1
|
Dittoe DK, Barabote RD, Rothrock MJ, Ricke SC. Assessment of a Potential Role of Dickeya dadantii DSM 18020 as a Pectinase Producer for Utilization in Poultry Diets Based on in silico Analyses. Front Microbiol 2020; 11:751. [PMID: 32390987 PMCID: PMC7191031 DOI: 10.3389/fmicb.2020.00751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 03/30/2020] [Indexed: 01/17/2023] Open
Abstract
Currently, the poultry industry has been faced with consumer pressure to utilize only vegetable feedstuffs in poultry diets, eliminate antibiotics from poultry production, and rear poultry in free range systems. To maintain current production standards, the industry must determine ways to enhance nutrient uptake and utilization further. One possible solution is the supplementation of pectinase, an enzyme that degrades pectin within the cell walls of plants, in poultry diets. Therefore, the objective of the current study was to determine the potential role of a pectinase producer, Dickeya dadantii DSM 18020, as a commercially utilized pectinase producer in poultry diets against other known pectinase producers, in silico. In the current study, whole genomes of Dickeya dadantii DSM 18020 (Dd18020), D. dadantii 3937 (Dd3937), D. solani IPO 2222 (Ds2222), Bacillus halodurans C-125 (BhC125), and B. subtilis subsp. subtilis str. 168 (Bs168) were compared using bioinformatic approaches to compare the chromosomal genome size, GC content, protein coding genes (CDS), total genes, average protein length (a.a.) and determine the predicted metabolic pathways, predicted pectin degrading enzymes, and pectin-degradation pathways across pectinase producers. Due to insufficient information surrounding the genome of Dd18020 (lack of annotation), the genome of Dd3937, a 99% identical genome to Dd18020, was utilized to compare pectinase-associated enzymes and pathways. The results from the current study demonstrated that Dd3937 possessed the most significant proportion of pathways presented and the highest number of pathways related to degradation, assimilation, and utilization of pectin. Also, Dd18020 exhibited a high number of pectinase-related enzymes. Both Dd3937 and Dd2222 shared the pectin degradation I pathway via the EC 3.1.1.11, EC 3.2.1.82, and EC 4.2.2.- enzymes, but did not share this pathway with either Bacillus species. In conclusion, Dd18020 demonstrated the genetic potential to produce multiple pectinase enzymes that could be beneficial to the degradation of pectin in poultry diets. However, for Dd18020 to become a commercially viable enzyme producer for the poultry industry, further research quantifying the pectinase production in vitro and determining the stability of the produced pectinases during feed manufacturing are necessary.
Collapse
Affiliation(s)
- Dana K Dittoe
- Department of Food Science and Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Ravi D Barabote
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Michael J Rothrock
- Egg Safety and Quality Research Unit, U.S. National Poultry Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Athens, GA, United States
| | - Steven C Ricke
- Department of Food Science and Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
2
|
Kouwen TRHM, van Dijl JM. Applications of thiol-disulfide oxidoreductases for optimized in vivo production of functionally active proteins in Bacillus. Appl Microbiol Biotechnol 2009; 85:45-52. [PMID: 19727703 PMCID: PMC2765640 DOI: 10.1007/s00253-009-2212-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/17/2009] [Accepted: 08/18/2009] [Indexed: 02/01/2023]
Abstract
Bacillus subtilis is a well-established cellular factory for proteins and fine chemicals. In particular, the direct secretion of proteinaceous products into the growth medium greatly facilitates their downstream processing, which is an important advantage of B. subtilis over other biotechnological production hosts, such as Escherichia coli. The application spectrum of B. subtilis is, however, often confined to proteins from Bacillus or closely related species. One of the major reasons for this (current) limitation is the inefficient formation of disulfide bonds, which are found in many, especially eukaryotic, proteins. Future exploitation of B. subtilis to fulfill the ever-growing demand for pharmaceutical and other high-value proteins will therefore depend on overcoming this particular hurdle. Recently, promising advances in this area have been achieved, which focus attention on the need to modulate the cellular levels and activity of thiol-disulfide oxidoreductases (TDORs). These TDORs are enzymes that control the cleavage or formation of disulfide bonds. This review will discuss readily applicable approaches for TDOR modulation and aims to provide leads for further improvement of the Bacillus cell factory for production of disulfide bond-containing proteins.
Collapse
Affiliation(s)
- Thijs R H M Kouwen
- Department of Medical Microbiology, University Medical Microbiology, University Medical Center Groningen, Groningen, The Netherlands
| | | |
Collapse
|
3
|
Contributions of the pre- and pro-regions of a Staphylococcus hyicus lipase to secretion of a heterologous protein by Bacillus subtilis. Appl Environ Microbiol 2009; 76:659-69. [PMID: 19948853 DOI: 10.1128/aem.01671-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis is a well-established cell factory for efficient secretion of many biotechnologically relevant enzymes that are naturally produced by it or related organisms. However, the use of B. subtilis as a host for production of heterologous secretory proteins can be complicated by problems related to inefficient translocation of the foreign proteins across the plasma membrane or to inefficient release of the exported proteins from the cell surface into the surrounding medium. Therefore, there is a clear need for tools that allow more efficient membrane targeting, translocation, and release during the production of these proteins. In the present study, we investigated the contributions of the pre (pre(lip)) and pro (pro(lip)) sequences of a Staphylococcus hyicus lipase to secretion of a heterologous protein, the alkaline phosphatase PhoA of Escherichia coli, by B. subtilis. The results indicate that the presence of the pro(lip)-peptide, in combination with the lipase signal peptide (pre(lip)), contributes significantly to the efficient secretion of PhoA by B. subtilis and that pre(lip) directs PhoA secretion more efficiently than the authentic signal peptide of PhoA. Genome-wide transcriptional analyses of the host cell responses indicate that, under the conditions tested, no known secretion or membrane-cell wall stress responses were provoked by the production of PhoA with any of the pre- and pro-region sequences used. Our data underscore the view that the pre-pro signals of the S. hyicus lipase are very useful tools for secretion of heterologous proteins in B. subtilis.
Collapse
|
4
|
Wahlström E, Vitikainen M, Kontinen VP, Sarvas M. The extracytoplasmic folding factor PrsA is required for protein secretion only in the presence of the cell wall in Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 2003; 149:569-577. [PMID: 12634326 DOI: 10.1099/mic.0.25511-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pulse-chase labelling was used to study the role of the cell wall microenvironment in the functioning of Bacillus subtilis PrsA, an extracellular lipoprotein and member of the parvulin family of peptidylprolyl cis/trans-isomerases. It was found that in protoplasts, and thus in the absence of a cell wall matrix, the post-translocational folding, stability and secretion of the AmyQ alpha-amylase were independent of PrsA, in contrast to the strict dependency found in rods. The results indicate that PrsA is dedicated to assisting the folding and stability of exported proteins in the particular microenvironment of the cytoplasmic membrane-cell wall interface, possibly as a chaperone preventing unproductive interactions with the wall. The data also provide evidence for a crucial role of the wall in protein secretion. The presence of the wall directly or indirectly facilitates the release of AmyQ from the cell membrane and affects the rate of the signal peptide processing.
Collapse
Affiliation(s)
- Eva Wahlström
- Vaccine Development Laboratory, National Public Health Institute, Mannerheimintie 166, FIN-00300, Helsinki, Finland
| | - Marika Vitikainen
- Vaccine Development Laboratory, National Public Health Institute, Mannerheimintie 166, FIN-00300, Helsinki, Finland
| | - Vesa P Kontinen
- Vaccine Development Laboratory, National Public Health Institute, Mannerheimintie 166, FIN-00300, Helsinki, Finland
| | - Matti Sarvas
- Vaccine Development Laboratory, National Public Health Institute, Mannerheimintie 166, FIN-00300, Helsinki, Finland
| |
Collapse
|
5
|
Gocheva B, Ivanova I, Kostova I, Ivanova N. Biochemical Changes in Streptomyces Tenebrarius—Produces of Nebramycin Antibiotic Complex under the Effect of Stress Factors. BIOTECHNOL BIOTEC EQ 2003. [DOI: 10.1080/13102818.2003.10819200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
6
|
Le Loir Y, Nouaille S, Commissaire J, Brétigny L, Gruss A, Langella P. Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl Environ Microbiol 2001; 67:4119-27. [PMID: 11526014 PMCID: PMC93138 DOI: 10.1128/aem.67.9.4119-4127.2001] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactic acid bacteria are food-grade microorganisms that are potentially good candidates for production of heterologous proteins of therapeutical or technological interest. We developed a model for heterologous protein secretion in Lactococcus lactis using the staphylococcal nuclease (Nuc). The effects on protein secretion of alterations in either (i) signal peptide or (ii) propeptide sequences were examined. (i) Replacement of the native Nuc signal peptide (SP(Nuc)) by that of L. lactis protein Usp45 (SP(Usp)) resulted in greatly improved secretion efficiency (SE). Pulse-chase experiments showed that Nuc secretion kinetics was better when directed by SP(Usp) than when directed by SP(Nuc). This SP(Usp) effect on Nuc secretion is not due to a better antifolding activity, since SP(Usp):Nuc precursor proteins display enzymatic activity in vitro, while SP(Nuc):Nuc precursor proteins do not. (ii) Deletion of the native Nuc propeptide dramatically reduces Nuc SE, regardless of which SP is used. We previously reported that a synthetic propeptide, LEISSTCDA, could efficiently replace the native Nuc propeptide to promote heterologous protein secretion in L. lactis (Y. Le Loir, A. Gruss, S. D. Ehrlich, and P. Langella, J. Bacteriol. 180:1895-1903, 1998). To determine whether the LEISSTCDA effect is due to its acidic residues, specific substitutions were introduced, resulting in neutral or basic propeptides. Effects of these two new propeptides and of a different acidic synthetic propeptide were tested. Acidic and neutral propeptides were equally effective in enhancing Nuc SE and also increased Nuc yields. In contrast, the basic propeptide strongly reduced both SE and the quantity of secreted Nuc. We have shown that the combination of the native SP(Usp) and a neutral or acidic synthetic propeptide leads to a significant improvement in SE and in the quantity of synthesized Nuc. These observations will be valuable in the production of heterologous proteins in L. lactis.
Collapse
Affiliation(s)
- Y Le Loir
- Laboratoire de Génétique Appliquée, Unité de Recherches Laitières et de Génétique Appliquée, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas Cedex, France
| | | | | | | | | | | |
Collapse
|
7
|
Drouault S, Corthier G, Ehrlich SD, Renault P. Expression of the Staphylococcus hyicus lipase in Lactococcus lactis. Appl Environ Microbiol 2000; 66:588-98. [PMID: 10653722 PMCID: PMC91867 DOI: 10.1128/aem.66.2.588-598.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular Staphylococcus hyicus lipase was expressed under the control of different promoters in Lactococcus lactis and Bacillus subtilis. Its expression at high and moderate levels is toxic for the former and the latter hosts, respectively. In L. lactis, the lipase was expressed at a high level, up to 30% of the total cellular proteins, under the control of the inducible promoter PnisA. About 80% of the lipase remained associated with the cells. Close to half of this amount remained associated with the inner side of the cytoplasmic membrane as unprocessed pre-pro-lipase. The other half was trapped by the cell wall and partially degraded at the N-terminal end. This result suggests that extracellular proteases degrade the lipase. Surprisingly, the kinetics and the pattern of lipase degradation were different in the two L. lactis subspecies, L. lactis subsp. cremoris and L. lactis subsp. lactis. The extracellular proteolytic systems that degrade lipase are thus different in these closely related subspecies. The incorrect export of the lipase is not due to an inappropriate leader peptide but may be due to an inefficiency of several steps of lipase secretion. We propose that (i) the S. hyicus lipase may require a special accessory system to be correctly exported or (ii) the kinetics of lipase synthesis may be a critical factor for proper folding.
Collapse
Affiliation(s)
- S Drouault
- Unité de Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy en Josas Cedex, France
| | | | | | | |
Collapse
|
8
|
Leskelä S, Wahlström E, Kontinen VP, Sarvas M. Lipid modification of prelipoproteins is dispensable for growth but essential for efficient protein secretion in Bacillus subtilis: characterization of the Lgt gene. Mol Microbiol 1999; 31:1075-85. [PMID: 10096076 DOI: 10.1046/j.1365-2958.1999.01247.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified and characterized the Igt gene of Bacillus subtilis. The prelipoprotein diacylglycerol transferase enzyme (Lgt) catalyses the first reaction in lipomodification of bacterial lipoproteins. Inactivation of Igt in B. subtilis by a nonsense mutation (prs-11 mutation) or by disruption was shown here to abolish lipomodification of prelipoproteins completely, as well as the cleavage of signal peptide. However, unlike in Gram-negative bacteria, the Igt mutants of B. subtilis were fully viable. In agreement with this observation, studies of two lipoproteins, PrsA and BlaP, indicated that non-lipomodified precursors of these proteins were functional and translocated across the cytoplasmic membrane. However, there was release of both precursors from cells, resulting in a reduced level of the cell-bound form. We have shown that the reduced level of the PrsA lipoprotein, a foldase involved in protein secretion, caused impaired protein secretion, a prominent phenotype of Igt mutants. There was no indication that non-lipomodified PrsA displayed reduced activity.
Collapse
Affiliation(s)
- S Leskelä
- Laboratory of Vaccine Development, National Public Health Institute, Helsinki, Finland
| | | | | | | |
Collapse
|
9
|
Hofmeister A. Activation of the proprotein transcription factor pro-sigmaE is associated with its progression through three patterns of subcellular localization during sporulation in Bacillus subtilis. J Bacteriol 1998; 180:2426-33. [PMID: 9573195 PMCID: PMC107185 DOI: 10.1128/jb.180.9.2426-2433.1998] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The activity of the sporulation transcription factor sigmaE in Bacillus subtilis is governed by an intercellular signal transduction pathway that controls the conversion of the inactive proprotein pro-sigmaE to the mature and active form of the factor. Here I use immunofluorescence microscopy to show that the activation of the proprotein is associated with its progression through three patterns of subcellular localization. In the predivisional sporangium, pro-sigmaE was found to be associated with the cytoplasmic membrane. Next, at the stage of asymmetric division, pro-sigmaE accumulated at the sporulation septum. Finally, after processing, mature sigmaE was found to be distributed throughout the mother cell cytoplasm. The results of subcellular fractionation and sedimentation in density gradients of extracts prepared from postdivisional sporangia confirmed that pro-sigmaE was chiefly present in the membrane fraction and that sigmaE was predominantly cytoplasmic, findings that suggest that the pro-amino acid sequence is responsible for the sequestration of pro-sigmaE to the membrane. The results of chemical cross-linking experiments showed that pro-sigmaE was present in a complex with its putative processing protein, SpoIIGA, or with a protein that depended on SpoIIGA. The membrane association of pro-sigmaE was, however, independent of SpoIIGA and other proteins specific to B. subtilis. Likewise, accumulation of pro-sigmaE at the septum did not depend on its interaction with SpoIIGA. Sequestration of pro-sigmaE to the membrane might serve to facilitate its interaction with SpoIIGA and may be important for preventing its premature association with core RNA polymerase. The implications of these findings for the compartmentalization of sigmaE are discussed.
Collapse
Affiliation(s)
- A Hofmeister
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
10
|
Le Loir Y, Gruss A, Ehrlich SD, Langella P. A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis. J Bacteriol 1998; 180:1895-903. [PMID: 9537390 PMCID: PMC107105 DOI: 10.1128/jb.180.7.1895-1903.1998] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lactococcus lactis, a gram-positive organism widely used in the food industry, is a potential candidate for the secretion of biologically useful proteins. We examined the secretion efficiency and capacity of L. lactis by using the Staphylococcus aureus nuclease (Nuc) as a heterologous model protein. When expressed in L. lactis from an efficient lactococcal promoter and its native signal peptide, only approximately 60% of total Nuc was present in a secreted form at approximately 5 mg per liter. The remaining 40% was found in a cell-associated precursor form. The secretion efficiency was reduced further to approximately 30% by the deletion of 17 residues of the Nuc native propeptide (resulting in NucT). We identified a modification which improved secretion efficiency of both native Nuc and NucT. A 9-residue synthetic propeptide, LEISSTCDA, which adds two negative charges at the +2 and +8 positions, was fused immediately after the signal peptide cleavage site. In the case of Nuc, secretion efficiency was increased to approximately 80% by LEISSTCDA insertion without altering the signal peptide cleavage site, and the yield was increased two- to fourfold (up to approximately 20 mg per liter). The improvement of NucT secretion efficiency was even more marked and rose from 30 to 90%. Similarly, the secretion efficiency of a third protein, the alpha-amylase of Bacillus stearothermophilus, was also improved by LEISSTCDA. These data indicate that the LEISSTCDA synthetic propeptide improves secretion of different heterologous proteins in L. lactis.
Collapse
Affiliation(s)
- Y Le Loir
- Laboratoire de Génétique Appliquée-URLEA, Institut National de la Recherche Agronomique, Domaine de Vilvert, Jouy en Josas, France.
| | | | | | | |
Collapse
|
11
|
Meens J, Herbort M, Klein M, Freudl R. Use of the pre-pro part of Staphylococcus hyicus lipase as a carrier for secretion of Escherichia coli outer membrane protein A (OmpA) prevents proteolytic degradation of OmpA by cell-associated protease(s) in two different gram-positive bacteria. Appl Environ Microbiol 1997; 63:2814-20. [PMID: 9212429 PMCID: PMC168578 DOI: 10.1128/aem.63.7.2814-2820.1997] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Heterologous protein secretion was studied in the gram-positive bacteria Bacillus subtilis and Staphylococcus carnosus by using the Escherichia coli outer membrane protein OmpA as a model protein. The OmpA protein was found to be translocated across the plasma membrane of both microorganisms. However, the majority of the translocated OmpA was similarly degraded in B. subtilis and S. carnosus despite the fact that the latter organism does not secrete soluble exoproteases into the culture medium. The finding that purified OmpA, which was added externally to the culture medium of growing S. carnosus cells, remained intact indicates that newly synthesized and exported OmpA is degraded by one or more cell-associated proteases rather than by a soluble exoprotease. Fusion of the mature part of OmpA to the pre-pro part of a lipase from Staphylococcus hyicus allowed the efficient release of the corresponding propeptide-OmpA hybrid protein into the supernatant and completely prevented the cell-associated proteolytic degradation of the mature OmpA, most likely reflecting an important function of the propeptide during secretion of its natural mature lipase moiety. The relevance of our findings for the biotechnological use of gram-positive bacteria as host organisms for the secretory production of heterologous proteins is discussed.
Collapse
Affiliation(s)
- J Meens
- Institut für Biotechnologie 1, Forschungszentrum Jülich GmbH, Germany
| | | | | | | |
Collapse
|
12
|
Collier DN. Escherichia coli signal peptides direct inefficient secretion of an outer membrane protein (OmpA) and periplasmic proteins (maltose-binding protein, ribose-binding protein, and alkaline phosphatase) in Bacillus subtilis. J Bacteriol 1994; 176:3013-20. [PMID: 8188602 PMCID: PMC205459 DOI: 10.1128/jb.176.10.3013-3020.1994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Signal peptides of gram-positive exoproteins generally carry a higher net positive charge at their amino termini (N regions) and have longer hydrophobic cores (h regions) and carboxy termini (C regions) than do signal peptides of Escherichia coli envelope proteins. To determine if these differences are functionally significant, the ability of Bacillus subtilis to secrete four different E. coli envelope proteins was tested. A pulse-chase analysis demonstrated that the periplasmic maltose-binding protein (MBP), ribose-binding protein (RBP), alkaline phosphatase (PhoA), and outer membrane protein OmpA were only inefficiently secreted. Inefficient secretion could be ascribed largely to properties of the homologous signal peptides, since replacing them with the B. amyloliquefaciens alkaline protease signal peptide resulted in significant increases in both the rate and extent of export. The relative efficiency with which the native precursors were secreted (OmpA >> RBP > MBP > PhoA) was most closely correlated with the overall hydrophobicity of their h regions. This correlation was strengthened by the observation that the B. amyloliquefaciens levansucrase signal peptide, whose h region has an overall hydrophobicity similar to that of E. coli signal peptides, was able to direct secretion of only modest levels of MBP and OmpA. These results imply that there are differences between the secretion machineries of B. subtilis and E. coli and demonstrate that the outer membrane protein OmpA can be translocated across the cytoplasmic membrane of B. subtilis.
Collapse
Affiliation(s)
- D N Collier
- Central Research and Development Division, E. I. DuPont de Nemours & Co., Wilmington, Delaware 19880-0328
| |
Collapse
|
13
|
Meens J, Frings E, Klose M, Freudl R. An outer membrane protein (OmpA) of Escherichia coli can be translocated across the cytoplasmic membrane of Bacillus subtilis. Mol Microbiol 1993; 9:847-55. [PMID: 8231814 DOI: 10.1111/j.1365-2958.1993.tb01743.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The translocation of secretory proteins derived from a Gram-positive (Staphylococcus hyicus prolipase) or a Gram-negative (Escherichia coli pre-OmpA protein) bacterium across the cytoplasmic membrane was studied in E. coli and Bacillus subtilis. In both microorganisms, the prolipase was found to be secreted across the plasma membrane when either the pre-prolipase signal peptide (38 amino acids in length) or the pre-OmpA signal peptide (21 amino acids in length) was used. Expression of the gene encoding the authentic pre-OmpA protein in B. subtilis resulted in the translocation of mature OmpA protein across the plasma membrane. Processing of the OmpA precursor in B. subtilis required the electrochemical potential and was sensitive to sodium azide, suggesting that the B. subtilis SecA homologue was involved in the translocation process. The mature OmpA protein, which was most likely present in an aggregated state, was fully accessible to proteases in protoplasted cells. Therefore, our results clearly demonstrate that an outer membrane protein can be secreted by B. subtilis, supporting the notion that the basic mechanism of protein translocation is highly conserved in Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- J Meens
- Institut für Biotechnologie, Forschungszentrum Jülich GmbH, Germany
| | | | | | | |
Collapse
|
14
|
Srikumar R, Dahan D, Gras MF, Saarinen L, Käyhty H, Sarvas M, Vogel L, Coulton JW. Immunological properties of recombinant porin of Haemophilus influenzae type b expressed in Bacillus subtilis. Infect Immun 1993; 61:3334-41. [PMID: 7687584 PMCID: PMC281008 DOI: 10.1128/iai.61.8.3334-3341.1993] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The major surface-located, channel-forming protein in the outer membrane of Haemophilus influenzae type b (Hib) is porin (341 amino acids; M(r), 37,782). In order to generate Hib porin that is devoid of lipooligosaccharides and capsular polysaccharide, the Hib porin gene ompP2 was subcloned into a plasmid vector and recombinant Hib porin was expressed in Bacillus subtilis. Recombinant porin was produced in large quantities in B. subtilis and formed intracellular inclusion bodies. Recombinant porin was extracted from inclusion bodies and shown to be active in forming pores in synthetic black lipid membranes. However, these pores demonstrated different pore characteristics than wild-type Hib porin. Mouse hyperimmune sera against recombinant porin were generated and subjected to epitope scanning with a library of 336 overlapping synthetic hexapeptides that corresponded to the entire sequence of Hib porin. The epitope specificities of the anti-recombinant porin antibodies were similar to those of antibodies against Hib porin: selected regions near the amino terminus which include a buried loop in the native structure of Hib porin were more immunogenic than regions at the carboxy terminus. Although some mouse anti-recombinant porin antibodies mediated complement-dependent binding to Hib by polymorphonuclear leucocytes in opsonophagocytosis assays, the antibodies were not bactericidal, nor did they abrogate bacteremia in the infant rat model of infection. It was concluded that the native state of Hib porin is required for the generation of a protective immune response against the bacterium.
Collapse
Affiliation(s)
- R Srikumar
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kontinen VP, Sarvas M. The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secretion. Mol Microbiol 1993; 8:727-37. [PMID: 8332065 DOI: 10.1111/j.1365-2958.1993.tb01616.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mutations of the prsA gene of Bacillus subtilis have indicated that the gene is involved in protein secretion and it encodes a novel component of the cellular secretion machinery. We now demonstrate that the gene product is a membrane-associated lipoprotein, presumably bound to the outer face of the cytoplasmic membrane. Experiments to inactivate the prsA gene with insertions indicated that it is indispensable for viability. The cellular level of PrsA protein was shown to be decreased in prsA mutants with decreased level of exoproteins, consistent with an essential function in protein secretion. An increased amount of cellular PrsA protein was introduced by increasing the copy number of prsA in B. subtilis. This enhanced, from six- to twofold, the secretion of alpha-amylases and a protease in strains, which expressed high levels of these exoenzymes. This suggests that PrsA protein is the rate-limiting component of the secretion machinery, a finding that is of considerable biotechnological interest.
Collapse
Affiliation(s)
- V P Kontinen
- Department of Molecular Bacteriology, National Public Health Institute, Helsinki, Finland
| | | |
Collapse
|
16
|
Abstract
Bacilli secrete numerous proteins into the environment. Many of the secretory proteins, their export signals, and their processing steps during secretion have been characterized in detail. In contrast, the molecular mechanisms of protein secretion have been relatively poorly characterized. However, several components of the protein secretion machinery have been identified and cloned recently, which is likely to lead to rapid expansion of the knowledge of the protein secretion mechanism in Bacillus species. Comparison of the presently known export components of Bacillus species with those of Escherichia coli suggests that the mechanism of protein translocation across the cytoplasmic membrane is conserved among gram-negative and gram-positive bacteria differences are found in steps preceding and following the translocation process. Many of the secretory proteins of bacilli are produced industrially, but several problems have been encountered in the production of Bacillus heterologous secretory proteins. In the final section we discuss these problems and point out some possibilities to overcome them.
Collapse
Affiliation(s)
- M Simonen
- Institute of Biotechnology, University of Helsinki, Finland
| | | |
Collapse
|
17
|
Puohiniemi R, Muotiala A, Helander IM, Sarvas M. Conformation of Escherichia coli outer membrane protein OmpA produced in Bacillus subtilis: influence of lipopolysaccharide. FEMS Microbiol Lett 1993; 106:105-10. [PMID: 8440462 DOI: 10.1111/j.1574-6968.1993.tb05942.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The conformation of the outer membrane protein OmpA of Escherichia coli produced in Bacillus subtilis and solubilized in Sarkosyl was studied by measuring its ability to bind OmpA-specific phage K3 and to inhibit F-mediated conjugation. The partially purified protein was inactive in both of these assays. Refolding of the protein in the presence of lipopolysaccharide resulted in preparations with full phage-binding and conjugation-inhibiting capacity, indicating the formation of surface-exposed loops of OmpA of native conformation. The finding is of importance for the potential use of outer membrane proteins of Gram-negative bacteria as vaccines.
Collapse
Affiliation(s)
- R Puohiniemi
- Department of Molecular Bacteriology, National Public Health Institute, Helsinki, Finland
| | | | | | | |
Collapse
|
18
|
Simonen M, Tarkka E, Puohiniemi R, Sarvas M. Incompatibility of outer membrane proteins OmpA and OmpF of Escherichia coli with secretion in Bacillus subtilis: fusions with secretable peptides. FEMS Microbiol Lett 1992; 100:233-41. [PMID: 1478459 DOI: 10.1111/j.1574-6968.1992.tb14046.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The secretion of the outer membrane proteins OmpA and OmpF of Escherichia coli has previously been found to be blocked at an early intracellular step, when these proteins were fused to a bacillar signal sequence and expressed in Bacillus subtilis. We have now fused these proteins to long secretable polypeptides, the amino-terminal portions of alpha-amylase or beta-lactamase. In spite of this, no secretion of the fusion proteins was detected in B. subtilis. With the exception of a small fraction of the beta-lactamase fusion, the proteins were cell-bound with uncleaved signal sequences. Protease accessibility indicated that the fusion proteins were not even partially exposed on the outer surface of the cytoplasmic membrane. Thus there was no change of the location compared to the OmpA or OmpF fused to the signal sequence only. We conclude that, like OmpA and OmpF, the fusion proteins fold into an export-incompatible conformation in B. subtilis before the start of translocation, which we postulate to be a late post-translational event.
Collapse
Affiliation(s)
- M Simonen
- National Public Health Institute, Helsinki, Finland
| | | | | | | |
Collapse
|
19
|
Simonen M, Tarkka E, Puohiniemi R, Sarvas M. Incompatibility of outer membrane proteins OmpA and OmpF of Escherichia coli with secretion in Bacillus subtilis: Fusions with secretable peptides. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05709.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|