1
|
Kujawska M, Neuhaus K, Huptas C, Jiménez E, Arboleya S, Schaubeck M, Hall LJ. Exploring the Potential Probiotic Properties of Bifidobacterium breve DSM 32583-A Novel Strain Isolated from Human Milk. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10346-9. [PMID: 39287748 DOI: 10.1007/s12602-024-10346-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
Human milk is the best nutrition for infants, providing optimal support for the developing immune system and gut microbiota. Hence, it has been used as source for probiotic strain isolation, including members of the genus Bifidobacterium, in an effort to provide beneficial effects to infants who cannot be exclusively breastfed. However, not all supplemented bifidobacteria can effectively colonise the infant gut, nor confer health benefits to the individual infant host; therefore, new isolates are needed to develop a range of dietary products for this specific age group. Here, we investigated the beneficial potential of Bifidobacterium breve DSM 32583 isolated from human milk. We show that in vitro B. breve DSM 32583 exhibited several characteristics considered fundamental for beneficial bacteria, including survival in conditions simulating those present in the digestive tract, adherence to human epithelial cell lines, and inhibition of growth of potentially pathogenic microorganisms. Its antibiotic resistance patterns were comparable to those of known beneficial bifidobacterial strains, and its genome did not contain plasmids nor virulence-associated genes. These results suggest that B. breve DSM 32583 is a potential probiotic candidate.
Collapse
Affiliation(s)
- Magdalena Kujawska
- Chair of intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
| | - Klaus Neuhaus
- Core Facility Microbiome, ZIEL Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Christopher Huptas
- Chair of Microbial Ecology, Wissenschaftszentrum Weihenstephan, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| | | | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Paseo Rio Linares s/n, 33300, Villaviciosa, Spain
| | - Monika Schaubeck
- HiPP GmbH & Co. Vertrieb KG, Georg-Hipp-Str. 7, 85276, Pfaffenhofen (Ilm), Germany.
| | - Lindsay J Hall
- Chair of intestinal Microbiome, ZIEL - Institute for Food & Health, Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, B15 2TT, UK
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Norwich Medical School, University of East Anglia, Norwich Research Park, NR4 7TJ, UK
| |
Collapse
|
2
|
Meuskens I, Kristiansen PE, Bardiaux B, Koynarev VR, Hatlem D, Prydz K, Lund R, Izadi-Pruneyre N, Linke D. A poly-proline II helix in YadA from Yersinia enterocolitica serotype O:9 facilitates heparin binding through electrostatic interactions. FEBS J 2024; 291:761-777. [PMID: 37953437 DOI: 10.1111/febs.17001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/25/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Poly-proline II helices are secondary structure motifs frequently found in ligand-binding sites. They exhibit increased flexibility and solvent exposure compared to the strongly hydrogen-bonded α-helices or β-strands and can therefore easily be misinterpreted as completely unstructured regions with an extremely high rotational freedom. Here, we show that the adhesin YadA of Yersinia enterocolitica serotype O:9 contains a poly-proline II helix interaction motif in the N-terminal region. The motif is involved in the interaction of YadAO:9 with heparin, a host glycosaminoglycan. We show that the basic residues within the N-terminal motif of YadA are required for electrostatic interactions with the sulfate groups of heparin. Biophysical methods including CD spectroscopy, solution-state NMR and SAXS all independently support the presence of a poly-proline helix allowing YadAO:9 binding to the rigid heparin. Lastly, we show that host cells deficient in sulfation of heparin and heparan sulfate are not targeted by YadAO:9 -mediated adhesion. We speculate that the YadAO:9 -heparin interaction plays an important and highly strain-specific role in the pathogenicity of Yersinia enterocolitica serotype O:9.
Collapse
Affiliation(s)
- Ina Meuskens
- Department of Biosciences, University of Oslo, Norway
| | | | - Benjamin Bardiaux
- Structural Bioinformatics Unit, CNRS UMR3528, Institut Pasteur, Université de Paris-Cité, France
| | | | - Daniel Hatlem
- Department of Biosciences, University of Oslo, Norway
| | | | - Reidar Lund
- Department of Chemistry, University of Oslo, Norway
| | - Nadia Izadi-Pruneyre
- Bacterial Transmembrane Systems Unit, CNRS UMR3528, Institut Pasteur, Université de Paris-Cité, France
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Norway
| |
Collapse
|
3
|
Mintz KP, Danforth DR, Ruiz T. The Trimeric Autotransporter Adhesin EmaA and Infective Endocarditis. Pathogens 2024; 13:99. [PMID: 38392837 PMCID: PMC10892112 DOI: 10.3390/pathogens13020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Infective endocarditis (IE), a disease of the endocardial surface of the heart, is usually of bacterial origin and disproportionally affects individuals with underlying structural heart disease. Although IE is typically associated with Gram-positive bacteria, a minority of cases are caused by a group of Gram-negative species referred to as the HACEK group. These species, classically associated with the oral cavity, consist of bacteria from the genera Haemophilus (excluding Haemophilus influenzae), Aggregatibacter, Cardiobacterium, Eikenella, and Kingella. Aggregatibacter actinomycetemcomitans, a bacterium of the Pasteurellaceae family, is classically associated with Aggressive Periodontitis and is also concomitant with the chronic form of the disease. Bacterial colonization of the oral cavity serves as a reservoir for infection at distal body sites via hematological spreading. A. actinomycetemcomitans adheres to and causes disease at multiple physiologic niches using a diverse array of bacterial cell surface structures, which include both fimbrial and nonfimbrial adhesins. The nonfimbrial adhesin EmaA (extracellular matrix binding protein adhesin A), which displays sequence heterogeneity dependent on the serotype of the bacterium, has been identified as a virulence determinant in the initiation of IE. In this chapter, we will discuss the known biochemical, molecular, and structural aspects of this protein, including its interactions with extracellular matrix components and how this multifunctional adhesin may contribute to the pathogenicity of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Keith P. Mintz
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA;
| | - David R. Danforth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA;
| | - Teresa Ruiz
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA;
| |
Collapse
|
4
|
Liao W, Aranson IS. Viscoelasticity enhances collective motion of bacteria. PNAS NEXUS 2023; 2:pgad291. [PMID: 37719751 PMCID: PMC10503537 DOI: 10.1093/pnasnexus/pgad291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023]
Abstract
Bacteria form human and animal microbiota. They are the leading causes of many infections and constitute an important class of active matter. Concentrated bacterial suspensions exhibit large-scale turbulent-like locomotion and swarming. While the collective behavior of bacteria in Newtonian fluids is relatively well understood, many fundamental questions remain open for complex fluids. Here, we report on the collective bacterial motion in a representative biological non-Newtonian viscoelastic environment exemplified by mucus. Experiments are performed with synthetic porcine gastric mucus, natural cow cervical mucus, and a Newtonian-like polymer solution. We have found that an increase in mucin concentration and, correspondingly, an increase in the suspension's elasticity monotonously increases the length scale of collective bacterial locomotion. On the contrary, this length remains practically unchanged in Newtonian polymer solution in a wide range of concentrations. The experimental observations are supported by computational modeling. Our results provide insight into how viscoelasticity affects the spatiotemporal organization of bacterial active matter. They also expand our understanding of bacterial colonization of mucosal surfaces and the onset of antibiotic resistance due to swarming.
Collapse
Affiliation(s)
- Wentian Liao
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Igor S Aranson
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
5
|
Castellano M, Dodero A, Scarfi S, Mirata S, Pozzolini M, Tassara E, Sionkowska A, Adamiak K, Alloisio M, Vicini S. Chitosan-Collagen Electrospun Nanofibers Loaded with Curcumin as Wound-Healing Patches. Polymers (Basel) 2023; 15:2931. [PMID: 37447576 DOI: 10.3390/polym15132931] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Composite chitosan-collagen nanofibrous mats embedded with curcumin were prepared via a single-step electrospinning procedure and explored as wound-healing patches with superior biological activity. A mild crosslinking protocol consisting of a short exposure to ammonia vapor and UV radiation was developed to ensure proper stability in physiological-like conditions without affecting the intrinsic biocompatibility of chitosan and collagen. The fabricated composite patches displayed a highly porous, homogeneous nanostructure consisting of fibers with an average diameter of 200 nm, thermal stability up to 200 °C, mechanical features able to ensure protection and support to the new tissues, and water-related properties in the ideal range to allow exudate removal and gas exchange. The release kinetic studies carried out in a simulated physiological environment demonstrated that curcumin release was sustained for 72 h when the mats are crosslinked hence providing prolonged bioactivity reflected by the displayed antioxidant properties. Remarkably, combining chitosan and collagen not only ensures prolonged stability and optimal physical-chemical properties but also allows for better-promoting cell adhesion and proliferation and enhanced anti-bacteriostatic capabilities with the addition of curcumin, owing to its beneficial anti-inflammatory effect, ameliorating the attachment and survival/proliferation rates of keratinocytes and fibroblasts to the fabricated patches.
Collapse
Affiliation(s)
- Maila Castellano
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Andrea Dodero
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Sonia Scarfi
- Department of Earth, Environmental and Life Sciences, University of Genova, 16132 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Serena Mirata
- Department of Earth, Environmental and Life Sciences, University of Genova, 16132 Genoa, Italy
| | - Marina Pozzolini
- Department of Earth, Environmental and Life Sciences, University of Genova, 16132 Genoa, Italy
| | - Eleonora Tassara
- Department of Earth, Environmental and Life Sciences, University of Genova, 16132 Genoa, Italy
| | - Alina Sionkowska
- Department of Chemistry of Biomaterials and Cosmetics, Nicolaus Copernicus University, 87100 Toruń, Poland
| | - Katarzyna Adamiak
- Department of Chemistry of Biomaterials and Cosmetics, Nicolaus Copernicus University, 87100 Toruń, Poland
| | - Marina Alloisio
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146 Genoa, Italy
| |
Collapse
|
6
|
Sha Y, Yan Q, Liu J, Yu J, Xu S, He Z, Ren J, Qu J, Zheng S, Wang G, Dong W. Homologous genes shared between probiotics and pathogens affect the adhesion of probiotics and exclusion of pathogens in the gut mucus of shrimp. Front Microbiol 2023; 14:1195137. [PMID: 37389343 PMCID: PMC10301755 DOI: 10.3389/fmicb.2023.1195137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
Clarifying mechanisms underlying the selective adhesion of probiotics and competitive exclusion of pathogens in the intestine is a central theme for shrimp health. Under experimental manipulation of probiotic strain (i.e., Lactiplantibacillus plantarum HC-2) adhesion to the shrimp mucus, this study tested the core hypothesis that homologous genes shared between probiotic and pathogen would affect the adhesion of probiotics and exclusion of pathogens by regulating the membrane proteins of probiotics. Results indicated that the reduction of FtsH protease activity, which significantly correlated with the increase of membrane proteins, could increase the adhesion ability of L. plantarum HC-2 to the mucus. These membrane proteins mainly involved in transport (glycine betaine/carnitine/choline ABC transporter choS, ABC transporter, ATP synthase subunit a atpB, amino acid permease) and regulation of cellular processes (histidine kinase). The genes encoding the membrane proteins were significantly (p < 0.05) up-regulated except those encoding ABC transporters and histidine kinases in L. plantarum HC-2 when co-cultured with Vibrio parahaemolyticus E1, indicating that these genes could help L. plantarum HC-2 to competitively exclude pathogens. Moreover, an arsenal of genes predicted to be involved in carbohydrate metabolism and bacteria-host interactions were identified in L. plantarum HC-2, indicating a clear strain adaption to host's gastrointestinal tract. This study advances our mechanistic understanding of the selective adhesion of probiotics and competitive exclusion of pathogens in the intestine, and has important implications for screening and applying new probiotics for maintaining gut stability and host health.
Collapse
Affiliation(s)
- Yujie Sha
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Qingyun Yan
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Jian Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Jiafeng Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Shicai Xu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Jing Ren
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Jie Qu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Shiying Zheng
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
- Shandong Engineering Laboratory of Swine Health Big Data and Intelligent Monitoring, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Guomin Wang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| | - Weiying Dong
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, China
| |
Collapse
|
7
|
Chatterjee R, Chowdhury AR, Nair AV, Hajra D, Kar A, Datey A, Shankar S, Mishra RK, Chandra N, Chakravortty D. Salmonella Typhimurium PgtE is an essential arsenal to defend against the host resident antimicrobial peptides. Microbiol Res 2023; 271:127351. [PMID: 36931126 DOI: 10.1016/j.micres.2023.127351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/19/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023]
Abstract
Salmonella enterica serovar Typhimurium is a common cause of gastroenteritis in humans and occasionally causes systemic infection. Salmonella's ability to survive and replicate within macrophages is an important characteristic during systemic infection. The outer membrane protease PgtE of S. enterica is a member of the Omptin family of outer membrane aspartate proteases which has well-characterized proteolytic activities in-vitro against a wide range of physiologically relevant substrates. However, no study has been done so far that draws a direct correlation between these in-vitro observations and the biology of the pathogen in-vivo. The main goals of this study were to characterize the pathogenesis-associated functions of pgtE and study its role in the intracellular survival and in-vivo virulence of Salmonella Typhimurium. Our study elucidated a possible role of Salmonella Typhimurium pgtE in combating host antimicrobial peptide- bactericidal/ permeability increasing protein (BPI) to survive in human macrophages. The pgtE-deficient strain of Salmonella showed attenuated proliferation and enhanced colocalization with BPI in U937 and Thp1 cells. In the presence of polymixin B, the attenuated in-vitro survival of STM ΔpgtE suggested a role of PgtE against the antimicrobial peptides. In addition, our study revealed that compared to the wild type Salmonella, the pgtE mutant is replication-deficient in C57BL/6 mice. Further, we showed that PgtE interacts directly with several antimicrobial peptides (AMPs) in the host gut. This gives the pathogen a survival advantage and helps to mount a successful infection in the host.
Collapse
Affiliation(s)
- Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Dipasree Hajra
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Arpita Kar
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Akshay Datey
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Santhosh Shankar
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Rishi Kumar Mishra
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Nagasuma Chandra
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India; Adjunct Faculty, Indian Institute of Science Research and Education, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
8
|
Elídóttir KL, Scott L, Lewis R, Jurewicz I. Biomimetic approach to articular cartilage tissue engineering using carbon nanotube-coated and textured polydimethylsiloxane scaffolds. Ann N Y Acad Sci 2022; 1513:48-64. [PMID: 35288951 PMCID: PMC9545810 DOI: 10.1111/nyas.14769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
There is a significant need to understand the complexity and heterogeneity of articular cartilage to develop more effective therapeutic strategies for diseases such as osteoarthritis. Here, we show that carbon nanotubes (CNTs) are excellent candidates as a material for synthetic scaffolds to support the growth of chondrocytes—the cells that produce and maintain cartilage. Chondrocyte morphology, proliferation, and alignment were investigated as nanoscale CNT networks were applied to macroscopically textured polydimethylsiloxane (PDMS) scaffolds. The application of CNTs to the surface of PDMS‐based scaffolds resulted in an up to 10‐fold increase in cell adherence and 240% increase in proliferation, which is attributable to increased nanoscale roughness and hydrophilicity. The introduction of macroscale features to PDMS induced alignment of chondrocytes, successfully mimicking the cell behavior observed in the superficial layer of cartilage. Raman spectroscopy was used as a noninvasive, label‐free method to monitor extracellular matrix production and chondrocyte phenotype. Chondrocytes on these scaffolds successfully produced collagen, glycosaminoglycan, and aggrecan. This study demonstrates that introducing physical features at different length scales allows for a high level of control over tissue scaffold design and, thus, cell behavior. Ultimately, these textured scaffolds can serve as platforms to improve the understanding of osteoarthritis and for early‐stage therapeutic testing.
Collapse
Affiliation(s)
- Katrín Lind Elídóttir
- Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK.,Department of Veterinary Pre-Clinical Sciences, University of Surrey, Guildford, UK
| | - Louie Scott
- Department of Veterinary Pre-Clinical Sciences, University of Surrey, Guildford, UK
| | - Rebecca Lewis
- Department of Veterinary Pre-Clinical Sciences, University of Surrey, Guildford, UK
| | - Izabela Jurewicz
- Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
9
|
Meuskens I, Leva-Bueno J, Millner P, Schütz M, Peyman SA, Linke D. The Trimeric Autotransporter Adhesin YadA of Yersinia enterocolitica Serotype O:9 Binds Glycan Moieties. Front Microbiol 2022; 12:738818. [PMID: 35178035 PMCID: PMC8844515 DOI: 10.3389/fmicb.2021.738818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/06/2021] [Indexed: 11/29/2022] Open
Abstract
Yersinia adhesin A (YadA) is a key virulence factor of Yersinia enterocolitica and Yersinia pseudotuberculosis. YadA is a trimeric autotransporter adhesin, a class of adhesins that have been shown to enable many Gram-negative pathogens to adhere to/interact with the host extracellular matrix proteins such as collagen, vitronectin, and fibronectin. Here, we show for the first time that YadA of Yersinia enterocolitica serotype O:9 not only interacts with proteinaceous surface molecules but can also attach directly to glycan moieties. We show that YadA from Y. enterocolitica serotype O:9 does not interact with the vitronectin protein itself but exclusively with its N-linked glycans. We also show that YadA can target other glycan moieties as found in heparin, for example. So far, little is known about specific interactions between bacterial autotransporter adhesins and glycans. This could potentially lead to new antimicrobial treatment strategies, as well as diagnostic applications.
Collapse
Affiliation(s)
- Ina Meuskens
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Juan Leva-Bueno
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Paul Millner
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Monika Schütz
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Institut für Medizinische Mikrobiologie und Hygiene, Universität Tübingen, Tübingen, Germany
| | - Sally A. Peyman
- Molecular and Nanoscale Physics Group, Department of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Zhou Y, Yan K, Sun C, Liu F, Peng W, Chen H, Yuan F, Bei W, Li J. Binding of Plasminogen to Streptococcus suis Protein Endopeptidase O Facilitates Evasion of Innate Immunity in Streptococcus suis. Front Microbiol 2021; 12:694103. [PMID: 34305859 PMCID: PMC8297593 DOI: 10.3389/fmicb.2021.694103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022] Open
Abstract
The Gram-positive bacterial species Streptococcus suis is an important porcine and human pathogen that causes severe life-threatening diseases associated with high mortality rates. However, the mechanisms by which S. suis evades host innate immunity remain elusive, so identifying novel virulence factors involved in immune evasion is crucial to gain control over this threatening pathogen. Our previous work has shown that S. suis protein endopeptidase O (SsPepO) is a novel fibronectin-binding protein. Here, we identified that recombinant SsPepO binds human plasminogen in a dose-dependent manner. Moreover, the binding of SsPepO and plasminogen, upon the activation of urokinase-type plasminogen activator, generated plasmin, which could cleave complement C3b, thus playing an important role in complement control. Additionally, a SspepO-deficient mutant showed impaired adherence to plasminogen as well as impaired adherence to and invasion of rat brain microvascular endothelial cells compared with the wildtype strain. We further found that the SspepO-deficient mutant was efficiently killed by human serum and blood. We also confirmed that the SspepO-deficient mutant had a lower mortality rate than the wildtype strain in a mouse model. In conclusion, these results indicate that SsPepO is a novel plasminogen-binding protein that contributes to S. suis immune evasion.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Kang Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chengfeng Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Feng Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wei Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Erlendsson S, Teilum K. Binding Revisited-Avidity in Cellular Function and Signaling. Front Mol Biosci 2021; 7:615565. [PMID: 33521057 PMCID: PMC7841115 DOI: 10.3389/fmolb.2020.615565] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
When characterizing biomolecular interactions, avidity, is an umbrella term used to describe the accumulated strength of multiple specific and unspecific interactions between two or more interaction partners. In contrast to the affinity, which is often sufficient to describe monovalent interactions in solution and where the binding strength can be accurately determined by considering only the relationship between the microscopic association and dissociation rates, the avidity is a phenomenological macroscopic parameter linked to several microscopic events. Avidity also covers potential effects of reduced dimensionality and/or hindered diffusion observed at or near surfaces e.g., at the cell membrane. Avidity is often used to describe the discrepancy or the "extra on top" when cellular interactions display binding that are several orders of magnitude stronger than those estimated in vitro. Here we review the principles and theoretical frameworks governing avidity in biological systems and the methods for predicting and simulating avidity. While the avidity and effects thereof are well-understood for extracellular biomolecular interactions, we present here examples of, and discuss how, avidity and the underlying kinetics influences intracellular signaling processes.
Collapse
Affiliation(s)
- Simon Erlendsson
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom.,Structural Molecular Biology Group, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Rajan A, Robertson MJ, Carter HE, Poole NM, Clark JR, Green SI, Criss ZK, Zhao B, Karandikar U, Xing Y, Margalef-Català M, Jain N, Wilson RL, Bai F, Hyser JM, Petrosino J, Shroyer NF, Blutt SE, Coarfa C, Song X, Prasad BVV, Amieva MR, Grande-Allen J, Estes MK, Okhuysen PC, Maresso AW. Enteroaggregative E. coli Adherence to Human Heparan Sulfate Proteoglycans Drives Segment and Host Specific Responses to Infection. PLoS Pathog 2020; 16:e1008851. [PMID: 32986782 PMCID: PMC7553275 DOI: 10.1371/journal.ppat.1008851] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/13/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is a significant cause of acute and chronic diarrhea, foodborne outbreaks, infections of the immunocompromised, and growth stunting in children in developing nations. There is no vaccine and resistance to antibiotics is rising. Unlike related E. coli pathotypes that are often associated with acute bouts of infection, EAEC is associated with persistent diarrhea and subclinical long-term colonization. Several secreted virulence factors have been associated with EAEC pathogenesis and linked to disease in humans, less certain are the molecular drivers of adherence to the intestinal mucosa. We previously established human intestinal enteroids (HIEs) as a model system to study host-EAEC interactions and aggregative adherence fimbriae A (AafA) as a major driver of EAEC adherence to HIEs. Here, we report a large-scale assessment of the host response to EAEC adherence from all four segments of the intestine across at least three donor lines for five E. coli pathotypes. The data demonstrate that the host response in the duodenum is driven largely by the infecting pathotype, whereas the response in the colon diverges in a patient-specific manner. Major pathways altered in gene expression in each of the four enteroid segments differed dramatically, with responses observed for inflammation, apoptosis and an overwhelming response to different mucin genes. In particular, EAEC both associated with large mucus droplets and specific mucins at the epithelial surface, binding that was ameliorated when mucins were removed, a process dependent on AafA. Pan-screening for glycans for binding to purified AafA identified the human ligand as heparan sulfate proteoglycans (HSPGs). Removal of HSPG abrogated EAEC association with HIEs. These results may mean that the human intestine responds remarkably different to distinct pathobionts that is dependent on the both the individual and intestinal segment in question, and uncover a major role for surface heparan sulfate proteoglycans as tropism-driving factor in adherence and/or colonization.
Collapse
Affiliation(s)
- Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Matthew J. Robertson
- Molecular and Cell Biology-Mol. Regulation, Baylor College of Medicine, Houston, TX, United States of America
| | - Hannah E. Carter
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Nina M. Poole
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Sabrina I. Green
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Zachary K. Criss
- Department of Medicine Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America
| | - Boyang Zhao
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Umesh Karandikar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Yikun Xing
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Mar Margalef-Català
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, CA, United States of America
| | - Nikhil Jain
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Reid L. Wilson
- Department of Bioengineering, Rice University, Houston, TX, United States of America
| | - Fan Bai
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Joseph M. Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Joseph Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Noah F. Shroyer
- Department of Medicine Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX, United States of America
| | - Sarah E. Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Cristian Coarfa
- Molecular and Cell Biology-Mol. Regulation, Baylor College of Medicine, Houston, TX, United States of America
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Xuezheng Song
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States of America
| | - BV Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Manuel R. Amieva
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, CA, United States of America
| | - Jane Grande-Allen
- Department of Bioengineering, Rice University, Houston, TX, United States of America
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Pablo C. Okhuysen
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| |
Collapse
|
13
|
Yang W, Song A, Ao M, Xu Y, Zhang H. Large-scale site-specific mapping of the O-GalNAc glycoproteome. Nat Protoc 2020; 15:2589-2610. [PMID: 32681153 PMCID: PMC8620167 DOI: 10.1038/s41596-020-0345-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 04/21/2020] [Indexed: 01/20/2023]
Abstract
Protein glycosylation is one of the most common protein modifications. A major type of protein glycosylation is O-GalNAcylation, in which GalNAc-type glycans are attached to protein Ser or Thr residues via an O-linked glycosidic bond. O-GalNAcylation is thought to play roles in protein folding, stability, trafficking and protein interactions, and identification of the site-specific O-GalNAc glycoproteome is a crucial step toward understanding the biological significance of the modification. However, lack of suitable methodology, absence of consensus sequon of O-GalNAcylation sites and complex O-GalNAc glycan structures pose analytical challenges. We recently developed a mass spectrometry-based method called extraction of O-linked glycopeptides (EXoO) that enables large-scale mapping of site-specific mucin-type O-GalNAcylation sites. Here we provide a detailed protocol for EXoO, which includes seven stages of: (1) extraction and proteolytic digestion of proteins to peptides, (2) sequential guanidination and de-salting of peptides, (3) enrichment of glycopeptides, (4) solid-phase peptide conjugation and release of O-GalNAc glycopeptides using the OpeRATOR protease, (5) liquid chromatography with tandem mass spectrometry analysis of O-GalNAc glycopeptides, (6) identification of O-GalNAc glycopeptides by database search and (7) quantification of O-GalNAc glycopeptides. Using this protocol, thousands of O-GalNAcylation sites from hundreds of glycoproteins with information regarding site-specific O-GalNAc glycan can be identified and quantified from complex samples. The protocol can be performed by a researcher with basic proteomics skills and takes about 4 d to complete.
Collapse
Affiliation(s)
- Weiming Yang
- Corresponding Author: Address: Department of Pathology, Johns Hopkins University School of Medicine, 400 North Broadway, Room 4001A, Baltimore, Maryland, United States.
| | | | | | | | | |
Collapse
|
14
|
Bakhshi B, Barzelighi HM, Daraei B. The anti-adhesive and anti-invasive effects of recombinant azurin on the interaction between enteric pathogens (invasive/non-invasive) and Caco-2 cells. Microb Pathog 2020; 147:104246. [PMID: 32562811 DOI: 10.1016/j.micpath.2020.104246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Anti-adhesion therapy and anti-adhesin immunity are meant to diminish the interaction between pathogens and host tissues, either by prevention or by exclusion of bacterial adhesion and entrance to cells. Azurin is a scaffold protein possessing antiviral, antiparasitic, and anticancer activities. The purpose of the present study was to determine the effect of recombinant Azurin (rAzurin) on the adhesion and invasion capacity of invasive (Shigella sonnei, Shigella flexneri, Campylobacter jejuni) and non-invasive (Vibrio cholerae) enteric bacteria to cells. The non-toxic dose of rAzurin and the best MOI (Multiplicity of Infection) of bacterial species was assessed by MTT assay. Bacterial species were used at MOIs of 20:1 and Azurin was applied at the concentrations of 5 and 25 μg/mL and added to Caco-2 cells in competition and replacement assay to assess the anti-adhesion and anti-invasion properties of rAzurin. The protein caused significant decrease in the adhesion rate of S. sonnei, S. flexneri, C. jejuni, and V. cholerae strains to Caco-2 cells by 43, 39, 72, and 38% in competition and 45, 46, 75, and 48% in replacement assays, respectively. Also, S. sonnei, S. flexneri, and C. jejuni strains invasion rate was reduced to 50, 50, and 70% in anti-invasion assay, respectively. The inhibitory effect of Azurin against C. jejuni and V. cholerae strains adhesion was more significant (p < .001) compared to Shigella spp. (p < .05) which may be due to smaller size of the former bacteria. On the contrary, in invasion assay, rAzurin showed a greater inhibitory effect against Shigella spp. (p < .001) compared to C. jejuni (p < .05), which may probably be due to the interaction of rAzurin with several effectors or ligands, involved in Shigella invasion and internalization. The findings of the present study opens new insights of rAzurin as a new and potent candidate for reducing or probably preventing enteric bacterial attachment, invasion, and pathogenesis.
Collapse
Affiliation(s)
- Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Bahram Daraei
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Abramov VM, Kosarev IV, Priputnevich TV, Machulin AV, Khlebnikov VS, Pchelintsev SY, Vasilenko RN, Sakulin VK, Suzina NE, Chikileva IO, Derysheva EI, Melnikov VG, Nikonov IN, Samoilenko VA, Svetoch EE, Sukhikh GT, Uversky VN, Karlyshev AV. S-layer protein 2 of Lactobacillus crispatus 2029, its structural and immunomodulatory characteristics and roles in protective potential of the whole bacteria against foodborne pathogens. Int J Biol Macromol 2020; 150:400-412. [PMID: 32045605 DOI: 10.1016/j.ijbiomac.2020.02.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 01/11/2023]
Abstract
We have previously demonstrated that human vaginal Lactobacillus crispatus 2029 (LC2029) strain is highly adhesive to cervicovaginal epithelial cells, exhibits antagonistic activity against genitourinary pathogens and expresses surface-layer protein (Slp). The aims of the present study were elucidation of Slp structural and immunomodulatory characteristics and its roles in protective properties of the whole vaginal LC2029 bacteria against foodborne pathogens. Enteric Caco-2 and colon HT-29 cell lines were used as the in vitro models of the human intestinal epithelial layer. LC2029 strain has two homologous surface-layer (S-layer) genes, slp1 and slp2. Whilst we found no evidence for the expression of slp1 under the growth conditions used, a very high level of expression of the slp2 gene was detected. C-terminal part of the amino sequence of Slp2 protein was found to be highly similar to that of the conserved C-terminal region of SlpA protein of L. crispatus Zj001 isolated from pig intestines and CbsA protein of L. crispatus JCM5810 isolated from chicken intestines, and was substantially variable at the N-terminal and middle regions. The amino acid sequence identity between SlpA and CbsA was as high as 84%, whilst the identity levels of these sequences with that of Slp2 were only 49% and 50% (respectively). LC2029 strain was found to be both acid and bile tolerant. Survival in simulated gastric and intestinal juices of LC2029 cells unable to produce Slp2 was reduced by 2-3 logs. Vaginal L. crispatus 1385 (LC1385) strain not expressing Slp was also very sensitive to gastric and intestinal stresses. Slp2 was found to be non-covalently bound to the surface of the bacterium, acting as an adhesin and facilitating interaction of LC2029 lactobacilli with the host immature or fully differentiated Caco-2 cells, as well as HT-29 cells. No toxicity to or damage of Caco-2 or HT-29 epithelial cells were detected after 24 h of colonization by LC2029 lactobacilli. Both Slp2 protein and LC2029 cells induced NF-kB activation in Caco-2 and HT-29 cells, but did not induce expression of innate immunity mediators Il-8, Il-1β, and TNF-α. Slp2 and LC2029 inhibited Il-8 production in Caco-2 and HT-29 cells induced by MALP-2 and increased production of anti-inflammatory cytokine Il-6. Slp2 inhibited production of CXCL1 and RANTES by Caco-2 cells during differentiation and maturation process within 15 days. Culturing Caco-2 and HT-29 cells in the presence of Slp2 increased adhesion of bifidobacteria BLI-2780 to these enterocytes. Upon binding to Caco-2 and HT-29 cells, Slp2 protein and LC2029 lactobacilli were recognized by toll-like receptors (TLR) 2/6. It was shown that LC2029 strain is a strong co-aggregator of foodborne pathogens Campylobacter jejuni, Salmonella enteritidis, and Escherichia coli O157:H used in this study. The Slp2 was responsible for the ability of LC2029 to co-aggregate these enteropathogens. Slp2 and intact LC2029 lactobacilli inhibited foodborne pathogen-induced activation of caspase-9 and caspase-3 as apoptotic biomarkers in Caco-2 and HT-29 cells. In addition, Slp2 and Slp2-positive LC2029 strain reduced adhesion of tested pathogenic bacteria to Caco-2 and HT-29 cells. Slp2-positive LC2029 strain but not Slp2 alone provided bactericidal effect on foodborne pathogens. These results suggest a range of mechanisms involved in inhibition of growth, viability, and cell-adhesion properties of pathogenic Proteobacteria by the Slp2 producing LC2029, which may be useful in treatment of necrotizing enterocolitis (NEC) in newborns and foodborne infectious diseases in children and adults, increasing the colonization resistance and maintaining the intestinal homeostasis.
Collapse
Affiliation(s)
- Vyacheslav M Abramov
- Institute of Immunological Engineering, 142380 Lyubuchany, Moscow Region, Russia
| | - Igor V Kosarev
- Institute of Immunological Engineering, 142380 Lyubuchany, Moscow Region, Russia
| | - Tatiana V Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health, 117997 Moscow, Russia
| | - Andrey V Machulin
- Scryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Science", 142290 Pushchino, Moscow Region, Russia
| | | | | | - Raisa N Vasilenko
- Institute of Immunological Engineering, 142380 Lyubuchany, Moscow Region, Russia
| | - Vadim K Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Moscow Region, Russia
| | - Natalia E Suzina
- Scryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Science", 142290 Pushchino, Moscow Region, Russia
| | - Irina O Chikileva
- Institute of Immunological Engineering, 142380 Lyubuchany, Moscow Region, Russia; Laboratory of Cell Immunity, Blokhin National Research, Center of Oncology Ministry of Health RF, 115478 Moscow, Russia
| | - Evgenia I Derysheva
- Institute for Biological Instrumentation, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Science", 142290, Pushchino, Moscow Region, Russia
| | - Vyacheslav G Melnikov
- Gabrichevsky Moscow Research Institute of Epidemiology and Microbiology, Federal Service for Supervision of Consumer Rights Protection and Human Welfare, 152212 Moscow, Russia
| | - Ilya N Nikonov
- Federal Research Center "All-Russian Research and Technological Institute of Poultry" of the Russian Academy of Science, 141311 Sergiev Posad, Moscow Region, Russia
| | - Vladimir A Samoilenko
- Scryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Science", 142290 Pushchino, Moscow Region, Russia
| | - Eduard E Svetoch
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Moscow Region, Russia
| | - Gennady T Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology of the Ministry of Health, 117997 Moscow, Russia
| | - Vladimir N Uversky
- Institute for Biological Instrumentation, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Science", 142290, Pushchino, Moscow Region, Russia; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Andrey V Karlyshev
- Department of Science, Engineering and Computing, Kingston University London, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|
16
|
Nietfeld F, Höltig D, Willems H, Valentin-Weigand P, Wurmser C, Waldmann KH, Fries R, Reiner G. Candidate genes and gene markers for the resistance to porcine pleuropneumonia. Mamm Genome 2020; 31:54-67. [PMID: 31960078 PMCID: PMC7060169 DOI: 10.1007/s00335-019-09825-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022]
Abstract
Actinobacillus (A.) pleuropneumoniae is one of the most important respiratory pathogens in global pig production. Antimicrobial treatment and vaccination provide only limited protection, but genetic disease resistance is a very promising alternative for sustainable prophylaxis. Previous studies have discovered multiple QTL that may explain up to 30% of phenotypic variance. Based on these findings, the aim of the present study was to use genomic sequencing to identify genetic markers for resistance to pleuropneumonia in a segregating commercial German Landrace line. 163 pigs were infected with A. pleuropneumoniae Serotype 7 through a standardized aerosol infection method. Phenotypes were accurately defined on a clinical, pathological and microbiological basis. The 58 pigs with the most extreme phenotypes were genotyped by sequencing (next-generation sequencing). SNPs were used in a genome-wide association study. The study identified genome-wide associated SNPs on three chromosomes, two of which were chromosomes of QTL which had been mapped in a recent experiment. Each variant explained up to 20% of the total phenotypic variance. Combined, the three variants explained 52.8% of the variance. The SNPs are located in genes involved in the pathomechanism of pleuropneumonia. This study confirms the genetic background for the host's resistance to pleuropneumonia and indicates a potential role of three candidates on SSC2, SSC12 and SSC15. Favorable gene variants are segregating in commercial populations. Further work is needed to verify the results in a controlled study and to identify the functional QTN.
Collapse
Affiliation(s)
- Florian Nietfeld
- Department for Veterinary Clinical Sciences, Justus-Liebig-University, Giessen, Germany
| | - Doris Höltig
- Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Hermann Willems
- Department for Veterinary Clinical Sciences, Justus-Liebig-University, Giessen, Germany
| | - Peter Valentin-Weigand
- Institute for Microbiology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Christine Wurmser
- Chair of Animal Breeding, Technical University of Munich, Freising, Germany
| | - Karl-Heinz Waldmann
- Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Ruedi Fries
- Chair of Animal Breeding, Technical University of Munich, Freising, Germany
| | - Gerald Reiner
- Department for Veterinary Clinical Sciences, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
17
|
Lamba GS, Dufour D, Nainar SMH, Cioffi I, Lévesque CM, Gong SG. Association of Streptococcus mutans collagen binding genes with severe childhood caries. Clin Oral Investig 2020; 24:3467-3475. [DOI: 10.1007/s00784-020-03217-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/20/2020] [Indexed: 01/05/2023]
|
18
|
Neidlin M, Chantzi E, Macheras G, Gustafsson MG, Alexopoulos LG. An ex vivo tissue model of cartilage degradation suggests that cartilage state can be determined from secreted key protein patterns. PLoS One 2019; 14:e0224231. [PMID: 31634377 PMCID: PMC6802827 DOI: 10.1371/journal.pone.0224231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022] Open
Abstract
The pathophysiology of osteoarthritis (OA) involves dysregulation of anabolic and catabolic processes associated with a broad panel of proteins that ultimately lead to cartilage degradation. An increased understanding about these protein interactions with systematic in vitro analyses may give new ideas regarding candidates for treatment of OA related cartilage degradation. Therefore, an ex vivo tissue model of cartilage degradation was established by culturing tissue explants with bacterial collagenase II. Responses of healthy and degrading cartilage were analyzed through protein abundance in tissue supernatant with a 26-multiplex protein profiling assay, after exposing the samples to a panel of 55 protein stimulations present in synovial joints of OA patients. Multivariate data analysis including exhaustive pairwise variable subset selection identified the most outstanding changes in measured protein secretions. MMP9 response to stimulation was outstandingly low in degrading cartilage and there were several protein pairs like IFNG and MMP9 that can be used for successful discrimination between degrading and healthy samples. The discovered changes in protein responses seem promising for accurate detection of degrading cartilage. The ex vivo model seems interesting for drug discovery projects related to cartilage degradation, for example when trying to uncover the unknown interactions between secreted proteins in healthy and degrading tissues.
Collapse
Affiliation(s)
- Michael Neidlin
- Department of Mechanical Engineering, National Technical University of Athens, Athens, Greece
| | - Efthymia Chantzi
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | | | - Leonidas G. Alexopoulos
- Department of Mechanical Engineering, National Technical University of Athens, Athens, Greece
- * E-mail:
| |
Collapse
|
19
|
Liu F, Li J, Yan K, Li H, Sun C, Zhang S, Yuan F, Wang X, Tan C, Chen H, Bei W. Binding of Fibronectin to SsPepO Facilitates the Development of Streptococcus suis Meningitis. J Infect Dis 2019; 217:973-982. [PMID: 29253192 DOI: 10.1093/infdis/jix523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background SsPepO is an important virulence in Streptococcus suis. Methods In this study, we showed that SsPepO contributes to the human fibronectin-mediated adherence ability of S. suis to human brain microvascular endothelial cells. Results The addition of an antifibronectin antibody or an arginine-glycine-aspartic acid peptide that blocks fibronectin binding to integrins significantly reduced adherence of the wild-type but not the SspepO mutant strain, indicating the importance of the SsPepO-fibronectin-integrin interaction for S. suis cellular adherence. Conclusions By analyzing Evans blue extravasation in vivo, we showed that the interaction between SsPepO and human fibronectin significantly increased permeability of the blood-brain barrier. Furthermore, the SspepO mutant caused lower bacterial loads in the brain than wild-type S. suis in models of meningitis. These data demonstrate that SsPepO is a fibronectin-binding protein, which plays a contributing role in the development of S. suis meningitis.
Collapse
Affiliation(s)
- Feng Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Kang Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chengfeng Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuo Zhang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Fangyan Yuan
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China.,Key Laboratory of Development of Veterinary Diagnostic Products of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
20
|
Morgan DJ, Casulli J, Chew C, Connolly E, Lui S, Brand OJ, Rahman R, Jagger C, Hussell T. Innate Immune Cell Suppression and the Link With Secondary Lung Bacterial Pneumonia. Front Immunol 2018; 9:2943. [PMID: 30619303 PMCID: PMC6302086 DOI: 10.3389/fimmu.2018.02943] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Secondary infections arise as a consequence of previous or concurrent conditions and occur in the community or in the hospital setting. The events allowing secondary infections to gain a foothold have been studied for many years and include poor nutrition, anxiety, mental health issues, underlying chronic diseases, resolution of acute inflammation, primary immune deficiencies, and immune suppression by infection or medication. Children, the elderly and the ill are particularly susceptible. This review is concerned with secondary bacterial infections of the lung that occur following viral infection. Using influenza virus infection as an example, with comparisons to rhinovirus and respiratory syncytial virus infection, we will update and review defective bacterial innate immunity and also highlight areas for potential new investigation. It is currently estimated that one in 16 National Health Service (NHS) hospital patients develop an infection, the most common being pneumonia, lower respiratory tract infections, urinary tract infections and infection of surgical sites. The continued drive to understand the mechanisms of why secondary infections arise is therefore of key importance.
Collapse
Affiliation(s)
- David J Morgan
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Joshua Casulli
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Christine Chew
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Emma Connolly
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Sylvia Lui
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Oliver J Brand
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Rizwana Rahman
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Christopher Jagger
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
21
|
Tomlin H, Piccinini AM. A complex interplay between the extracellular matrix and the innate immune response to microbial pathogens. Immunology 2018; 155:186-201. [PMID: 29908065 PMCID: PMC6142291 DOI: 10.1111/imm.12972] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/26/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022] Open
Abstract
The role of the host extracellular matrix (ECM) in infection tends to be neglected. However, the complex interactions between invading pathogens, host tissues and immune cells occur in the context of the ECM. On the pathogen side, a variety of surface and secreted molecules, including microbial surface components recognizing adhesive matrix molecules and tissue-degrading enzymes, are employed that interact with different ECM proteins to effectively establish an infection at specific sites. Microbial pathogens can also hijack or misuse host proteolytic systems to modify the ECM, evade immune responses or process biologically active molecules such as cell surface receptors and cytokines that direct cell behaviour and immune defence. On the host side, the ECM composition and three-dimensional ultrastructure undergo significant modifications, which have a profound impact on the specific signals that the ECM conveys to immune cells at the forefront of infection. Unexpectedly, activated immune cells participate in the remodelling of the local ECM by synthesizing ECM glycoproteins, proteoglycans and collagen molecules. The close interplay between the ECM and the innate immune response to microbial pathogens ultimately affects the outcome of infection. This review explores and discusses recent data that implicate an active role for the ECM in the immune response to infection, encompassing antimicrobial activities, microbial recognition, macrophage activation, phagocytosis, leucocyte population balance, and transcriptional and post-transcriptional regulation of inflammatory networks, and may foster novel antimicrobial approaches.
Collapse
Affiliation(s)
- Hannah Tomlin
- School of PharmacyUniversity of NottinghamNottinghamUK
| | | |
Collapse
|
22
|
Porayath C, Salim A, Palillam Veedu A, Babu P, Nair B, Madhavan A, Pal S. Characterization of the bacteriophages binding to human matrix molecules. Int J Biol Macromol 2018; 110:608-615. [PMID: 29246876 PMCID: PMC5864510 DOI: 10.1016/j.ijbiomac.2017.12.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/28/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Abstract
Recent literature has suggested a novel symbiotic relationship between bacteriophage and metazoan host that provides antimicrobial defense protecting mucosal surface by binding to host matrix mucin glycoproteins. Here, we isolated and studied different bacteriophages that specifically interact with human extracellular matrix molecules such as fibronectin, gelatin, heparin and demonstrated their potency for protection to host against microbial infections. We showed that subpopulations of bacteriophages that work against clinical isolates of Escherichia coli can bind to pure gelatin, fibronectin and heparin and reduced bacterial load in human colon cell line HT29. The bacteriophages were characterized with respect to their genome sizes, melting curve patterns and host tropism (cross-reactivity with different hosts). Since, the bacteriophages are non-toxic to the host and can effectively reduce bacterial load in HT29 cell line their therapeutic potency against bacterial infection could be explored.
Collapse
Affiliation(s)
- Chandni Porayath
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Amrita Salim
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | | | - Pradeesh Babu
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Bipin Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Ajith Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Sanjay Pal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India.
| |
Collapse
|
23
|
Werneburg GT, Thanassi DG. Pili Assembled by the Chaperone/Usher Pathway in Escherichia coli and Salmonella. EcoSal Plus 2018; 8:10.1128/ecosalplus.ESP-0007-2017. [PMID: 29536829 PMCID: PMC5940347 DOI: 10.1128/ecosalplus.esp-0007-2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Indexed: 12/12/2022]
Abstract
Gram-negative bacteria assemble a variety of surface structures, including the hair-like organelles known as pili or fimbriae. Pili typically function in adhesion and mediate interactions with various surfaces, with other bacteria, and with other types of cells such as host cells. The chaperone/usher (CU) pathway assembles a widespread class of adhesive and virulence-associated pili. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and integral outer membrane protein termed the usher, which forms a multifunctional assembly and secretion platform. This review addresses the molecular and biochemical aspects of the CU pathway in detail, focusing on the type 1 and P pili expressed by uropathogenic Escherichia coli as model systems. We provide an overview of representative CU pili expressed by E. coli and Salmonella, and conclude with a discussion of potential approaches to develop antivirulence therapeutics that interfere with pilus assembly or function.
Collapse
Affiliation(s)
- Glenn T. Werneburg
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| | - David G. Thanassi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
24
|
Fei D, Meng X, Yu W, Yang S, Song N, Cao Y, Jin S, Dong L, Pan S, Zhao M. Fibronectin (FN) cooperated with TLR2/TLR4 receptor to promote innate immune responses of macrophages via binding to integrin β1. Virulence 2018; 9:1588-1600. [PMID: 30272511 PMCID: PMC7000207 DOI: 10.1080/21505594.2018.1528841] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 09/04/2018] [Accepted: 09/18/2018] [Indexed: 11/26/2022] Open
Abstract
Macrophages could adhere to extracellular matrix molecules(ECM) to induce the expression of pro-inflammatory mediators and phagocytosis that contribute to the pathogenesis of pulmonary infection diseases. Fibronectin (FN) is a large glycoprotein capable of interacting with various ECM molecules produced by a variety of cell types and involved in cell attachment and chemotaxis. However, it is unknown whether FN regulates the expression of pro-inflammatory mediators and phagocytosis of macrophages in the injured lung tissue. Here, we investigated the interaction between FN and integrin β1 in macrophages, which promotes toll-like receptor 2/4 (TLR2/TLR4) signaling pathways to enhance expression of pro-inflammatory mediators and phagocytosis by macrophages. Our results show that lipopolysaccharide (LPS), lipoteichoic acid (LTA) and peptidoglycan (PGN) significantly increase FN expression of macrophages; FN substantially enhances interleukin 6 (IL-6), tumor necrosis factor-α (TNFα), ras-related C3 botulinum toxin substrate 1/2 (Rac1/2), and cell division control protein 42 homolog (Cdc42) expression and phagocytosis of macrophages. However, FN could not enhance pro-inflammatory cytokines and phagocytosis of macrophages induced by LPS and PGN in integrin β1-/- macrophages. Furthermore, applied integrin β1 blocking peptide abrogated the effects that FN promotes innate immune responses of macrophages to LPS and PGN. Those data indicated that the enhanced pro-inflammatory mediators and phagocytosis of macrophages by FN-integrin β1 signal was through co-operating with TLR2/TLR4 signaling. This study suggests that FN play an essential role in the pathogenesis of pulmonary infection disease.
Collapse
Affiliation(s)
- Dongsheng Fei
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xianglin Meng
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Yu
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Songlin Yang
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ning Song
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanhui Cao
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Songgen Jin
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lina Dong
- Department of Ultrasound in Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangha Pan
- The Key Hepatosplenic Surgery Laboratory, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingyan Zhao
- Department of ICU, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Fukuda K. Is it feasible to control pathogen infection by competitive binding of probiotics to the host? Virulence 2017; 8:1502-1505. [PMID: 28934003 DOI: 10.1080/21505594.2017.1382798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Kenji Fukuda
- a Department of Animal and Food Hygiene , Obihiro University of Agriculture and Veterinary Medicine, Inada-cho , Obihiro , Hokkaido , Japan
| |
Collapse
|
26
|
Food derived anti-adhesive components against bacterial adhesion: Current progresses and future perspectives. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Yadav AK, Tyagi A, Kumar A, Panwar S, Grover S, Saklani AC, Hemalatha R, Batish VK. Adhesion of Lactobacilli and their anti-infectivity potential. Crit Rev Food Sci Nutr 2017; 57:2042-2056. [PMID: 25879917 DOI: 10.1080/10408398.2014.918533] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The probiotic potential of lactic acid bacteria primarily point toward colonizing ability of Lactobacilli as the most important attribute for endowing all the known beneficial effects in a host. Lactobacillus species exert health-promoting function in the gastrointestinal tract through various mechanisms such as pathogen exclusion, maintenance of microbial balance, immunomodulation, and other crucial functions. It has been seen that many surface layer proteins are involved in host adhesion, and play significant role in the modification of some signaling pathways within the host cells. Interaction between different bacterial cell surface proteins and host receptor has been imperative for a better understanding of the mechanism through which Lactobacilli exert their health-promoting functions.
Collapse
Affiliation(s)
- Ashok Kumar Yadav
- a Department of Microbiology , National Institute of Nutrition , Hyderabad , India.,b Centre for Molecular Biology, Central University of Jammu , Samba , Jammu & Kashmir , India
| | - Ashish Tyagi
- c Molecular Biology Unit, Dairy Microbiology Division, National Dairy Research Institute , Karnal , Haryana , India
| | - Ashwani Kumar
- d Department of Biotechnology , Seth Jai Parkash Mukand Lal Institute of Engineering and Technology , Radaur , Yamuna Nagar , Haryana , India.,e Department of Nutrition Biology , Central University of Haryana , Mahendergarh , Haryana , India
| | - Surbhi Panwar
- d Department of Biotechnology , Seth Jai Parkash Mukand Lal Institute of Engineering and Technology , Radaur , Yamuna Nagar , Haryana , India
| | - Sunita Grover
- c Molecular Biology Unit, Dairy Microbiology Division, National Dairy Research Institute , Karnal , Haryana , India
| | | | - Rajkumar Hemalatha
- a Department of Microbiology , National Institute of Nutrition , Hyderabad , India
| | - Virender Kumar Batish
- c Molecular Biology Unit, Dairy Microbiology Division, National Dairy Research Institute , Karnal , Haryana , India
| |
Collapse
|
28
|
Kober KM, Pogson GH. Genome-wide signals of positive selection in strongylocentrotid sea urchins. BMC Genomics 2017; 18:555. [PMID: 28732465 PMCID: PMC5521101 DOI: 10.1186/s12864-017-3944-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022] Open
Abstract
Background Comparative genomics studies investigating the signals of positive selection among groups of closely related species are still rare and limited in taxonomic breadth. Such studies show great promise in advancing our knowledge about the proportion and the identity of genes experiencing diversifying selection. However, methodological challenges have led to high levels of false positives in past studies. Here, we use the well-annotated genome of the purple sea urchin, Strongylocentrotus purpuratus, as a reference to investigate the signals of positive selection at 6520 single-copy orthologs from nine sea urchin species belonging to the family Strongylocentrotidae paying careful attention to minimizing false positives. Results We identified 1008 (15.5%) candidate positive selection genes (PSGs). Tests for positive selection along the nine terminal branches of the phylogeny identified 824 genes that showed lineage-specific adaptive diversification (1.67% of branch-sites tests performed). Positively selected codons were not enriched at exon borders or near regions containing missing data, suggesting a limited contribution of false positives caused by alignment or annotation errors. Alignments were validated at 10 loci with re-sequencing using Sanger methods. No differences were observed in the rates of synonymous substitution (dS), GC content, and codon bias between the candidate PSGs and those not showing positive selection. However, the candidate PSGs had 68% higher rates of nonsynonymous substitution (dN) and 33% lower levels of heterozygosity, consistent with selective sweeps and opposite to that expected by a relaxation of selective constraint. Although positive selection was identified at reproductive proteins and innate immunity genes, the strongest signals of adaptive diversification were observed at extracellular matrix proteins, cell adhesion molecules, membrane receptors, and ion channels. Many candidate PSGs have been widely implicated as targets of pathogen binding, inactivation, mimicry, or exploitation in other groups (notably mammals). Conclusions Our study confirmed the widespread action of positive selection across sea urchin genomes and allowed us to reject the possibility that annotation and alignment errors (including paralogs) were responsible for creating false signals of adaptive molecular divergence. The candidate PSGs identified in our study represent promising targets for future research into the selective agents responsible for their adaptive diversification and their contribution to speciation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3944-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kord M Kober
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, USA. .,Institute for Computational Health Sciences, University of California, San Francisco, USA. .,Present address: Department of Physiological Nursing, University of California, San Francisco, USA.
| | - Grant H Pogson
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, USA
| |
Collapse
|
29
|
Saurel O, Iordanov I, Nars G, Demange P, Le Marchand T, Andreas LB, Pintacuda G, Milon A. Local and Global Dynamics in Klebsiella pneumoniae Outer Membrane Protein a in Lipid Bilayers Probed at Atomic Resolution. J Am Chem Soc 2017; 139:1590-1597. [DOI: 10.1021/jacs.6b11565] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Olivier Saurel
- Institut de Pharmacologie
et de Biologie Structurale (CNRS/Université Paul Sabatier),
Université de Toulouse, 31077 Toulouse, France
| | - Iordan Iordanov
- Institut de Pharmacologie
et de Biologie Structurale (CNRS/Université Paul Sabatier),
Université de Toulouse, 31077 Toulouse, France
| | - Guillaume Nars
- Institut de Pharmacologie
et de Biologie Structurale (CNRS/Université Paul Sabatier),
Université de Toulouse, 31077 Toulouse, France
| | - Pascal Demange
- Institut de Pharmacologie
et de Biologie Structurale (CNRS/Université Paul Sabatier),
Université de Toulouse, 31077 Toulouse, France
| | - Tanguy Le Marchand
- Institut de Sciences
Analytiques (UMR 5280 CNRS/ENS-Lyon/UCB Lyon 1), Université
de Lyon, 69007 Lyon, France
| | - Loren B. Andreas
- Institut de Sciences
Analytiques (UMR 5280 CNRS/ENS-Lyon/UCB Lyon 1), Université
de Lyon, 69007 Lyon, France
| | - Guido Pintacuda
- Institut de Sciences
Analytiques (UMR 5280 CNRS/ENS-Lyon/UCB Lyon 1), Université
de Lyon, 69007 Lyon, France
| | - Alain Milon
- Institut de Pharmacologie
et de Biologie Structurale (CNRS/Université Paul Sabatier),
Université de Toulouse, 31077 Toulouse, France
| |
Collapse
|
30
|
|
31
|
Yáñez D, Izquierdo M, Ruiz-Perez F, Nataro JP, Girón JA, Vidal RM, Farfan MJ. The Role of Fibronectin in the Adherence and Inflammatory Response Induced by Enteroaggregative Escherichia coli on Epithelial Cells. Front Cell Infect Microbiol 2016; 6:166. [PMID: 28008386 PMCID: PMC5143885 DOI: 10.3389/fcimb.2016.00166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/15/2016] [Indexed: 11/15/2022] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) infections are still one of the most important etiologic pathogens of diarrhea in children worldwide. EAEC pathogenesis comprises three stages: adherence and colonization, production of toxins, and diarrhea followed by inflammation. Previous studies have demonstrated that EAEC strains have the ability to bind to fibronectin (FN); however, the role this extracellular matrix protein plays in the inflammatory response induced by EAEC remains unknown. In this study, we postulated that FN-mediated adherence of EAEC strains to epithelial cells increases the expression of pro-inflammatory genes. To verify this hypothesis, we infected HEp-2 and HT-29 cells, in both the presence and absence of FN, with EAEC reference strain 042. We quantified IL-8 secretion and the relative expression of a set of genes regulated by the NF-κB pathway. Although FN increased EAEC adherence, no changes in IL-8 protein secretion or IL8 gene expression were observed. Similar observations were found in HEp-2 cells transfected with FN-siRNA and infected with EAEC. To evaluate the involvement of AAF/II fimbriae, we infected HEp-2 and HT-29 cells, in both the presence and absence of FN, with an EAEC 042aafA mutant strain transformed with a plasmid harboring the native aafA gene with a site-directed mutation in Lys72 residue (K72A and K72R strains). No changes in IL-8 secretion were observed. Finally, SEM immunogold assay of cells incubated with FN and infected with EAEC revealed that AAF fimbriae can bind to cells either directly or mediated by FN. Our data suggests that FN participates in AAF/II fimbriae-mediated adherence of EAEC to epithelial cells, but not in the inflammatory response of cells infected by this pathogen.
Collapse
Affiliation(s)
- Dominique Yáñez
- Centro de Estudios Moleculares, Departamento de Pediatría, Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile Santiago, Chile
| | - Mariana Izquierdo
- Centro de Estudios Moleculares, Departamento de Pediatría, Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile Santiago, Chile
| | - Fernando Ruiz-Perez
- Department of Pediatrics, University of Virginia School of Medicine Charlottesville, VA, USA
| | - James P Nataro
- Department of Pediatrics, University of Virginia School of Medicine Charlottesville, VA, USA
| | - Jorge A Girón
- Department of Pediatrics, University of Virginia School of Medicine Charlottesville, VA, USA
| | - Roberto M Vidal
- Programa de Microbiología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile Santiago, Chile
| | - Mauricio J Farfan
- Centro de Estudios Moleculares, Departamento de Pediatría, Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile Santiago, Chile
| |
Collapse
|
32
|
Hiippala K, Kainulainen V, Kalliomäki M, Arkkila P, Satokari R. Mucosal Prevalence and Interactions with the Epithelium Indicate Commensalism of Sutterella spp. Front Microbiol 2016; 7:1706. [PMID: 27833600 PMCID: PMC5080374 DOI: 10.3389/fmicb.2016.01706] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022] Open
Abstract
Sutterella species have been frequently associated with human diseases, such as autism, Down syndrome, and inflammatory bowel disease (IBD), but the impact of these bacteria on health still remains unclear. Especially the interactions of Sutterella spp. with the host are largely unknown, despite of the species being highly prevalent. In this study, we addressed the interaction of three known species of Sutterella with the intestinal epithelium and examined their adhesion properties, the effect on intestinal barrier function and the pro-inflammatory capacity in vitro. We also studied the relative abundance and prevalence of the genus Sutterella and Sutterella wadsworthensis in intestinal biopsies of healthy individuals and patients with celiac disease (CeD) or IBD. Our results show that Sutterella spp. are abundant in the duodenum of healthy adults with a decreasing gradient toward the colon. No difference was detected in the prevalence of Sutterella between the pediatric IBD or CeD patients and the healthy controls. Sutterella parvirubra adhered better than the two other Sutterella spp. to differentiated Caco-2 cells and was capable of decreasing the adherence of S. wadsworthensis, which preferably bound to mucus and human extracellular matrix proteins. Furthermore, only S. wadsworthensis induced an interleukin-8 production in enterocytes, which could be due to different lipopolysaccharide structures between the species. However, its pro-inflammatory activity was modest as compared to non-pathogenic Escherichia coli. Sutterella spp. had no effect on the enterocyte monolayer integrity in vitro. Our findings indicate that the members of genus Sutterella are widely prevalent commensals with mild pro-inflammatory capacity in the human gastrointestinal tract and do not contribute significantly to the disrupted epithelial homeostasis associated with microbiota dysbiosis and increase of Proteobacteria. The ability of Sutterella spp. to adhere to intestinal epithelial cells indicate that they may have an immunomodulatory role.
Collapse
Affiliation(s)
- Kaisa Hiippala
- Immunobiology Research Program, Faculty of Medicine, University of Helsinki Helsinki, Finland
| | - Veera Kainulainen
- Pharmacology, Faculty of Medicine, University of Helsinki Helsinki, Finland
| | - Marko Kalliomäki
- Department of Pediatrics, Turku University Central Hospital and Functional Foods Forum, University of Turku Turku, Finland
| | - Perttu Arkkila
- Department of Gastroenterology, Helsinki University Central Hospital Helsinki, Finland
| | - Reetta Satokari
- Immunobiology Research Program, Faculty of Medicine, University of Helsinki Helsinki, Finland
| |
Collapse
|
33
|
Kaufman G, Skrtic D. Structural and recovery mechanisms of 3D dental pulp cell microtissues challenged with Streptococcusmutans in extracellular matrix environment. J Med Microbiol 2016; 65:1332-1340. [PMID: 27638752 DOI: 10.1099/jmm.0.000353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cariopathogen Streptococcus mutans exists in infected dental pulp of deciduous teeth and is frequently linked with heart diseases. Organotypic (3D) dental pulp stem cell (DPSC) cultures/microtissues, developed to mimic the physiological conditions in vivo, were utilized to assess the bacterial impact on their (i) 3D structural configuration and (ii) recovery mechanisms. The cultures, developed in extracellular matrix (ECM) bio-scaffold (Matrigel™), interacted with WT and GFP-tagged bacterial biofilms by permitting their infiltration through the ECM. Challenged cell constructs were visualized by F-actin/nuclei staining. Their pluripotency (Sox2) and differentiation (osteocalcin) markers were assessed by immunocytochemistry. Secreted mineral was detected by alizarin red, and 3D structural arrangements were analysed by epi-fluorescence and confocal scanning microscopy. Bacterial biofilm/ECM-embedded DPSC interactions appeared in distinct areas of the microtissues. Bacterial attachment to the cell surface occurred without evidence of invasion. Surface architecture of the challenged versus unchallenged microtissues was apparently unaltered. However, significant increases in thickness (138.42 vs 106.51 µm) and bacterial penetration were detected in challenged structures causing canal-like microstructures with various diameters (12.94 -42.88 µm) and average diameter of 20.66 to 33.42 µm per microtissue. Challenged constructs expressed pluripotency and differentiation markers and secreted the mineral. Presented model shows strong potential for assessing pulp-pathogen interactions in vivo. S. mutans infiltrated and penetrated the microtissues but did not invade the cells or compromise major cell repair mechanisms. These findings would suggest reexamining the role of S. mutans as an endodontic pathogen and investigating DPSC resistance to its pathogenicity.
Collapse
Affiliation(s)
- Gili Kaufman
- Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD 20899, USA
| | - Drago Skrtic
- Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD 20899, USA
| |
Collapse
|
34
|
Hu Q, Yang H, Wang Y, Xu S. Quantitatively resolving multivalent interactions on a macroscopic scale using force spectroscopy. Chem Commun (Camb) 2016; 52:3705-8. [PMID: 26864087 DOI: 10.1039/c5cc10535h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multivalent interactions remain difficult to be characterized and consequently controlled, particularly on a macroscopic scale. Using force-induced remnant magnetization spectroscopy (FIRMS), we have resolved the single-, double-, and triple-biotin-streptavidin interactions, multivalent DNA interactions and CXCL12-CXCR4 interactions on millimetre-scale surfaces. Our results establish FIRMS as a viable method for systematic resolution and controlled formation of multivalent interactions.
Collapse
Affiliation(s)
- Qiongzheng Hu
- Department of Chemistry, University of Houston, Houston, TX 77204, USA.
| | - Haopeng Yang
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | - Yuhong Wang
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA.
| | - Shoujun Xu
- Department of Chemistry, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
35
|
Probiotic Properties of Lactobacillus crispatus 2,029: Homeostatic Interaction with Cervicovaginal Epithelial Cells and Antagonistic Activity to Genitourinary Pathogens. Probiotics Antimicrob Proteins 2016; 6:165-76. [PMID: 25028263 DOI: 10.1007/s12602-014-9164-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lactobacillus crispatus 2029 isolated upon investigation of vaginal lactobacilli of healthy women of reproductive age was selected as a probiotic candidate. The aim of the present study was elucidation of the role of L. crispatus 2029 in resistance of the female reproductive tract to genitourinary pathogens using cervicovaginal epithelial model. Lactobacillus crispatus 2029 has surface layers (S-layers), which completely surround cells as the outermost component of their envelope. S-layers are responsible for the adhesion of lactobacilli on the surface of cervicovaginal epithelial cells. Study of interactions between L. crispatus 2029 and a type IV collagen, a major molecular component of epithelial cell extracellular matrix, showed that 125I-labeled type IV collagen binds to lactobacilli with high affinity (Kd = (8.0 ± 0.7) × 10(-10) M). Lactobacillus crispatus 2029 consistently colonized epithelial cells. There were no toxicity, epithelial damage and apoptosis after 24 h of colonization. Electronic microscope images demonstrated intimate association between L. crispatus 2029 and epithelial cells. Upon binding to epithelial cells, lactobacilli were recognized by toll-like 2/6 receptors. Lactobacillus crispatus induced NF-κB activation in epithelial cells and did not induce expression of innate immunity mediators IL-8, IL-1β, IL-1α and TNF-α. Lactobacillus crispatus 2029 inhibited IL-8 production in epithelial cells induced by MALP-2 and increased production of anti-inflammatory cytokine IL-6, maintaining the homeostasis of female reproductive tract. Lactobacillus crispatus 2029 produced H2O2 and provided wide spectrum of antagonistic activity increasing colonization resistance to urinary tract infections by bacterial vaginosis and vulvovaginal candidiasis associated agents.
Collapse
|
36
|
Hsiao FSH, Sutandy FXR, Syu GD, Chen YW, Lin JM, Chen CS. Systematic protein interactome analysis of glycosaminoglycans revealed YcbS as a novel bacterial virulence factor. Sci Rep 2016; 6:28425. [PMID: 27323865 PMCID: PMC4914927 DOI: 10.1038/srep28425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 06/06/2016] [Indexed: 11/09/2022] Open
Abstract
Microbial pathogens have evolved several strategies for interacting with host cell components, such as glycosaminoglycans (GAGs). Some microbial proteins involved in host-GAG binding have been described; however, a systematic study on microbial proteome-mammalian GAG interactions has not been conducted. Here, we used Escherichia coli proteome chips to probe four typical mammalian GAGs, heparin, heparan sulphate (HS), chondroitin sulphate B (CSB), and chondroitin sulphate C (CSC), and identified 185 heparin-, 62 HS-, 98 CSB-, and 101 CSC-interacting proteins. Bioinformatics analyses revealed the unique functions of heparin- and HS-specific interacting proteins in glycine, serine, and threonine metabolism. Among all the GAG-interacting proteins, three were outer membrane proteins (MbhA, YcbS, and YmgH). Invasion assays confirmed that mutant E. coli lacking ycbS could not invade the epithelial cells. Introducing plasmid carrying ycbS complemented the invading defects at ycbS lacking E. coli mutant, that can be further improved by overexpressing ycbS. Preblocking epithelial cells with YcbS reduced the percentage of E. coli invasions. Moreover, we observed that whole components of the ycb operon were crucial for invasion. The displacement assay revealed that YcbS binds to the laminin-binding site of heparin and might affect the host extracellular matrix structure by displacing heparin from laminin.
Collapse
Affiliation(s)
- Felix Shih-Hsiang Hsiao
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jongli District, Taoyuan City 32001, Taiwan
- Department of Biomedical Science and Engineering, National Central University, Jongli District, Taoyuan City 32001, Taiwan
| | - FX Reymond Sutandy
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jongli District, Taoyuan City 32001, Taiwan
- Department of Biomedical Science and Engineering, National Central University, Jongli District, Taoyuan City 32001, Taiwan
| | - Guan-Da Syu
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jongli District, Taoyuan City 32001, Taiwan
- Department of Biomedical Science and Engineering, National Central University, Jongli District, Taoyuan City 32001, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jongli District, Taoyuan City 32001, Taiwan
- Department of Biomedical Science and Engineering, National Central University, Jongli District, Taoyuan City 32001, Taiwan
| | - Jun-Mu Lin
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jongli District, Taoyuan City 32001, Taiwan
- Department of Biomedical Science and Engineering, National Central University, Jongli District, Taoyuan City 32001, Taiwan
| | - Chien-Sheng Chen
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jongli District, Taoyuan City 32001, Taiwan
- Department of Biomedical Science and Engineering, National Central University, Jongli District, Taoyuan City 32001, Taiwan
| |
Collapse
|
37
|
Hyaluronan Modulation Impacts Staphylococcus aureus Biofilm Infection. Infect Immun 2016; 84:1917-1929. [PMID: 27068096 DOI: 10.1128/iai.01418-15] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/06/2016] [Indexed: 01/06/2023] Open
Abstract
Staphylococcus aureus is a leading cause of chronic biofilm infections. Hyaluronic acid (HA) is a large glycosaminoglycan abundant in mammalian tissues that has been shown to enhance biofilm formation in multiple Gram-positive pathogens. We observed that HA accumulated in an S. aureus biofilm infection using a murine implant-associated infection model and that HA levels increased in a mutant strain lacking hyaluronidase (HysA). S. aureus secretes HysA in order to cleave HA during infection. Through in vitro biofilm studies with HA, the hysA mutant was found to accumulate increased biofilm biomass compared to the wild type, and confocal microscopy showed that HA is incorporated into the biofilm matrix. Exogenous addition of purified HysA enzyme dispersed HA-containing biofilms, while catalytically inactive enzyme had no impact. Additionally, induction of hysA expression prevented biofilm formation and also dispersed an established biofilm in the presence of HA. These observations were corroborated in the implant model, where there was decreased dissemination from an hysA mutant biofilm infection compared to the S. aureus wild type. Histopathology demonstrated that infection with an hysA mutant caused significantly reduced distribution of tissue inflammation compared to wild-type infection. To extend these studies, the impact of HA and S. aureus HysA on biofilm-like aggregates found in joint infections was examined. We found that HA contributes to the formation of synovial fluid aggregates, and HysA can disrupt aggregate formation. Taken together, these studies demonstrate that HA is a relevant component of the S. aureus biofilm matrix and HysA is important for dissemination from a biofilm infection.
Collapse
|
38
|
Effects of Fibronectin Coating on Bacterial and Osteoblast Progenitor Cells Adherence in a Co-culture Assay. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 973:17-30. [DOI: 10.1007/5584_2016_41] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Kalyanasundram J, Chia SL, Song AAL, Raha AR, Young HA, Yusoff K. Surface display of glycosylated Tyrosinase related protein-2 (TRP-2) tumour antigen on Lactococcus lactis. BMC Biotechnol 2015; 15:113. [PMID: 26715153 PMCID: PMC4696278 DOI: 10.1186/s12896-015-0231-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/22/2015] [Indexed: 01/27/2023] Open
Abstract
Background The exploitation of the surface display system of food and commensal lactic acid bacteria (LAB) for bacterial, viral, or protozoan antigen delivery has received strong interest recently. The Generally Regarded as Safe (GRAS) status of the Lactococcus lactis coupled with a non-recombinant strategy of in-trans surface display, provide a safe platform for therapeutic drug and vaccine development. However, production of therapeutic proteins fused with cell-wall anchoring motifs is predominantly limited to prokaryotic expression systems. This presents a major disadvantage in the surface display system particularly when glycosylation has been recently identified to significantly enhance epitope presentation. In this study, the glycosylated murine Tyrosinase related protein-2 (TRP-2) with the ability to anchor onto the L. lactis cell wall was produced in suspension adapted Chinese Hamster Ovary (CHO-S) cells by expressing TRP-2 fused with cell wall anchoring LysM motif (cA) at the C-terminus. Results A total amount of 33 μg of partially purified TRP-2-cA from ~6.0 g in wet weight of CHO-S cells was purified by His-tag affinity chromatography. The purified TRP-2-cA protein was shown to be N-glycosylated and successfully anchored to the L. lactis cell wall. Conclusions Thus cell surface presentation of glycosylated mammalian antigens may now permit development of novel and inexpensive vaccine platforms.
Collapse
Affiliation(s)
- Jeevanathan Kalyanasundram
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.
| | - Suet Lin Chia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.
| | - Adelene Ai-Lian Song
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.
| | - Abdul Rahim Raha
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.
| | - Howard A Young
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
40
|
Li Q, Liu H, Du D, Yu Y, Ma C, Jiao F, Yao H, Lu C, Zhang W. Identification of Novel Laminin- and Fibronectin-binding Proteins by Far-Western Blot: Capturing the Adhesins of Streptococcus suis Type 2. Front Cell Infect Microbiol 2015; 5:82. [PMID: 26636044 PMCID: PMC4644805 DOI: 10.3389/fcimb.2015.00082] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/31/2015] [Indexed: 02/06/2023] Open
Abstract
Bacterial cell wall (CW) and extracellular (EC) proteins are often involved in interactions with extracellular matrix (ECM) proteins such as laminin (LN) and fibronectin (FN), which play important roles in adhesion and invasion. In this study, an efficient method combining proteomic analysis and Far-Western blotting assays was developed to screen directly for bacterial surface proteins with LN- and FN-binding capacity. With this approach, fifteen potential LN-binding proteins and five potential FN-binding proteins were identified from Streptococcus suis serotype 2 (SS2) CW and EC proteins. Nine newly identified proteins, including oligopeptide-binding protein OppA precursor (OppA), elongation factor Tu (EF-Tu), enolase, lactate dehydrogenase (LDH), fructose-bisphosphate aldolase (FBA), 3-ketoacyl-ACP reductase (KAR), Gly ceraldehyde-3-phosphate dehydrogenase (GAPDH), Inosine 5'-monophosphate dehydrogenase (IMPDH), and amino acid ABC transporter permease (ABC) were cloned, expressed, purified and further confirmed by Far-Western blotting and ELISA. Five proteins (OppA, EF-Tu, enolase, LDH, and FBA) exhibited specifically binding activity to both human LN and human FN. Furthermore, seven important recombinant proteins were selected and identified to have the ability to bind Hep-2 cells by the indirect immunofluorescent assay. In addition, four recombinant proteins, and their corresponding polyclonal antibodies, were observed to decrease SS2 adhesion to Hep-2 cells, which indicates that these proteins contribute to the adherence of SS2 to host cell surface. Collectively, these results show that the approach described here represents a useful tool for investigating the host-pathogen interactions.
Collapse
Affiliation(s)
- Quan Li
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Hanze Liu
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Dechao Du
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Yanfei Yu
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Caifeng Ma
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Fangfang Jiao
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Huochun Yao
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Chengping Lu
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| | - Wei Zhang
- Key Lab of Animal Bacteriology, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University Nanjing, China
| |
Collapse
|
41
|
Pathogenesis of human diffusely adhering Escherichia coli expressing Afa/Dr adhesins (Afa/Dr DAEC): current insights and future challenges. Clin Microbiol Rev 2015; 27:823-69. [PMID: 25278576 DOI: 10.1128/cmr.00036-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pathogenicity and clinical pertinence of diffusely adhering Escherichia coli expressing the Afa/Dr adhesins (Afa/Dr DAEC) in urinary tract infections (UTIs) and pregnancy complications are well established. In contrast, the implication of intestinal Afa/Dr DAEC in diarrhea is still under debate. These strains are age dependently involved in diarrhea in children, are apparently not involved in diarrhea in adults, and can also be asymptomatic intestinal microbiota strains in children and adult. This comprehensive review analyzes the epidemiology and diagnosis and highlights recent progress which has improved the understanding of Afa/Dr DAEC pathogenesis. Here, I summarize the roles of Afa/Dr DAEC virulence factors, including Afa/Dr adhesins, flagella, Sat toxin, and pks island products, in the development of specific mechanisms of pathogenicity. In intestinal epithelial polarized cells, the Afa/Dr adhesins trigger cell membrane receptor clustering and activation of the linked cell signaling pathways, promote structural and functional cell lesions and injuries in intestinal barrier, induce proinflammatory responses, create angiogenesis, instigate epithelial-mesenchymal transition-like events, and lead to pks-dependent DNA damage. UTI-associated Afa/Dr DAEC strains, following adhesin-membrane receptor cell interactions and activation of associated lipid raft-dependent cell signaling pathways, internalize in a microtubule-dependent manner within urinary tract epithelial cells, develop a particular intracellular lifestyle, and trigger a toxin-dependent cell detachment. In response to Afa/Dr DAEC infection, the host epithelial cells generate antibacterial defense responses. Finally, I discuss a hypothetical role of intestinal Afa/Dr DAEC strains that can act as "silent pathogens" with the capacity to emerge as "pathobionts" for the development of inflammatory bowel disease and intestinal carcinogenesis.
Collapse
|
42
|
Chaves EGA, Weber SS, Báo SN, Pereira LA, Bailão AM, Borges CL, Soares CMDA. Analysis of Paracoccidioides secreted proteins reveals fructose 1,6-bisphosphate aldolase as a plasminogen-binding protein. BMC Microbiol 2015; 15:53. [PMID: 25888027 PMCID: PMC4357084 DOI: 10.1186/s12866-015-0393-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/18/2015] [Indexed: 12/26/2022] Open
Abstract
Background Despite being important thermal dimorphic fungi causing Paracoccidioidomycosis, the pathogenic mechanisms that underlie the genus Paracoccidioides remain largely unknown. Microbial pathogens express molecules that can interact with human plasminogen, a protein from blood plasma, which presents fibrinolytic activity when activated into plasmin. Additionally, plasmin exhibits the ability of degrading extracellular matrix components, favoring the pathogen spread to deeper tissues. Previous work from our group demonstrated that Paracoccidioides presents enolase, as a protein able to bind and activate plasminogen, increasing the fibrinolytic activity of the pathogen, and the potential for adhesion and invasion of the fungus to host cells. By using proteomic analysis, we aimed to identify other proteins of Paracoccidioides with the ability of binding to plasminogen. Results In the present study, we employed proteomic analysis of the secretome, in order to identify plasminogen-binding proteins of Paracoccidioides, Pb01. Fifteen proteins were present in the fungal secretome, presenting the ability to bind to plasminogen. Those proteins are probable targets of the fungus interaction with the host; thus, they could contribute to the invasiveness of the fungus. For validation tests, we selected the protein fructose 1,6-bisphosphate aldolase (FBA), described in other pathogens as a plasminogen-binding protein. The protein FBA at the fungus surface and the recombinant FBA (rFBA) bound human plasminogen and promoted its conversion to plasmin, potentially increasing the fibrinolytic capacity of the fungus, as demonstrated in fibrin degradation assays. The addition of rFBA or anti-rFBA antibodies was capable of reducing the interaction between macrophages and Paracoccidioides, possibly by blocking the binding sites for FBA. These data reveal the possible participation of the FBA in the processes of cell adhesion and tissue invasion/dissemination of Paracoccidioides. Conclusions These data indicate that Paracoccidioides is a pathogen that has several plasminogen-binding proteins that likely play important roles in pathogen-host interaction. In this context, FBA is a protein that might be involved somehow in the processes of invasion and spread of the fungus during infection.
Collapse
Affiliation(s)
- Edilânia Gomes Araújo Chaves
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Simone Schneider Weber
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Sonia Nair Báo
- Laboratório de Microscopia, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Distrito Federal, Brazil.
| | - Luiz Augusto Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, ICBII, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.
| |
Collapse
|
43
|
Li Y, Shi F, Cai N, Su X. A biosensing platform for sensitive detection of concanavalin A based on fluorescence resonance energy transfer from CdTe quantum dots to graphene oxide. NEW J CHEM 2015. [DOI: 10.1039/c5nj00942a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The sandwich method can detect different lectins simply by exchanging the carbohydrates functionalized on the quantum dots and graphene oxide.
Collapse
Affiliation(s)
- Yan Li
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Fanping Shi
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Nan Cai
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xingguang Su
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
44
|
Krishnan S, Eslick GD. Streptococcus bovis infection and colorectal neoplasia: a meta-analysis. Colorectal Dis 2014; 16:672-80. [PMID: 24824513 DOI: 10.1111/codi.12662] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 04/29/2014] [Indexed: 12/23/2022]
Abstract
AIM A meta-analysis was conducted to determine the risk associated with Streptococcus bovis infection and the occurrence of colorectal neoplasia (CRN). The level of risk remains unknown. METHOD We conducted a search of MEDLINE, PubMed and EMBASE up to January 2014. We used a random-effects model to analyse the data. RESULTS We identified 48 studies concerning three main topics: S. bovis septicaemia, S. bovis endocarditis and S. bovis faecal carriage. The total sample sizes were 1729, 807 and 1145, respectively; the 48 studies included 9 case-control studies and 39 case series. Overall, the presence of S. bovis infection was found to be significantly associated with the presence of CRN. Streptococcus bovis endocarditis showed the strongest association in analyses of case-control studies and case series (OR 14.54, 95% CI 5.66-37.35, test for heterogeneity I2 = 43.53; event rate of 0.53, 95% CI 0.45-0.61, test for heterogeneity I2 = 53.50). Similarly, S. bovis septicaemia was also associated with a high level of concurrence with CRN (OR 7.48, 95% CI 3.10-18.06, test for heterogeneity I(2) = 43.32; event rate 0.49, 95% CI 0.42-0.56, test for heterogeneity I2 = 69.97). Patients with CRN were found to have a higher incidence of S. bovis in faeces upon stool culture (OR 2.52, 95% CI 1.14-5.58, test for heterogeneity I2 = 69.17). CONCLUSION The meta-analysis showed a statistically significant association between the presence of S. bovis endocarditis or S. bovis septicaemia and CRN. Furthermore, there is a statistically significant increase in likelihood of finding S. bovis in the stool of individuals with CRN.
Collapse
Affiliation(s)
- S Krishnan
- The Whiteley-Martin Research Centre, Discipline of Surgery, The University of Sydney, Nepean Hospital, Penrith, New South Wales, Australia
| | | |
Collapse
|
45
|
Toscano M, De Vecchi E, Gabrieli A, Zuccotti GV, Drago L. Probiotic characteristics and in vitro compatibility of a combination of Bifidobacterium breve M-16 V, Bifidobacterium longum subsp. infantis M-63 and Bifidobacterium longum subsp. longum BB536. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0953-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
46
|
Ptak CP, Hsieh CL, Lin YP, Maltsev AS, Raman R, Sharma Y, Oswald RE, Chang YF. NMR solution structure of the terminal immunoglobulin-like domain from the leptospira host-interacting outer membrane protein, LigB. Biochemistry 2014; 53:5249-60. [PMID: 25068811 PMCID: PMC4139157 DOI: 10.1021/bi500669u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A number of surface proteins specific to pathogenic strains of Leptospira have been identified. The Lig protein family has shown promise as a marker in typing leptospiral isolates for pathogenesis and as an antigen in vaccines. We used NMR spectroscopy to solve the solution structure of the twelfth immunoglobulin-like (Ig-like) repeat domain from LigB (LigB-12). The fold is similar to that of other bacterial Ig-like domains and comprised mainly of β-strands that form a β-sandwich based on a Greek-key folding arrangement. Based on sequence analysis and conservation of structurally important residues, homology models for the other LigB Ig-like domains were generated. The set of LigB models illustrates the electrostatic differences between the domains as well as the possible interactions between neighboring domains. Understanding the structure of the extracellular portion of LigB and related proteins is important for developing diagnostic methods and new therapeutics directed toward leptospirosis.
Collapse
Affiliation(s)
- Christopher P Ptak
- Department of Population Medicine and Diagnostic Sciences and ‡Department of Molecular Medicine, College of Veterinary Medicine, Cornell University , Ithaca, New York 14853, United States
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Uchida H, Fujitani K, Kawai Y, Kitazawa H, Horii A, Shiiba K, Saito K, Saito T. A New Assay Using Surface Plasmon Resonance (SPR) to Determine Binding of theLactobacillus acidophilusGroup to Human Colonic Mucin. Biosci Biotechnol Biochem 2014; 68:1004-10. [PMID: 15170102 DOI: 10.1271/bbb.68.1004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new binding assay to investigate the mechanism of adhesion of lactic acid bacteria to the human intestine was established by the surface plasmon resonance technique using a biosensor BIACORE1000. Cells of 26 strains of the Lactobacillus acidophilus group as analytes were eluted onto a sensor chip on which were immobilized biotinylated A-trisaccharide polymer probes having human A-type antigen [(GalNAcalpha1-3(Fucalpha1-2)Gal)-] or human colonic mucin of blood type A (HCM-A) as ligands. In the first screening, high adhesive affinity to the A-trisaccharide BP-probe was observed in L. acidophilus OLL2769, L. crispatus JCM8778, LA205 and LA206. In the second screening, which used HCM-A, only L. acidophilus OLL2769 and L. crispatus JCM8778 were selected as adhesive strains with specific binding ability to human A-antigen. The results indicated that some strains of the L. acidophilus group could recognize and bind the sugar chain of A-antigen structure on HCM.
Collapse
Affiliation(s)
- Hideaki Uchida
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Spahich NA, Kenjale R, McCann J, Meng G, Ohashi T, Erickson HP, St Geme JW. Structural determinants of the interaction between the Haemophilus influenzae Hap autotransporter and fibronectin. MICROBIOLOGY-SGM 2014; 160:1182-1190. [PMID: 24687948 DOI: 10.1099/mic.0.077784-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Haemophilus influenzae is a Gram-negative cocco-bacillus that initiates infection by colonizing the upper respiratory tract. Hap is an H. influenzae serine protease autotransporter protein that mediates adherence, invasion and microcolony formation in assays with human epithelial cells and is presumed to facilitate the process of colonization. Additionally, Hap mediates adherence to fibronectin, laminin and collagen IV, extracellular matrix (ECM) proteins that are present in the respiratory tract and are probably important targets for H. influenzae colonization. The region of Hap responsible for adherence to ECM proteins has been localized to the C-terminal 511 aa of the Hap passenger domain (HapS). In this study, we characterized the structural determinants of the interaction between HapS and fibronectin. Using defined fibronectin fragments, we established that Hap interacts with the fibronectin repeat fragment called FNIII(1-2). Using site-directed mutagenesis, we found a series of motifs in the C-terminal region of HapS that contribute to the interaction with fibronectin. Most of these motifs are located on the F1 and F3 faces of the HapS structure, suggesting that the F1 and F3 faces may be responsible for the HapS-fibronectin interaction.
Collapse
Affiliation(s)
- Nicole A Spahich
- Department of Pediatrics and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Roma Kenjale
- Department of Pediatrics and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Jessica McCann
- Department of Pediatrics and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Guoyu Meng
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital affiliated to Shanghai JiaoTong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, PR China
| | - Tomoo Ohashi
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Harold P Erickson
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Joseph W St Geme
- Department of Pediatrics, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
49
|
Dias AA, Raze D, de Lima CS, Marques MADM, Drobecq H, Debrie AS, Ribeiro-Guimarães ML, Biet F, Pessolani MCV. Mycobacterial laminin-binding histone-like protein mediates collagen-dependent cytoadherence. Mem Inst Oswaldo Cruz 2013; 107 Suppl 1:174-82. [PMID: 23283469 DOI: 10.1590/s0074-02762012000900025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 07/17/2012] [Indexed: 11/22/2022] Open
Abstract
When grown in the presence of exogenous collagen I, Mycobacterium bovis BCG was shown to form clumps. Scanning electron microscopy examination of these clumps revealed the presence of collagen fibres cross-linking the bacilli. Since collagen is a major constituent of the eukaryotic extracellular matrices, we assayed BCG cytoadherence in the presence of exogenous collagen I. Collagen increased the interaction of the bacilli with A549 type II pneumocytes or U937 macrophages, suggesting that BCG is able to recruit collagen to facilitate its attachment to host cells. Using an affinity chromatography approach, we have isolated a BCG collagen-binding protein corresponding to the previously described mycobacterial laminin-binding histone-like protein (LBP/Hlp), a highly conserved protein associated with the mycobacterial cell wall. Moreover, Mycobacterium leprae LBP/Hlp, a well-characterized adhesin, was also able to bind collagen I. Finally, using recombinant fragments of M. leprae LBP/Hlp, we mapped the collagen-binding activity within the C-terminal domain of the adhesin. Since this protein was already shown to be involved in the recognition of laminin and heparan sulphate-containing proteoglycans, the present observations reinforce the adhesive activities of LBP/Hlp, which can be therefore considered as a multifaceted mycobacterial adhesin, playing an important role in both leprosy and tuberculosis pathogenesis.
Collapse
Affiliation(s)
- André Alves Dias
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Möller J, Lühmann T, Chabria M, Hall H, Vogel V. Macrophages lift off surface-bound bacteria using a filopodium-lamellipodium hook-and-shovel mechanism. Sci Rep 2013; 3:2884. [PMID: 24097079 PMCID: PMC3791455 DOI: 10.1038/srep02884] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/18/2013] [Indexed: 01/06/2023] Open
Abstract
To clear pathogens from host tissues or biomaterial surfaces, phagocytes have to break the adhesive bacteria-substrate interactions. Here we analysed the mechanobiological process that enables macrophages to lift-off and phagocytose surface-bound Escherichia coli (E. coli). In this opsonin-independent process, macrophage filopodia hold on to the E. coli fimbriae long enough to induce a local protrusion of a lamellipodium. Specific contacts between the macrophage and E. coli are formed via the glycoprotein CD48 on filopodia and the adhesin FimH on type 1 fimbriae (hook). We show that bacterial detachment from surfaces occurrs after a lamellipodium has protruded underneath the bacterium (shovel), thereby breaking the multiple bacterium-surface interactions. After lift-off, the bacterium is engulfed by a phagocytic cup. Force activated catch bonds enable the long-term survival of the filopodium-fimbrium interactions while soluble mannose inhibitors and CD48 antibodies suppress the contact formation and thereby inhibit subsequent E. coli phagocytosis.
Collapse
Affiliation(s)
- Jens Möller
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|