 to 90% of wild-type rates; in root nodule symbiosis, both single mutants fixed N2 at 50% of wild-type rates. In contrast, Azorhizobium cytbd- cytcbb3-double mutants, which carry both null alleles, completely lacked symbiotic N2 fixation activity. Therefore, both Azorhizobium cytbd and cytcbb3 oxidases drive respiration in environments with nanomolar O2 concentrations during symbiotic N2 fixation. In culture under a 2% O2 atmosphere, Azorhizobium cytbd- cytcbb3- double mutants fixed N2 at 70% of wild-type rates, presumably reflecting cytaa3 and cytbo (and other) terminal oxidase activities. In microaerobic continuous cultures in rich medium, Azorhizobium cytbd- and cytcbb3- single mutants were compared for their ability to deplete a limiting-O2 sparge; cytbd oxidase activity maintained dissolved O2 at 3.6 microM steady state, whereas cytcbb3 oxidase activity depleted O2 to submicromolar levels. Growth rates reflected this difference; cytcbb3 oxidase activity disproportionately supported microaerobic growth. Paradoxically, in O2 limited continuous culture, Azorhizobium cytbd oxidase is inactive below 3.6 microM dissolved O2 whereas in Sesbania rostrata symbiotic nodules, in which physiological, dissolved O2 is maintained at 10 to 20 nM, both Azorhizobium cytbd and cytcbb3 seem to contribute equally as respiratory terminal oxidases.
Collapse
Affiliation(s)
- P A Kaminski
- Unité de Physiologie Cellulaire, Centre National de la Recherche Scientifique, URA 1300, and Departement des Biotechnologies, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
23
|
Yang CH, Azad HR, Cooksey DA. A chromosomal locus required for copper resistance, competitive fitness, and cytochrome c biogenesis in Pseudomonas fluorescens. Proc Natl Acad Sci U S A 1996; 93:7315-20. [PMID: 8692990 PMCID: PMC38981 DOI: 10.1073/pnas.93.14.7315] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A chromosomal locus required for copper resistance and competitive fitness was cloned from a strain of Pseudomonas fluorescens isolated from copper-contaminated agricultural soil. Sequence analysis of this locus revealed six open reading frames with homology to genes involved in cytochrome c biogenesis in other bacteria, helC, cycJ, cycK, tipB, cycL, and cycH, with the closest similarity being to the aeg-46.5(yej) region of the Escherichia coli chromosome. The proposed functions of these genes in other bacteria include the binding, transport, and coupling of heme to apocytochrome c in the periplasm of these Gram-negative bacteria. Putative heme-binding motifs were present in the predicted products of cycK and cycL, and TipB contained a putative disulfide oxidoreductase active site proposed to maintain the heme-binding site of the apocytochrome in a reduced state for ligation of heme. Tn3-gus mutagenesis showed that expression of the genes was constitutive but enhanced by copper, and confirmed that the genes function both in copper resistance and production of active cytochrome c. However, two mutants in cycH were copper-sensitive and oxidase-positive, suggesting that the functions of these genes, rather than cytochrome c oxidase itself, were required for resistance to copper.
Collapse
Affiliation(s)
- C H Yang
- Department of Plant, Pathology, University of California, Riverside 92521, USA
| | | | | |
Collapse
|
24
|
Berben G. Nitrobacter winogradskyi cytochrome c oxidase genes are organized in a repeated gene cluster. Antonie Van Leeuwenhoek 1996; 69:305-15. [PMID: 8836428 DOI: 10.1007/bf00399619] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cytochrome c oxidase (EC 1.9.3.1) is one of the components of the electron transport chain by which Nitrobacter, a facultative lithoautotrophic bacterium, recovers energy from nitrite oxidation. The genes encoding the two catalytic core subunits of the enzyme were isolated from a Nitrobacter winogradskyi gene library. Sequencing of one of the 14 cloned DNA segments revealed that the subunit genes are side by side in an operon-like cluster. Remarkably the cluster appears to be present in at least two copies per genome. It extends over a 5-6 kb length including, besides the catalytic core subunit genes, other cytochrome oxidase related genes, especially a heme O synthase gene. Noteworthy is the new kind of gene order identified within the cluster. Deduced sequences for the cytochrome oxidase subunits and for the heme O synthase look closest to their counterparts in other alpha-subdivision Proteobacteria, particularly the Rhizobiaceae. This confirms the phylogenetic relationships established only upon 16S rRNA data. Furthermore, interesting similarities exist between N. winogradskyi and mitochondrial cytochrome oxidase subunits while the heme O synthase sequence gives some new insights about the other similar published alpha-subdivision proteobacterial sequences.
Collapse
Affiliation(s)
- G Berben
- Laboratoire de Microbiologie, Centre de Recherches Agronomiques, Gembloux, Belgium
| |
Collapse
|
25
|
Zufferey R, Preisig O, Hennecke H, Thöny-Meyer L. Assembly and function of the cytochrome cbb3 oxidase subunits in Bradyrhizobium japonicum. J Biol Chem 1996; 271:9114-9. [PMID: 8621562 DOI: 10.1074/jbc.271.15.9114] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The Bradyrhizobium japonicum cbb3-type cytochrome oxidase, which supports microaerobic respiration, is a multisubunit enzyme encoded by the genes of the fixNOQP operon. We investigated the contribution of the individual subunits to function and assembly of the membrane-bound complex. In-frame deletion mutants of fixN, fixO, and fixQ, and an insertion mutant of fixP were constructed. All mutants, except the fixQ mutant, showed clearly altered absorption difference spectra of their membranes and decreased oxidase activities, and they were unable to fix nitrogen symbiotically. The presence of the individual subunits was assayed by Western blot analysis, using subunit-specific antibodies, and by heme staining of the c-type cytochromes FixO and FixP. These analyses led to the following conclusions: (i) FixN and FixO are necessary for assembly of the multimeric oxidase, (ii) FixN and FixO assemble independently of FixP, and (iii) FixQ is not required for complex formation and, therefore, does not seem to be an essential subunit. The possible oxidase biogenesis pathway involves the formation of a primary core complex consisting of FixN and FixO, which allows the subsequent association with FixP to form the complete enzyme.
Collapse
Affiliation(s)
- R Zufferey
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland
| | | | | | | |
Collapse
|
26
|
Preisig O, Zufferey R, Thöny-Meyer L, Appleby CA, Hennecke H. A high-affinity cbb3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum. J Bacteriol 1996; 178:1532-8. [PMID: 8626278 PMCID: PMC177835 DOI: 10.1128/jb.178.6.1532-1538.1996] [Citation(s) in RCA: 250] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
It has been a long-standing hypothesis that the endosymbiotic rhizobia (bacteroids) cope with a concentration of 10 to 20 nM free O2 in legume root nodules by the use of a specialized respiratory electron transport chain terminating with an oxidase that ought to have a high affinity for O2. Previously, we suggested that the microaerobically and anaerobically induced fixNOQP operon of Bradyrhizobium japonicum might code for such a special oxidase. Here we report the biochemical characteristics of this terminal oxidase after a 27-fold enrichment from membranes of anaerobically grown B. japonicum wild-type cells. The purified oxidase has TMPD (N,N,N',N'-tetramethyl-p-phenylenediamine) oxidase activity as well as cytochrome c oxidase activity. N-terminal amino acid sequencing of its major constituent subunits confirmed that presence of the fixN,fixO, and fixP gene products. FixN is a highly hydrophobic, heme B-binding protein. FixO and FixP are membrane-anchored c-type cytochromes (apparent Mrs of 29,000 and 31,000, respectively), as shown by their peroxidase activities in sodium dodecyl sulfate-polyacrylamide gels. All oxidase properties are diagnostic for it to be a member of the cbb3-type subfamily of heme-copper oxidases. The FixP protein was immunologically detectable in membranes isolated from root nodule bacteroids, and 85% of the total cytochrome c oxidase activity in bacteroid membranes was contributed by the cbb3-type oxidase. The Km values for O2 of the purified enzyme and of membranes from different B. japonicum wild-type and mutant strains were determined by a spectrophotometric method with oxygenated soybean leghemoglobin as the sole O2 delivery system. The derived Km value for O2 of the cbb3-type oxidase in membranes was 7 nM, which is six- to eightfold lower than that determined for the aerobic aa3-type cytochrome c oxidase. We conclude that the cbb3-type oxidase supports microaerobic respiration in endosymbiotic bacteroids.
Collapse
Affiliation(s)
- O Preisig
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Malakhov M, Wada H, Los D, Murata N. The coxD gene for heme O synthase in Synechocystis. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1273:84-6. [PMID: 8611593 DOI: 10.1016/0005-2728(95)00148-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The cyanobacterial coxD gene for heme O synthase was cloned from Synechocystis sp. PCC 6803 and its nucleotide sequence was determined. The deduced amino-acid sequence of the gene was homologous to the amino-acid sequences of bacterial heme O synthesis. In contrast to the genes for heme O synthases in other prokaryotes, which are clustered together with genes for the structural subunit(s) of cytochrome oxidase, the coxD gene is not linked to such genes on the chromosome of Synechocystis.
Collapse
Affiliation(s)
- M Malakhov
- National Institute for Basic Biology, Myodaiji, Japan
| | | | | | | |
Collapse
|
28
|
Glazebrook J, Ichige A, Walker GC. Genetic analysis of Rhizobium meliloti bacA-phoA fusion results in identification of degP: two loci required for symbiosis are closely linked to degP. J Bacteriol 1996; 178:745-52. [PMID: 8550509 PMCID: PMC177721 DOI: 10.1128/jb.178.3.745-752.1996] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The function of the Rhizobium meliloti bacA gene, which is a homolog of the Escherichia coli sbmA gene, is required for an intermediate step in nodule development. A strain carrying the bacA386::TnphoA fusion was mutagenized with N-methyl-N'-nitro-N-nitrosoguanidine, and three mutants that had higher levels of alkaline phosphatase activity were identified. The mutations in these strains were recessive and mapped to the same genetic locus. The gene affected by these mutations was identified and sequenced and was found to be a homolog of the E. coli degP gene, which encodes a periplasmic endopeptidase. Although degP function is important for the virulence of certain intracellular pathogens of mammals, it is not required for the R. meliloti-alfalfa symbiosis. The genetic analyses involving degP were complicated by the presence of a locus immediately upstream of depP that was lethal when present in multiple copies in a DegP- background. R. meliloti derivatives carrying insertion mutations in this locus displayed an N,N,N',N'-tetramethyl-p-phenylenediamine oxidase-negative phenotype, elicited the formation of white cylindrical nodules that did not fix nitrogen, and grew slowly in rich medium, suggesting that the locus was a cyc gene encoding a protein involved in the biosynthesis of a component or components of a respiratory chain. The previously identified fix-382::TnphoA, which similarly causes the formation of white cylindrical nodules that do not fix nitrogen, was shown to affect a gene that is separate from this cyc gene but extremely closely linked to it.
Collapse
Affiliation(s)
- J Glazebrook
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
29
|
Loferer H, Wunderlich M, Hennecke H, Glockshuber R. A bacterial thioredoxin-like protein that is exposed to the periplasm has redox properties comparable with those of cytoplasmic thioredoxins. J Biol Chem 1995; 270:26178-83. [PMID: 7592822 DOI: 10.1074/jbc.270.44.26178] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The membrane-anchored thioredoxin-like protein (TlpA) from the Gram-negative soil bacterium Bradyrhizobium japonicum was initially discovered due to its essential role in the maturation of cytochrome aa3. A soluble form of TlpA lacking the N-terminal membrane anchor acts as a protein thiol:disulfide oxidoreductase. TlpA possesses an active-site disulfide bond common to all members of the thiol:disulfide oxidoreductase family. In addition, it contains two non-active-site cysteines that form a structural disulfide bond (Loferer, H., Bott, M., and Hennecke, H. (1993) EMBO J. 12, 3373-3383; Loferer, H., and Hennecke, H. (1994) Eur. J. Biochem. 223, 339-344). Here, we compare the far- and near-UV CD spectra of TlpA before and after reduction of both disulfides by dithiothreitol and show that the non-active-site disulfide bond is not required for the integrity of TlpA's native conformation. In contrast to dithiothreitol, reduced glutathione (GSH) selectively reduces the active-site disulfide and leaves the non-active-site disulfide bond intact, even at high molar excess over TlpA. The selective reduction of the active-site disulfide bond leads to a 10-fold increase of the intrinsic tryptophan fluorescence of TlpA at 355 nm, which may be interpreted as a quenching of tryptophan fluorescence by the active-site disulfide bond. Using the specific fluorescence of TlpA as a measure of its redox state, a value of 1.9 +/- 0.2 M was determined for the TlpA:glutathione equilibrium constant at pH 7.0, demonstrating that TlpA is a reductant, like cytoplasmic thioredoxins. The DsbA protein, which acts as the final oxidant of periplasmic secretory proteins in Escherichia coli, is not capable of oxidizing the active-site cysteines of TlpA. This suggests that TlpA's primary role in vivo is keeping the thiols of certain proteins reduced and that TlpA's active, reduced state may be maintained owing to its kinetically restricted oxidation by other periplasmic disulfide oxidoreductases such as DsbA.
Collapse
Affiliation(s)
- H Loferer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | |
Collapse
|
30
|
Keightley JA, Zimmermann BH, Mather MW, Springer P, Pastuszyn A, Lawrence DM, Fee JA. Molecular genetic and protein chemical characterization of the cytochrome ba3 from Thermus thermophilus HB8. J Biol Chem 1995; 270:20345-58. [PMID: 7657607 DOI: 10.1074/jbc.270.35.20345] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Thermus thermophilus HB8 cells grown under reduced dioxygen tensions contain a substantially increased amount of heme A, much of which appears to be due to the presence of the terminal oxidase, cytochrome ba3. We describe a purification procedure for this enzyme that yields approximately 100 mg of pure protein from 2 kg of wet mass of cells grown in < or = 50 microM O2. Examination of the protein by SDS-polyacrylamide gel electrophoresis followed by staining with Coomassie Blue reveals one strongly staining band at approximately 35 kDa and one very weakly staining band at approximately 18 kDa as reported earlier (Zimmermann, B.H., Nitsche, C.I., Fee, J. A., Rusnak, F., and Münck, E. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 5779-5783). By contrast, treatment of the gels with AgNO3 reveals that the larger polypeptide stains quite weakly while the smaller polypeptide stains very strongly. These results suggested the presence of two polypeptides in this protein. Using partial amino acid sequences from both proteins to obtain DNA sequence information, we isolated and sequenced a portion of the Thermus chromosome containing the genes encoding the larger protein, subunit I (cbaA), and the smaller protein, subunit II (cbaB). The two polypeptides were isolated using reversed phase liquid chromatography, and their mole percent amino acid compositions are consistent with the proposed translation of their respective genes. The two genes appear to be part of a larger operon, but we have not extended the sequencing to identify initiation and termination sequences. The deduced amino acid sequence of subunit I includes the six canonical histidine residues involved in binding the low spin heme B and the binuclear center Cu(B)/heme A. These and other conserved amino acids are placed along the polypeptide among alternating hydrophobic and hydrophilic segments in a pattern that shows clear homology to other members of the heme- and copper-requiring terminal oxidases. The deduced amino acid sequence of the subunit II contains the CuA binding motif, including two cysteines, two histidines, and a methionine, but, in contrast to most other subunits II, it has only one region of hydrophobic sequence near its N terminus. Alignment of these two polypeptides with other cytochrome c and quinol oxidases, combined with secondary structure analysis and previous spectral studies, clearly establish cytochrome ba3 as a bona fide member of the superfamily of heme- and copper-requiring oxidases. The alignments further indicate that cytochrome ba3 is phylogenetically distant from other cytochrome c and quinol oxidases, and they substantially decrease the number of conserved amino acid residues.
Collapse
Affiliation(s)
- J A Keightley
- Los Alamos National Laboratory, New Mexico 87545, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Schlüter A, Rüberg S, Krämer M, Weidner S, Priefer UB. A homolog of the Rhizobium meliloti nitrogen fixation gene fixN is involved in the production of a microaerobically induced oxidase activity in the phytopathogenic bacterium Agrobacterium tumefaciens. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:206-15. [PMID: 7753030 DOI: 10.1007/bf00705651] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hybridization analysis using the Rhizobium meliloti nitrogen fixation gene fixN as a probe revealed the presence of a homologous DNA region in the phytopathogenic bacterium Agrobacterium tumefaciens. Hybridization signals were also detected with total DNAs of Rhizobium leguminosarum bv. phaseoli, Rhodobacter capsulatus and Escherichia coli, but not those of Xanthomonas campestris pv. campestris and Pseudomonas putida. The hybridizing fragment from A. tumefaciens was cloned and sequenced. The predicted gene product of one of the two open reading frames identified on the sequenced fragment shows homology to FixN of different Rhizobiaceae as well as a low but significant similarity to subunit I of heme copper oxidases from various bacteria. The presence of five strictly conserved histidine residues previously implicated in forming ligands to heme and CuB in oxidases and the predicted membrane topology provide evidence that the A. tumefaciens fixN-like gene product is a component of the heme copper oxidase superfamily. The incomplete open reading frame starting only 8 nucleotides downstream of the fixN-like gene exhibits homology to Rhizobium fixO. Using an uidA (GUS) gene fusion it could be shown that the A. tumefaciens fixN-like gene is preferentially expressed under microaerobic conditions. Expression of the uidA fusion is abolished in R. meliloti fixJ and fixK mutants, indicating that an Fnr-like protein is involved in transcriptional regulation of the fixN-like gene in A. tumefaciens. The presence of an upstream DNA sequence motif identical to the Fnr-consensus binding site (anaerobox) further supports this hypothesis. A. tumefaciens mutated in the fixN-like gene shows decreased TMPD-specific oxidase activity under microaerobic conditions, indicating that the fixN-like gene or operon codes for proteins involved in respiration under reduced oxygen availability.
Collapse
Affiliation(s)
- A Schlüter
- Okologie des Bodens, Botanisches Institut, RWTH Aachen, Germany
| | | | | | | | | |
Collapse
|
32
|
Ritz D, Thöny-Meyer L, Hennecke H. The cycHJKL gene cluster plays an essential role in the biogenesis of c-type cytochromes in Bradyrhizobium japonicum. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:27-38. [PMID: 7715601 DOI: 10.1007/bf00425818] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We present an extended genetic analysis of the previously identified cycH locus in Bradyrhizobium japonicum. Three new open reading frames found in an operon-like structure immediately adjacent to the 3' end of cycH were termed cycJ, cycK and cycL. A deletion mutant (delta cycHJKL) and biochemical analysis of its phenotype showed that the genes of the cluster are essential for the biogenesis of cellular c-type cytochromes. Mutations in discrete regions of each of the genes were also constructed and shown to affect anaerobic respiration with nitrate and the ability to elicit an effective symbiosis with soybean, both phenotypes being a consequence of defects in cytochrome c formation. The CycK and CycL proteins share up to 53% identity in amino acid sequence with the Rhodobacter capsulatus Cc11 and Cc12 proteins, respectively, which have been shown previously to be essential for cytochrome c biogenesis, whereas cycJ codes for a novel protein of 169 amino acids with an M(r) of 17857. Localisation studies revealed that CycJ is located in the periplasmic space; it is probably anchored to the cytoplasmic membrane via an N-terminal hydrophobic domain. Based on several considerations discussed here, we suggest that the proteins encoded by the cycHJKL-cluster may be part of a cytochrome c-haem lyase complex whose active site faces the periplasm.
Collapse
Affiliation(s)
- D Ritz
- Mikrobiologisches Institut, Eidgenössiche Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | | | |
Collapse
|
33
|
Kereszt A, Slaska-Kiss K, Putnoky P, Banfalvi Z, Kondorosi A. The cycHJKL genes of Rhizobium meliloti involved in cytochrome c biogenesis are required for "respiratory" nitrate reduction ex planta and for nitrogen fixation during symbiosis. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:39-47. [PMID: 7715602 DOI: 10.1007/bf00425819] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report the genetic and biochemical analysis of Rhizobium meliloti mutants defective in symbiotic nitrogen fixation (Fix-) and "respiratory" nitrate reduction (Rnr-). The mutations were mapped close to the ade-1 and cys-46 chromosomal markers and the mutated locus proved to be identical to the previously described fix-14 locus. By directed Tn5 mutagenesis, a 4.5 kb segment of the chromosome was delimited in which all mutations resulted in Rnr- and Fix- phenotypes. Nucleotide sequence analysis of this region revealed the presence of four open reading frames coding for integral membrane and membrane-anchored proteins. Biochemical analysis of the mutants showed that the four proteins were necessary for the biogenesis of all cellular c-type cytochromes. In agreement with the nomenclature proposed for rhizobial genes involved in the formation of c-type cytochromes, the four genes were designated cycH, cycJ, cycK, and cycL, respectively. The predicted protein product of cycH exhibited a high degree of similarity to the Bradyrhizobium japonicum counterpart, while CycK and CycL shared more than 50% amino acid sequence identity with the Rhodobacter capsulatus Cc11 and Cc12 proteins, respectively. cycJ encodes a novel membrane anchored protein of 150 amino acids. We suggest that this gene cluster codes for (parts of) a multisubunit cytochrome c haem lyase. Moreover, our results indicate that in R. meliloti c-type cytochromes are required for respiratory nitrate reduction ex planta, as well as for symbiotic nitrogen fixation in root nodules.
Collapse
Affiliation(s)
- A Kereszt
- Institute of Genetics, Hungarian Academy of Sciences, Szeged
| | | | | | | | | |
Collapse
|
34
|
Kitamura M, Mizugai K, Taniguchi M, Akutsu H, Kumagai I, Nakaya T. A gene encoding a cytochrome c oxidase-like protein is located closely to the cytochrome c-553 gene in the anaerobic bacterium, Desulfovibrio vulgaris (Miyazaki F). Microbiol Immunol 1995; 39:75-80. [PMID: 7783682 DOI: 10.1111/j.1348-0421.1995.tb02172.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The gene encoding cytochrome c-553 from Desulfovibrio vulgaris (Miyazaki F) was cloned using a synthetic oligodeoxyribonucleotide probe. The nucleotide sequence indicated that cytochrome c-553 was synthesized as a precursor protein with an NH2-terminal signal sequence of 23 residues. In the cloned DNA fragment, there are three other open reading frames whose products have 191, 157, 541 amino acid residues, respectively. The putative ORF-4 product is highly homologous with the cytochrome c oxidase subunit I from various organisms.
Collapse
Affiliation(s)
- M Kitamura
- Department of Bioapplied Chemistry, Faculty of Engineering, Osaka City University, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Page MD, Ferguson SJ. Cloning and sequence analysis of cycH gene from Paracoccus denitrificans: the cycH gene product is required for assembly of all c-type cytochromes, including cytochrome c1. Mol Microbiol 1995; 15:307-18. [PMID: 7746152 DOI: 10.1111/j.1365-2958.1995.tb02245.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A transposon Tn5 mutant of Paracoccus denitrificans, DP108, was incapable of anaerobic or methylotrophic growth and scored negative in the Nadi cytochrome c oxidase test. P. denitrificans DP108 grown aerobically on succinate or choline was devoid of soluble c-type cytochromes and accumulated periplasmic apocytochrome c550, but the membrane-bound holocytochromes c1 and c552 were present at 5-10% of the levels observed in wild-type cells. DP108 genomic DNA flanking the site of Tn5 insertion was cloned by marker rescue and used to probe a P. denitrificans wild-type DNA library. A hybridizing 3.05 kb BamHI fragment capable of complementing the DP108 mutation was isolated and a 2.05 kb region of this was sequenced. One major open reading frame equivalent to 413 amino acids was identified, the predicted product of which was similar (33% identity, 55% similarity) to the predicted product of the cycH gene previously identified in Bradyrhizobium japonicum. Similarity of the two cycH gene products to the predicted products of two Escherichia coli genes, nrfG and yejP, was also detected. Significant differences between the phenotypes of P. denitrificans DP108 and the B. japonicum cycH mutant COX3, especially with respect to cytochrome c1 synthesis, suggest that the cycH gene product may be an assembly factor.
Collapse
Affiliation(s)
- M D Page
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
36
|
Thöny-Meyer L, Beck C, Preisig O, Hennecke H. The ccoNOQP gene cluster codes for a cb-type cytochrome oxidase that functions in aerobic respiration of Rhodobacter capsulatus. Mol Microbiol 1994; 14:705-16. [PMID: 7891558 DOI: 10.1111/j.1365-2958.1994.tb01308.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The genes for a new type of a haem-copper cytochrome oxidase were cloned from Rhodobacter capsulatus strain 37b4, using the Bradyrhizobium japonicum fixNOQP gene region as a hybridizing probe. Four genes, probably organized in an operon (ccoNOQP), were identified; their products share extensive amino acid sequence similarity with the FixN, O, Q and P proteins that have recently been shown to be the subunits of a cb-type oxidase. CcoN is a b-type cytochrome, CcoO and CcoP are membrane-bound mono- and dihaem c-type cytochromes and CcoQ is a small membrane protein of unknown function. Genes for a similar oxidase are also present in other non-rhizobial bacterial species such as Azotobacter vinelandii, Agrobacterium tumefaciens and Pseudomonas aeruginosa, as revealed by polymerase chain reaction analysis. A ccoN mutant was constructed whose phenotype, in combination with the structural information on the gene products, provides evidence that the CcoNOQP oxidase is a cytochrome c oxidase of the cb type, which supports aerobic respiration in R. capsulatus and which is probably identical to the cbb3-type oxidase that was recently purified from a different strain of the same species. Mutant analysis also showed that this oxidase has no influence on photosynthetic growth and nitrogen-fixation activity.
Collapse
Affiliation(s)
- L Thöny-Meyer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | | | | | |
Collapse
|
37
|
Michiels J, Vanderleyden J. Molecular basis of the establishment and functioning of a N2-fixing root nodule. World J Microbiol Biotechnol 1994; 10:612-30. [DOI: 10.1007/bf00327946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/27/1994] [Accepted: 08/03/1994] [Indexed: 12/01/2022]
|
38
|
Abstract
Haem O and/or haem A are specifically synthesized for the haem-copper respiratory oxidases. A 17-carbon hydroxyethylfarnesyl chain at the pyrrole ring A of the haems seems essential for catalytic functions at the oxygen-reduction site. The discovery of haem O in the cytochrome bo complex from Escherichia coli was a breakthrough in the studies on haem A biosynthesis. Molecular biological and biochemical studies in the past three years demonstrated that the cyoE/ctaB/COX10 genes are indispensable for functional expression of the terminal oxidases and encode a novel enzyme haem O synthase (protohaem IX farnesyltransferase). It has recently been suggested that the ctaA gene adjacent to the ctaB-ctaCDEF gene cluster in Bacillus subtilis encodes haem A synthase (haem O monooxygenase). In this article, we review current knowledge of the genes for haem O and haem A biosyntheses, the location and regulation of haem O synthase, the possible enzymatic mechanism of farnesyl transfer to haem B and the possible roles of the farnesylated haems.
Collapse
Affiliation(s)
- T Mogi
- Department of Plant Sciences, Graduate School of Science, University of Tokyo, Japan
| | | | | |
Collapse
|
39
|
Chun JY, Sexton GL, Roth LE, Stacey G. Identification and characterization of a novel Bradyrhizobium japonicum gene involved in host-specific nitrogen fixation. J Bacteriol 1994; 176:6717-29. [PMID: 7961425 PMCID: PMC197029 DOI: 10.1128/jb.176.21.6717-6729.1994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To understand the genetic mechanism of host specificity in the interaction between rhizobia and their hosts, it is important to identify genes that influence both early and late steps in symbiotic development. This paper focuses on the little-understood genetics of host-specific nitrogen fixation. A deletion mutant of Bradyrhizobium japonicum, strain NAD163, was found to induce effective, nitrogen-fixing nodules on soybean and siratro plants but produced ineffective nodules on cowpea plants. Additional transposon and deletion mutants defined a small region that conferred this phenotype, and this region was sequenced to identify two putative open reading frames (ORFs). Data indicate that only one of these ORFs is detectable in bacteroids. This ORF was termed hsfA, with a predicted protein product of 11 kDa. The transcriptional start site of hsfA was determined and found to coincide with a predicted RpoN-dependent promoter. Microscopic studies of nodules induced by the wild type and hsfA mutants on cowpea and soybean plants indicate that the cowpea mutant nodules are slow to develop. The data indicate that hsfA appears to play a crucial role in bacteroid development on cowpea but does not appear to be essential for nitrogen fixation on the other hosts tested.
Collapse
Affiliation(s)
- J Y Chun
- Center for Legume Research, Graduate Program of Plant Physiology and Genetics, Department of Zoology, and Department of Microbiology and Graduate Program of Ecology, University of Tennessee, Knoxville 37996
| | | | | | | |
Collapse
|
40
|
García-Horsman JA, Barquera B, Rumbley J, Ma J, Gennis RB. The superfamily of heme-copper respiratory oxidases. J Bacteriol 1994; 176:5587-600. [PMID: 8083153 PMCID: PMC196760 DOI: 10.1128/jb.176.18.5587-5600.1994] [Citation(s) in RCA: 304] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
41
|
Thöny-Meyer L, Loferer H, Ritz D, Hennecke H. Bacterial genes and proteins involved in the biogenesis of c-type cytochromes and terminal oxidases. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1187:260-3. [PMID: 8075119 DOI: 10.1016/0005-2728(94)90123-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A total of nine genes potentially concerned with the biosynthesis of c-type cytochromes have been identified recently in the bacteria Bradyrhizobium japonicum and Rhodobacter capsulatus, and homologous counterparts appear to be present also in Escherichia coli. Most of the respective gene products are membrane-bound, while others are located in the periplasmic space. As inferred from sequence analyses, several of these proteins may play roles in membrane transport or redox processes, both functions being consistent with the required steps in cytochrome c formation (membrane translocation of heme; covalent linkage of protoheme IX to cysteine thiols). Further genes of B. japonicum, E. coli, Bacillus subtilis and Paracoccus denitrificans have been studied whose products are necessary for the formation of intact heme/copper oxidases. Some of them are probably required in protein folding and assembly whereas others appear to be enzymes catalyzing steps in the biosynthesis of the heme cofactors.
Collapse
Affiliation(s)
- L Thöny-Meyer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | |
Collapse
|
42
|
Surpin MA, Moshiri F, Murphy AM, Maier RJ. Genetic evidence for a fourth terminal oxidase in Bradyrhizobium japonicum. Gene X 1994; 143:73-7. [PMID: 8200541 DOI: 10.1016/0378-1119(94)90607-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Bradyrhizobium japonicum, a symbiotic nitrogen-fixing bacterium, has a complex respiratory electron-transport chain, capable of functioning throughout a wide range of oxygen tensions. It does so by synthesizing a number of terminal oxidases, each appropriate for different environmental conditions. Several genes encoding terminal oxidases from B. japonicum have been cloned, but it is unknown what roles these individual oxidases play. In this paper, we describe the cloning and sequencing of the coxX gene encoding the large catalytic subunit for a fourth terminal oxidase from B. japonicum. The coxX gene encodes a 666-amino-acid (aa) protein (M(r) 74,527) that exhibits a high degree of homology to terminal oxidase proteins from a number of prokaryotic and eukaryotic species. This new oxidase exhibits greater homology to the Escherichia coli cytochrome o subunit I than any of the previously reported B. japonicum terminal oxidase genes.
Collapse
Affiliation(s)
- M A Surpin
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | | | | | | |
Collapse
|
43
|
Abstract
In culture, Azorhizobium caulinodans used at least four terminal oxidases, cytochrome aa3 (cytaa3), cytd, cyto, and a second a-type cytochrome, which together mediated general, respiratory electron (e-) transport to O2. To genetically dissect physiological roles for these various terminal oxidases, corresponding Azorhizobium apocytochrome genes were cloned, and three cytaa3 mutants, a cytd mutant, and a cytaa3, cytd double mutant were constructed by reverse genetics. These cytochrome oxidase mutants were tested for growth, oxidase activities, and N2 fixation properties both in culture and in symbiosis with the host plant Sesbania rostrata. The cytaa3 mutants grew normally, fixed N2 normally, and remained fully able to oxidize general respiratory e- donors (NADH, succinate) which utilize a cytc-dependent oxidase. By difference spectroscopy, a second, a-type cytochrome was detected in the cytaa3 mutants. This alternative a-type cytochrome (Amax = 610 nm) was also present in the wild type but was masked by bona fide cytaa3 (Amax = 605 nm). In late exponential-phase cultures, the cytaa3 mutants induced a new, membrane-bound, CO-binding cytc550, which also might serve as a cytc oxidase (a fifth terminal oxidase). The cloned Azorhizobium cytaa3 genes were strongly expressed during exponential growth but were deactivated prior to onset of stationary phase. Azorhizobium cytd mutants showed 40% lower N2 fixation rates in culture and in planta, but aerobic growth rates were wild type. The cytaa3, cytd double mutant showed 70% lower N2 fixation rates in planta. Pleiotropic cytc mutants were isolated by screening for strains unable to use N,N,N',N'-tetramethyl-p-phenylenediamine as a respiratory e- donor. These mutants synthesized no detectable cytc, excreted coproporphyrin, grew normally in aerobic minimal medium, grew poorly in rich medium, and fixed N2 poorly both in culture and in planta. Therefore, while aerobic growth was sustained by quinol oxidases alone, N2 fixation required cytc oxidase activities. Assuming that the terminal oxidases function as do their homologs in other bacteria, Azorhizobium respiration simultaneously employs both quinol and cytc oxidases. Because Azorhizobium terminal oxidase mutants were able to reformulate their terminal oxidase mix and grow more or less normally in aerobic culture, these terminal oxidases are somewhat degenerate. Its extensive terminal oxidase repertoire might allow Azorhizobium spp. to flourish in wide-ranging O2 environments.
Collapse
Affiliation(s)
- C L Kitts
- Department of Biology, Sinsheimer Laboratories, University of California, Santa Cruz 95064
| | | |
Collapse
|
44
|
Unden G, Becker S, Bongaerts J, Schirawski J, Six S. Oxygen regulated gene expression in facultatively anaerobic bacteria. Antonie Van Leeuwenhoek 1994; 66:3-22. [PMID: 7747938 DOI: 10.1007/bf00871629] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In facultatively anaerobic bacteria such as Escherichia coli, oxygen and other electron acceptors fundamentally influence catabolic and anabolic pathways. E. coli is able to grow aerobically by respiration and in the absence of O2 by anaerobic respiration with nitrate, nitrite, fumarate, dimethylsulfoxide and trimethylamine N-oxide as acceptors or by fermentation. The expression of the various catabolic pathways occurs according to a hierarchy with 3 or 4 levels. Aerobic respiration at the highest level is followed by nitrate respiration (level 2), anaerobic respiration with the other acceptors (level 3) and fermentation. In other bacteria, different regulatory cascades with other underlying principles can be observed. Regulation of anabolism in response to O2 availability is important, too. It is caused by different requirements of cofactors or coenzymes in aerobic and anaerobic metabolism and by the requirement for different O2-independent biosynthetic routes under anoxia. The regulation mainly occurs at the transcriptional level. In E. coli, 4 global regulatory systems are known to be essential for the aerobic/anaerobic switch and the described hierarchy. A two-component sensor/regulator system comprising ArcB (sensor) and ArcA (transcriptional regulator) is responsible for regulation of aerobic metabolism. The FNR protein is a transcriptional sensor-regulator protein which regulates anaerobic respiratory genes in response to O2 availability. The gene activator FhlA regulates fermentative formate and hydrogen metabolism with formate as the inductor. ArcA/B and FNR directly respond to O2, FhlA indirectly by decreased levels of formate in the presence of O2. Regulation of nitrate/nitrite catabolism is effected by two 2-component sensor/regulator systems NarX(Q)/NarL(P) in response to nitrate/nitrite. Co-operation of the different regulatory systems at the target promoters which are in part under dual (or manifold) transcriptional control causes the expression according to the hierarchy. The sensing of the environmental signals by the sensor proteins or domains is not well understood so far. FNR, which acts presumably as a cytoplasmic 'one component' sensor-regulator, is suggested to sense directly cytoplasmic O2-levels corresponding to the environmental O2-levels.
Collapse
Affiliation(s)
- G Unden
- Johannes Gutenberg-Universität Mainz, Institut für Mikrobiologie und Weinforschung, Germany
| | | | | | | | | |
Collapse
|
45
|
Gabel C, Bittinger MA, Maier RJ. Cytochrome aa3 gene regulation in members of the family Rhizobiaceae: comparison of copper and oxygen effects in Bradyrhizobium japonicum and Rhizobium tropici. Appl Environ Microbiol 1994; 60:141-8. [PMID: 8117073 PMCID: PMC201281 DOI: 10.1128/aem.60.1.141-148.1994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dithionite-reduced minus ferricyanide-oxidized difference spectra on membranes from Rhizobium tropici (formerly Rhizobium leguminosarum bv. phaseoli) incubated at progressively lower O2 concentrations showed only a slight concomitant decrease in A603, the alpha-peak of cytochrome aa3. In contrast to previous results on Bradyrhizobium japonicum, R. tropici showed no significant O2-mediated reduction in the level of either coxA transcription or cytochrome aa3 activity (as measured by ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine [TMPD] oxidase) even in the cells incubated at 12.5 microM O2. Bean nodule R. tropici bacteroids contained 65% of the fully aerobic free-living levels of the coxA transcript. Primer extension analyses established the transcription initiation site of the R. tropici coxA genes. Sequence analyses of the regions upstream of the transcription initiation site revealed no homology with previously reported Rhizobiaceae family promoters, including the coxA promoter of B. japonicum. The R. tropici deduced CoxA sequence itself is highly homologous to the B. japonicum and Paracoccus denitrificans CoxA sequences. In both B. japonicum and R. tropici, coxA transcript levels were the same for cells grown with copper (0.02 microM) in the medium or in medium completely devoid of copper. However, a posttranscriptional effect of copper deprivation was observed for both bacteria; difference absorption spectra on membranes from cells grown without copper showed that B. japonicum lacked spectroscopically detectable cytochrome aa3, whereas R. tropici retained approximately 50% of normal cytochrome aa3 levels.
Collapse
Affiliation(s)
- C Gabel
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | | | |
Collapse
|
46
|
Abstract
Rhizobia are gram-negative bacteria with two distinct habitats: the soil rhizosphere in which they have a saprophytic and, usually, aerobic life and a plant ecological niche, the legume nodule, which constitutes a microoxic environment compatible with the operation of the nitrogen reducing enzyme nitrogenase. The purpose of this review is to summarize the present knowledge of the changes induced in these bacteria when shifting to a microoxic environment. Oxygen concentration regulates the expression of two major metabolic pathways: energy conservation by respiratory chains and nitrogen fixation. After reviewing the genetic data on these metabolic pathways and their response to oxygen we will put special emphasis on the regulatory molecules which are involved in the control of gene expression. We will show that, although homologous regulatory molecules allow response to oxygen in different species, they are assembled in various combinations resulting in a variable regulatory coupling between genes for microaerobic respiration and nitrogen fixation genes. The significance of coordinated regulation of genes not essential for nitrogen fixation with nitrogen fixation genes will also be discussed.
Collapse
Affiliation(s)
- J Batut
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, CNRS INRA, Castanet-Tolosan, France
| | | |
Collapse
|
47
|
Grob P, Michel P, Hennecke H, Göttfert M. A novel response-regulator is able to suppress the nodulation defect of a Bradyrhizobium japonicum nodW mutant. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:531-41. [PMID: 8264528 DOI: 10.1007/bf00279895] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The two-component regulatory system Nod-VW of Bradyrhizobium japonicum is essential for the nodulation of the legume host plants Vigna radiata, V. unguiculata and Macroptilium atropurpureum. The NodV protein shares homology with the sensor-kinases, whereas the NodW protein is a member of the response-regulator class. We report here the identification of a new B. japonicum DNA region that is able to suppress the phenotypic defect of a nodW mutant, provided that this region is expressed from a foreign promoter. The minimal complementing region, which itself is not essential for nodulation in a nodW+ background, consists of one gene designated nwsB (nodW-suppressor). The deduced amino acid sequence of the nwsB gene product shows a high degree of homology to NodW. The nws B gene is preceded by a long open reading frame, nwsA, whose putative product appears to be a sensor-kinase. Downstream of nwsB, an open reading frame encoding a second putative response-regulator was identified. Interspecies hybridization revealed the presence of nwsAB-like DNA also in other Bradyrhizobium strains. Using nwsB'-'lacZ fusions, the nwsB gene was found to be expressed rather weakly in B. japonicum. This low level of expression is obviously not sufficient to compensate for a nodW- defect, whereas strong overexpression of nwsB is a condition that leads to suppression of the nodW- mutation.
Collapse
Affiliation(s)
- P Grob
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | | | | | |
Collapse
|
48
|
Keefe RG, Maier RJ. Purification and characterization of an O2-utilizing cytochrome-c oxidase complex from Bradyrhizobium japonicum bacteroid membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1183:91-104. [PMID: 8399377 DOI: 10.1016/0005-2728(93)90008-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A cytochrome-c (cyt c) oxidase supercomplex consisting of 7-8 subunits and possessing a mass of 358-425 kDa was purified from Bradyrhizobium japonicum bacteroid membranes. At least two subunits possess c-type heme as a prosthetic group. One of the c-heme-containing components was detected in bacteroid membranes, but not in free-living cells. The complex also contains b-heme, and both b-type and c-type heme proteins were spectrophotometrically shown to form complexes with carbon monoxide. A CO difference spectrum showed an absorption minimum (trough) at 551.7 nm, possibly corresponding to a previously described cyt c-552 in bacteroid membranes. 1 mM quinacrine (Atebrin) had no effect on O2 uptake by the cytochrome-c oxidase complex, but 10 mM inhibited O2 uptake by 90%. Cytochromes b and c1 of the cytochrome bc1 respiratory complex were identified as two of the components of the bacteroid complex based upon immunoreaction with antibodies against these two proteins from B. japonicum. The oxidase complex oxidized exogenously added horse heart ferrocytochrome c concomitant with the uptake of oxygen. It could also oxidize the artificial electron donor N,N,N',N'-tetramethyl-p-phenylenediamine in the absence of added cytochrome c. Oxygen uptake activity was completely inhibited by 10 microM NaCN and 38% by 0.1 microM NaCN. The oxidase complex was not able to oxidize a ubiquinol homolog possessing a single isoprenoid unit side chain. Solubilization of bacteroid membranes in the presence of 1.0 mM EDTA resulted in complete loss of cytochrome-c oxidase activity. Leghemoglobin deoxygenation data indicated that the oxidase complex can efficiently function at free oxygen concentrations well below 1.0 microM, even though attempts to determine the oxidase's specific affinity oxygen were unsuccessful due to the formation of oxidized leghemoglobin derivatives.
Collapse
Affiliation(s)
- R G Keefe
- Department of Biology, McCollum Pratt Institute, Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|
49
|
Abstract
Haem A, a prosthetic group of many respiratory oxidases, is probably synthesized from haem B (protohaem IX) in a pathway in which haem O is an intermediate. Possible roles of the Bacillus subtilis ctaA and ctaB gene products in haem O and haem A synthesis were studied. Escherichia coli does not contain haem A. The ctaA gene on plasmids in E. coli resulted in haem A accumulation in membranes. The presence of ctaB together with ctaA increased the amount of haem A found in E. coli. Haem O was not detected in wild-type B. subtilis strains. A previously isolated B. subtilis ctaA deletion mutant was found to contain haem B and haem O, but not haem A. B. subtilis ctaB deletion mutants were constructed and found to lack both haem A and haem O. The results with E. coli and B. subtilis strongly suggest that the B. subtilis CtaA protein functions in haem A synthesis. It is tentatively suggested that if functions in the oxygenation/oxidation of the methyl side group of carbon 8 of haem O. B. subtilis CtaB, which is homologous to Saccharomyces cerevisiae COX10 and E. coli CyoE, also has a role in haem A synthesis and seems to be required for both cytochrome a and cytochrome o synthesis.
Collapse
Affiliation(s)
- B Svensson
- Department of Microbiology, Lund University, Sweden
| | | | | |
Collapse
|
50
|
Ritz D, Bott M, Hennecke H. Formation of several bacterial c-type cytochromes requires a novel membrane-anchored protein that faces the periplasm. Mol Microbiol 1993; 9:729-40. [PMID: 8231805 DOI: 10.1111/j.1365-2958.1993.tb01733.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We report here the discovery of a novel bacterial gene (cycH) whose product is involved in the biogenesis of most of the cellular cytochromes c. The cycH gene was detected in the course of characterizing a cytochrome oxidase-deficient Bradyrhizobium japonicum Tn5 mutant (strain COX3) in which the transposon insertion disrupted cycH. All of the c-type cytochromes detectable in aerobically grown B. japonicum wild-type cells were absent in the COX3 mutant, with the exception of cytochrome c1. A secondary phenotypic effect was the spectroscopic absence of the aa3-type cytochrome c oxidase. The nucleotide sequence of the cloned wild-type cycH gene predicted a membrane-bound 369-amino-acid protein with an M(r) of 39727. Results from studies on its membrane topology suggested that approximately 110 N-terminal amino acids are involved in anchoring the protein in the membrane, whereas the remaining two-thirds of the protein are exposed to the periplasm. We postulate that the CycH protein plays an essential role in an as yet unidentified periplasmic step in the biogenesis of holocytochromes c, except that of cytochrome c1.
Collapse
Affiliation(s)
- D Ritz
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | | | |
Collapse
|