1
|
Wahdan A, Elhaig MM. Epidemiology and diagnostic accuracy of Clostridium perfringens toxins in the intestinal contents of camels, sheep, and cattle: a cross-sectional study in Dakahlia governorate, Egypt. Trop Anim Health Prod 2024; 56:205. [PMID: 39001933 PMCID: PMC11246295 DOI: 10.1007/s11250-024-04034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/16/2024] [Indexed: 07/15/2024]
Abstract
This study aimed to establish an accurate epidemiological surveillance tool for the detection of different C. perfringens types from 76 diseased and 34 healthy animals in Dakhalia Governorate, Egypt. A total of 110 intestinal content samples were randomly collected from camels, sheep, and cattle. C. perfringens was isolated and biochemically identified by the VITEK2 system. Toxinotyping and genotyping of C. perfringens isolates were specified by a multiscreen ELISA and real-time qPCR (rt-qPCR). The occurrence of C. perfringens was highest among camels (20% in healthy and 25% in diseased) and was lowest in cattle (23.1% and 14.7%). The cpa toxin was detected in all isolates by rt-qPCR and in 7 isolates by ELISA, ext toxin was detected in 7 isolates by rt-qPCR and in 6 isolates by ELISA, and cpb toxin was detected in 2 isolates by both rt-qPCR and ELISA. Four types of C. perfringens were identified by rt-qPCR, type A (65.2%), B (4.3%), C (4.3%), and D (26.1%), and three types by ELISA, type D (17.4%), A (8.7%) and C (4.3%). Our study indicated the prevalence of infection in Dakahlia by C. perfringens type A and D, particularly camels, and recommends adopting an appropriate vaccination strategy among the studied animals.
Collapse
Affiliation(s)
- Ali Wahdan
- Bacteriology, Immunology, and Mycology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Mahmoud M Elhaig
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
2
|
Titball RW. The Molecular Architecture and Mode of Action of Clostridium perfringens ε-Toxin. Toxins (Basel) 2024; 16:180. [PMID: 38668605 PMCID: PMC11053738 DOI: 10.3390/toxins16040180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
Clostridium perfringens ε-toxin has long been associated with a severe enterotoxaemia of livestock animals, and more recently, was proposed to play a role in the etiology of multiple sclerosis in humans. The remarkable potency of the toxin has intrigued researchers for many decades, who suggested that this indicated an enzymatic mode of action. Recently, there have been major breakthroughs by finding that it is a pore-forming toxin which shows exquisite specificity for cells bearing the myelin and lymphocyte protein (MAL) receptor. This review details the molecular structures of the toxin, the evidence which identifies MAL as the receptor and the possible roles of other cell membrane components in toxin binding. The information on structure and mode of action has allowed the functions of individual amino acids to be investigated and has led to the creation of mutants with reduced toxicity that could serve as vaccines. In spite of this progress, there are still a number of key questions around the mode of action of the toxin which need to be further investigated.
Collapse
|
3
|
Ahmed HA, El Bayomi RM, Hamed RI, Mohsen RA, El-Gohary FA, Hefny AA, Elkhawaga E, Tolba HMN. Genetic Relatedness, Antibiotic Resistance, and Effect of Silver Nanoparticle on Biofilm Formation by Clostridium perfringens Isolated from Chickens, Pigeons, Camels, and Human Consumers. Vet Sci 2022; 9:vetsci9030109. [PMID: 35324837 PMCID: PMC8949260 DOI: 10.3390/vetsci9030109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we determined the prevalence and toxin types of antibiotic-resistant Clostridium perfringens in chicken, pigeons, camels, and humans. We investigated the inhibitory effects of AgNPs on biofilm formation ability of the isolates and the genetic relatedness of the isolates from various sources determined using RAPD-PCR. Fifty isolates were identified using PCR, and all the isolates were of type A. The cpe and cpb2 genes were detected in 12% and 56% of the isolates, respectively. The effect of AgNPs on biofilm production of six representative isolates indicated that at the highest concentration of AgNPs (100 µg/mL), the inhibition percentages were 80.8–82.8%. The RAPD-PCR patterns of the 50 C. perfringens isolates from various sources revealed 33 profiles and four clusters, and the discriminatory power of RAPD-PCR was high. Multidrug-resistant C. perfringens isolates are predominant in the study area. The inhibition of biofilm formation by C. perfringens isolates was dose-dependent, and RAPD-PCR is a promising method for studying the genetic relatedness between the isolates from various sources. This is the first report of AgNPs’ anti-biofilm activity against C. perfringens from chickens, pigeons, camels, and humans, to the best of our knowledge.
Collapse
Affiliation(s)
- Heba A. Ahmed
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
- Correspondence:
| | - Rasha M. El Bayomi
- Department of Food Control, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Rehab I. Hamed
- Reference Laboratory for Quality Control on Poultry Production, Department of Poultry Diseases, Animal Health Research Institute, Zagazig Branch, Agriculture Research Center (ARC), Zagazig 44516, Egypt;
| | - Rasha A. Mohsen
- Department of Bacteriology, Animal Health Research Institute, Mansoura Branch, Agriculture Research Center (ARC), Mansoura 12618, Egypt;
| | - Fatma A. El-Gohary
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Ahmed A. Hefny
- Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Eman Elkhawaga
- Department of Food Hygiene, Animal Health Research Institute, Mansoura Branch, Agriculture Research Center (ARC), Mansoura 12618, Egypt;
| | - Hala M. N. Tolba
- Department of Avian and Rabbit Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| |
Collapse
|
4
|
Wu K, Feng H, Ma J, Wang B, Feng J, Zhang H, Jiang Y, Li R, Wang J, Yang Z. Prevalence, toxin-typing and antimicrobial susceptibility of Clostridium perfringens in sheep with different feeding modes from Gansu and Qinghai provinces, China. Anaerobe 2022; 73:102516. [DOI: 10.1016/j.anaerobe.2022.102516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 11/29/2022]
|
5
|
Princisval L, Rebelo F, Williams BL, Coimbra AC, Crovesy L, Ferreira AL, Kac G. Association Between the Mode of Delivery and Infant Gut Microbiota Composition Up to 6 Months of Age: A Systematic Literature Review Considering the Role of Breastfeeding. Nutr Rev 2021; 80:113-127. [PMID: 33837424 DOI: 10.1093/nutrit/nuab008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
CONTEXT Cesarean section (CS), breastfeeding, and geographic location can influence the infant microbiota. OBJECTIVE In this systematic review, evidence of the association between mode of delivery and infant gut microbiota up to 6 months of age was evaluated, as was the role of breastfeeding in this association, according to PRISMA guidelines. DATA SOURCE The Pubmed, Web of Science, Scopus, Embase, Medical Database, and Open Grey databases were searched. DATA EXTRACTION A total of 31 observational studies with ≥2 infant stool collections up to the sixth month of age and a comparison of gut microbiota between CS and vaginal delivery (VD) were included. DATA ANALYSIS Infants born by CS had a lower abundance of Bifidobacterium and Bacteroides spp. at almost all points up to age 6 months. Populations of Lactobacillus, Bifidobacterium longum, Bifidobacterium catenulatum, and Escherichia coli were reduced in infants delivered by CS. Infants born by CS and exclusively breastfed had greater similarity with the microbiota of infants born by VD. CONCLUSIONS Species of Bifidobacterium and Bacteroides are potentially reduced in infants born by CS. Geographic location influenced bacterial colonization. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. 42017071285.
Collapse
Affiliation(s)
- Luciana Princisval
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Fernanda Rebelo
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Brent L Williams
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Anna Carolina Coimbra
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Louise Crovesy
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Ana Lorena Ferreira
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| | - Gilberto Kac
- Affiliation: L. Princisval, A.C. Coimbra, L. Crovesy, A.L. Ferreira, and G. Kac are with the Department of Social and Applied Nutrition, Federal University of Rio de Janeiro, Josué de Castro Nutrition Institute, Rio de Janeiro, RJ Brazil. B.L. Williams is with the Department of Epidemiology, Columbia University, Center for Infection and Immunity, New York, NY, USA. F. Rebelo is with the Oswaldo Cruz Foundation, National Institute of Women, Children and Adolescents Health Fernandes Figueira, Clinical Research Unit, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Feng Y, Fan X, Zhu L, Yang X, Liu Y, Gao S, Jin X, Liu D, Ding J, Guo Y, Hu Y. Phylogenetic and genomic analysis reveals high genomic openness and genetic diversity of Clostridium perfringens. Microb Genom 2020; 6:mgen000441. [PMID: 32975504 PMCID: PMC7660258 DOI: 10.1099/mgen.0.000441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Clostridium perfringens is associated with a variety of diseases in both humans and animals. Recent advances in genomic sequencing make it timely to re-visit this important pathogen. Although the genome sequence of C. perfringens was first determined in 2002, large-scale comparative genomics with isolates of different origins is still lacking. In this study, we used whole-genome sequencing of 45 C. perfringens isolates with isolation time spanning an 80-year period and performed comparative analysis of 173 genomes from worldwide strains. We also conducted phylogenetic lineage analysis and introduced an openness index (OI) to evaluate the openness of bacterial genomes. We classified all these genomes into five lineages and hypothesized that the origin of C. perfringens dates back to ~80 000 years ago. We showed that the pangenome of the 173 C. perfringens strains contained a total of 26 954 genes, while the core genome comprised 1020 genes, accounting for about a third of the genome of each isolate. We demonstrated that C. perfringens had the highest OI compared with 51 other bacterial species. Intact prophage sequences were found in nearly 70.0 % of C. perfringens genomes, while CRISPR sequences were found only in ~40.0 %. Plasmids were prevalent in C. perfringens isolates, and half of the virulence genes and antibiotic resistance genes (ARGs) identified in all the isolates could be found in plasmids. ARG-sharing network analysis showed that C. perfringens shared its 11 ARGs with 55 different bacterial species, and a high frequency of ARG transfer may have occurred between C. perfringens and species in the genera Streptococcus and Staphylococcus. Correlation analysis showed that the ARG number in C. perfringens strains increased with time, while the virulence gene number was relative stable. Our results, taken together with previous studies, revealed the high genome openness and genetic diversity of C. perfringens and provide a comprehensive view of the phylogeny, genomic features, virulence gene and ARG profiles of worldwide strains.
Collapse
Affiliation(s)
- Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xuezheng Fan
- China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Liangquan Zhu
- China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | | | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Jiabo Ding
- China Institute of Veterinary Drug Control, Beijing 100081, PR China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
7
|
Rood JI, Adams V, Lacey J, Lyras D, McClane BA, Melville SB, Moore RJ, Popoff MR, Sarker MR, Songer JG, Uzal FA, Van Immerseel F. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe 2018; 53:5-10. [PMID: 29866424 PMCID: PMC6195859 DOI: 10.1016/j.anaerobe.2018.04.011] [Citation(s) in RCA: 328] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023]
Abstract
Clostridium perfringens causes many different histotoxic and enterotoxic diseases in humans and animals as a result of its ability to produce potent protein toxins, many of which are extracellular. The current scheme for the classification of isolates was finalized in the 1960s and is based on their ability to produce a combination of four typing toxins - α-toxin, β-toxin, ε-toxin and ι-toxin - to divide C. perfringens strains into toxinotypes A to E. However, this scheme is now outdated since it does not take into account the discovery of other toxins that have been shown to be required for specific C. perfringens-mediated diseases. We present a long overdue revision of this toxinotyping scheme. The principles for the expansion of the typing system are described, as is a mechanism by which new toxinotypes can be proposed and subsequently approved. Based on these criteria two new toxinotypes have been established. C. perfringens type F consists of isolates that produce C. perfringens enterotoxin (CPE), but not β-toxin, ε-toxin or ι-toxin. Type F strains will include strains responsible for C. perfringens-mediated human food poisoning and antibiotic associated diarrhea. C. perfringens type G comprises isolates that produce NetB toxin and thereby cause necrotic enteritis in chickens. There are at least two candidates for future C. perfringens toxinotypes, but further experimental work is required before these toxinotypes can formally be proposed and accepted.
Collapse
Affiliation(s)
- Julian I Rood
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| | - Vicki Adams
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Jake Lacey
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Robert J Moore
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia; School of Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Michel R Popoff
- Unité Des Bactéries Anaérobies et Toxines, Institut Pasteur, 25 Rue Du Dr Roux, 75724, Paris Cedex 15, France
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | | | - Francisco A Uzal
- California Animal Health and Food Safety Laboratory, San Bernardino Branch, School of Veterinary Medicine, University of California-Davis, San Bernardino, CA 92408, USA
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
8
|
Ha E, Son B, Ryu S. Clostridium perfringens Virulent Bacteriophage CPS2 and Its Thermostable Endolysin LysCPS2. Viruses 2018; 10:v10050251. [PMID: 29751651 PMCID: PMC5977244 DOI: 10.3390/v10050251] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 11/30/2022] Open
Abstract
Clostridium perfringens is one of the most common causes of food-borne illness. The increasing prevalence of multidrug-resistant bacteria requires the development of alternatives to typical antimicrobial treatments. Here, we isolated and characterized a C. perfringens-specific virulent bacteriophage CPS2 from chicken feces. The CPS2 phage contains a 17,961 bp double-stranded DNA genome with 25 putative ORFs, and belongs to the Picovirinae, subfamily of Podoviridae. Bioinformatic analysis of the CPS2 genome revealed a putative endolysin, LysCPS2, which is homologous to the endolysin of Clostridium phage phiZP2 and phiCP7R. The enzyme showed strong lytic activity against C. perfringens with optimum conditions at pH 7.5–10, 25–65 °C, and over a broad range of NaCl concentrations. Interestingly, LysCPS2 was found to be highly thermostable, with up to 30% of its lytic activity remaining after 10 min of incubation at 95 °C. The cell wall binding domain in the C-terminal region of LysCPS2 showed a binding spectrum specific to C. perfringens strains. This is the first report to characterize highly thermostable endolysin isolated from virulent C. perfringens bacteriophage. The enzyme can be used as an alternative biocontrol and detection agent against C. perfringens.
Collapse
Affiliation(s)
- Eunsu Ha
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea.
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Bokyung Son
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea.
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul 08826, Korea.
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
9
|
Yagi H, Nakayama-Imaohji H, Nariya H, Tada A, Yamasaki H, Ugai H, Elahi M, Ono T, Kuwahara T. Ethanolamine utilization supports Clostridium perfringens growth in infected tissues. Microb Pathog 2018; 119:200-207. [PMID: 29654901 DOI: 10.1016/j.micpath.2018.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 01/07/2023]
Abstract
Clostridium perfringens possesses the ethanolamine (EA) utilization (eut) system encoded within the eut operon, which utilizes the EA as a carbon, nitrogen and energy source. To determine the role of the eut system in C. perfringens growth, an in-frame deletion of the eutABC genes was made in strain HN13 to generate the eutABC-deleted mutant strain HY1701. Comparison of HN13 and HY1701 growth in media supplemented with 1.0% glucose and/or 1.0% EA showed that glucose enhanced the growth of both strains, whereas EA enhanced HN13 growth, but not that of HY1701, indicating that the eut system is necessary for C. perfringens to utilize EA. The two-component regulatory system EutVW is needed to induce eut gene expression in response to EA whereas the global virulence regulator VirRS differentially controlled eut gene expression depending on glucose and EA availability. To assess the role of the eut system in vivo, an equal number of HN13 and HY1701 cells were injected into the right thigh muscles of mice. Mice infected with HY1701 showed fewer symptoms than those injected with HN13. The mortality rate of mice infected with HY1701 tended to be lower than for mice infected with HN13. In addition, in infected tissues from mice injected with a mixture of HN13 and HY1701, HN13 outnumbered HY1701. PCR screening demonstrated that C. perfringens isolated from gas gangrene and sporadic diarrhea cases carried both eut genes and the perfringolysin O gene (pfoA) as well as the phospholipase C gene (plc). However, pfoA was not detected in isolates from food poisoning patients and healthy volunteers. Culture supernatants prepared from HN13 grown in media containing 7.5% sheep red blood cells induced significantly higher eutB expression levels compared to those from plc- and/or pfoA-deletion mutants. Together, these results indicate that the eut system plays a nutritional role for C. perfringens during histolytic infection.
Collapse
Affiliation(s)
- Hirofumi Yagi
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kagawa, 761-0793, Japan
| | - Haruyuki Nakayama-Imaohji
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kagawa, 761-0793, Japan
| | - Hirofumi Nariya
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| | - Ayano Tada
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kagawa, 761-0793, Japan
| | - Hisashi Yamasaki
- Division of Biology, Hyogo College of Medicine, Mukogawa, Nishinomiya, 663-8501, Japan
| | - Hideyo Ugai
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kagawa, 761-0793, Japan
| | - Miad Elahi
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kagawa, 761-0793, Japan
| | - Tsuneko Ono
- Department of Molecular Microbiology, Institute of Health Biosciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Tomomi Kuwahara
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki, Kagawa, 761-0793, Japan.
| |
Collapse
|
10
|
Das S, Majumder S, Mathur C, Kingston JJ. Molecular characterization and phylogenetic analysis of Clostridium perfringens from animals and their environments by cpn60 UT sequencing analysis. INFECTION GENETICS AND EVOLUTION 2018; 58:209-217. [DOI: 10.1016/j.meegid.2017.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 01/17/2023]
|
11
|
Affiliation(s)
- Søren A Ladefoged
- Department of Medical Microbiology and Immunology University of Aarhus, Denmark.,Department of Clinical Biochemistry University Hospital of Aarhus, Denmark
| |
Collapse
|
12
|
Hong J. Development and application of the loop-mediated isothermal amplification assay for rapid detection of enterotoxigenicClostridium perfringensin food. J Food Saf 2017. [DOI: 10.1111/jfs.12362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joonbae Hong
- Food & Microbiology Team, Test & Research Department; Consumer Safety Center, Korea Consumer Agency; Chungcheongbukdo 27738 South Korea
| |
Collapse
|
13
|
Landi G, Gualtieri G, Bello IS, Kirsch D. A case of fatal Clostridium perfringens bacteremia and sepsis following CT-guided liver biopsy of a rare neuroendocrine hepatic tumor. Forensic Sci Med Pathol 2017; 13:78-81. [PMID: 28093692 DOI: 10.1007/s12024-016-9823-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Gianluca Landi
- Section of Legal Medicine, University of Siena, Siena, Italy.
| | | | | | - Daniel Kirsch
- The Office of Chief Medical Examiner, New York City, NY, USA
| |
Collapse
|
14
|
Bakhshi F, Pilehchian Langroudi R, Eimani BG. Enhanced expression of recombinant beta toxin of Clostridium perfringens type B using a commercially available Escherichia coli strain. ACTA ACUST UNITED AC 2016; 83:a1136. [PMID: 27380656 PMCID: PMC6238768 DOI: 10.4102/ojvr.v83i1.1136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/25/2016] [Accepted: 03/31/2016] [Indexed: 11/16/2022]
Abstract
Clostridium perfringens beta toxin is only produced by types B and C and plays an important role in many human and animal diseases, causing fatal conditions that originate in the intestines. We compared the expression of C. perfringens type B vaccine strain recombinant beta toxin gene in the Escherichia coli strains RosettaTM(DE3) and BL21(DE3). The beta toxin gene was extracted from pJETβ and ligated with pET22b(+). pET22β was transformed into E. coli strains BL21(DE3) and RosettaTM(DE3). Recombinant protein was expressed as a soluble protein after isopropyl β-D-1-thiogalactopyranoside (IPTG) induction in strain RosettaTM(DE3) but not in BL21(DE3). Expression was optimised by growing recombinant cells at 37 °C and at an induction of 0.5 mM, 1 mM, 1.5 mM IPTG. Expression was evaluated using sodium dodecyl sulfate Polyacrylamide gel electrophoresis (SDS-PAGE). The recombinant protein was purified via Ni-NTA and was analysed using western blot. We concluded that E. coli strain RosettaTM(DE3) can enhance the expression of C. perfringens recombinant beta toxin.
Collapse
Affiliation(s)
| | - Reza Pilehchian Langroudi
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Alborz, Karaj.
| | | |
Collapse
|
15
|
Nagpal R, Ogata K, Tsuji H, Matsuda K, Takahashi T, Nomoto K, Suzuki Y, Kawashima K, Nagata S, Yamashiro Y. Sensitive quantification of Clostridium perfringens in human feces by quantitative real-time PCR targeting alpha-toxin and enterotoxin genes. BMC Microbiol 2015; 15:219. [PMID: 26482797 PMCID: PMC4615878 DOI: 10.1186/s12866-015-0561-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/08/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clostridium perfringens is a widespread pathogen, but the precise quantification of this subdominant gut microbe remains difficult due to its low fecal count (particularly in asymptomatic subjects) and also due to the presence of abundant polymerase-inhibitory substances in human feces. Also, information on the intestinal carriage of toxigenic C. perfringens strains in healthy subjects is sparse. Therefore, we developed a sensitive quantitative real-time PCR assays for quantification of C. perfringens in human feces by targeting its α-toxin and enterotoxin genes. To validate the assays, we finally observed the occurrence of α-toxigenic and enterotoxigenic C. perfringens in the fecal microbiota of healthy Japanese infants and young adults. METHODS The plc-specific qPCR assay was newly validated, while primers for 16S rRNA and cpe genes were retrieved from literature. The assays were validated for specificity and sensitivity in pre-inoculated fecal samples, and were finally applied to quantify C. perfringens in stool samples from apparently healthy infants (n 124) and young adults (n 221). RESULTS The qPCR assays were highly specific and sensitive, with a minimum detection limit of 10(3) bacterial cells/g feces. Alpha-toxigenic C. perfringens was detected in 36% infants and 33% adults, with counts ranging widely (10(3)-10(7) bacterial cells/g). Intriguingly, the mean count of α-toxigenic C. perfringens was significantly higher in infants (6.0±1.5 log10 bacterial cells/g), as compared to that in adults (4.8±1.2). Moreover, the prevalence of enterotoxigenic C. perfringens was also found to be significantly higher in infants, as compared to that in adults. The mean enterotoxigenic C. perfringens count was 5.9±1.9 and 4.8±0.8 log10 bacterial cells/g in infants and adults, respectively. CONCLUSIONS These data indicate that some healthy infants and young adults carry α-toxigenic and enterotoxigenic C. perfringens at significant levels, and may be predisposed to related diseases. Thus, high fecal carriage of toxigenic C. perfringens in healthy children warrants further investigation on its potential sources and clinical significance in these subjects. In summary, we present a novel qPCR assay for sensitive and accurate quantification of α-toxigenic and enterotoxigenic C. perfringens in human feces, which should facilitate prospective studies of the gut microbiota.
Collapse
Affiliation(s)
- Ravinder Nagpal
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | | | | | - Kazunori Matsuda
- Yakult Honsha European Research Center for Microbiology, Ghent-Zwijnaarde, Belgium.
| | | | | | - Yoshio Suzuki
- Department of Sports Science, Juntendo University School of Health and Sports Sciences, Chiba, Japan.
| | | | - Satoru Nagata
- Department of Pediatrics, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.
| | - Yuichiro Yamashiro
- Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
16
|
|
17
|
Ryzinska-Paier G, Sommer R, Haider JM, Knetsch S, Frick C, Kirschner AKT, Farnleitner AH. Acid phosphatase test proves superior to standard phenotypic identification procedure for Clostridium perfringens strains isolated from water. J Microbiol Methods 2011; 87:189-94. [PMID: 21872622 PMCID: PMC3195671 DOI: 10.1016/j.mimet.2011.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/11/2011] [Accepted: 08/11/2011] [Indexed: 11/19/2022]
Abstract
Clostridium perfringens is used as an indicator for persistent faecal pollution as well as to monitor the efficacy of water treatment processes. For these purposes, differentiation between C. perfringens and other Clostridia is essential and is routinely carried out by phenotypic standard tests as proposed in the ISO/CD 6461-2:2002 (ISO_LGMN: lactose fermentation, gelatine liquidation, motility and nitrate reduction). Because the ISO_LGMN procedure is time consuming and labour intensive, the acid phosphatase test was investigated as a possible and much more rapid alternative method for confirmation. The aim of our study was to evaluate and compare confirmation results obtained by these two phenotypic methods using genotypically identified strains, what to our knowledge has not been accomplished before. For this purpose, a species specific PCR method was selected based on the results received for type strains and genotypically characterised environmental strains. For the comparative investigation type strains as well as presumptive C. perfringens isolates from water and faeces samples were used. The acid phosphatase test revealed higher percentage (92%) of correctly identified environmental strains (n = 127) than the ISO_LGMN procedure (83%) and proved to be a sensitive and reliable confirmation method.
Collapse
Affiliation(s)
- G Ryzinska-Paier
- Institute of Chemical Engineering, Research Group Environmental Microbiology and Molecular Ecology, Vienna University of Technology, Gumpendorferstraße 1A/166-5-2, A-1060 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
18
|
Bokori-Brown M, Savva CG, Fernandes da Costa SP, Naylor CE, Basak AK, Titball RW. Molecular basis of toxicity of Clostridium perfringens epsilon toxin. FEBS J 2011; 278:4589-601. [PMID: 21518257 DOI: 10.1111/j.1742-4658.2011.08140.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Clostridium perfringens ε-toxin is produced by toxinotypes B and D strains. The toxin is the aetiological agent of dysentery in newborn lambs but is also associated with enteritis and enterotoxaemia in goats, calves and foals. It is considered to be a potential biowarfare or bioterrorism agent by the US Government Centers for Disease Control and Prevention. The relatively inactive 32.9 kDa prototoxin is converted to active mature toxin by proteolytic cleavage, either by digestive proteases of the host, such as trypsin and chymotrypsin, or by C. perfringens λ-protease. In vivo, the toxin appears to target the brain and kidneys, but relatively few cell lines are susceptible to the toxin, and most work has been carried out using Madin-Darby canine kidney (MDCK) cells. The binding of ε-toxin to MDCK cells and rat synaptosomal membranes is associated with the formation of a stable, high molecular weight complex. The crystal structure of ε-toxin reveals similarity to aerolysin from Aeromonas hydrophila, parasporin-2 from Bacillus thuringiensis and a lectin from Laetiporus sulphureus. Like these toxins, ε-toxin appears to form heptameric pores in target cell membranes. The exquisite specificity of the toxin for specific cell types suggests that it binds to a receptor found only on these cells.
Collapse
Affiliation(s)
- Monika Bokori-Brown
- Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | | | | | | | | | | |
Collapse
|
19
|
Enhanced production of phospholipase C and perfringolysin O (alpha and theta toxins) in a gatifloxacin-resistant strain of Clostridium perfringens. Antimicrob Agents Chemother 2007; 52:895-900. [PMID: 18160514 DOI: 10.1128/aac.01316-07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Clostridium perfringens-induced gas gangrene is mediated by potent extracellular toxins, especially alpha toxin (a phospholipase C [PLC]) and theta toxin (perfringolysin O [PFO], a thiol-activated cytolysin); and antibiotic-induced suppression of toxin synthesis is an important clinical goal. The production of PLC and PFO by a gatifloxacin-induced, fluoroquinolone-resistant mutant strain of C. perfringens, strain 10G, carrying a stable mutation in DNA gyrase was compared with that of the wild-type (WT) parent strain. Zymography (with sheep red blood cell and egg yolk overlays) and time course analysis [with hydrolysis of egg yolk lecithin and O-(4 nitrophenyl-phosphoryl)choline] demonstrated that strain 10G produced more PLC and PFO than the WT strain. Increased toxin production in strain 10G was not related either to differences in growth characteristics between the wild-type and the mutant strain or to nonsynonymous polymorphisms in PLC, PFO, or their known regulatory proteins. Increased PLC and PFO production by strain 10G was associated with increased cytotoxic activity for HT-29 human adenocarcinoma cells and with increased platelet-neutrophil aggregate formation. Four other gatifloxacin-induced gyrase mutants did not show increased toxin production, suggesting that gatifloxacin resistance was not always associated with increased toxin production in all strains of C. perfringens. This is the first report of increased toxin production in a fluoroquinolone-resistant strain of C. perfringens.
Collapse
|
20
|
Hughes ML, Poon R, Adams V, Sayeed S, Saputo J, Uzal FA, McClane BA, Rood JI. Epsilon-toxin plasmids of Clostridium perfringens type D are conjugative. J Bacteriol 2007; 189:7531-8. [PMID: 17720791 PMCID: PMC2168747 DOI: 10.1128/jb.00767-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isolates of Clostridium perfringens type D produce the potent epsilon-toxin (a CDC/U.S. Department of Agriculture overlap class B select agent) and are responsible for several economically significant enterotoxemias of domestic livestock. It is well established that the epsilon-toxin structural gene, etx, occurs on large plasmids. We show here that at least two of these plasmids are conjugative. The etx gene on these plasmids was insertionally inactivated using a chloramphenicol resistance cassette to phenotypically tag the plasmid. High-frequency conjugative transfer of the tagged plasmids into the C. perfringens type A strain JIR325 was demonstrated, and the resultant transconjugants were shown to act as donors in subsequent mating experiments. We also demonstrated the transfer of "unmarked" native epsilon-toxin plasmids into strain JIR325 by exploiting the high transfer frequency. The transconjugants isolated in these experiments expressed functional epsilon-toxin since their supernatants had cytopathic effects on MDCK cells and were toxic in mice. Using the widely accepted multiplex PCR approach for toxin genotyping, these type A-derived transconjugants were genotypically type D. These findings have significant implications for the C. perfringens typing system since it is based on the toxin profile of each strain. Our study demonstrated the fluid nature of the toxinotypes and their dependence upon the presence or absence of toxin plasmids, some of which have for the first time been shown to be conjugative.
Collapse
Affiliation(s)
- Meredith L Hughes
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Leflon-Guibout V, Pons JL, Heym B, Nicolas-Chanoine MH. Typing of Clostridium perfringens strains by use of Random Amplified Polymorphic DNA (RAPD) system in comparison with zymotyping. Anaerobe 2007; 3:245-50. [PMID: 16887598 DOI: 10.1006/anae.1997.0094] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/1997] [Accepted: 04/03/1997] [Indexed: 11/22/2022]
Abstract
The definition of strain clonality postulates that strains showed identical phenotypic and genetic traits are likely to descend from a common ancestor even if they were isolated from different sources and locations. Regarding this definition, non-epidemiologically linked strains might be clonal strains. To overcome this ambiguity, the discriminatory capability of RAPD typing was assessed firstly on eight Clostridium perfringens strains proven to be chromosomally different with one being the mutant of another one. Thirteen primers were tested but only two were able to differentiate seven of the eight strains. With none of the used primers it was possible to differentiate the parental strain and its mutant harboring an insertion of 180 kb. The four most discriminant primers were retained to determine the RAPD fingerprints of a further 20 previously zymotyped strains from which seventeen were unrelated. To compare the two typing systems, the zymotype of the eight chromosomally different strains was determined. Thus, the discriminatory index was calculated on the basis of 25 unrelated C. perfringens strains. This was 0.97 with RAPD typing and 0.99 with zymotyping. From these results we conclude that the RAPD typing which is less fastidious than zymotyping can be used as an epidemiological marker for C. perfringens.
Collapse
Affiliation(s)
- V Leflon-Guibout
- Laboratoire de Microbiologie-Hygiène, Hôpital Ambroise-Paré, Faculté de Médecine Paris Ouest, Université Paris V, 9 avenue Charles de Gaulle, 92100, Boulogne-Billancourt, France
| | | | | | | |
Collapse
|
22
|
dela Cruz WP, Gozum MMA, Lineberry SF, Stassen SD, Daughtry M, Stassen NA, Jones MS, Johnson OL. Rapid detection of enterotoxigenic clostridium perfringens by real-time fluorescence resonance energy transfer PCR. J Food Prot 2006; 69:1347-53. [PMID: 16786856 DOI: 10.4315/0362-028x-69.6.1347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Clostridium perfringens is one of the etiologic agents of gas gangrene that can occur when a wound is contaminated with soil. Type A C. perfringens can cause foodborne and nonfoodborne gastrointestinal illnesses due to an enterotoxin (CPE) produced by some strains during sporulation. We developed a quantitative real-time PCR assay based on fluorescence resonance energy transfer hybridization chemistry that targets the C. perfringens-specific phospholipase C (plc) gene and the enterotoxigenic gene (cpe) with the LightCycler and the Ruggedized Advanced Pathogen Identification Device (R.A.P.I.D.). The assay can detect as few as 20 copies of target sequences per PCR. The total assay time, from extraction to PCR analysis, is 90 min. This assay is rapid, sensitive, and specific and will allow direct detection of C. perfringens in water, food, and stool samples. It should prove helpful in investigating foodborne illnesses due to C. perfringens and can be used as a tool to ensure the safety of food and water supplies.
Collapse
Affiliation(s)
- Wilfred P dela Cruz
- Molecular Biology Research Element, Clinical Investigation Facility, David Grant USAF Medical Center, Travis Air Force Base, California 94535, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sawires YS, Songer JG. Clostridium perfringens: insight into virulence evolution and population structure. Anaerobe 2005; 12:23-43. [PMID: 16701609 DOI: 10.1016/j.anaerobe.2005.10.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Revised: 10/07/2005] [Accepted: 10/11/2005] [Indexed: 11/29/2022]
Abstract
Clostridium perfringens is an important pathogen in veterinary and medical fields. Diseases caused by this organism are in many cases life threatening or fatal. At the same time, it is part of the ecological community of the intestinal tract of man and animals. Virulence in this species is not fully understood and it does seem that there is erratic distribution of the toxin/enzyme genes within C. perfringens population. We used the recently developed multiple-locus variable-number tandem repeat analysis (MLVA) scheme to investigate the evolution of virulence and population structure of this species. Analysis of the phylogenetic signal indicates that acquisition of the major toxin genes as well as other plasmid-borne toxin genes is a recent evolutionary event and their maintenance is essentially a function of the selective advantage they confer in certain niches under different conditions. In addition, it indicates the ability of virulent strains to cause disease in different host species. More interestingly, there is evidence that certain normal flora strains are virulent when they gain access to a different host species. Analysis of the population structure indicates that recombination events are the major tool that shapes the population and this panmixia is interrupted by frequent clonal expansion that mostly corresponds to disease processes. The signature of positive selection was detected in alpha toxin gene, suggesting the possibility of adaptive alleles on the other chromosomally encoded determinants. Finally, C. perfringens proved to have a dynamic population and availability of more genome sequences and use of comparative proteomics and animal modeling would provide more insight into the virulence of this organism.
Collapse
Affiliation(s)
- Youhanna S Sawires
- Department of Veterinary Science and Microbiology, University of Arizona, Room 207, 1117 East Lowell Street, Tucson AZ 85721, USA.
| | | |
Collapse
|
24
|
Abstract
The chromosome structure of lactic acid bacteria has been investigated only recently. The development of pulsed-field gel electrophoresis (PFGE) combined with other DNA-based techniques enables whole-genome analysis of any bacterium, and has allowed rapid progress to be made in the knowledge of the lactic acid bacteria genome. Lactic acid bacteria possess one of the smallest eubacterial chromosomes. Depending on the species, the genome sizes range from 1.1 to 2.6 Mb. Combined physical and genetic maps of several species are already available or close to being achieved. Knowledge of the genomic structure of these organisms will serve as a basis for future genetic studies. Macrorestriction fingerprinting by PFGE is already one of the major tools for strain differentiation, identification of individual strains, and the detection of strain lineages. The genome data resulting from these studies will be of general application strain improvement.
Collapse
Affiliation(s)
- P Le Bourgeois
- Laboratoire de Microbiologie et Génétique Moléculaire du CNRS, Toulouse, France
| | | | | |
Collapse
|
25
|
Lukinmaa S, Takkunen E, Siitonen A. Molecular epidemiology of Clostridium perfringens related to food-borne outbreaks of disease in Finland from 1984 to 1999. Appl Environ Microbiol 2002; 68:3744-9. [PMID: 12147468 PMCID: PMC124042 DOI: 10.1128/aem.68.8.3744-3749.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2001] [Accepted: 05/03/2002] [Indexed: 11/20/2022] Open
Abstract
From 1975 to 1999, Clostridium perfringens caused 238 food-borne disease outbreaks in Finland, which is 20% of all such reported outbreaks during these years. The fact that C. perfringens is commonly found in human and animal stools and that it is also widespread in the environment is a disadvantage when one is searching for the specific cause of a food-borne infection by traditional methods. In order to strengthen the evidence-based diagnostics of food poisonings suspected to be caused by C. perfringens, we retrospectively investigated 47 C. perfringens isolates by PCR for the cpe gene, which encodes enterotoxin; by reversed passive latex agglutination to detect the enterotoxin production; and by pulsed-field gel electrophoresis (PFGE) to compare their genotypes after restriction of DNA by the enzymes SmaI and ApaI. The strains were isolated during 1984 to 1999 from nine food-borne outbreaks of disease originally reported as having been caused by C. perfringens. In seven of the nine outbreaks our results supported the fact that the cause was C. perfringens. Our findings emphasize the importance of a more detailed characterization of C. perfringens isolates than mere identification to the species level in order to verify the cause of an outbreak. Also, to increase the probability of finding the significant cpe-positive C. perfringens strains, it is very important to isolate and investigate more than one colony from the fecal culture of a patient and screen all these isolates for the presence of the cpe gene before further laboratory work is done.
Collapse
Affiliation(s)
- Susanna Lukinmaa
- Laboratory of Enteric Pathogens, National Public Health Institute, FIN-00300 Helsinki, Finland
| | | | | |
Collapse
|
26
|
Abstract
Clostridium perfringens type A food poisoning is one of the more common in the industrialised world. This bacterium is also responsible for the rare but severe food borne necrotic enteritis. C. perfringens enterotoxin (CPE) has been shown to be the virulence factor responsible for causing the symptoms of C. perfringens type A food poisoning. CPE is a single polypeptide chain with a molecular weight of 3.5 kDa that binds to receptors on the target epithelial cells. Through a unique four-step membrane action it finally causes a breakdown in normal plasma membrane permeability properties. Genetic studies of cpe have shown that cpe can be either chromosomal or plasmid-borne and that only a small minority of the global C. perfringens population is cpe positive. CPE expression appears to be transcriptionally regulated during sporulation, at least in part, by regulatory factors that are common to all C. perfringens isolates.
Collapse
Affiliation(s)
- Sigrid Brynestad
- Department of Pharmacology, Microbiology and Food Hygiene, The Norwegian School of Veterinary Science, Oslo
| | | |
Collapse
|
27
|
Augustynowicz E, Gzyl A, Slusarczyk J. Molecular epidemiology survey of toxinogenic Clostridium perfringens strain types by multiplex PCR. SCANDINAVIAN JOURNAL OF INFECTIOUS DISEASES 2002; 32:637-41. [PMID: 11200374 DOI: 10.1080/003655400459559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Toxin genotypes of 95 C. perfringens strains collected within a 45-year period were analysed by a multiplex PCR. A set of primers designed for 4 different genes encoding the alpha, beta, epsilon, and iota toxins was used in a single reaction with a sensitivity of gene detection of 200 fg for DNA extracted from pure culture. Most of the strains (97%) conformed to the A biotype, and the remaining to the C or E biotypes. For biotype determination, seroneutralization of lethality in mice was performed by intravenous injection. Toxin phenotype and genotype profile were concordant in 94% of strains. Our results documented the presence of rare toxin genotypes of C. perfringens in a Polish geographical region and indicated the suitability of multiplex PCR as a method supplementing classical techniques and providing better insight into the prevalence of toxinogenic C. perfringens strains.
Collapse
Affiliation(s)
- E Augustynowicz
- Department of Sera and Vaccines Evaluation, National Institute of Hygiene, Warsaw, Poland
| | | | | |
Collapse
|
28
|
Johanesen PA, Lyras D, Rood JI. Induction of pCW3-encoded tetracycline resistance in Clostridium perfringens involves a host-encoded factor. Plasmid 2001; 46:229-32. [PMID: 11735372 DOI: 10.1006/plas.2001.1543] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tetracycline resistance determinant Tet P, which is encoded by the conjugative plasmid pCW3 from Clostridium perfringens, is induced by subinhibitory concentrations of tetracycline. In this study we have shown that the inducible phenotype is strain dependent. When pCW3 is present in derivatives of the wild-type strains CW234 and CW362 resistance is inducible. However, transfer to derivatives of strain 13 leads to a constitutive phenotype that is only observed in this strain background. Based on these results it is proposed that induction of the pCW3-encoded tet(P) genes in C. perfringens requires a host-encoded factor that is either absent or nonfunctional in strain 13 derivatives.
Collapse
Affiliation(s)
- P A Johanesen
- Bacterial Pathogenesis Research Group, Monash University, Victoria 3800, Australia
| | | | | |
Collapse
|
29
|
Shimizu T, Ohshima S, Ohtani K, Shimizu T, Hayashi H. Genomic map of Clostridium perfringens strain 13. Microbiol Immunol 2001; 45:179-89. [PMID: 11293486 DOI: 10.1111/j.1348-0421.2001.tb01278.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A physical and genetic map of Clostridium perfringens strain 13 was constructed. C. perfringens strain 13 was found to have a 3.1-Mb chromosome and a large 50-kb plasmid, indicating that strain 13 has a relatively small genome among C. perfringens strains. A total of 313 genetic markers were mapped on the chromosome of strain 13. Compared with the physical and genetic map of C. perfringens CPN50, strain 13 had a quite similar genome organization, but with a large deletion (approximately 400 kb) in a particular segment of the chromosome. Among several toxin genes, a beta2 toxin gene that is a novel virulence gene in C. perfringens was found to be located on the 50-kb plasmid.
Collapse
Affiliation(s)
- T Shimizu
- Department of Microbiology, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
30
|
Brynestad S, Sarker MR, McClane BA, Granum PE, Rood JI. Enterotoxin plasmid from Clostridium perfringens is conjugative. Infect Immun 2001; 69:3483-7. [PMID: 11292780 PMCID: PMC98316 DOI: 10.1128/iai.69.5.3483-3487.2001] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens enterotoxin is the major virulence factor involved in the pathogenesis of C. perfringens type A food poisoning and several non-food-borne human gastrointestinal illnesses. The enterotoxin gene, cpe, is located on the chromosome of food-poisoning isolates but is found on a large plasmid in non-food-borne gastrointestinal disease isolates and in veterinary isolates. To evaluate whether the cpe plasmid encodes its own conjugative transfer, a C. perfringens strain carrying pMRS4969, a plasmid in which a 0.4-kb segment internal to the cpe gene had been replaced by the chloramphenicol resistance gene catP, was used as a donor in matings with several cpe-negative C. perfringens isolates. Chloramphenicol resistance was transferred at frequencies ranging from 2.0 x 10(-2) to 4.6 x 10(-4) transconjugants per donor cell. The transconjugants were characterized by PCR, pulsed-field gel electrophoresis, and Southern hybridization analyses. The results demonstrated that the entire pMRS4969 plasmid had been transferred to the recipient strain. Plasmid transfer required cell-to-cell contact and was DNase resistant, indicating that transfer occurred by a conjugation mechanism. In addition, several fragments of the prototype C. perfringens tetracycline resistance plasmid, pCW3, hybridized with pMRS4969, suggesting that pCW3 shares some similarity to pMRS4969. The clinical significance of these findings is that if conjugative transfer of the cpe plasmid occurred in vivo, it would have the potential to convert cpe-negative C. perfringens strains in normal intestinal flora into strains capable of causing gastrointestinal disease.
Collapse
Affiliation(s)
- S Brynestad
- Norwegian School of Veterinary Science, Oslo, Norway
| | | | | | | | | |
Collapse
|
31
|
Sparks SG, Carman RJ, Sarker MR, McClane BA. Genotyping of enterotoxigenic Clostridium perfringens fecal isolates associated with antibiotic-associated diarrhea and food poisoning in North America. J Clin Microbiol 2001; 39:883-8. [PMID: 11230399 PMCID: PMC87845 DOI: 10.1128/jcm.39.3.883-888.2001] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens type A isolates producing enterotoxin (CPE) are an important cause of food poisoning and non-food-borne human gastrointestinal (GI) diseases, including antibiotic-associated diarrhea (AAD). Recent studies suggest that C. perfringens type A food poisoning is caused by C. perfringens isolates carrying a chromosomal cpe gene, while CPE-associated non-food-borne GI diseases, such as AAD, are caused by plasmid cpe isolates. Those putative relationships, obtained predominantly with European isolates, were tested in the current study by examining 34 cpe-positive, C. perfringens fecal isolates from North American cases of food poisoning or AAD. These North American disease isolates were all classified as type A using a multiplex PCR assay. Furthermore, restriction fragment length polymorphism and pulsed-field gel electrophoresis genotyping analyses showed the North American AAD isolates included in this collection all have a plasmid cpe gene, but the North American food poisoning isolates all carry a chromosomal cpe gene. Western blotting demonstrated CPE expression by nearly all of these disease isolates, confirming their virulence potential. These findings with North American isolates provide important new evidence that, regardless of geographic origin or date of isolation, plasmid cpe isolates cause most CPE-associated AAD cases and chromosomal cpe isolates cause most C. perfringens type A food poisoning cases. These findings hold importance for the development of assays for distinguishing cases of CPE-associated food-borne and non-food-borne human GI illnesses and also identify potential epidemiologic tools for determining the reservoirs for these illnesses.
Collapse
Affiliation(s)
- S G Sparks
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
32
|
Z̆ V, Biziulevi C̆ GA. Physico-chemical and Catalytic Properties of Clostridium perfringens Hyaluronidase: An Update. Anaerobe 2000. [DOI: 10.1006/anae.2000.0356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Melkerson-Watson LJ, Rode CK, Zhang L, Foxman B, Bloch CA. Integrated genomic map from uropathogenic Escherichia coli J96. Infect Immun 2000; 68:5933-42. [PMID: 10992505 PMCID: PMC101557 DOI: 10.1128/iai.68.10.5933-5942.2000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli J96 is a uropathogen having both broad similarities to and striking differences from nonpathogenic, laboratory E. coli K-12. Strain J96 contains three large (>100-kb) unique genomic segments integrated on the chromosome; two are recognized as pathogenicity islands containing urovirulence genes. Additionally, the strain possesses a fourth smaller accessory segment of 28 kb and two deletions relative to strain K-12. We report an integrated physical and genetic map of the 5,120-kb J96 genome. The chromosome contains 26 NotI, 13 BlnI, and 7 I-CeuI macrorestriction sites. Macrorestriction mapping was rapidly accomplished by a novel transposon-based procedure: analysis of modified minitransposon insertions served to align the overlapping macrorestriction fragments generated by three different enzymes (each sharing a common cleavage site within the insert), thus integrating the three different digestion patterns and ordering the fragments. The resulting map, generated from a total of 54 mini-Tn10 insertions, was supplemented with auxanography and Southern analysis to indicate the positions of insertionally disrupted aminosynthetic genes and cloned virulence genes, respectively. Thus, it contains not only physical, macrorestriction landmarks but also the loci for eight housekeeping genes shared with strain K-12 and eight acknowledged urovirulence genes; the latter confirmed clustering of virulence genes at the large unique accessory chromosomal segments. The 115-kb J96 plasmid was resolved by pulsed-field gel electrophoresis in NotI digests. However, because the plasmid lacks restriction sites for the enzymes BlnI and I-CeuI, it was visualized in BlnI and I-CeuI digests only of derivatives carrying plasmid inserts artificially introducing these sites. Owing to an I-SceI site on the transposon, the plasmid could also be visualized and sized from plasmid insertion mutants after digestion with this enzyme. The insertional strains generated in construction of the integrated genomic map provide useful physical and genetic markers for further characterization of the J96 genome.
Collapse
Affiliation(s)
- L J Melkerson-Watson
- Department of Pediatrics, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | |
Collapse
|
34
|
Sarker MR, Shivers RP, Sparks SG, Juneja VK, McClane BA. Comparative experiments to examine the effects of heating on vegetative cells and spores of Clostridium perfringens isolates carrying plasmid genes versus chromosomal enterotoxin genes. Appl Environ Microbiol 2000; 66:3234-40. [PMID: 10919775 PMCID: PMC92139 DOI: 10.1128/aem.66.8.3234-3240.2000] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2000] [Accepted: 05/08/2000] [Indexed: 11/20/2022] Open
Abstract
Clostridium perfringens enterotoxin (CPE) is an important virulence factor for both C. perfringens type A food poisoning and several non-food-borne human gastrointestinal diseases. Recent studies have indicated that C. perfringens isolates associated with food poisoning carry a chromosomal cpe gene, while non-food-borne human gastrointestinal disease isolates carry a plasmid cpe gene. However, no explanation has been provided for the strong associations between certain cpe genotypes and particular CPE-associated diseases. Since C. perfringens food poisoning usually involves cooked meat products, we hypothesized that chromosomal cpe isolates are so strongly associated with food poisoning because (i) they are more heat resistant than plasmid cpe isolates, (ii) heating induces loss of the cpe plasmid, or (iii) heating induces migration of the plasmid cpe gene to the chromosome. When we tested these hypotheses, vegetative cells of chromosomal cpe isolates were found to exhibit, on average approximately twofold-higher decimal reduction values (D values) at 55 degrees C than vegetative cells of plasmid cpe isolates exhibited. Furthermore, the spores of chromosomal cpe isolates had, on average, approximately 60-fold-higher D values at 100 degrees C than the spores of plasmid cpe isolates had. Southern hybridization and CPE Western blot analyses demonstrated that all survivors of heating retained their cpe gene in its original plasmid or chromosomal location and could still express CPE. These results suggest that chromosomal cpe isolates are strongly associated with food poisoning, at least in part, because their cells and spores possess a high degree of heat resistance, which should enhance their survival in incompletely cooked or inadequately warmed foods.
Collapse
Affiliation(s)
- M R Sarker
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, PA 15261, USA
| | | | | | | | | |
Collapse
|
35
|
Le Bourgeois P, Daveran-Mingot ML, Ritzenthaler P. Genome plasticity among related ++Lactococcus strains: identification of genetic events associated with macrorestriction polymorphisms. J Bacteriol 2000; 182:2481-91. [PMID: 10762249 PMCID: PMC111311 DOI: 10.1128/jb.182.9.2481-2491.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genomic diversity of nine strains of the Lactococcus lactis subsp. cremoris (NCDO712, NCDO505, NCDO2031, NCDO763, MMS36, C2, LM0230, LM2301, and MG1363) was studied by macrorestriction enzyme analysis using pulsed-field gel electrophoresis. These strains were considered adequate for the investigation of genomic plasticity because they have been described as belonging to the same genetic lineage. Comparison of ApaI and SmaI genome fingerprints of each strain revealed the presence of several macrorestriction fragment length polymorphisms (RFLPs), despite a high degree of similarity of the generated restriction patterns. The physical map of the MG1363 chromosome was used to establish a genome map of the other strains and allocate the RFLPs to five regions. Southern hybridization analysis correlated the polymorphic regions with genetic events such as chromosomal inversion, integration of prophage DNA, and location of the transposon-like structures carrying conjugative factor or oligopeptide transport system.
Collapse
Affiliation(s)
- P Le Bourgeois
- Laboratoire de Microbiologie et Génétique Moléculaire du CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | | | | |
Collapse
|
36
|
Abstract
Clostridium perfringens is a ubiquitous pathogen that produces many toxins and hydrolytic enzymes. Because the toxin-encoding genes can be located on extrachromosomal elements or in variable regions of the chromosome, several pathovars have arisen, each of which is involved in a specific disease. Pathovar identification is required for a precise diagnosis of associated pathologies and to define vaccine requirements. For these purposes, toxin genotyping is more reliable than the classical toxinotyping.
Collapse
Affiliation(s)
- L Petit
- Centre National de Reference des Anaérobies, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
37
|
Abstract
Bacterial genome sizes, which range from 500 to 10,000 kbp, are within the current scope of operation of large-scale nucleotide sequence determination facilities. To date, 8 complete bacterial genomes have been sequenced, and at least 40 more will be completed in the near future. Such projects give wonderfully detailed information concerning the structure of the organism's genes and the overall organization of the sequenced genomes. It will be very important to put this incredible wealth of detail into a larger biological picture: How does this information apply to the genomes of related genera, related species, or even other individuals from the same species? Recent advances in pulsed-field gel electrophoretic technology have facilitated the construction of complete and accurate physical maps of bacterial chromosomes, and the many maps constructed in the past decade have revealed unexpected and substantial differences in genome size and organization even among closely related bacteria. This review focuses on this recently appreciated plasticity in structure of bacterial genomes, and diversity in genome size, replicon geometry, and chromosome number are discussed at inter- and intraspecies levels.
Collapse
Affiliation(s)
- S Casjens
- Department of Oncological Sciences, University of Utah, Salt Lake City 84132, USA.
| |
Collapse
|
38
|
Abstract
Clostridium perfringens causes human gas gangrene and food poisoning as well as several enterotoxemic diseases of animals. The organism is characterized by its ability to produce numerous extracellular toxins including alpha-toxin or phospholipase C, theta-toxin or perfringolysin O, kappa-toxin or collagenase, as well as a sporulation-associated enterotoxin. Although the genes encoding the alpha-toxin and theta-toxin are located on the chromosome, the genes encoding many of the other extracellular toxins are located on large plasmids. The enterotoxin gene can be either chromosomal or plasmid determined. Several of these toxin genes are associated with insertion sequences. The production of many of the extracellular toxins is regulated at the transcriptional level by the products of the virR and virS genes, which together comprise a two-component signal transduction system.
Collapse
Affiliation(s)
- J I Rood
- Department of Microbiology, Monash University, Clayton, Australia.
| |
Collapse
|
39
|
Brynestad S, Granum PE. Evidence that Tn5565, which includes the enterotoxin gene in Clostridium perfringens, can have a circular form which may be a transposition intermediate. FEMS Microbiol Lett 1999; 170:281-6. [PMID: 9919679 DOI: 10.1111/j.1574-6968.1999.tb13385.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The Clostridium perfringens enterotoxin gene is on a transposon-like element, Tn5565, integrated in the chromosome in human food poisoning strains. The flanking IS elements, IS1470 A and B, are related to IS30. The IS element found in the transposon, IS1469, is related to IS200 and has been found upstream of cpe in all Type A strains. PCR and sequencing studies from cell extracts and plasmid isolations of C. perfringens indicate that Tn5565 can form a circular form with the tandem repeat (IS1470)2, similar to the transposition intermediates described for a number of IS elements.
Collapse
Affiliation(s)
- S Brynestad
- Department of Pharmacology, Microbiology and Food Hygiene, Norwegian College of Veterinary Medicine, Oslo, Norway.
| | | |
Collapse
|
40
|
Daveran-Mingot ML, Campo N, Ritzenthaler P, Le Bourgeois P. A natural large chromosomal inversion in Lactococcus lactis is mediated by homologous recombination between two insertion sequences. J Bacteriol 1998; 180:4834-42. [PMID: 9733685 PMCID: PMC107507 DOI: 10.1128/jb.180.18.4834-4842.1998] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparative analysis of chromosomal macrorestriction polymorphism of the two closely related Lactococcus lactis subsp. cremoris strains MG1363 and NCDO763 revealed the presence of a large inversion covering half of the genome. To determine what kind of genetic element could be implicated in this rearrangement, the two inversion junctions of MG1363 and NCDO763 chromosomes were cloned and characterized. Nucleotide sequence analysis showed the presence of one copy of the lactococcal IS905 element in each junction. Each copy of this element contained the same nucleotide mutation that inactivates the putative transposase. Comparison of the sequences surrounding the insertion sequence demonstrated that the large inversion arose from a single-step homologous recombination event between the two defective copies of the IS905 element. The large inversion presumably conferred no selective disadvantage on strain NCDO763 because this rearrangement did not alter the oriC-terC symmetry of the chromosome and the local genetic environment.
Collapse
Affiliation(s)
- M L Daveran-Mingot
- Laboratoire de Microbiologie et Génétique Moléculaire du CNRS, Université Paul Sabatier, 31062 Toulouse, France
| | | | | | | |
Collapse
|
41
|
Billington SJ, Wieckowski EU, Sarker MR, Bueschel D, Songer JG, McClane BA. Clostridium perfringens type E animal enteritis isolates with highly conserved, silent enterotoxin gene sequences. Infect Immun 1998; 66:4531-6. [PMID: 9712814 PMCID: PMC108552 DOI: 10.1128/iai.66.9.4531-4536.1998] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/1998] [Accepted: 06/26/1998] [Indexed: 11/20/2022] Open
Abstract
Several Clostridium perfringens genotype E isolates, all associated with hemorrhagic enteritis of neonatal calves, were identified by multiplex PCR. These genotype E isolates were demonstrated to express alpha and iota toxins, but, despite carrying sequences for the gene (cpe) encoding C. perfringens enterotoxin (CPE), were unable to express CPE. These silent cpe sequences were shown to be highly conserved among type E isolates. However, relative to the functional cpe gene of type A isolates, these silent type E cpe sequences were found to contain nine nonsense and two frameshift mutations and to lack the initiation codon, promoters, and ribosome binding site. The type E animal enteritis isolates carrying these silent cpe sequences do not appear to be clonally related, and their silent type E cpe sequences are always located, near the iota toxin genes, on episomal DNA. These findings suggest that the highly conserved, silent cpe sequences present in most or all type E isolates may have resulted from the recent horizontal transfer of an episome, which also carries iota toxin genes, to several different type A C. perfringens isolates.
Collapse
Affiliation(s)
- S J Billington
- Department of Veterinary Science and Microbiology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|
42
|
Khetawat G, Bhadra RK, Kar S, Das J. Vibrio cholerae O139 Bengal: combined physical and genetic map and comparative analysis with the genome of V. cholerae O1. J Bacteriol 1998; 180:4516-22. [PMID: 9721290 PMCID: PMC107462 DOI: 10.1128/jb.180.17.4516-4522.1998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/1998] [Accepted: 06/25/1998] [Indexed: 11/20/2022] Open
Abstract
A combined physical and genetic map of the genome of strain SG24 of Vibrio cholerae O139 Bengal, a novel non-O1 strain having epidemic potential, has been constructed by using the enzymes NotI, SfiI, and CeuI. The genome of SG24 is circular, and the genome size is about 3. 57 Mb. The linkages between 47 NotI and 32 SfiI fragments of V. cholerae SG24 genomic DNA were determined by combining two approaches: (i) identification of fragments produced by enzyme I in fragments produced by enzyme II by the method of fragment excision, redigestion, and end labeling and (ii) use of the linking clone libraries generated from the genome of classical O1 strain 569B. The linkages between nine CeuI fragments were determined primarily by analyses of partial fragments of the CeuI-digested genome. More than 80 cloned homologous and heterologous genes, including several operons, have been positioned on the physical map. The map of the SG24 genome represents the second map of a V. cholerae genome, and a comparison of this map with that of classical O1 strain 569B revealed considerable diversity in DNA restriction sites and allowed identification of hypervariable regions. Several genetic markers, including virulence determinant genes, are in different positions in the SG24 and 569B genomes.
Collapse
Affiliation(s)
- G Khetawat
- Biophysics Division, Indian Institute of Chemical Biology, Calcutta 700 032, India
| | | | | | | |
Collapse
|
43
|
Netherwood T, Wood JL, Mumford JA, Chanter N. Molecular analysis of the virulence determinants of Clostridium perfringens associated with foal diarrhoea. Vet J 1998; 155:289-94. [PMID: 9638075 DOI: 10.1016/s1090-0233(05)80025-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During an epidemiological study of foal diarrhoea, over half of the cases yielded Clostridium perfringens which was significantly associated with disease (Netherwood et al., 1996b). However, the association could not be accounted for by enterotoxigenic isolates which had a low prevalence (Netherwood et al., 1997). Nonetheless, we have hypothesized that the association may be caused by a pathogenic sub-population which would be significantly more common amongst C. perfringens-positive cases compared with C. perfringens-positive healthy controls if it acted as a pathogen when present. Conversely, if foal diarrhoea caused by C. perfringens was dependent on a predisposing factor, then such an association might not be evident. As a first step to determine if a molecular marker was more frequently to be found in C. perfringens-positive cases than controls, we have genotyped the study isolates (up to five per foal) by polymerase chain reaction (PCR) based on the published gene sequences for the major lethal toxins alpha, beta, epsilon and iota as well as for theta toxin, large and small sialidases, hyaluronidase and virulence regulation. Isolates of major toxin types B, C, D and E, or isolates which were untypeable, were isolated from less than 15% of C. perfringens-positive foals and these were not associated with diarrhoea nor were they more commonly found in C. perfringens-positive cases. Isolates of type A were found in more than 90% of all C. perfringens-positive foals. A number of different genotypes were identified by their different patterns of gene possession but types without any of the genes for theta toxin, large and small sialidases, hyaluronidase and virulence regulation were found in only 10% of positive foals. Only type A isolates with all of these genes were associated with diarrhoea overall but they were not more commonly isolated from C. perfringens-positive cases than controls. In conclusion, genotyping by the sequenced virulence genes did not identify a marker for a sub-population of C. perfringens which may be acting more frequently as a pathogen when present.
Collapse
|
44
|
Oyston PCF, Payne DW, Havard HL, Williamson ED, Titball RW. Production of a non-toxic site-directed mutant of Clostridium perfringens epsilon-toxin which induces protective immunity in mice. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 2):333-341. [PMID: 9493371 DOI: 10.1099/00221287-144-2-333] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A panel of ten site-directed mutants of Clostridium perfringens epsilon-toxin was generated. All of the mutated proteins expressed in Escherichia coli were recognized in immunoblots by a neutralizing mAb raised against wild-type native epsilon-toxin. The cytotoxicity of the site-directed mutated toxins was assayed in vitro against MDCK cells. One mutation resulting in loss of activity in the assay was identified. This non-toxic protein was derived by substituting a proline for the histidine at residue 106 of the toxin. Immunization of mice with the non-toxic mutated epsilon-toxin resulted in the induction of a specific antibody response and immunized mice were protected against 1000 LD50 doses of wild-type recombinant epsilon-toxin.
Collapse
Affiliation(s)
- Petra C F Oyston
- Defence Evaluation and Research Agency, CBD Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Dean W Payne
- Defence Evaluation and Research Agency, CBD Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Helen L Havard
- Defence Evaluation and Research Agency, CBD Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - E Diane Williamson
- Defence Evaluation and Research Agency, CBD Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| | - Richard W Titball
- Defence Evaluation and Research Agency, CBD Porton Down, Salisbury, Wiltshire SP4 0JQ, UK
| |
Collapse
|
45
|
Collie RE, McClane BA. Evidence that the enterotoxin gene can be episomal in Clostridium perfringens isolates associated with non-food-borne human gastrointestinal diseases. J Clin Microbiol 1998; 36:30-6. [PMID: 9431915 PMCID: PMC124802 DOI: 10.1128/jcm.36.1.30-36.1998] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/1997] [Accepted: 10/01/1997] [Indexed: 02/05/2023] Open
Abstract
Clostridium perfringens enterotoxin (CPE) is responsible for the diarrheal and cramping symptoms of human C. perfringens type A food poisoning. CPE-producing C. perfringens isolates have also recently been associated with several non-food-borne human gastrointestinal (GI) illnesses, including antibiotic-associated diarrhea and sporadic diarrhea. The current study has used restriction fragment length polymorphism (RFLP) and pulsed-field gel electrophoresis (PFGE) analyses to compare the genotypes of 43 cpe-positive C. perfringens isolates obtained from diverse sources. All North American and European food-poisoning isolates examined in this study were found to carry a chromosomal cpe, while all non-food-borne human GI disease isolates characterized in this study were determined to carry their cpe on an episome. Collectively, these results provide the first evidence that distinct subpopulations of cpe-positive C. perfringens isolates may be responsible for C. perfringens type A food poisoning versus CPE-associated non-food-borne human GI diseases. If these putative associations are confirmed in additional surveys, cpe RFLP and PFGE genotyping assays may facilitate the differential diagnosis of food-borne versus non-food-borne CPE-associated human GI illnesses and may also be useful epidemiologic tools for identifying reservoirs or transmission mechanisms for the subpopulations of cpe-positive isolates specifically responsible for CPE-associated food-borne versus non-food-borne human GI diseases.
Collapse
Affiliation(s)
- R E Collie
- Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
46
|
McClane BA. New insights into the genetics and regulation of expression of Clostridium perfringens enterotoxin. Curr Top Microbiol Immunol 1997; 225:37-55. [PMID: 9386327 DOI: 10.1007/978-3-642-80451-9_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- B A McClane
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, PA 15261, USA
| |
Collapse
|
47
|
Fach P, Popoff MR. Detection of enterotoxigenic Clostridium perfringens in food and fecal samples with a duplex PCR and the slide latex agglutination test. Appl Environ Microbiol 1997; 63:4232-6. [PMID: 9361409 PMCID: PMC168742 DOI: 10.1128/aem.63.11.4232-4236.1997] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A duplex PCR procedure was evaluated for the detection of Clostridium perfringens in food and biological samples and for the identification of enterotoxigenic strains. This method uses two sets of primers which amplify in the same reaction two different DNA fragments simultaneously: the 283-bp C. perfringens phospholipase C gene fragment and the 426-bp enterotoxin gene fragment. Internal primers within the two primer sets confirmed the specificity of the method by DNA-DNA hybridization with the PCR products. No cross-reaction was observed with other Clostridium species or with other bacteria routinely found in food. The detection level was approximately 10(5) C. perfringens cells per g of stool or food sample. When overnight enrichment culture was used, 10 C. perfringens cells per g was detected in 57 artificially contaminated food samples. The duplex PCR is a rapid, sensitive, and reliable method for the detection and identification of enterotoxigenic C. perfringens strains in food samples. A slide latex agglutination test was also evaluated as a rapid, simple technique for the detection of C. perfringens enterotoxin in stool samples.
Collapse
Affiliation(s)
- P Fach
- Centre National d'Etudes Vétérinaires et Alimentaires, Laboratoire Central d'Hygiène Alimentaire, Paris, France
| | | |
Collapse
|
48
|
Ba-Thein W, Inui S, Shimizu T, Swe T, Banu S, Ohtani K, Oe M, Sakurai N, Nakamura S, Hayashi H. Genomic diversity in the pfoA region of the theta-toxin-deficient strains of Clostridium perfringens. Microbiol Immunol 1997; 41:629-31. [PMID: 9310944 DOI: 10.1111/j.1348-0421.1997.tb01903.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The genomic structure of the pfoA-colA region in six theta-toxin-deficient strains of Clostridium perfringens was examined by Southern hybridization using the pfoR, pfoA, pbg, arcABDC and colA genes, encoding regulator for pfoA, theta-toxin, beta-galactosidase, arginine metabolism enzymes and kappa-toxin, respectively, as gene probes. It is suggested that the productivity of theta-toxin in these strains is diverse because of the multiple genetic backgrounds including single deletion of pfoA, large deletion of the pfoA-colA region and the putative point mutations.
Collapse
Affiliation(s)
- W Ba-Thein
- Department of Microbiology, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Clostridium spiroforme Toxin Genes are Related to C. perfringens Iota Toxin Genes but have a Different Genomic Localization. Syst Appl Microbiol 1997. [DOI: 10.1016/s0723-2020(97)80001-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Brynestad S, Synstad B, Granum PE. The Clostridium perfringens enterotoxin gene is on a transposable element in type A human food poisoning strains. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 7):2109-2115. [PMID: 9245800 DOI: 10.1099/00221287-143-7-2109] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Clostridium perfringens enterotoxin gene (cpe) is rarely found in naturally isolated strains. In human food poisoning strains, cpe is found on the chromosome, and is located episomally in animal isolates. Observations that the gene was somewhat unstable and could be gained or lost suggested that the gene was on a mobile element. An IS200-like element, IS1469, is almost always upstream of cpe. A new insertion element was identified, IS1470, a member of the IS30 family, which is found both up-an downstream of cpe in the type A strain NCTC 8239. PCR results confirmed that this configuration was conserved in type A human food poisoning strains. The enterotoxin gene was on a 6.3 kb transposon which, in addition to the two flanking copies of IS1470, included IS1469 and two 1 kb stretches, one on each side of cpe, with no open reading frames. Results indicated that 14 bp was copied from the genome during insertion. Details of the configuration of DNA in this transposon are presented, and the possible connection of this transposon with the movement of the enterotoxin gene is discussed.
Collapse
Affiliation(s)
- Sigrid Brynestad
- Department of pharmacology, Microbiology and Food Hygiene, Norwegian College of Veterinary Medicine, PO Box 8146, Dep., N-0033 Oslo, Norway
| | - Bjørnar Synstad
- Department of pharmacology, Microbiology and Food Hygiene, Norwegian College of Veterinary Medicine, PO Box 8146, Dep., N-0033 Oslo, Norway
| | - Per Einar Granum
- Department of pharmacology, Microbiology and Food Hygiene, Norwegian College of Veterinary Medicine, PO Box 8146, Dep., N-0033 Oslo, Norway
| |
Collapse
|