1
|
Ahmad A, Tsutsui A, Iijima S, Suzuki T, Shah AA, Nakajima-Kambe T. Gene structure and comparative study of two different plastic-degrading esterases from Roseateles depolymerans strain TB-87. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
2
|
Patel N, Rai D, Shahane S, Mishra U. Lipases: Sources, Production, Purification, and Applications. Recent Pat Biotechnol 2019; 13:45-56. [PMID: 30370868 DOI: 10.2174/1872208312666181029093333] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Background and Sources: Lipase enzyme is a naturally occurring enzyme found in the stomach and pancreatic juice. Its function is to digest fats and lipids, helping to maintain correct gallbladder function. Lipase is the one such widely used and versatile enzyme. These enzymes are obtained from animals, plants and as well as from several microorganisms and are sufficiently stable. These are considered as nature's catalysts, but commercially, only microbial lipases are being used significantly. Applications: They found enormous application in the industries of fat and oil processing, oleochemical industry, food industry, detergents, pulp and paper industry, detergents, environment management, tea processing, biosensors and cosmetics and perfumery. Various recent patents related to lipases have been revised in this review. Conclusion: Lipases are very peculiar as they have the ability to hydrolyse fats into fatty acids and glycerols at the water-lipid interface and can reverse the reaction in non-aqueous media. This natural ability makes it the most widely used enzyme in various industrial applications. This article deals with the immense versatility of lipase enzymes along with the recent advancements done in the various fields related to their purification and mass production in industries.
Collapse
Affiliation(s)
- Naveen Patel
- Department of Civil Engineering, NIT Agartala, Agartala-799046, India
| | - Dhananjai Rai
- Department of Civil Engineering, BIET Jhansi, Jhansi-284128, India
| | - Shraddha Shahane
- Department of Civil Engineering, NIT Agartala, Agartala-799046, India
| | - Umesh Mishra
- Department of Civil Engineering, NIT Agartala, Agartala-799046, India
| |
Collapse
|
3
|
Liu W, Li M, Jiao L, Wang P, Yan Y. PmrA/PmrB Two-Component System Regulation of lipA Expression in Pseudomonas aeruginosa PAO1. Front Microbiol 2018; 8:2690. [PMID: 29379484 PMCID: PMC5775262 DOI: 10.3389/fmicb.2017.02690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 12/26/2017] [Indexed: 12/01/2022] Open
Abstract
Pseudomonas lipases are well-studied, but few studies have examined the mechanisms of lipase expression regulation. As a global regulatory protein, PmrA controls the expression of multiple genes such as the Dot/Icm apparatus, eukaryotic-like proteins, and secreted effectors. In this study, the effect of PmrA on expression of the lipase lipA in Pseudomonas aeruginosa PAO1 was investigated by knocking out or overexpressing pmrA, rsmY, and rsmA. PmrA regulated the expression of lipA at both the transcriptional and translational level although translation was the pivotal regulatory mechanism for lipA expression. PmrA also regulated the expression of rsmY. Using gel mobility shift assay and pmrA/rsmY double gene knock-out model, we showed that PmrA directly bound to the promoter sequence of rsmY to regulate lipA expression. Translation of lipA was activated by the PmrA/PmrB system via RsmA. Specifically, the Shine-Dalgarno (SD) sequence located at lipA mRNA was overlapped through combination between RsmA and the AGAUGA sequence, subsequently blocking the 30S ribosomal subunit to the SD sequence, leading to translational inhibition of lipA. Transcriptional repression of RsmY initiated translation of lipA through negative translational regulation of rsmA. In conclusion, this study demonstrated that in P. aeruginosa PAO1, PmrA mainly regulated rsmY expression at a translational level to influence lipA expression. RsmY primarily activated lipA translation via negative translational regulation of rsmA.
Collapse
Affiliation(s)
- Wu Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Menggang Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Liangcheng Jiao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Pengbo Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yunjun Yan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Kinsella RL, Lopez J, Palmer LD, Salinas ND, Skaar EP, Tolia NH, Feldman MF. Defining the interaction of the protease CpaA with its type II secretion chaperone CpaB and its contribution to virulence in Acinetobacter species. J Biol Chem 2017; 292:19628-19638. [PMID: 28982978 PMCID: PMC5712607 DOI: 10.1074/jbc.m117.808394] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/02/2017] [Indexed: 11/06/2022] Open
Abstract
Acinetobacter baumannii, Acinetobacter nosocomialis, and Acinetobacter pittii are a frequent cause of multidrug-resistant, healthcare-associated infections. Our previous work demonstrated that A. nosocomialis M2 possesses a functional type II secretion system (T2SS) that is required for full virulence. Further, we identified the metallo-endopeptidase CpaA, which has been shown previously to cleave human Factor V and deregulate blood coagulation, as the most abundant type II secreted effector protein. We also demonstrated that its secretion is dependent on CpaB, a membrane-bound chaperone. In this study, we show that CpaA expression and secretion are conserved across several medically relevant Acinetobacter species. Additionally, we demonstrate that deletion of cpaA results in attenuation of A. nosocomialis M2 virulence in moth and mouse models. The virulence defects resulting from the deletion of cpaA were comparable with those observed upon abrogation of T2SS activity. The virulence defects resulting from the deletion of cpaA are comparable with those observed upon abrogation of T2SS activity. We also show that CpaA and CpaB strongly interact, forming a complex in a 1:1 ratio. Interestingly, deletion of the N-terminal transmembrane domain of CpaB results in robust secretion of CpaA and CpaB, indicating that the transmembrane domain is dispensable for CpaA secretion and likely functions to retain CpaB inside the cell. Limited proteolysis of spheroplasts revealed that the C-terminal domain of CpaB is exposed to the periplasm, suggesting that this is the site where CpaA and CpaB interact in vivo Last, we show that CpaB does not abolish the proteolytic activity of CpaA against human Factor V. We conclude that CpaA is, to the best of our knowledge, the first characterized, bona fide virulence factor secreted by Acinetobacter species.
Collapse
Affiliation(s)
- Rachel L Kinsella
- From the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
- the Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, Alberta, Canada, and
| | - Juvenal Lopez
- From the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Lauren D Palmer
- the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Nichole D Salinas
- From the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Eric P Skaar
- the Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Niraj H Tolia
- From the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Mario F Feldman
- From the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110,
| |
Collapse
|
5
|
Knapp A, Voget S, Gao R, Zaburannyi N, Krysciak D, Breuer M, Hauer B, Streit WR, Müller R, Daniel R, Jaeger KE. Mutations improving production and secretion of extracellular lipase by Burkholderia glumae PG1. Appl Microbiol Biotechnol 2016; 100:1265-1273. [PMID: 26476653 PMCID: PMC4717159 DOI: 10.1007/s00253-015-7041-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/15/2015] [Accepted: 09/24/2015] [Indexed: 01/05/2023]
Abstract
Burkholderia glumae is a Gram-negative phytopathogenic bacterium known as the causative agent of rice panicle blight. Strain B. glumae PG1 is used for the production of a biotechnologically relevant lipase, which is secreted into the culture supernatant via a type II secretion pathway. We have comparatively analyzed the genome sequences of B. glumae PG1 wild type and a lipase overproducing strain obtained by classical strain mutagenesis. Among a total number of 72 single nucleotide polymorphisms (SNPs) identified in the genome of the production strain, two were localized in front of the lipAB operon and were analyzed in detail. Both mutations contribute to a 100-fold overproduction of extracellular lipase in B. glumae PG1 by affecting transcription of the lipAB operon and efficiency of lipase secretion. We analyzed each of the two SNPs separately and observed a stronger influence of the promoter mutation than of the signal peptide modification but also a cumulative effect of both mutations. Furthermore, fusion of the mutated LipA signal peptide resulted in a 2-fold increase in secretion of the heterologous reporter alkaline phosphatase from Escherichia coli.
Collapse
Affiliation(s)
- Andreas Knapp
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sonja Voget
- Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, Germany
| | - Rong Gao
- Biocenter Klein Flottbek, Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Nestor Zaburannyi
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Dagmar Krysciak
- Biocenter Klein Flottbek, Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Michael Breuer
- BASF SE, Biocatalysis and Fine Chemicals Research, Ludwigshafen, Germany
| | - Bernhard Hauer
- BASF SE, Biocatalysis and Fine Chemicals Research, Ludwigshafen, Germany
- Institute of Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Wolfgang R Streit
- Biocenter Klein Flottbek, Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Rolf Daniel
- Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences IBG-1: Biotechnology, Jülich, Germany.
| |
Collapse
|
6
|
Medically Relevant Acinetobacter Species Require a Type II Secretion System and Specific Membrane-Associated Chaperones for the Export of Multiple Substrates and Full Virulence. PLoS Pathog 2016; 12:e1005391. [PMID: 26764912 PMCID: PMC4713064 DOI: 10.1371/journal.ppat.1005391] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/18/2015] [Indexed: 01/31/2023] Open
Abstract
Acinetobacter baumannii, A. nosocomialis, and A. pittii have recently emerged as opportunistic human pathogens capable of causing severe human disease; however, the molecular mechanisms employed by Acinetobacter to cause disease remain poorly understood. Many pathogenic members of the genus Acinetobacter contain genes predicted to encode proteins required for the biogenesis of a type II secretion system (T2SS), which have been shown to mediate virulence in many Gram-negative organisms. Here we demonstrate that Acinetobacter nosocomialis strain M2 produces a functional T2SS, which is required for full virulence in both the Galleria mellonella and murine pulmonary infection models. Importantly, this is the first bona fide secretion system shown to be required for virulence in Acinetobacter. Using bioinformatics, proteomics, and mutational analyses, we show that Acinetobacter employs its T2SS to export multiple substrates, including the lipases LipA and LipH as well as the protease CpaA. Furthermore, the Acinetobacter T2SS, which is found scattered amongst five distinct loci, does not contain a dedicated pseudopilin peptidase, but instead relies on the type IV prepilin peptidase, reinforcing the common ancestry of these two systems. Lastly, two of the three secreted proteins characterized in this study require specific chaperones for secretion. These chaperones contain an N-terminal transmembrane domain, are encoded adjacently to their cognate effector, and their disruption abolishes type II secretion of their cognate effector. Bioinformatic analysis identified putative chaperones located adjacent to multiple previously known type II effectors from several Gram-negative bacteria, which suggests that T2SS chaperones constitute a separate class of membrane-associated chaperones mediating type II secretion.
Collapse
|
7
|
Acinetobacter baumannii Is Dependent on the Type II Secretion System and Its Substrate LipA for Lipid Utilization and In Vivo Fitness. J Bacteriol 2015; 198:711-9. [PMID: 26668261 DOI: 10.1128/jb.00622-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/01/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Gram-negative bacteria express a number of sophisticated secretion systems to transport virulence factors across the cell envelope, including the type II secretion (T2S) system. Genes for the T2S components GspC through GspN and PilD are conserved among isolates of Acinetobacter baumannii, an increasingly common nosocomial pathogen that is developing multidrug resistance at an alarming rate. In contrast to most species, however, the T2S genes are dispersed throughout the genome rather than linked into one or two operons. Despite this unique genetic organization, we show here that the A. baumannii T2S system is functional. Deletion of gspD or gspE in A. baumannii ATCC 17978 results in loss of secretion of LipA, a lipase that breaks down long-chain fatty acids. Due to a lack of extracellular lipase, the gspD mutant, the gspE mutant, and a lipA deletion strain are incapable of growth on long-chain fatty acids as a sole source of carbon, while their growth characteristics are indistinguishable from those of the wild-type strain in nutrient-rich broth. Genetic inactivation of the T2S system and its substrate, LipA, also has a negative impact on in vivo fitness in a neutropenic murine model for bacteremia. Both the gspD and lipA mutants are outcompeted by the wild-type strain as judged by their reduced numbers in spleen and liver following intravenous coinoculation. Collectively, our findings suggest that the T2S system plays a hitherto-unrecognized role in in vivo survival of A. baumannii by transporting a lipase that may contribute to fatty acid metabolism. IMPORTANCE Infections by multidrug-resistant Acinetobacter baumannii are a growing health concern worldwide, underscoring the need for a better understanding of the molecular mechanisms by which this pathogen causes disease. In this study, we demonstrated that A. baumannii expresses a functional type II secretion (T2S) system that is responsible for secretion of LipA, an extracellular lipase required for utilization of exogenously added lipids. The T2S system and the secreted lipase support in vivo colonization and thus contribute to the pathogenic potential of A. baumannii.
Collapse
|
8
|
Ogino H, Inoue S, Yasuda M, Doukyu N. Hyper-activation of foldase-dependent lipase with lipase-specific foldase. J Biotechnol 2013; 166:20-4. [PMID: 23669194 DOI: 10.1016/j.jbiotec.2013.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 01/27/2023]
Abstract
The LST-03 lipase from Pseudomonas aeruginosa LST-03 requires lipase-specific foldase for activation. Abundant expression of the active lipase was successfully accomplished with individual expression of the lipase and foldase in a heterologous host and subsequent in vitro activation. Although the activity of the native lipase from culture supernatant of P. aeruginosa LST-03 was 110 kI.U./g, that after in vitro activation using individually expressed lipase and foldase was 228 kI.U./g. Furthermore, the activity after in vitro activation with afterwards adding calcium ions was 359 kI.U./g. However, the incubation of the lipase with the foldase in the presence of calcium ions resulted in a small conformational transition and low activation levels of the lipase by the foldase. The lipase showed high affinity for the foldase in the presence of calcium ions. The results indicate that in a cellular environment that contains calcium ions, the lipase would not become a hyperactive form by the foldase.
Collapse
Affiliation(s)
- Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | | | | | | |
Collapse
|
9
|
Akanuma G, Ishibashi H, Miyagawa T, Yoshizawa R, Watanabe S, Shiwa Y, Yoshikawa H, Ushio K, Ishizuka M. EliA facilitates the induction of lipase expression by stearyl alcohol in Ralstonia sp. NT80. FEMS Microbiol Lett 2012; 339:48-56. [PMID: 23173706 DOI: 10.1111/1574-6968.12055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 11/13/2012] [Indexed: 11/28/2022] Open
Abstract
Extracellular lipase activity from Ralstonia sp. NT80 is induced significantly by fatty alcohols such as stearyl alcohol. We found that when lipase expression was induced by stearyl alcohol, a 14-kDa protein (designated EliA) was produced concomitantly and abundantly in the culture supernatant. Cloning and sequence analysis revealed that EliA shared 30% identity with the protein-like activator protein of Pseudomonas aeruginosa, which facilitates oxidation and assimilation of n-hexadecane. Inactivation of the eliA gene caused a significant reduction in the level of induction of lipase expression by stearyl alcohol. Furthermore, turbidity that was caused by the presence of emulsified stearyl alcohol, an insoluble material, remained in the culture supernatant of the ΔeliA mutant during the late stationary phase, whereas the culture supernatant of the wild type at 72 h was comparatively clear. In contrast, when lipase expression was induced by polyoxyethylene (20) oleyl ether, a soluble material, inactivation of eliA did not affect the extracellular lipase activity greatly. These results strongly indicate that EliA facilitates the induction of lipase expression, presumably by promoting the recognition and/or incorporation of the induction signal that is attributed to stearyl alcohol.
Collapse
Affiliation(s)
- Genki Akanuma
- Department of Applied Chemistry, Chuo University, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Characterization of an extracellular lipase and its chaperone from Ralstonia eutropha H16. Appl Microbiol Biotechnol 2012; 97:2443-54. [DOI: 10.1007/s00253-012-4115-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 11/25/2022]
|
11
|
Quyen TD, Vu CH, Le GTT. Enhancing functional production of a chaperone-dependent lipase in Escherichia coli using the dual expression cassette plasmid. Microb Cell Fact 2012; 11:29. [PMID: 22380513 PMCID: PMC3359195 DOI: 10.1186/1475-2859-11-29] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 03/01/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The lipase subfamilies I.1 and I.2 show more than 33% homology in the amino acid sequences and most members share another common property that their genes are clustered with the secondary genes whose protein products are required for folding the lipase into an active conformation and secretion into the culture medium. In previous studies, the lipase (LipA) and its chaperone (LipB) from Ralstonia sp. M1 were overexpressed in E. coli and the lipase was successfully refolded in vitro. The purpose of this study was to enhance the production of the active lipase LipA from Ralstonia sp. M1 in the heterologous host E. coli without in vitro refolding process, using two-plasmid co-expression systems and dual expression cassette plasmid systems. RESULTS To produce more active lipase from Ralstonia sp. M1 in E. coli without in vitro refolding process but with the help of overexpression of the chaperone (LipB1 and LipB3 corresponding to 56-aa truncated and 26-aa truncated chaperone LipB), six different expression systems including 2 two-plasmid co-expression systems (E. coli BL21/pELipABa + pELipB1k and BL21/pELipABa + pELipB3k) and 4 dual expression cassette plasmid systems (BL21/pELipAB-LipB1a, BL21/pELipAB-LipB3a, BL21/pELipA-LipB1a, and BL21/pELipA-LipB3a) were constructed. The two-plasmid co-expression systems (E. coli BL21/pELipABa + pELipB1k and BL21/pELipABa + pELipB3k) produced the active lipase at a level of 4 times as high as the single expression cassette plasmid system E. coli BL21/pELipABa did. For the first time, the dual expression cassette plasmid systems BL21/pELipAB-LipB1a and BL21/pELipAB-LipB3a yielded 29- and 19-fold production of the active lipase in comparison with the single expression cassette plasmid system E. coli BL21/pELipABa, respectively. Although the lipase amount was equally expressed in all these expression systems (40% of total cellular protein) and only a small fraction of the overexpressed lipase was folded in vivo into the functional lipase in soluble form whereas the main fraction was still inactive in the form of inclusion bodies. Another controversial finding was that the dual expression cassette plasmid systems E. coli BL21/pELipAB-LipB1a and E. coli/pELipAB-LipB3a secreted the active lipase into the culture medium of 51 and 29 times as high as the single expression cassette plasmid system E. coli pELipABa did, respectively, which has never been reported before. Another interesting finding was that the lipase form LipA6xHis (mature lipase fused with 6× histidine tag) expressed in the dual expression cassette plasmid systems (BL21/pELipA-LipB1a and BL21/pELipA-LipB3a) showed no lipase activity although the expression level of the lipase and two chaperone forms LipB1 and LipB3 in these systems remained as high as that in E. coli BL21/pELipABa + pELipB1k, BL21/pELipABa + pELipB3k, BL21/pELipAB-LipB1a, and BL21/pELipAB-LipB3a. The addition of Neptune oil or detergents into the LB medium increased the lipase production and secretion by up to 94%. CONCLUSIONS Our findings demonstrated that a dual expression cassette plasmid system E. coli could overproduce and secrete the active chaperone-dependent lipase (subfamilies I.1 and I.2) in vivo and an improved dual expression cassette plasmid system E. coli could be potentially applied for industrial-scale production of subfamily I.1 and I.2 lipases.
Collapse
Affiliation(s)
- Thi Dinh Quyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Distr, Caugiay 10600, Hanoi, Vietnam.
| | | | | |
Collapse
|
12
|
Catalão MJ, Milho C, Gil F, Moniz-Pereira J, Pimentel M. A second endolysin gene is fully embedded in-frame with the lysA gene of mycobacteriophage Ms6. PLoS One 2011; 6:e20515. [PMID: 21694774 PMCID: PMC3111421 DOI: 10.1371/journal.pone.0020515] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 05/02/2011] [Indexed: 11/24/2022] Open
Abstract
Mycobacteriophages are dsDNA viruses that infect mycobacterial hosts. The mycobacteriophage Ms6 accomplishes lysis by producing two cell wall hydrolytic enzymes, Lysin A (LysA) that possesses a central peptidoglycan recognition protein (PGRP) super-family conserved domain with the amidase catalytic site, that cleaves the amide bond between the N-acetylmuramic acid and L-alanine residues in the oligopeptide crosslinking chains of the peptidoglycan and Lysin B (LysB) a mycolylarabinogalactan esterase that hydrolyzes the mycolic acids from the mycolyl-arabinogalactan-peptidoglycan complex. Examination of the endolysin (lysA) DNA sequence revealed the existence of an embedded gene (lysA241) encoded in the same reading frame and preceded by a consensus ribosome-binding site. In the present work we show that, even though lysA is essential for Ms6 viability, phage mutants that express only the longer (Lysin384) or the shorter (Lysin241) endolysin are viable, but defective in the normal timing, progression and completion of host cell lysis. In addition, both endolysins have peptidoglycan hydrolase activity and demonstrated broad growth inhibition activity against various Gram-positive bacteria and mycobacteria.
Collapse
Affiliation(s)
- Maria João Catalão
- Centro de Patogénese Molecular, Unidade dos Retrovírus e Infecções Associadas, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Milho
- Centro de Patogénese Molecular, Unidade dos Retrovírus e Infecções Associadas, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Filipa Gil
- Centro de Patogénese Molecular, Unidade dos Retrovírus e Infecções Associadas, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - José Moniz-Pereira
- Centro de Patogénese Molecular, Unidade dos Retrovírus e Infecções Associadas, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Madalena Pimentel
- Centro de Patogénese Molecular, Unidade dos Retrovírus e Infecções Associadas, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
13
|
Kobayashi H, Tateishi A, Tsuge H, Takahashi E, Okamoto K, Yamanaka H. The carboxy-terminal tail of Aeromonas sobria Serine Protease is associated with the chaperone. Microbiol Immunol 2010; 53:647-57. [PMID: 19954452 DOI: 10.1111/j.1348-0421.2009.00175.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
ASP is the only bacterial protease in the kexin group of the subtilisin family. Previous studies have revealed that the ORF2 protein encoded at the 3' end of the asp operon is required for ASP to change from a nascent form into an active form in the periplasm. However, the mechanism by which ORF2 makes contact and interacts with ASP in the maturation process remains unknown. The present study examined the effect of mutations in the carboxy-terminal region of ASP on the ASP maturation process. Both deletion-mutation and amino acid-substitution studies have demonstrated that the histidine residue at position 595 (His-595), the sixth residue from the carboxyl terminus of ASP, is highly involved in the generation of active ASP molecules. An analysis by pull-down assay revealed that mutation at His-595 reduces the efficacy of nascent ASP to transition into active ASP by reducing the ability of ASP to make contact and interact with ORF2. Thus, it appears likely that nascent ASP in the periplasm interacts with ORF2 via the carboxy-terminal region, and His-595 of ASP appears to be an indispensable residue in this interaction.
Collapse
Affiliation(s)
- Hidetomo Kobayashi
- Laboratory of Molecular Microbiological Science, Faculty of Pharmaceutical Sciences, Hiroshima International University, Kure, Hiroshima, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Kawata T, Ogino H. Enhancement of the organic solvent-stability of the LST-03 lipase by directed evolution. Biotechnol Prog 2010; 25:1605-11. [PMID: 19731302 DOI: 10.1002/btpr.264] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
LST-03 lipase from an organic solvent-tolerant Pseudomonas aeruginosa LST-03 has high stability and activity in the presence of various organic solvents. In this research, enhancement of organic solvent-stability of LST-03 lipase was attempted by directed evolution. The structural gene of the LST-03 lipase was amplified by the error prone-PCR method. Organic solvent-stability of the mutated lipases was assayed by formation of a clear zone of agar which contained dimethyl sulfoxide (DMSO) and tri-n-butyrin and which overlaid a plate medium. And the organic solvent-stability was also confirmed by measuring the half-life of activity in the presence of DMSO. Four mutated enzymes were selected on the basis of their high organic solvent-stability in the presence of DMSO. The organic solvent-stabilities of mutated LST-03 lipase in the presence of various organic solvents were measured and their mutated amino acid residues were identified. The half-lives of the LST-03-R65 lipase in the presence of cyclohexane and n-decane were about 9 to 11-fold longer than those of the wild-type lipase, respectively. Some substituted amino acid residues of mutated LST-03 lipases have been located at the surface of the enzyme molecules, while some other amino acid residues have been changed from neutral to basic residues.
Collapse
Affiliation(s)
- Takuya Kawata
- Department of Chemical Engineering, Osaka Prefecture University, Naka-ku, Sakai, Osaka 599-8531, Japan
| | | |
Collapse
|
15
|
Akbari N, Khajeh K, Rezaie S, Mirdamadi S, Shavandi M, Ghaemi N. High-level expression of lipase in Escherichia coli and recovery of active recombinant enzyme through in vitro refolding. Protein Expr Purif 2010; 70:75-80. [DOI: 10.1016/j.pep.2009.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 08/20/2009] [Accepted: 08/24/2009] [Indexed: 11/24/2022]
|
16
|
Hamid THTA, Eltaweel MA, Rahman RNZRA, Basri M, Salleh AB. Characterization and solvent stable features of Strep-tagged purified recombinant lipase from thermostable and solvent tolerantBacillus sp. strain 42. ANN MICROBIOL 2009. [DOI: 10.1007/bf03175607] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
17
|
Pauwels K, Van Gelder P. Affinity-based isolation of a bacterial lipase through steric chaperone interactions. Protein Expr Purif 2008; 59:342-8. [DOI: 10.1016/j.pep.2008.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Accepted: 03/02/2008] [Indexed: 10/22/2022]
|
18
|
Lipase expression in Pseudomonas alcaligenes is under the control of a two-component regulatory system. Appl Environ Microbiol 2008; 74:1402-11. [PMID: 18192420 DOI: 10.1128/aem.01632-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Preliminary observations in a large-scale fermentation process suggested that the lipase expression of Pseudomonas alcaligenes can be switched on by the addition of certain medium components, such as soybean oil. In an attempt to elucidate the mechanism of induction of lipase expression, we have set up a search method for genes controlling lipase expression by use of a cosmid library containing fragments of P. alcaligenes genomic DNA. A screen for lipase hyperproduction resulted in the selection of multiple transformants, of which the best-producing strains comprised cosmids that shared an overlapping genomic fragment. Within this fragment, two previously unidentified genes were found and named lipQ and lipR. Their encoded proteins belong to the NtrBC family of regulators that regulate gene expression via binding to a specific upstream activator sequence (UAS). Such an NtrC-like UAS was identified in a previous study in the P. alcaligenes lipase promoter, strongly suggesting that LipR acts as a positive regulator of lipase expression. The regulating role could be confirmed by down-regulated lipase expression in a strain with an inactivated lipR gene and a threefold increase in lipase yield in a large-scale fermentation when expressing the lipQR operon from the multicopy plasmid pLAFR3. Finally, cell extracts of a LipR-overexpressing strain caused a retardation of the lipase promoter fragment in a band shift assay. Our results indicate that lipase expression in Pseudomonas alcaligenes is under the control of the LipQR two-component system.
Collapse
|
19
|
Discovery of three novel lipase (lipA
1, lipA
2, and lipA
3) and lipase-specific chaperone (lipB) genes present in Acinetobacter sp. DYL129. Appl Microbiol Biotechnol 2008; 77:1041-51. [DOI: 10.1007/s00253-007-1242-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 09/30/2007] [Accepted: 10/03/2007] [Indexed: 10/22/2022]
|
20
|
Ogino H, Katou Y, Akagi R, Mimitsuka T, Hiroshima S, Gemba Y, Doukyu N, Yasuda M, Ishimi K, Ishikawa H. Cloning and expression of gene, and activation of an organic solvent-stable lipase from Pseudomonas aeruginosa LST-03. Extremophiles 2007; 11:809-17. [PMID: 17657406 DOI: 10.1007/s00792-007-0101-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
Organic solvent-tolerant Pseudomonas aeruginosa LST-03 secretes an organic solvent-stable lipase, LST-03 lipase. The gene of the LST-03 lipase (Lip9) and the gene of the lipase-specific foldase (Lif9) were cloned and expressed in Escherichia coli. In the cloned 2.6 kbps DNA fragment, two open reading frames, Lip9 consisting of 933 nucleotides which encoded 311 amino acids and Lif9 consisting of 1,020 nucleotides which encoded 340 amino acids, were found. The overexpression of the lipase gene (lip9) was achieved when T7 promoter was used and the signal peptide of the lipase was deleted. The expressed amount of the lipase was greatly increased and overexpressed lipase formed inclusion body in E. coli cell. The collected inclusion body of the lipase from the cell was easily solubilized by urea and activated by using lipase-specific foldase of which 52 or 58 amino acids of N-terminal were deleted. Especially, the N-terminal methionine of the lipase of which the signal peptide was deleted was released in E. coli and the amino acid sequence was in agreement with that of the originally-produced lipase by P. aeruginosa LST-03. Furthermore, the overexpressed and solubilized lipase of which the signal peptide was deleted was more effectively activated by lipase-specific foldase.
Collapse
Affiliation(s)
- Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Boekema BKHL, Beselin A, Breuer M, Hauer B, Koster M, Rosenau F, Jaeger KE, Tommassen J. Hexadecane and Tween 80 stimulate lipase production in Burkholderia glumae by different mechanisms. Appl Environ Microbiol 2007; 73:3838-44. [PMID: 17468265 PMCID: PMC1932709 DOI: 10.1128/aem.00097-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia glumae strain PG1 produces a lipase of biotechnological relevance. Lipase production by this strain and its derivative LU8093, which was obtained through classical strain improvement, was investigated under different conditions. When 10% hexadecane was included in the growth medium, lipolytic activity in both strains could be increased approximately 7-fold after 24 h of growth. Hexadecane also stimulated lipase production in a strain containing the lipase gene fused to the tac promoter, indicating that hexadecane did not affect lipase gene expression at the transcriptional level, which was confirmed using lipA-gfp reporter constructs. Instead, hexadecane appeared to enhance lipase secretion, since the amounts of lipase in the culture supernatant increased in the presence of hexadecane, with a concomitant decrease in the cells, even when protein synthesis was inhibited with chloramphenicol. In the presence of olive oil as a carbon source, nonionic detergents, such as Tween 80, increased extracellular lipase activity twofold. Like hexadecane, Tween 80 appeared to stimulate lipase secretion, although in a more disruptive manner, since other, normally nonsecreted proteins were found in the culture supernatant. Additionally, like olive oil, Tween 80 was found to induce lipase gene expression in strain PG1 in medium containing sucrose as a carbon source but not in glucose-containing medium, suggesting that lipase gene expression is prone to catabolite repression. In contrast, lipase production in the lipase-overproducing strain LU8093 was independent of the presence of an inducer and was not inhibited by glucose. In conclusion, hexadecane and Tween 80 enhance lipase production in B. glumae, and they act via different mechanisms.
Collapse
Affiliation(s)
- Bouke K H L Boekema
- Department of Molecular Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kakugawa S, Fushinobu S, Wakagi T, Shoun H. Characterization of a thermostable carboxylesterase from the hyperthermophilic bacterium Thermotoga maritima. Appl Microbiol Biotechnol 2007; 74:585-91. [PMID: 17106678 DOI: 10.1007/s00253-006-0687-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 09/11/2006] [Accepted: 09/15/2006] [Indexed: 10/23/2022]
Abstract
The gene encoding carboxylesterase from the hyperthermophilic bacterium Thermotoga maritima (tm0053) was cloned. The recombinant protein (EST53) was overexpressed in Escherichia coli without its NH(2)-terminal hydrophobic region, and with a C-terminal hexahistidine sequence. The enzyme was purified to homogeneity by heat treatment, followed by Ni(2+) affinity chromatography, and then characterized. Among the p-nitrophenyl esters tested, the best substrate was p-nitrophenyl decanoate with K (m) and k (cat) values of 3.1 muM and 10.8 s(-1), respectively, at 60 degrees C and pH 7.5. The addition of O,O'-bis(2-aminoethyl)ethyleneglycol-N,N,N',N'-tetraacetic acid decreased the esterase activity, indicating that EST53 is dependent on the presence of Ca(2+) ion. In addition, its activity was inhibited by the addition of phenylmethylsulfonyl fluoride and diethyl pyrocarbonate, indicating that it contains serine and histidine residues, which play key roles in the catalytic mechanism. EST53 shows a relatively high degree of similarity to Burkholderia lipases that belong to family I.2 of the lipolytic enzymes, whereas the local sequence around the pentapeptide of EST53 is most similar to those of Bacillus lipases belonging to family I.4.
Collapse
Affiliation(s)
- Satoshi Kakugawa
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | |
Collapse
|
23
|
Bitter W, van Boxtel R, Groeneweg M, Carballo PS, Zähringer U, Tommassen J, Koster M. Species-specific functioning of the Pseudomonas XcpQ secretin: role for the C-terminal homology domain and lipopolysaccharide. J Bacteriol 2007; 189:2967-75. [PMID: 17277064 PMCID: PMC1855860 DOI: 10.1128/jb.01583-06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secretins are oligomeric proteins that mediate the export of macromolecules across the bacterial outer membrane. The members of the secretin superfamily possess a C-terminal homology domain that is important for oligomerization and channel formation, while their N-terminal halves are thought to be involved in system-specific interactions. The XcpQ secretin of Pseudomonas spp. is a component of the type II secretion pathway. XcpQ from Pseudomonas alcaligenes is not able to functionally replace the secretin of the closely related species Pseudomonas aeruginosa. By analysis of chimeric XcpQ proteins, a region important for species-specific functioning was mapped between amino acid residues 344 and 478 in the C-terminal homology domain. Two chromosomal suppressor mutations were obtained that resulted in the proper functioning in P. aeruginosa of P. alcaligenes XcpQ and inactive hybrids. These mutations caused a defect in the synthesis of the lipopolysaccharide (LPS) outer core region. Subsequent analysis of different LPS mutants showed that changes in the outer core and not the loss of O antigen caused the suppressor phenotype. High concentrations of divalent cations in the growth medium also allowed P. alcaligenes XcpQ and inactive hybrids to function properly in P. aeruginosa. Since divalent cations are known to affect the structure of LPS, this observation supports the hypothesis that LPS has a role in the functioning of secretins.
Collapse
Affiliation(s)
- Wilbert Bitter
- Department of Molecular Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
24
|
Omori K, Isoyama-Tanaka J, Ihara F, Yamada Y, Nihira T. Active lactonizing lipase (LipL) efficiently overproduced by Pseudomonas strains as heterologous expression hosts. J Biosci Bioeng 2005; 100:323-30. [PMID: 16243284 DOI: 10.1263/jbb.100.323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 06/11/2005] [Indexed: 11/17/2022]
Abstract
Pseudomonas sp. strain 109 secretes lactonizing lipase (LipL), which catalyzes efficient intramolecular transesterification of omega-hydroxyfatty acid esters to form macrocyclic lactones. Because Escherichia coli was found to be unsuitable as an expression host due to the predominant formation of inactive LipL-inclusion bodies and a lack of proper secretion machinery which is also required for the formation of active LipL, Pseudomonas strains were surveyed as expression hosts. Pseudomonas sp. strain 109, an original LipL producer, showed a 7.1-fold higher level of active LipL when the lipL gene under the control of tac-lacUV5 tandem promoter was introduced together with a limL gene encoding a LipL-specific chaperon. Pseudomonas aeruginosa ADD 1976 containing a T7 RNA polymerase gene in the chromosome and plasmid-borne lipL-limL genes under the control of T7 promoter showed a 13-fold higher level of active LipL. Several combinations in the number of lipL and/or limL genes on the plasmid were investigated, and (lipL)3-limL was found to be most efficient, yielding a 67-fold greater production of active LipL than that obtained by the wild-type Pseudomonas sp. strain 109.
Collapse
Affiliation(s)
- Ken Omori
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
25
|
Westers H, Braun PG, Westers L, Antelmann H, Hecker M, Jongbloed JDH, Yoshikawa H, Tanaka T, van Dijl JM, Quax WJ. Genes involved in SkfA killing factor production protect a Bacillus subtilis lipase against proteolysis. Appl Environ Microbiol 2005; 71:1899-908. [PMID: 15812018 PMCID: PMC1082511 DOI: 10.1128/aem.71.4.1899-1908.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Accepted: 11/11/2004] [Indexed: 11/20/2022] Open
Abstract
Small lipases of Bacillus species, such as LipA from Bacillus subtilis, have a high potential for industrial applications. Recent studies showed that deletion of six AT-rich islands from the B. subtilis genome results in reduced amounts of extracellular LipA. Here we demonstrate that the reduced LipA levels are due to the absence of four genes, skfABCD, located in the prophage 1 region. Intact skfABCD genes are required not only for LipA production at wild-type levels by B. subtilis 168 but also under conditions of LipA overproduction. Notably, SkfA has bactericidal activity and, probably, requires the SkfB to SkfD proteins for its production. The present results show that LipA is more prone to proteolytic degradation in the absence of SkfA and that high-level LipA production can be improved significantly by employing multiple protease-deficient B. subtilis strains. In conclusion, our findings imply that SkfA protects LipA, directly or indirectly, against proteolytic degradation. Conceivably, SkfA could act as a modulator in LipA folding or as a protease inhibitor.
Collapse
Affiliation(s)
- Helga Westers
- Department of Pharmaceutical Biology, University of Groningen, Hanzeplein 1, P.O. Box 30 001, 9700 RB Groningen, the Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Quyen DT, Giang Le TT, Nguyen TT, Oh TK, Lee JK. High-level heterologous expression and properties of a novel lipase from Ralstonia sp. M1. Protein Expr Purif 2005; 39:97-106. [PMID: 15596365 DOI: 10.1016/j.pep.2004.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Revised: 09/30/2004] [Indexed: 10/26/2022]
Abstract
The mature lipase LipA and its 56aa-truncated chaperone DeltaLipBhis (with 6xhis-tag) from Ralstonia sp. M1 were over-expressed in Escherichia coli BL21 under the control of T7 promoter with a high level of 70 and 12mg protein per gram of wet cells, respectively. The simply purified lipase LipA was effectively refolded by Ni-NTA purified chaperone DeltaLipBhis in molar ratio 1:1 at 4 degrees C for 24 hours in H2O. The in vitro refolded lipase LipA had an optimal activity in the temperature range of 50-55 degrees C and was stable up to 45 degrees C with more than 84% activity retention. The maximal activity was observed at pH 10.75 for hydrolysis of olive oil and found to be stable over alkaline pH range 8.0-10.5 with more than 52% activity retention. The enzyme was found to be highly resistant to many organic solvents especially induced by ethanolamine (remaining activity 137-334%), but inhibited by 1-butanol and acetonitrile (40-86%). Metal ions Cu2+, Sn2+, Mn2+, Mg2+, and Ca2+ stimulated the lipase slightly with increase in activity by up to 22%, whereas Zn2+ significantly inhibited the enzyme with the residual activity of 30-65% and Fe3+ to a lesser degree (activity retention of 77-86%). Tween 80, Tween 60, and Tween 40 induced the activation of the lipase LipA (222-330%) and 0.2-1% (w/v) of Triton X-100, X-45, and SDS increased the lipase activity by up to 52%. However, 5% (w/v) of Triton X-100, X-45, and SDS inhibited strongly the activity by 31-89%. The inhibitors including DEPC, EDTA, PMSF, and 2-mercaptoethanol (0.1-10mM) inhibited moderately the lipase with remaining activity of 57-105%. The lipase LipA hydrolyzed a wide range of triglycerides, but preferentially short length acyl chains (C4 and C6). In contrast to the triglycerides, medium length acyl chains (C8 and C14) of p-nitrophenyl (p-NP) esters were preferential substrates of this lipase. The enzyme preferentially catalyzed the hydrolysis of cottonseed oil (317%), cornoil (227%), palm oil (222%), and wheatgerm oil (210%) in comparison to olive oil (100%).
Collapse
Affiliation(s)
- Dinh Thi Quyen
- Institute of Biotechnology, Vietnamese Academy of Science and Technology 18 Hoang Quoc Viet Road, Distr. Caugiay, 10600 Hanoi, Viet Nam
| | | | | | | | | |
Collapse
|
27
|
Quyen DT, Nguyen TT, Le TTG, Kim HK, Oh TK, Lee JK. A novel lipase/chaperone pair from Ralstonia sp. M1: analysis of the folding interaction and evidence for gene loss in R. solanacearum. Mol Genet Genomics 2004; 272:538-49. [PMID: 15668771 DOI: 10.1007/s00438-004-1084-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2004] [Accepted: 10/14/2004] [Indexed: 11/30/2022]
Abstract
A microbial strain (referred to as M1) that produces an extracellular lipase was isolated from a soil sample in Vietnam, and identified as a Ralstonia species by partial sequencing of its 16S rDNA. A genomic library was constructed from Pst I fragments, and a colony showing lipase activity was selected for further analysis. Sequencing of the 4.7-kb insert in this clone (named M1-72) revealed one incomplete and three complete ORFs, predicted to encode a partial hypothetical glutaminyl tRNA synthetase (304 aa), a hypothetical transmembrane protein (500 aa), a lipase (328 aa) and a lipase chaperone (352 aa), respectively. Alignment of the insert sequence with the corresponding region of the genome of R. solanacearum GMI1000 (GenBank Accession No. AL646081) confirmed the presence in the latter of the genes for the hypothetical transmembrane protein and glutaminyl tRNA synthetase, which exhibited 89-91% identity to their counterparts in M1. However, R. solanacearum GMI1000 lacks the complete lipase-encoding gene and the major part of the chaperone-encoding gene, creating a so-called "black hole". The deduced amino acid sequences of the products of the lipase gene lipA and chaperone gene lipB from strain M1 shared 49.3-60.3% and 23.9-32.7% identity, respectively, with those of the Burkholderia lipase/chaperone subfamily I.2. lipB is located downstream of lipA, and separated from it by only 9 bp, and each gene has a putative ribosome binding site. The mature lipase LipA, a His-tagged derivative (LipAhis), the tagged full-length chaperone LipBhis and a truncated form (DeltaLipBhis) lacking the 56 N-terminal residues were expressed in Escherichia coli BL21. LipA, LipAhis and DeltaLipBhis could be expressed at high levels (70, 15 and 12 mg/g wet cells, respectively) and were easily purified. However, LipBhis was expressed at a much lower level which precluded purification. The specific activity of purified LipAhis, expressed on its own, was very low (<52 U/mg). However, after co-incubation with the purified DeltaLipBhis in vitro, the specific activity of the enzyme was markedly enhanced, indicating that the chaperone facilitated correct folding of the enzyme. A lipase:chaperone ratio of 1:10 was found to be optimal, yielding an enzyme preparation with a specific activity of 650 U/mg.
Collapse
Affiliation(s)
- D T Quyen
- Institute of Biotechnology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, Caugiay District, 10600 Hanoi, Vietnam
| | | | | | | | | | | |
Collapse
|
28
|
Filloux A. The underlying mechanisms of type II protein secretion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:163-79. [DOI: 10.1016/j.bbamcr.2004.05.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2003] [Accepted: 05/07/2004] [Indexed: 10/26/2022]
|
29
|
Su JH, Chang MC, Lee YS, Tseng IC, Chuang YC. Cloning and characterization of the lipase and lipase activator protein from Vibrio vulnificus CKM-1. ACTA ACUST UNITED AC 2004; 1678:7-13. [PMID: 15093133 DOI: 10.1016/j.bbaexp.2004.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 01/05/2004] [Accepted: 01/21/2004] [Indexed: 11/21/2022]
Abstract
The gene (lipA) encoding the extracellular lipase and its downstream gene (lipB) from Vibrio vulnificus CKM-1 were cloned and sequenced. Nucleotide sequence analysis and alignments of amino acid sequences suggest that Lip Ais a member of bacterial lipase family I.1 and that LipB is a lipase activator of LipA. The active LipA was produced in recombinant Escherichia coli cells only in the presence of the lipB. In the hydrolysis of p-nitrophenyl esters and triacylglycerols, using the reactivated LipA, the optimum chain lengths for the acyl moiety on the substrate were C14 for ester hydrolysis and C10 to C12 for triacylglycerol hydrolysis.
Collapse
Affiliation(s)
- Jer Horng Su
- Department of Biochemistry, Medical College, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
30
|
Abstract
Lipases represent the most important class of enzymes used in biotechnology. Many bacteria produce and secrete lipases but the enzymes originating from Pseudomonas and Burkholderia species seem to be particularly useful for a wide variety of different biocatalytic applications. These enzymes are usually encoded in an operon together with a second gene which codes for a lipase-specific foldase, Lif, which is necessary to obtain enzymatically active lipase. A detailed analysis based on amino acid homology has suggested the classification of Lif proteins into four different families and also revealed the presence of a conserved motif, Rx1x2FDY(F/C)L(S/T)A. Recent experimental evidence suggests that Lifs are so-called steric chaperones, which exert their physiological function by lowering energetic barriers during the folding of their cognate lipases, thereby providing essential steric information needed to fold lipases into their enzymatically active conformation.
Collapse
Affiliation(s)
- Frank Rosenau
- Institut für Molekulare Enzymtechnologie, Heinrich-Heine-Universität Düsseldorf, Forschungszentrum Jülich, 52428 Jülich, Germany
| | | | | |
Collapse
|
31
|
El Khattabi M, Van Gelder P, Bitter W, Tommassen J. Role of the calcium ion and the disulfide bond in the Burkholderia glumae lipase. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1381-1177(03)00047-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Han SJ, Back JH, Yoon MY, Shin PK, Cheong CS, Sung MH, Hong SP, Chung IY, Han YS. Expression and characterization of a novel enantioselective lipase from Acinetobacter species SY-01. Biochimie 2003; 85:501-10. [PMID: 12763309 DOI: 10.1016/s0300-9084(03)00057-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel lipase gene, lipase A, of Acinetobacter species SY-01 (A. species SY-01) was cloned, sequenced, and expressed in Bacillus subtilis 168. The deduced amino acid (aa) sequences for the lipase A and its chaperone, lipase-specific chaperone, were found to encode mature proteins of 339 aa (37.2 kDa) and 347 aa (38.1 kDa), respectively. The aa sequence of lipase A and lipase-specific chaperone shared high homology 82 and 67% identity with the lipase A and the lipase B of A. species RAG-1. This new lipase was defined as a group I Proteobacterial lipase family. The expressed lipase A was purified through sequential treatment with Q-Sepharose, Resource Q, and Superdex-S75 columns. The maximal activity was observed at 50 degrees C for hydrolysis of p-nitrophenyl monoesters and found to be stable at pH 9-11, with optimal activity at pH 10. Lipase A hydrolyzed wide range of fatty acid esters of p-nitrophenyl, but preferentially hydrolyzed short length acyl chains (C2 and C4). Moreover, lipase A from A. species SY-01 catalyzed hydrolysis of the two acetate isomers of cis-(+/-)-2-(bromomethyl)-2-(2,4-dichloro phenyl)-1,3-dioxolane-4-methyl acetate, an intermediate required for the synthesis of Itraconazole which was an anti-fungal drug, at different rate and yielded cis-(-)-isomer in 81.5% conversion with 91.9% enantiomeric excess.
Collapse
Affiliation(s)
- Soo-Jin Han
- Structural Biology Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dröge MJ, Rüggeberg CJ, van der Sloot AM, Schimmel J, Dijkstra DS, Verhaert RMD, Reetz MT, Quax WJ. Binding of phage displayed Bacillus subtilis lipase A to a phosphonate suicide inhibitor. J Biotechnol 2003; 101:19-28. [PMID: 12523966 DOI: 10.1016/s0168-1656(02)00289-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phage display can be used as a protein engineering tool to select proteins with desirable binding properties from a library of randomly constructed mutants. Here, we describe the development of this method for the directed evolution of Bacillus subtilis lipase A, an enzyme that has marked properties for the preparation of pharmaceutically relevant chiral compounds. The lipase gene was cloned upstream of the phage g3p encoding sequence and downstream of a modified g3p signal sequence. Consequently, the enzyme was displayed at the surface of bacteriophage fd as a fusion to its minor coat protein g3p. The phage-bound lipase was correctly folded and fully enzymatically active as determined from the hydrolysis of p-nitrophenylcaprylate with K(m)-values of 0.38 and 0.33 mM for the phage displayed and soluble lipase, respectively. Both soluble lipase and lipase expressed on bacteriophages reacted covalently with a phosphonate suicide inhibitor. The phage does not hamper lipase binding, since both soluble and phage-bound lipase have a similar half-life of inactivation of approximately 5 min. Therefore, we conclude that the Bacillus lipase can be functionally expressed on bacteriophages as a fusion to the phage coat protein g3p. The specific interaction with the suicide inhibitor offers a fast and reproducible method for the future selection of mutant enzymes with an enantioselectivity towards new substrates.
Collapse
Affiliation(s)
- Melloney J Dröge
- Department of Pharmaceutical Biology, University Centre for Pharmacy, University of Groningen, Antonius Deusinglaan 1, NL-9713 AV Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Nomura T, Fujii Y, Yamanaka H, Kobayashi H, Okamoto K. The protein encoded at the 3' end of the serine protease gene of Aeromonas sobria functions as a chaperone in the production of the protease. J Bacteriol 2002; 184:7058-61. [PMID: 12446656 PMCID: PMC135477 DOI: 10.1128/jb.184.24.7058-7061.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For the successful production of Aeromonas sobria serine protease (ASP), open reading frame 2 (ORF2) protein, encoded at the 3' end of the protease operon, is required. In this study, we examined the action of ORF2 protein. The results showed that the protein associated with ASP in the periplasm and helped ASP to form an active structure.
Collapse
Affiliation(s)
- Tomohiko Nomura
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro, Japan.
| | | | | | | | | |
Collapse
|
35
|
Ahn JH, Pan JG, Rhee JS. Homologous expression of the lipase and ABC transporter gene cluster, tliDEFA, enhances lipase secretion in Pseudomonas spp. Appl Environ Microbiol 2001; 67:5506-11. [PMID: 11722899 PMCID: PMC93336 DOI: 10.1128/aem.67.12.5506-5511.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2001] [Accepted: 09/25/2001] [Indexed: 11/20/2022] Open
Abstract
The ABC transporter TliDEF was found to be an efficient secretory apparatus for extracellular lipase TliA in Pseudomonas fluorescens. For the enhanced secretion of the lipase, we tried to coexpress tliA and tliDEF in various Pseudomonas species. Whereas the coexpression of tliA and tliDEF was required for the lipase secretion in P. fragi, the expression of tliA was sufficient for the lipase secretion in P. fluorescens, P. syringae, and P. putida, indicating the existence of compatible ABC transporter in these species. However, P. fluorescens harboring tliDEFA secreted much more lipase than P. fluorescens harboring only tliA, but the tliDEF was functional only at temperatures below 30 degrees C. The recombinant P. fluorescens overexpressing tliDEFA showed the highest secretion level, 217 U/ml. OD (optical density) (28 microg/ml. OD) of lipase in Luria-Bertani medium under microaerated conditions. With the increase of aeration, the lipase production was decreased and the lipase seemed to be degraded as the cells entered the cell death phase. These results demonstrate that P. fluorescens can be used as a host system for the secretory production of the lipase using the ABC transporter, thus producing lipase in over 14% of the total protein.
Collapse
Affiliation(s)
- J H Ahn
- R&D Center, Creagene Inc., Seo-gu, Taejon 302-858, Korea
| | | | | |
Collapse
|
36
|
Kim EK, Jang WH, Ko JH, Kang JS, Noh MJ, Yoo OJ. Lipase and its modulator from Pseudomonas sp. strain KFCC 10818: proline-to-glutamine substitution at position 112 induces formation of enzymatically active lipase in the absence of the modulator. J Bacteriol 2001; 183:5937-41. [PMID: 11566993 PMCID: PMC99672 DOI: 10.1128/jb.183.20.5937-5941.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A lipase gene, lipK, and a lipase modulator gene, limK, of Pseudomonas sp. strain KFCC 10818 have been cloned, sequenced, and expressed in Escherichia coli. The limK gene is located immediately downstream of the lipK gene. Enzymatically active lipase was produced only in the presence of the limK gene. The effect of the lipase modulator LimK on the expression of active lipase was similar to those of the Pseudomonas subfamily I.1 and I.2 lipase-specific foldases (Lifs). The deduced amino acid sequence of LimK shares low homology (17 to 19%) with the known Pseudomonas Lifs, suggesting that Pseudomonas sp. strain KFCC 10818 is only distantly related to the subfamily I.1 and I.2 Pseudomonas species. Surprisingly, a lipase variant that does not require LimK for its correct folding was isolated in the study to investigate the functional interaction between LipK and LimK. When expressed in the absence of LimK, the P112Q variant of LipK formed an active enzyme and displayed 63% of the activity of wild-type LipK expressed in the presence of LimK. These results suggest that the Pro(112) residue of LipK is involved in a key step of lipase folding. We expect that the novel finding of this study may contribute to future research on efficient expression or refolding of industrially important lipases and on the mechanism of lipase folding.
Collapse
Affiliation(s)
- E K Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea
| | | | | | | | | | | |
Collapse
|
37
|
Rashid N, Shimada Y, Ezaki S, Atomi H, Imanaka T. Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Appl Environ Microbiol 2001; 67:4064-9. [PMID: 11526006 PMCID: PMC93130 DOI: 10.1128/aem.67.9.4064-4069.2001] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that a psychrotrophic bacterium, Pseudomonas sp. strain KB700A, which displays sigmoidal growth even at -5 degrees C, produced a lipase. A genomic DNA library of strain KB700A was introduced into Escherichia coli TG1, and screening on tributyrin-containing agar plates led to the isolation of the lipase gene. Sequence analysis revealed an open reading frame (KB-lip) consisting of 1,422 nucleotides that encoded a protein (KB-Lip) of 474 amino acids with a molecular mass of 49,924 Da. KB-Lip showed 90% identity with the lipase from Pseudomonas fluorescens and was found to be a member of Subfamily I.3 lipase. Gene expression and purification of the recombinant protein were performed. KB-Lip displayed high lipase activity in the presence of Ca2+. Addition of EDTA completely abolished lipase activity, indicating that KB-Lip was a Ca2+-dependent lipase. Addition of Mn2+ and Sr2+ also led to enhancement of lipase activity but to a much lower extent than that produced by Ca2+. The optimal pH of KB-Lip was 8 to 8.5. The addition of detergents enhanced the enzyme activity. When p-nitrophenyl esters and triglyceride substrates of various chain-lengths were examined, the lipase displayed highest activity towards C10 acyl groups. We also determined the positional specificity and found that the activity was 20-fold higher toward the 1(3) position than toward the 2 position. The optimal temperature for KB-Lip was 35 degrees C, lower than that for any previously reported Subfamily I.3 lipase. The enzyme was also thermolabile compared to these lipases. Furthermore, KB-Lip displayed higher levels of activity at low temperatures than did other enzymes from Subfamily I.3, indicating that KB-Lip has evolved to function in cold environments, in accordance with the temperature range for growth of its psychrotrophic host, strain KB700A.
Collapse
Affiliation(s)
- N Rashid
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
38
|
Cox M, Gerritse G, Dankmeyer L, Quax WJ. Characterization of the promoter and upstream activating sequence from the Pseudomonas alcaligenes lipase gene. J Biotechnol 2001; 86:9-17. [PMID: 11223140 DOI: 10.1016/s0168-1656(00)00397-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudomonas alcaligenes secretes a lipase with a high pH optimum, which has interesting properties for application in detergents. The expression of the lipase is strongly dependent on the presence of lipids in the growth medium such as soybean oil. The promoter of the gene was characterized and found to have resemblance to sigma54 controlled promoters, which are known to be tightly regulated. The transcription start was mapped precisely downstream of a sequence with close similarity to the -12/-24 consensus sequence of sigma54 controlled promoters. Interestingly, a hyperproducer mutant strain was isolated and found to have a C to T mutation in the -12/-24 promoter consensus region. In addition an Upstream Activating Sequence (UAS) with homology to sigma54 UAS consensus sequences was identified. It was demonstrated that an increase of the distance from the UAS to the transcription start or the deletion of the UAS results in significantly lower expression levels of lipase. A systematic mutational analysis of the UAS sequence has resulted in a variant with an increased lipase expression.
Collapse
Affiliation(s)
- M Cox
- Protein Sciences Corporation, Meriden, CT 06450-7159, USA
| | | | | | | |
Collapse
|
39
|
Chabeaud P, de Groot A, Bitter W, Tommassen J, Heulin T, Achouak W. Phase-variable expression of an operon encoding extracellular alkaline protease, a serine protease homolog, and lipase in Pseudomonas brassicacearum. J Bacteriol 2001; 183:2117-20. [PMID: 11222613 PMCID: PMC95110 DOI: 10.1128/jb.183.6.2117-2120.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2000] [Accepted: 12/14/2000] [Indexed: 11/20/2022] Open
Abstract
The rhizobacterium Pseudomonas brassicacearum forms phenotypic variants which do not show extracellular protease and lipase activity. The operon encoding these enzymes, a serine protease homolog, and a type I secretion machinery was characterized. Transcriptional lacZ gene fusions revealed that the expression of the operon is under the control of phase variation.
Collapse
Affiliation(s)
- P Chabeaud
- CEA/Cadarache, DSV-DEVM, Laboratoire d'Ecologie Microbienne de la Rhizosphère, UMR 163 CNRS-CEA, F-13108 Saint-Paul-lez-Durance, France
| | | | | | | | | | | |
Collapse
|
40
|
Liebeton K, Zacharias A, Jaeger KE. Disulfide bond in Pseudomonas aeruginosa lipase stabilizes the structure but is not required for interaction with its foldase. J Bacteriol 2001; 183:597-603. [PMID: 11133953 PMCID: PMC94915 DOI: 10.1128/jb.183.2.597-603.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa secretes a 29-kDa lipase which is dependent for folding on the presence of the lipase-specific foldase Lif. The lipase contains two cysteine residues which form an intramolecular disulfide bond. Variant lipases with either one or both cysteines replaced by serines showed severely reduced levels of extracellular lipase activity, indicating the importance of the disulfide bond for secretion of lipase through the outer membrane. Wild-type and variant lipase genes fused to the signal sequence of pectate lyase from Erwinia carotovora were expressed in Escherichia coli, denatured by treatment with urea, and subsequently refolded in vitro. Enzymatically active lipase was obtained irrespective of the presence or absence of the disulfide bond, suggesting that the disulfide bond is required neither for correct folding nor for the interaction with the lipase-specific foldase. However, cysteine-to-serine variants were more readily denatured by treatment at elevated temperatures and more susceptible to proteolytic degradation by cell lysates of P. aeruginosa. These results indicate a stabilizing function of the disulfide bond for the active conformation of lipase. This conclusion was supported by the finding that the disulfide bond function could partly be substituted by a salt bridge constructed by changing the two cysteine residues to arginine and aspartate, respectively.
Collapse
Affiliation(s)
- K Liebeton
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | |
Collapse
|
41
|
Braun P, Bitter W, Tommassen J. Activation of Pseudomonas aeruginosa elastase in Pseudomonas putida by triggering dissociation of the propeptide-enzyme complex. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 10):2565-2572. [PMID: 11021931 DOI: 10.1099/00221287-146-10-2565] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The propeptide of Pseudomonas aeruginosa elastase functions both as an intramolecular chaperone required for the folding of the enzyme and as an inhibitor that prevents activity of the enzyme before its secretion into the extracellular medium. Since expression of the lasB gene, which encodes elastase, in Pseudomonas putida did not result in extracellular elastase activity, it has been suggested that the enzyme is not recognized by the Xcp secretion machinery of the heterologous host. Here, it is demonstrated that the proenzyme is normally processed in P. putida and that it is indeed not actively secreted by the Xcp machinery. Nevertheless, substantial amounts of the enzyme were detected in the extracellular medium. Co-immunoprecipitations revealed that the extracellular enzyme was associated with the propeptide, which explains the lack of enzymic activity. Since the propeptide-enzyme complex in P. putida apparently does not dissociate spontaneously, it is concluded that a host-specific factor is required to induce this event. Mutants were selected which showed extracellular elastase activity. Two mutations, located within the lasB gene, were further characterized. These mutations, resulting in the substitution of Ala and Thr at positions -15 and -153, respectively, of the propeptide (where position +1 is defined as the first residue of the mature enzyme) destabilized the propeptide-enzyme complex. It is concluded that Ala-15 and Thr-153 are required for the inhibitor function, but not for the chaperone function of the propeptide.
Collapse
Affiliation(s)
- Peter Braun
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands1
| | - Wilbert Bitter
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands1
| | - Jan Tommassen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands1
| |
Collapse
|
42
|
|
43
|
Yang J, Kobayashi K, Iwasaki Y, Nakano H, Yamane T. In vitro analysis of roles of a disulfide bridge and a calcium binding site in activation of Pseudomonas sp. strain KWI-56 lipase. J Bacteriol 2000; 182:295-302. [PMID: 10629173 PMCID: PMC94276 DOI: 10.1128/jb.182.2.295-302.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of lipase from Pseudomonas sp. strain KWI-56 (recently reclassified as Burkholderia cepacia) had been found to be dependent on an activator gene (act) downstream of its structural gene (lip). In this work, the mature lipase was synthesized in an enzymatically active form with a cell-free Escherichia coli S30 coupled transcription-translation system by expressing a recombinant lipase gene (rlip) encoding the mature lipase in the presence of its purified activator or by coexpression of rlip and act. The in vitro expression systems were used for studying the folding process of the lipase. The addition of dithiothreitol in the expression systems decreased the activity dramatically without affecting the synthesis level of the lipase, whereas the in vitro-synthesized active lipase was relatively stable even in the presence of dithiothreitol. This phenomenon was further investigated by constructing mutant lipase genes only in vitro by PCR without gene cloning. Replacements of cysteine residues (Cys190 and Cys270) forming a sole putative disulfide bond to serine residues decreased the lipase activity greatly, suggesting that the disulfide bond was essential for the proper folding of the lipase. In addition, replacing Asp242 and Asp288, which were deduced to be part of a Ca(2+) binding site, also greatly decreased the activities of the in vitro-synthesized lipases. The role of the Ca(2+) binding site in the activation of the lipase is also discussed.
Collapse
Affiliation(s)
- J Yang
- Laboratory of Molecular Biotechnology, Graduate School of Biological and Agricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|
44
|
Jaeger KE, Dijkstra BW, Reetz MT. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 1999; 53:315-51. [PMID: 10547694 DOI: 10.1146/annurev.micro.53.1.315] [Citation(s) in RCA: 724] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria produce and secrete lipases, which can catalyze both the hydrolysis and the synthesis of long-chain acylglycerols. These reactions usually proceed with high regioselectivity and enantioselectivity, and, therefore, lipases have become very important stereoselective biocatalysts used in organic chemistry. High-level production of these biocatalysts requires the understanding of the mechanisms underlying gene expression, folding, and secretion. Transcription of lipase genes may be regulated by quorum sensing and two-component systems; secretion can proceed either via the Sec-dependent general secretory pathway or via ABC transporters. In addition, some lipases need folding catalysts such as the lipase-specific foldases and disulfide-bond-forming proteins to achieve a secretion-competent conformation. Three-dimensional structures of bacterial lipases were solved to understand the catalytic mechanism of lipase reactions. Structural characteristics include an alpha/beta hydrolase fold, a catalytic triad consisting of a nucleophilic serine located in a highly conserved Gly-X-Ser-X-Gly pentapeptide, and an aspartate or glutamate residue that is hydrogen bonded to a histidine. Four substrate binding pockets were identified for triglycerides: an oxyanion hole and three pockets accommodating the fatty acids bound at position sn-1, sn-2, and sn-3. The differences in size and the hydrophilicity/hydrophobicity of these pockets determine the enantiopreference of a lipase. The understanding of structure-function relationships will enable researchers to tailor new lipases for biotechnological applications. At the same time, directed evolution in combination with appropriate screening systems will be used extensively as a novel approach to develop lipases with high stability and enantioselectivity.
Collapse
Affiliation(s)
- K E Jaeger
- Lehrstuhl Biologie der Mikroorganismen, Ruhr-Universität, Bochum, Germany.
| | | | | |
Collapse
|
45
|
Tanaka J, Ihara F, Nihira T, Yamada Y. A low-Mr lipase activation factor cooperating with lipase modulator protein LimL in Pseudomonas sp. strain 109. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 10):2875-80. [PMID: 10537209 DOI: 10.1099/00221287-145-10-2875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas sp. strain 109 produces a unique lipase (LipL) which efficiently catalyses intramolecular transesterification of omega-hydroxyesters to form macrocyclic lactones. In vivo production of enzymically active LipL requires lipase modulator protein (LimL), which functions as a molecular chaperone for the correct folding of LipL. However, previous work has shown that LipL forms a tight complex with LimL in vitro and the resulting LipL-LimL complex is only partially active, suggesting an additional mechanism that facilitates the dissociation of the complex to form enzymically active LipL. In the present work, a low-Mr compound (lipase activation factor, LAF) was found in Pseudomonas sp. strain 109 that when added to the LipL-LimL complex resulted in the activation of LipL. Ca2+ ions also enhanced lipase activity, but the instantaneous activation by Ca2+ was different from the gradual and time-dependent activation by LAF, indicating the novel nature of this compound. LAF passed through an ultrafiltration membrane with an Mr cut-off of 3000 and showed an apparent Mr of 330+/-30 on Superdex Peptide gel-filtration chromatography. Treatment of the LipL-LimL complex with LAF liberated free active LipL, indicating that LAF was necessary to dissociate the LipL-LimL complex.
Collapse
Affiliation(s)
- J Tanaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | | | | | | |
Collapse
|
46
|
Ahn JH, Pan JG, Rhee JS. Identification of the tliDEF ABC transporter specific for lipase in Pseudomonas fluorescens SIK W1. J Bacteriol 1999; 181:1847-52. [PMID: 10074078 PMCID: PMC93584 DOI: 10.1128/jb.181.6.1847-1852.1999] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/1998] [Accepted: 01/05/1999] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas fluorescens, a gram-negative psychrotrophic bacterium, secretes a thermostable lipase into the extracellular medium. In our previous study, the lipase of P. fluorescens SIK W1 was cloned and expressed in Escherichia coli, but it accumulated as inactive inclusion bodies. Amino acid sequence analysis of the lipase revealed a potential C-terminal targeting sequence recognized by the ATP-binding cassette (ABC) transporter. The genetic loci around the lipase gene were searched, and a secretory gene was identified. Nucleotide sequencing of an 8.5-kb DNA fragment revealed three components of the ABC transporter, tliD, tliE, and tliF, upstream of the lipase gene, tliA. In addition, genes encoding a protease and a protease inhibitor were located upstream of tliDEF. tliDEF showed high similarity to ABC transporters of Pseudomonas aeruginosa alkaline protease, Erwinia chrysanthemi protease, Serratia marcescens lipase, and Pseudomonas fluorescens CY091 protease. tliDEF and the lipase structural gene in a single operon were sufficient for E. coli cells to secrete the lipase. In addition, E. coli harboring the lipase gene secreted the lipase by complementation of tliDEF in a different plasmid. The ABC transporter of P. fluorescens was optimally functional at 20 and 25 degrees C, while the ABC transporter, aprD, aprE, and aprF, of P. aeruginosa secreted the lipase irrespective of temperature between 20 and 37 degrees C. These results demonstrated that the lipase is secreted by the P. fluorescens SIK W1 ABC transporter, which is organized as an operon with tliA, and that its secretory function is temperature dependent.
Collapse
Affiliation(s)
- J H Ahn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Yusong-Gu, Taejon 305-701, Korea
| | | | | |
Collapse
|
47
|
Quyen DT, Schmidt-Dannert C, Schmid RD. High-level formation of active Pseudomonas cepacia lipase after heterologous expression of the encoding gene and its modified chaperone in Escherichia coli and rapid in vitro refolding. Appl Environ Microbiol 1999; 65:787-94. [PMID: 9925617 PMCID: PMC91096 DOI: 10.1128/aem.65.2.787-794.1999] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lipase from Pseudomonas cepacia ATCC 21808 (recently reclassified as Burkholderia cepacia) is widely used by organic chemists for enantioselective synthesis and is manufactured from recombinant P. cepacia harboring on a plasmid the clustered genes for lipase and its chaperone. High levels of expression of inactive lipase (40%) in Escherichia coli were achieved with pCYTEXP1 under the control of the strong, temperature-inducible lambdaPRL promoter. However, no overexpression of the lipase chaperone was achieved in E. coli. Thus, chemical refolding of inactive lipase in the absence of its chaperone yielded only 25 U/mg, compared to 3,470 U of the purified lipase secreted by recombinant P. cepacia per mg. Sequence analysis of the chaperone revealed a high GC content (>90%) in the 5' region of the gene and the presence of a putative membrane anchor at the N terminus. Hence, the 5' region of the gene was replaced by a synthetic fragment, and the putative membrane anchor was removed by deletion of the first 34 or 70 N-terminal amino acids. Only truncation of the gene led to overexpression of the chaperone (up to 60%) in E. coli. With this chaperone, it was possible to obtain for the first time in a simple refolding procedure a highly active Pseudomonas lipase (classes I and II) expressed in E. coli with a specific activity of up to 4,850 U/mg and a yield of 314,000 U/g of E. coli wet cells.
Collapse
Affiliation(s)
- D T Quyen
- Institut für Technische Biochemie, Universität Stuttgart, Stuttgart, Germany
| | | | | |
Collapse
|
48
|
Yang J, Kobayashi K, Nakano H, Tanaka J, Nihira T, Yamada Y, Yamane T. Modulator-mediated synthesis of active lipase of Pseudomonas sp. 109 by Escherichia coli cell-free coupled transcription/translation system. J Biosci Bioeng 1999; 88:605-9. [PMID: 16232671 DOI: 10.1016/s1389-1723(00)87087-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/1999] [Accepted: 09/17/1999] [Indexed: 11/24/2022]
Abstract
Catalytically active lipase was synthesized using Escherichia coli S30 extract from the signal-deleted lipL gene (lipL) in the presence of its N-terminal hydrophobic fragment-truncated modulator (rLimL) that was purified from the overexpressing E. coli cells. The specific activity of the lipase thus synthesized was 125 times higher than that of the purified one from Pseudomonas sp. 109. No lipase activity was detected in the absence of rLimL, even though the lipase protein itself was synthesized. Active lipase was also produced in vitro by coexpression of rlipL and the modulator gene (rlimL), although a much smaller amount of the lipase was formed. In the absence of rLimL, aggregates of the lipase were formed during its folding process. The addition of rLimL proportionally raised both lipase solubility and enzyme activity. An unstable but high activity peak of the lipase was found during its folding process.
Collapse
Affiliation(s)
- J Yang
- Laboratory of Molecular Biotechnology, Graduate School of Biological & Agricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Filloux A, Michel G, Bally M. GSP-dependent protein secretion in gram-negative bacteria: the Xcp system of Pseudomonas aeruginosa. FEMS Microbiol Rev 1998; 22:177-98. [PMID: 9818381 DOI: 10.1111/j.1574-6976.1998.tb00366.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Bacteria have evolved several secretory pathways to release proteins into the extracellular medium. In Gram-negative bacteria, the exoproteins cross a cell envelope composed of two successive hydrophobic barriers, the cytoplasmic and outer membranes. In some cases, the protein is translocated in a single step across the cell envelope, directly from the cytoplasm to the extracellular medium. In other cases, outer membrane translocation involves an extension of the signal peptide-dependent pathway for translocation across the cytoplasmic membrane via the Sec machinery. By analogy with the so-called general export pathway (GEP), this latter route, including two separate steps across the inner and the outer membrane, was designated as the general secretory pathway (GSP) and is widely conserved among Gram-negative bacteria. In their great majority, exoproteins use the main terminal branch (MTB) of the GSP, namely the Xcp machinery in Pseudomonas aeruginosa, to reach the extracellular medium. In this review, we will use the P. aeruginosa Xcp system as a basis to discuss multiple aspects of the GSP mechanism, including machinery assembly, exoprotein recognition, energy requirement and pore formation for driving through the outer membrane.
Collapse
Affiliation(s)
- A Filloux
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires/UPR9027, IBSM-CNRS, Marseille, France.
| | | | | |
Collapse
|
50
|
Gerritse G, Hommes RW, Quax WJ. Development of a lipase fermentation process that uses a recombinant Pseudomonas alcaligenes strain. Appl Environ Microbiol 1998; 64:2644-51. [PMID: 9647843 PMCID: PMC106439 DOI: 10.1128/aem.64.7.2644-2651.1998] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Pseudomonas alcaligenes M-1 secretes an alkaline lipase, which has excellent characteristics for the removal of fatty stains under modern washing conditions. A fed-batch fermentation process based on the secretion of the alkaline lipase from P. alcaligenes was developed. Due to the inability of P. alcaligenes to grow on glucose, citric acid and soybean oil were applied as substrates in the batch phase and feed phase, respectively. The gene encoding the high-alkaline lipase from P. alcaligenes was isolated and characterized. Amplification of lipase gene copies in P. alcaligenes with the aid of low- and high-copy-number plasmids resulted in an increase of lipase expression that was apparently colinear with the gene copy number. It was found that overexpression of the lipase helper gene, lipB, produced a stimulating effect in strains with high copy numbers (> 20) of the lipase structural gene, lipA. In strains with lipA on a low-copy-number vector, the lipB gene did not show any effect, suggesting that LipB is required in a low ratio to LipA only. During scaling up of the fermentation process to 100 m3, severe losses in lipase productivity were observed. Simulations have identified an increased level of dissolved carbon dioxide as the most probable cause for the scale-up losses. A large-scale fermentation protocol with a reduced dissolved carbon dioxide concentration resulted in a substantial elimination of the scale-up loss.
Collapse
Affiliation(s)
- G Gerritse
- Genecor International B.V., Delft, The Netherlands
| | | | | |
Collapse
|