1
|
Sarvan S, Butcher J, Stintzi A, Couture JF. Variation on a theme: investigating the structural repertoires used by ferric uptake regulators to control gene expression. Biometals 2018; 31:681-704. [DOI: 10.1007/s10534-018-0120-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 11/29/2022]
|
2
|
Anaya-Bergman C, Rosato A, Lewis JP. Iron- and hemin-dependent gene expression of Porphyromonas gingivalis. Mol Oral Microbiol 2014; 30:39-61. [PMID: 25043610 DOI: 10.1111/omi.12066] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2014] [Indexed: 11/29/2022]
Abstract
Although iron under anaerobic conditions is more accessible and highly reactive because of its reduced form, iron-dependent regulation is not well known in anaerobic bacteria. Here, we investigated iron- and hemin-dependent gene regulation in Porphyromonas gingivalis, an established periodontopathogen that primarily inhabits anaerobic pockets. Whole-genome microarrays of P. gingivalis genes were used to compare the levels of gene expression under iron-replete and iron-depleted conditions as well as under hemin-replete and hemin-depleted conditions. Under iron-depleted conditions, the expression of genes encoding proteins that participate in iron uptake and adhesion/invasion of host cells was increased, while that of genes encoding proteins involved in iron storage, energy metabolism, and electron transport was decreased. Interestingly, many of the genes with altered expression had no known function. Limiting the amount of hemin also resulted in a reduced expression of the genes encoding proteins involved in energy metabolism and electron transport. However, hemin also had a significant effect on many other biological processes such as oxidative stress protection and lipopolysaccharide synthesis. Overall, comparison of the data from iron-depleted conditions to those from hemin-depleted ones showed that although some regulation is through the iron derived from hemin, there also is significant distinct regulation through hemin only. Furthermore, our data showed that the molecular mechanisms of iron-dependent regulation are novel as the deletion of the putative Fur protein had no effect on the expression of iron-regulated genes. Finally, our functional studies demonstrated greater survivability of host cells in the presence of the iron-stressed bacterium than the iron-replete P. gingivalis cells. The major iron-regulated proteins encoded by PG1019-20 may play a role in this process as deletion of these sequences also resulted in reduced survival of the bacterium when grown with eukaryotic cells. Taken together, the results of this study demonstrated the utility of whole-genome microarray analysis for the identification of genes with altered expression profiles during varying growth conditions and provided a framework for the detailed analysis of the molecular mechanisms of iron and hemin acquisition, metabolism and virulence of P. gingivalis.
Collapse
Affiliation(s)
- C Anaya-Bergman
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | | | | |
Collapse
|
3
|
Ebanks RO, Goguen M, Knickle L, Dacanay A, Leslie A, Ross NW, Pinto DM. Analysis of a ferric uptake regulator (Fur) knockout mutant in Aeromonas salmonicida subsp. salmonicida. Vet Microbiol 2013; 162:831-841. [DOI: 10.1016/j.vetmic.2012.10.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 10/03/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
|
4
|
Gupta R, Bhatty M, Swiatlo E, Nanduri B. Role of an iron-dependent transcriptional regulator in the pathogenesis and host response to infection with Streptococcus pneumoniae. PLoS One 2013; 8:e55157. [PMID: 23437050 PMCID: PMC3577831 DOI: 10.1371/journal.pone.0055157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/27/2012] [Indexed: 01/11/2023] Open
Abstract
Iron is a critical cofactor for many enzymes and is known to regulate gene expression in many bacterial pathogens. Streptococcus pneumoniae normally inhabits the upper respiratory mucosa but can also invade and replicate in lungs and blood. These anatomic sites vary considerably in both the quantity and form of available iron. The genome of serotype 4 pneumococcal strain TIGR4 encodes a putative iron-dependent transcriptional regulator (IDTR). A mutant deleted at idtr (Δidtr) exhibited growth kinetics similar to parent strain TIGR4 in vitro and in mouse blood for up to 48 hours following infection. However, Δidtr was significantly attenuated in a murine model of sepsis. IDTR down-regulates the expression of ten characterized and putative virulence genes in nasopharyngeal colonization and pneumonia. The host cytokine response was significantly suppressed in sepsis with Δidtr. Since an exaggerated inflammatory response is associated with a poor prognosis in sepsis, the decreased inflammatory response could explain the increased survival with Δidtr. Our results suggest that IDTR, which is dispensable for pneumococcal growth in vitro, is associated with regulation of pneumococcal virulence in specific host environments. Additionally, IDTR ultimately modulates the host cytokine response and systemic inflammation that contributes to morbidity and mortality of invasive pneumococcal disease.
Collapse
Affiliation(s)
- Radha Gupta
- Department of Microbiology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Minny Bhatty
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Edwin Swiatlo
- Department of Microbiology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- * E-mail:
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| |
Collapse
|
5
|
Teixidó L, Carrasco B, Alonso JC, Barbé J, Campoy S. Fur activates the expression of Salmonella enterica pathogenicity island 1 by directly interacting with the hilD operator in vivo and in vitro. PLoS One 2011; 6:e19711. [PMID: 21573071 PMCID: PMC3089636 DOI: 10.1371/journal.pone.0019711] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 04/04/2011] [Indexed: 11/18/2022] Open
Abstract
Previous studies have established that the expression of Salmonella enterica pathogenicity island 1 (SPI1), which is essential for epithelial invasion, is mainly regulated by the HilD protein. The ferric uptake regulator, Fur, in turn modulates the expression of the S. enterica hilD gene, albeit through an unknown mechanism. Here we report that S. enterica Fur, in its metal-bound form, specifically binds to an AT-rich region (BoxA), located upstream of the hilD promoter (PhilD), at position -191 to -163 relative to the hilD transcription start site. Furthermore, in a PhilD variant with mutations in BoxA, PhilD*, Fur·Mn2+ binding is impaired. In vivo experiments using S. enterica strains carrying wild-type PhilD or the mutant variant PhilD* showed that Fur activates hilD expression, while in vitro experiments revealed that the Fur·Mn2+ protein is sufficient to increase hilD transcription. Together, these results present the first evidence that Fur·Mn2+, by binding to the upstream BoxA sequence, directly stimulates the expression of hilD in S. enterica.
Collapse
Affiliation(s)
- Laura Teixidó
- Departament de Genètica i de Microbiologia, Facultat de Biociències. Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Begoña Carrasco
- Area de Microbiología, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Juan C. Alonso
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Jordi Barbé
- Departament de Genètica i de Microbiologia, Facultat de Biociències. Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Susana Campoy
- Departament de Genètica i de Microbiologia, Facultat de Biociències. Universitat Autònoma de Barcelona, Bellaterra, Spain
- * E-mail:
| |
Collapse
|
6
|
Expression of the gonococcal global regulatory protein Fur and genes encompassing the Fur and iron regulon during in vitro and in vivo infection in women. J Bacteriol 2008; 190:3129-39. [PMID: 18310343 DOI: 10.1128/jb.01830-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The ferric uptake regulatory protein, Fur, functions as a global regulatory protein of gene transcription in the mucosal pathogen Neisseria gonorrhoeae. We have shown previously that several N. gonorrhoeae Fur-repressed genes are expressed in vivo during mucosal gonococcal infection in men, which suggests that this organism infects in an iron-limited environment and that Fur is expressed under these conditions. In this study we have demonstrated expression of the gonococcal fur gene in vitro, in human cervical epithelial cells, and in specimens from female subjects with uncomplicated gonococcal infection. In vitro studies confirmed that the expression of the gonococcal fur gene was repressed during growth under iron-replete growth conditions but that a basal level of the protein was maintained. Using GFP transcriptional fusions constructed from specific Fur binding sequences within the fur promoter/operator region, we determined that this operator region was functional during N. gonorrhoeae infection of cervical epithelial cells. Furthermore, reverse transcription-PCR analysis, as well as microarray analysis, using a custom Neisseria Fur and iron regulon microarray revealed that several Fur- and iron-regulated genes were expressed during N. gonorrhoeae infection of cervical epithelial cells. Microarray analysis of specimens obtained from female subjects with uncomplicated gonococcal infection corroborated our in vitro findings and point toward a key role of gonococcal Fur- and iron-regulated genes in gonococcal disease.
Collapse
|
7
|
Basler M, Linhartová I, Halada P, Novotná J, Bezousková S, Osicka R, Weiser J, Vohradský J, Sebo P. The iron-regulated transcriptome and proteome of Neisseria meningitidis serogroup C. Proteomics 2007; 6:6194-206. [PMID: 17133369 DOI: 10.1002/pmic.200600312] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Restricting bacterial growth by iron-chelating proteins that reduce iron availability in mucosal secretions and body fluids belongs to basic mechanisms of innate immunity. Most pathogens and commensals thus developed gene regulons responding to iron concentration and encoding iron acquisition systems and genes involved in host colonization and virulence. Here, we analyzed the steady-state composition of the iron-regulated proteome and transcriptome of an invasive serogroup C clinical isolate of Neisseria meningitidis. The proteome of meningococci grown under iron-depleted and iron-replete conditions was analyzed by 2-DE and proteins exhibiting significantly altered expression were identified by MALDI-TOF MS analysis. In parallel, total RNA was isolated from the same cultures and iron-regulated genes were identified using whole-genome DNA microarrays. The proteome and the transcriptome were found to overlap by only 19 iron-regulated genes/proteins, with 111 genes/proteins being significantly up-regulated in iron-replete cultures and 130 genes/proteins being up-regulated during iron starvation, respectively. Comparisons with published transcriptomic data for N. meningitidis serogroup B, moreover, indicate that expression of up to 20% of all meningococcal genes can be subject to regulation in function of iron availability.
Collapse
MESH Headings
- Deferoxamine/pharmacology
- Electrophoresis, Gel, Two-Dimensional
- Ferric Compounds/pharmacology
- Gene Expression Regulation, Bacterial/drug effects
- Iron/pharmacology
- Neisseria gonorrhoeae/drug effects
- Neisseria gonorrhoeae/metabolism
- Neisseria meningitidis, Serogroup B/drug effects
- Neisseria meningitidis, Serogroup B/metabolism
- Neisseria meningitidis, Serogroup C/drug effects
- Neisseria meningitidis, Serogroup C/metabolism
- Nitrates/pharmacology
- Oligonucleotide Array Sequence Analysis
- Proteome
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Transcription, Genetic
- Up-Regulation
Collapse
Affiliation(s)
- Marek Basler
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sechman EV, Rohrer MS, Seifert HS. A genetic screen identifies genes and sites involved in pilin antigenic variation in Neisseria gonorrhoeae. Mol Microbiol 2005; 57:468-83. [PMID: 15978078 DOI: 10.1111/j.1365-2958.2005.04657.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has previously been shown that the frequency of pilin antigenic variation in Neisseria gonorrhoeae (the gonococcus, Gc) is regulated by iron availability. To identify factors involved in pilin variation in an iron-dependent or an iron-independent manner, we conducted a genetic screen of transposon-mutated gonococci using a pilus-dependent colony morphology phenotype to detect antigenic variation deficient mutants. Forty-six total mutants representing insertions in 30 different genes were shown to have reduced colony morphology changes resulting from impaired pilin variation. Five mutants exhibited an iron-dependent decrease in pilin variation, while the remaining 41 displayed an iron-independent decrease in pilin variation. Based on the levels of antigenic variation impairment, we defined the genes as being essential for, important for, or involved in antigenic variation. DNA repair and DNA transformation frequencies of each mutant were measured to determine whether other recombination-based processes were also affected in the mutants. Each mutant was placed into one of six classes based on their pilin variation, DNA repair and DNA transformation phenotypes. Among the many genes identified, recR is shown to be an additional member of the gonococcal RecF-like recombination pathway. In addition, recG and ruvA represent the first evidence that the processing of Holliday junctions is required for pilin antigenic variation. Moreover, two independent insertions in a non-coding region upstream of the pilE gene suggest that cis-acting sequences important for pilin variation are found in that region. Finally, insertions that effect expression of the thrB and thrC genes suggest that molecules in the threonine biosynthetic pathway are important for pilin variation. Many of the other genes identified in this genetic screen do not have an obvious role in pilin variation, DNA repair, or DNA transformation.
Collapse
Affiliation(s)
- Eric V Sechman
- Northwestern University, Feinberg School of Medicine, Department of Microbiology and Immunology, 303 E. Chicago Avenue, Searle 6-450, Chicago, IL 60611, USA
| | | | | |
Collapse
|
9
|
Quatrini R, Lefimil C, Holmes DS, Jedlicki E. The ferric iron uptake regulator (Fur) from the extreme acidophile Acidithiobacillus ferrooxidans. Microbiology (Reading) 2005; 151:2005-2015. [PMID: 15942007 DOI: 10.1099/mic.0.27581-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acidithiobacillus ferrooxidansis a Gram-negative bacterium that lives at pH 2 in high concentrations of soluble ferrous and ferric iron, making it an interesting model for understanding the biological mechanisms of bacterial iron uptake and homeostasis in extremely acid conditions. A candidatefurAF(FerricUptakeRegulator) gene was identified in theA. ferrooxidansATCC 23270 genome. FurAFhas significant sequence similarity, including conservation of functional motifs, to known Fur orthologues and exhibits cross-reactivity toEscherichia coliFur antiserum. ThefurAFgene is able to complementfurdeficiency inE. coliin an iron-responsive manner. FurAFis also able to bind specifically toE. coliFur regulatory regions (Fur boxes) and to a candidate Fur box fromA. ferrooxidans, as judged by electrophoretic mobility shift assays. FurAFrepresses gene expression fromE. coliFur-responsive promotersfiuandfhuFwhen expressed at high protein levels. However, it increases gene expression from these promoters at low concentrations and possibly from other Fur-regulated promoters involved in iron-responsive oxidative stress responses.
Collapse
Affiliation(s)
- R Quatrini
- Millennium Institute of Fundamental and Applied Biology, Santiago, Chile
- Laboratory of Bioinformatics and Genome Biology, University of Andrés Bello, Santiago, Chile
| | - C Lefimil
- Program of Cellular and Molecular Biology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
- Laboratory of Bioinformatics and Genome Biology, University of Andrés Bello, Santiago, Chile
| | - D S Holmes
- Millennium Institute of Fundamental and Applied Biology, Santiago, Chile
- Laboratory of Bioinformatics and Genome Biology, University of Andrés Bello, Santiago, Chile
| | - E Jedlicki
- Program of Cellular and Molecular Biology, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
10
|
Wan XF, Verberkmoes NC, McCue LA, Stanek D, Connelly H, Hauser LJ, Wu L, Liu X, Yan T, Leaphart A, Hettich RL, Zhou J, Thompson DK. Transcriptomic and proteomic characterization of the Fur modulon in the metal-reducing bacterium Shewanella oneidensis. J Bacteriol 2005; 186:8385-400. [PMID: 15576789 PMCID: PMC532403 DOI: 10.1128/jb.186.24.8385-8400.2004] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The availability of the complete genome sequence for Shewanella oneidensis MR-1 has permitted a comprehensive characterization of the ferric uptake regulator (Fur) modulon in this dissimilatory metal-reducing bacterium. We have employed targeted gene mutagenesis, DNA microarrays, proteomic analysis using liquid chromatography-mass spectrometry, and computational motif discovery tools to define the S. oneidensis Fur regulon. Using this integrated approach, we identified nine probable operons (containing 24 genes) and 15 individual open reading frames (ORFs), either with unknown functions or encoding products annotated as transport or binding proteins, that are predicted to be direct targets of Fur-mediated repression. This study suggested, for the first time, possible roles for four operons and eight ORFs with unknown functions in iron metabolism or iron transport-related functions. Proteomic analysis clearly identified a number of transporters, binding proteins, and receptors related to iron uptake that were up-regulated in response to a fur deletion and verified the expression of nine genes originally annotated as pseudogenes. Comparison of the transcriptome and proteome data revealed strong correlation for genes shown to be undergoing large changes at the transcript level. A number of genes encoding components of the electron transport system were also differentially expressed in a fur deletion mutant. The gene omcA (SO1779), which encodes a decaheme cytochrome c, exhibited significant decreases in both mRNA and protein abundance in the fur mutant and possessed a strong candidate Fur-binding site in its upstream region, thus suggesting that omcA may be a direct target of Fur activation.
Collapse
Affiliation(s)
- Xiu-Feng Wan
- Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Parker D, Kennan RM, Myers GS, Paulsen IT, Rood JI. Identification of a Dichelobacter nodosus ferric uptake regulator and determination of its regulatory targets. J Bacteriol 2005; 187:366-75. [PMID: 15601721 PMCID: PMC538842 DOI: 10.1128/jb.187.1.366-375.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of iron regulated genes in bacteria is typically controlled by the ferric uptake regulator (Fur) protein, a global transcriptional repressor that regulates functions as diverse as iron acquisition, oxidative stress, and virulence. We have identified a fur homologue in Dichelobacter nodosus, the causative agent of ovine footrot, and shown that it complements an Escherichia coli fur mutant. Homology modeling of the D. nodosus Fur protein with the recently solved crystal structure of Fur from Pseudomonas aeruginosa indicated extensive structural conservation. As Southern hybridization analysis of different clinical isolates of D. nodosus indicated that the fur gene was present in all of these strains, the fur gene was insertionally inactivated to determine its functional role. Analysis of these mutants by various techniques did not indicate any significant differences in the expression of known virulence genes or in iron-dependent growth. However, we determined several Fur regulatory targets by two-dimensional gel electrophoresis coupled with mass spectrometry. Analysis of proteins from cytoplasmic, membrane, and extracellular fractions revealed numerous differentially expressed proteins. The transcriptional basis of these differences was analyzed by using quantitative reverse transcriptase PCR. Proteins with increased expression in the fur mutant were homologues of the periplasmic iron binding protein YfeA and a cobalt chelatase, CbiK. Down-regulated proteins included a putative manganese superoxide dismutase and ornithine decarboxylase. Based on these data, it is suggested that in D. nodosus the Fur protein functions as a regulator of iron and oxidative metabolism.
Collapse
Affiliation(s)
- Dane Parker
- ARC Centre for Structural and Functional Microbial Genomics and Victorian Bioinformatics Consortium, Department of Microbiology, Monash University, Victoria, Australia
| | | | | | | | | |
Collapse
|
12
|
Delany I, Rappuoli R, Scarlato V. Fur functions as an activator and as a repressor of putative virulence genes in Neisseria meningitidis. Mol Microbiol 2004; 52:1081-90. [PMID: 15130126 DOI: 10.1111/j.1365-2958.2004.04030.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fur is a well-known iron-responsive repressor of gene transcription, which is used by many bacteria to respond to the low-iron environment that pathogens encounter during infection. Four promoters of Neisseria meningitidis predicted to have Fur-binding boxes were selected to study the molecular interactions between Fur and the promoter regions of genes expected to play a central role in survival and pathogenesis. We demonstrate that Fur acts not only as a repressor, but also as an activator of gene expression both in vivo and in vitro. We report that Fur binds to operators located upstream of three promoters that are positively regulated in vivo by Fur and iron, whereas Fur binds to an operator overlapping the classically iron-repressed tbp promoter. Deletion of the upstream operator in the norB promoter abolished activation of transcription in vivo in response to iron and in vitro in response to Fur. The role of such a dual mechanism of Fur regulation during infection is discussed.
Collapse
Affiliation(s)
- Isabel Delany
- Biochemistry and Molecular Biology Unit, IRIS, Chiron S.r.l., Via Fiorentina 1, 53100 Siena, Italy
| | | | | |
Collapse
|
13
|
Perkins-Balding D, Ratliff-Griffin M, Stojiljkovic I. Iron transport systems in Neisseria meningitidis. Microbiol Mol Biol Rev 2004; 68:154-71. [PMID: 15007100 PMCID: PMC362107 DOI: 10.1128/mmbr.68.1.154-171.2004] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acquisition of iron and iron complexes has long been recognized as a major determinant in the pathogenesis of Neisseria meningitidis. In this review, high-affinity iron uptake systems, which allow meningococci to utilize the human host proteins transferrin, lactoferrin, hemoglobin, and haptoglobin-hemoglobin as sources of essential iron, are described. Classic features of bacterial iron transport systems, such as regulation by the iron-responsive repressor Fur and TonB-dependent transport activity, are discussed, as well as more specific features of meningococcal iron transport. Our current understanding of how N. meningitidis acquires iron from the human host and the vaccine potentials of various components of these iron transport systems are also reviewed.
Collapse
Affiliation(s)
- Donna Perkins-Balding
- Rollins Research Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
14
|
Delany I, Ieva R, Alaimo C, Rappuoli R, Scarlato V. The iron-responsive regulator fur is transcriptionally autoregulated and not essential in Neisseria meningitidis. J Bacteriol 2003; 185:6032-41. [PMID: 14526014 PMCID: PMC225026 DOI: 10.1128/jb.185.20.6032-6041.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2003] [Accepted: 07/28/2003] [Indexed: 11/20/2022] Open
Abstract
Fur is a well-known iron-responsive repressor of gene transcription, which is used by many bacteria to respond to the low-iron environment that pathogens encounter during infection. The fur gene in Neisseria meningitidis has been described as an essential gene that may regulate a broad array of genes. We succeeded in obtaining an N. meningitidis mutant with the fur gene knocked out and used it to undertake studies of fur-mediated iron regulation. We show that expression of both Fur and the transferrin binding protein Tbp2 is iron regulated and demonstrate that this regulation is Fur mediated for the Tbp2 protein. Footprinting analysis revealed that Fur binds to two distinct sites upstream of its coding region with different affinities and that these binding sites overlap two promoters that differentially control transcription of the fur gene in response to iron. The presence of two independently regulated fur promoters may allow meningococcus to fine-tune expression of this regulator controlling iron homeostasis, possibly during infection.
Collapse
Affiliation(s)
- Isabel Delany
- Biochemistry and Molecular Biology Unit, IRIS, Chiron S.r.l., 53100 Siena, Italy
| | | | | | | | | |
Collapse
|
15
|
Grifantini R, Sebastian S, Frigimelica E, Draghi M, Bartolini E, Muzzi A, Rappuoli R, Grandi G, Genco CA. Identification of iron-activated and -repressed Fur-dependent genes by transcriptome analysis of Neisseria meningitidis group B. Proc Natl Acad Sci U S A 2003; 100:9542-7. [PMID: 12883001 PMCID: PMC170954 DOI: 10.1073/pnas.1033001100] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Iron is limiting in the human host, and bacterial pathogens respond to this environment by activating genes required for bacterial virulence. Transcriptional regulation in response to iron in Gram-negative bacteria is largely mediated by the ferric uptake regulator protein Fur, which in the presence of iron binds to a specific sequence in the promoter regions of genes under its control and acts as a repressor. Here we describe DNA microarray, computational and in vitro studies to define the Fur regulon in the human pathogen Neisseria meningitidis group B (strain MC58). After iron addition to an iron-depleted bacterial culture, 153 genes were up-regulated and 80 were down-regulated. Only 50% of the iron-regulated genes were found to contain Fur-binding consensus sequences in their promoter regions. Forty-two promoter regions were amplified and 32 of these were shown to bind Fur by gel-shift analysis. Among these genes, many of which had never been described before to be Fur-regulated, 10 were up-regulated on iron addition, demonstrating that Fur can also act as a transcriptional activator. Sequence alignment of the Fur-binding regions revealed that the N. meningitidis Fur-box encompasses the highly conserved (NATWAT)3 motif. Cluster analysis was effective in predicting Fur-regulated genes even if computer prediction failed to identify Fur-box-like sequences in their promoter regions. Microarray-generated gene expression profiling appears to be a very effective approach to define new regulons and regulatory pathways in pathogenic bacteria.
Collapse
|
16
|
Anderson JE, Hobbs MM, Biswas GD, Sparling PF. Opposing selective forces for expression of the gonococcal lactoferrin receptor. Mol Microbiol 2003; 48:1325-37. [PMID: 12787359 DOI: 10.1046/j.1365-2958.2003.03496.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
All isolates of Neisseria gonorrhoeae express receptors that bind human transferrin (Tf). Although lactoferrin (Lf) is abundant on mucosa and in purulent exudates, many gonococci do not express an Lf receptor. The naturally occurring Lf receptor deletion mutant FA1090 (LbpB-LbpA-) is infectious, but a Tf receptor mutant of FA1090 is unable to infect male volunteers [Cornelissen, C.N., Kelley, M., Hobbs, M.M., Anderson, J.E., Cannon, J.G., Cohen, M.S., and Sparling, P.F. (1998) Mol Microbiol 27: 611-616]. Here, we report that expression of an Lf receptor in the absence of the Tf receptor was sufficient for infection, and that expression of both Lf and Tf receptors resulted in a competitive advantage over a strain that made only the Tf receptor in mixed infection of male volunteers. We confirmed that nearly 50% of clinical isolates do not make an Lf receptor. Surprisingly, about half of geographically diverse Lf - isolates representing many different auxotypes and porin serovars carried an identical lbpB lbpA deletion. Among Lf+ strains, all produced the integral outer membrane protein LbpA, but 70% did not express the lipoprotein LbpB. Thus, there are apparently selective pressures for expression of the Lf receptor in the male urethra that are balanced by others against expression of the Lf receptor in niches other than the male urethra.
Collapse
Affiliation(s)
- James E Anderson
- Department of Medicine, School of Medicine, University of North Carolina, 521 Burnett Womack Building, CB 7030, Chapel Hill 27599, USA
| | | | | | | |
Collapse
|
17
|
Sebastian S, Agarwal S, Murphy JR, Genco CA. The gonococcal fur regulon: identification of additional genes involved in major catabolic, recombination, and secretory pathways. J Bacteriol 2002; 184:3965-74. [PMID: 12081969 PMCID: PMC135177 DOI: 10.1128/jb.184.14.3965-3974.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we have characterized the in vitro binding of Neisseria gonorrhoeae Fur to several well-defined iron transport genes, as well as to additional genes involved in major catabolic, secretory, and recombination pathways of gonococci. The gonococcal Fur protein was recombinantly expressed in Escherichia coli HBMV119. Fur was isolated from inclusion bodies and partially purified by ion-exchange chromatography. Gonococcal Fur was found to bind to the promoter/operator region of a gene encoding the previously identified Fur-regulated periplasmic binding protein (FbpA) in a metal ion-dependent fashion, demonstrating that purified Fur is functional. In silico analysis of the partially completed gonococcal genome (FA1090) identified Fur boxes in the promoters of several genes, including tonB, fur, recN, secY, sodB, hemO, hmbR, fumC, a hypothetical gene (Fe-S homolog), and the opa family of genes. By using purified gonococcal Fur, we demonstrate binding to the operator regions of tonB, fur, recN, secY, sodB, hemO, hmbR, fumC, the Fe-S homolog gene, and the opa gene family as determined by an electrophoretic mobility shift assay. While gonococcal Fur was demonstrated to bind to the promoter regions of all 11 opa genes (opaA through -K), we did not detect binding of purified E. coli Fur with 8 of the 11 opa members, indicating that target DNA sequence specificities between these two closely related proteins exist. Furthermore, we observed differences in the relative strengths of binding of gonococcal Fur for these different genes, which most likely reflect a difference in affinity between gonococcal Fur and its DNA targets. This is the first report that definitively demonstrates the binding of gonococcal Fur to its own promoter/operator region, as well as to the opa family of genes that encode surface proteins. Our results demonstrate that the gonococcal Fur protein binds to the regulatory regions of a broad array of genes and indicates that the gonococcal Fur regulon is larger than originally proposed.
Collapse
Affiliation(s)
- Shite Sebastian
- Evans Biomedical Research Center, Department of Medicine, Section of Infectious Diseases, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
18
|
Heimer SR, Welch RA, Perna NT, Pósfai G, Evans PS, Kaper JB, Blattner FR, Mobley HLT. Urease of enterohemorrhagic Escherichia coli: evidence for regulation by fur and a trans-acting factor. Infect Immun 2002; 70:1027-31. [PMID: 11796646 PMCID: PMC127683 DOI: 10.1128/iai.70.2.1027-1031.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent genomic analyses of Escherichia coli O157:H7 strain EDL933 revealed two loci encoding urease gene homologues (ureDABCEFG), which are absent in nonpathogenic E. coli strain K-12. This report demonstrates that the cloned EDL933 ure gene cluster is capable of synthesizing urease in an E. coli DH5alpha background. However, when the gene fragment is transformed back into the native EDL933 background, the enzymatic activity of the cloned determinants is undetectable. We speculate that an unidentified trans-acting factor in enterohemorrhagic E. coli (EHEC) is responsible for this regulation of ure expression. In addition, Fur-like recognition sites are present in three independent O157:H7 isolates upstream of ureD and ureA. Enzymatic assays confirmed a difference in urease expression of cloned EHEC ure clusters in E. coli MC3100Deltafur. Likewise, interruption of fur in O157:H7 isolate IN1 significantly diminished urease activity. We propose that, similar to the function of Fur in regulating the acid response of Salmonella enterica serovar Typhimurium, it modulates urease expression in EHEC, perhaps contributing to the acid tolerance of the organism.
Collapse
Affiliation(s)
- Susan R Heimer
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Thompson DK, Beliaev AS, Giometti CS, Tollaksen SL, Khare T, Lies DP, Nealson KH, Lim H, Yates J, Brandt CC, Tiedje JM, Zhou J. Transcriptional and proteomic analysis of a ferric uptake regulator (fur) mutant of Shewanella oneidensis: possible involvement of fur in energy metabolism, transcriptional regulation, and oxidative stress. Appl Environ Microbiol 2002; 68:881-92. [PMID: 11823232 PMCID: PMC126683 DOI: 10.1128/aem.68.2.881-892.2002] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The iron-directed, coordinate regulation of genes depends on the fur (ferric uptake regulator) gene product, which acts as an iron-responsive, transcriptional repressor protein. To investigate the biological function of a fur homolog in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1, a fur knockout strain (FUR1) was generated by suicide plasmid integration into this gene and characterized using phenotype assays, DNA microarrays containing 691 arrayed genes, and two-dimensional polyacrylamide gel electrophoresis. Physiological studies indicated that FUR1 was similar to the wild-type strain when they were compared for anaerobic growth and reduction of various electron acceptors. Transcription profiling, however, revealed that genes with predicted functions in electron transport, energy metabolism, transcriptional regulation, and oxidative stress protection were either repressed (ccoNQ, etrA, cytochrome b and c maturation-encoding genes, qor, yiaY, sodB, rpoH, phoB, and chvI) or induced (yggW, pdhC, prpC, aceE, fdhD, and ppc) in the fur mutant. Disruption of fur also resulted in derepression of genes (hxuC, alcC, fhuA, hemR, irgA, and ompW) putatively involved in iron uptake. This agreed with the finding that the fur mutant produced threefold-higher levels of siderophore than the wild-type strain under conditions of sufficient iron. Analysis of a subset of the FUR1 proteome (i.e., primarily soluble cytoplasmic and periplasmic proteins) indicated that 11 major protein species reproducibly showed significant (P < 0.05) differences in abundance relative to the wild type. Protein identification using mass spectrometry indicated that the expression of two of these proteins (SodB and AlcC) correlated with the microarray data. These results suggest a possible regulatory role of S. oneidensis MR-1 Fur in energy metabolism that extends the traditional model of Fur as a negative regulator of iron acquisition systems.
Collapse
Affiliation(s)
- Dorothea K Thompson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lowe CA, Asghar AH, Shalom G, Shaw JG, Thomas MS. The Burkholderia cepacia fur gene: co-localization with omlA and absence of regulation by iron. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1303-1314. [PMID: 11320133 DOI: 10.1099/00221287-147-5-1303] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ferric uptake regulator (Fur) functions as a transcription repressor of many genes in bacteria in response to iron, but the presence of a functional equivalent of this protein has not been demonstrated in Burkholderia cepacia. A segment of the Burkholderia pseudomallei fur gene was amplified using degenerate primers and used to identify chromosomal restriction fragments containing the entire fur genes of B. cepacia and B. pseudomallei. These fragments were cloned and sequenced, revealing the Fur protein of both species to be a polypeptide of 142 amino acids possessing a high degree of amino acid sequence identity to Fur of other members of the beta subclass of the Proteobacteria. Primer extension analysis demonstrated that transcription of B. cepacia fur originated from a single promoter located 36 bp upstream from the fur translation initiation codon. The Fur polypeptide of B. cepacia was shown to functionally substitute for Fur in an Escherichia coli fur mutant. Single copy fur-lacZ fusions were constructed and used to examine the regulation of B. cepacia fur. The B. cepacia fur promoter was not responsive to iron availability, the presence of hydrogen peroxide or the superoxide generator methyl viologen. In addition, fur expression was not significantly influenced by carbon source. Interestingly, the presence of the divergently transcribed omlA/smpA gene upstream of fur in some members of the gamma subclass of the Proteobacteria is retained in several genera within the beta taxon, including Burkholderia.
Collapse
Affiliation(s)
- Carolyn A Lowe
- Division of Genomic Medicine, F floor, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK1
| | - Atif H Asghar
- Division of Genomic Medicine, F floor, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK1
| | - Gil Shalom
- Division of Genomic Medicine, F floor, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK1
| | - Jonathan G Shaw
- Division of Genomic Medicine, F floor, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK1
| | - Mark S Thomas
- Division of Genomic Medicine, F floor, University of Sheffield Medical School, Beech Hill Road, Sheffield S10 2RX, UK1
| |
Collapse
|
21
|
Jin S, Joe A, Lynett J, Hani EK, Sherman P, Chan VL. JlpA, a novel surface-exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells. Mol Microbiol 2001; 39:1225-36. [PMID: 11251839 DOI: 10.1111/j.1365-2958.2001.02294.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A 1116 bp open reading frame (ORF), designated jlpA, encoding a novel species-specific lipoprotein of Campylobacter jejuni TGH9011, was identified from recombinant plasmid pHIP-O. The jlpA gene encodes a polypeptide (JlpA) of 372 amino acid residues with a molecular mass of 42.3 kDa. JlpA contains a typical signal peptide and lipoprotein processing site at the N-terminus. The presence of a lipid moiety on the JlpA molecule was confirmed by the incorporation of [3H]-palmitic acid. Immunoblotting analysis of cell surface extracts prepared using glycine-acid buffer (pH 2.2) and proteinase K digestion of whole cells indicated that JlpA is a surface-exposed lipoprotein in C. jejuni. JlpA is loosely associated with the cell surface, as it is easily extracted from the C. jejuni outer membrane by detergents, such as sarcosyl and Triton X-100. JlpA is released to the culture medium, and its concentration increases in a time-dependent fashion. The adherence of both insertion and deletion mutants of jlpA to HEp-2 epithelial cells was reduced compared with that of parental C. jejuni TGH9011. Adherence of C. jejuni to HEp-2 cells was inhibited in a dose-dependent manner when the bacterium was preincubated with anti-GST-JlpA antibodies or when HEp-2 cells were preincubated with JlpA protein. A ligand-binding immunoblotting assay showed that JlpA binds to HEp-2 cells, which suggests that JlpA is C. jejuni adhesin.
Collapse
Affiliation(s)
- S Jin
- Departments of Medical Genetics and Microbiology, Laboratory Medicine and Pathobiology, and Pediatrics, University of Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
The ability of pathogens to obtain iron from transferrins, ferritin, hemoglobin, and other iron-containing proteins of their host is central to whether they live or die. To combat invading bacteria, animals go into an iron-withholding mode and also use a protein (Nramp1) to generate reactive oxygen species in an attempt to kill the pathogens. Some invading bacteria respond by producing specific iron chelators-siderophores-that remove the iron from the host sources. Other bacteria rely on direct contact with host iron proteins, either abstracting the iron at their surface or, as with heme, taking it up into the cytoplasm. The expression of a large number of genes (>40 in some cases) is directly controlled by the prevailing intracellular concentration of Fe(II) via its complexing to a regulatory protein (the Fur protein or equivalent). In this way, the biochemistry of the bacterial cell can accommodate the challenges from the host. Agents that interfere with bacterial iron metabolism may prove extremely valuable for chemotherapy of diseases.
Collapse
Affiliation(s)
- C Ratledge
- Department of Biological Sciences, University of Hull, Hull HU6 7RX.
| | | |
Collapse
|
23
|
Lissenden S, Mohan S, Overton T, Regan T, Crooke H, Cardinale JA, Householder TC, Adams P, O'Conner CD, Clark VL, Smith H, Cole JA. Identification of transcription activators that regulate gonococcal adaptation from aerobic to anaerobic or oxygen-limited growth. Mol Microbiol 2000; 37:839-55. [PMID: 10972806 DOI: 10.1046/j.1365-2958.2000.02050.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Analysis of the Neisseria gonorrhoeae DNA sequence database revealed the presence of two genes, one encoding a protein predicted to be 37. 5% identical (50% similar) in amino acid sequence to the Escherichia coli FNR protein and the other encoding a protein 41% and 42% identical (54 and 51% sequence similarity) to the E. coli NarL and NarP proteins respectively. Both genes have been cloned into E. coli and insertionally inactivated in vitro. The mutated genes have been transformed into gonococci and recombined into the chromosome. The fnr mutation totally abolished and the narP mutation severely diminished the ability of gonococci to: (i) grow anaerobically; (ii) adapt to oxygen-limited growth; (iii) initiate transcription from the aniA promoter (which directs the expression of a copper-containing nitrite reductase, AniA, in response to the presence of nitrite); and (iv) reduce nitrite during growth in oxygen-limited media. The product of nitrite reduction was identified to be nitrous oxide. Immediately upstream of the narL/narP gene is an open reading frame that, if translated, would encode a homologue of the E. coli nitrate- and nitrite-sensing proteins NarX and NarQ. As transcription from the aniA promoter was not activated during oxygen-limited growth in the presence of nitrate, the gonococcal two-component regulatory system is designated NarQ-NarP rather than NarX-NarL. As far as we are aware, this is the first well-documented example of a two-component regulatory system working in partnership with a transcription activator in pathogenic neisseria. A 45 kDa c-type cytochrome that was synthesized during oxygen-limited, but not during oxygen sufficient, growth was identified as a homologue of cytochrome c peroxidases (CCP) of other bacteria. The gene for this cytochrome, designated ccp, was located, and its regulatory region was cloned into the promoter probe vector pLES94. Transcription from the ccp promoter was repressed during aerobic growth and induced during oxygen-limited growth and was totally FNR dependent, suggesting that the gonococcal FNR protein is a transcription activator of at least two genes. However, unlike AniA, synthesis of the CCP homologue was insensitive to the presence of nitrite during oxygen-limited growth.
Collapse
Affiliation(s)
- S Lissenden
- School of Biosciences, University of Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Escolar L, Pérez-Martín J, de Lorenzo V. Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 1999; 181:6223-9. [PMID: 10515908 PMCID: PMC103753 DOI: 10.1128/jb.181.20.6223-6229.1999] [Citation(s) in RCA: 596] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- L Escolar
- Centro Nacional de Biotecnología CSIC, 28049 Madrid, Spain
| | | | | |
Collapse
|
25
|
Murphy ER, Dickenson A, Militello KT, Connell TD. Genetic characterization of wild-type and mutant fur genes of Bordetella avium. Infect Immun 1999; 67:3160-5. [PMID: 10338537 PMCID: PMC96638 DOI: 10.1128/iai.67.6.3160-3165.1999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For most, if not all, organisms, iron (Fe) is an essential element. In response to the nutritional requirement for Fe, bacteria evolved complex systems to acquire the element from the environment. The genes encoding these systems are often coordinately regulated in response to the Fe concentration. Recent investigations revealed that Bordetella avium, a respiratory pathogen of birds, expressed a number of Fe-regulated genes (T. D. Connell, A. Dickenson, A. J. Martone, K. T. Militello, M. J. Filiatraut, M. L. Hayman, and J. Pitula, Infect. Immun. 66:3597-3605, 1998). By using manganese selection on an engineered strain of B. avium that carried an Fe-regulated alkaline phosphatase reporter gene, a mutant was obtained that was affected in expression of Fe-regulated genes. To determine if Fe-dependent regulation in B. avium was mediated by a fur-like gene, a fragment of the B. avium chromosome, corresponding to the fur locus of B. pertussis, was cloned by PCR. Sequencing revealed that the fragment from B. avium encoded a polypeptide with 92% identity to the Fur protein of B. pertussis. In vivo experiments showed that the cloned gene complemented H1780, a fur mutant of Escherichia coli. Southern hybridizations and PCRs demonstrated that the manganese mutant had a deletion of 2 to 3 kbp of nucleotide sequence in the region located immediately 5' of the fur open reading frame. A spontaneous PCR-derived mutant of the B. avium fur gene was isolated that encoded a Fur protein in which a histidine was substituted for an arginine at amino acid position 18 (R18H). Genetic analysis showed that the R18H mutant gene when cloned into a low-copy-number vector did not complement the fur mutation in H1780. However, the R18H mutant gene was able to complement the fur mutation when cloned into a high-copy-number vector. The cloned wild-type fur gene will be useful as a genetic tool to identify Fur-regulated genes in the B. avium chromosome.
Collapse
Affiliation(s)
- E R Murphy
- Center for Microbial Pathogenesis and Department of Microbiology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
26
|
Bellaire BH, Elzer PH, Baldwin CL, Roop RM. The siderophore 2,3-dihydroxybenzoic acid is not required for virulence of Brucella abortus in BALB/c mice. Infect Immun 1999; 67:2615-8. [PMID: 10225929 PMCID: PMC116012 DOI: 10.1128/iai.67.5.2615-2618.1999] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
2,3-Dihydroxybenzoic acid (DHBA) is the only siderophore described for Brucella, and previous studies suggested that DHBA might contribute to the capacity of these organisms to persist in host macrophages. Employing an isogenic siderophore mutant (DeltaentC) constructed from virulent Brucella abortus 2308, however, we found that production of DHBA is not required for replication in cultured murine macrophages or for the establishment and maintenance of chronic infection in the BALB/c mouse model.
Collapse
Affiliation(s)
- B H Bellaire
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | |
Collapse
|
27
|
Ferreirós C, Criado MT, Gómez JA. The neisserial 37 kDa ferric binding protein (FbpA). Comp Biochem Physiol B Biochem Mol Biol 1999; 123:1-7. [PMID: 10425707 DOI: 10.1016/s0305-0491(99)00044-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The ferric binding protein (FbpA) is one of the major proteins regulated by the level of environmental iron in the genus Neisseria. Its conservation in all species of pathogenic Neisseria has been demonstrated, and the possible role that it plays in the iron uptake mechanisms in these bacteria has been postulated. Similar proteins in Haemophilus influenzae (HitA) and in Serratia marcescens (SfuA) have been described, but relationships with the meningococcal FbpA could not be proven. Although supposedly periplasmic, the exact location of FbpA remains controversial because some molecules, or parts of them, have been found exposed to the bacterial outer surface. The DNA sequence downstream of the fbpA gene has been recently analysed, finding an operon composed of three open reading frames: fbpA, encoding for FbpA; fbpB, that codifies a cytoplasmic permease, and fbpC, that contains the information for a nucleotide binding protein. These proteins would form an iron transport system through the periplasmic space. FbpA is highly antigenic in mice when injected in purified form, shows intraspecies and interspecies antigenic homogenicity, and specific anti-FbpA antibodies are fully cross-reactive; nevertheless, the in vivo induction of anti-FbpA antibodies in man is still polemical. Recent studies reveal that the purified FbpA induces a fair response of bactericidal antibodies in mice.
Collapse
Affiliation(s)
- C Ferreirós
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, Spain.
| | | | | |
Collapse
|
28
|
Biswas GD, Anderson JE, Chen CJ, Cornelissen CN, Sparling PF. Identification and functional characterization of the Neisseria gonorrhoeae lbpB gene product. Infect Immun 1999; 67:455-9. [PMID: 9864256 PMCID: PMC96337 DOI: 10.1128/iai.67.1.455-459.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/1998] [Accepted: 10/20/1998] [Indexed: 11/20/2022] Open
Abstract
We cloned lbpB, encoding a predicted 80-kDa lipoprotein, upstream of lbpA. A nonpolar mutant (LbpB- LbpA+) had normal lactoferrin (LF) binding and grew normally with LF as an iron source, whereas LbpB- LbpA- and LbpB+ LbpA- strains had reduced binding of LF and did not grow with LF as an iron source. LbpB bound LF directly in an affinity purification, suggesting that LbpB might play a still-uncharacterized role in the LF iron utilization.
Collapse
Affiliation(s)
- G D Biswas
- Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill 27599, USA.
| | | | | | | | | |
Collapse
|
29
|
Luca NG, Wexler M, Pereira MJ, Yeoman KH, Johnston AW. Is thefurgene ofRhizobium leguminosarumessential? FEMS Microbiol Lett 1998. [DOI: 10.1111/j.1574-6968.1998.tb13286.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
30
|
Escolar L, Pérez-Martín J, de Lorenzo V. Binding of the fur (ferric uptake regulator) repressor of Escherichia coli to arrays of the GATAAT sequence. J Mol Biol 1998; 283:537-47. [PMID: 9784364 DOI: 10.1006/jmbi.1998.2119] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The mode of DNA binding of the Fur (ferric uptake regulator) repressor which controls transcription of iron-responsive genes in Escherichia coli, has been re-examined. Using as a reference the known sites at the promoter of the aerobactin operon of Escherichia coli, we have compared in detail the patterns of interaction between the purified Fur protein and natural or synthetic DNA targets. DNase I and hydroxyl radical footprinting, as well as missing-T assays, consistently revealed that functional Fur sites are composed of a minimum of three repeats of the hexameric motif GATAAT rather than by a palindromic 19 bp target sequence. Extended binding sites, constructed by stepwise addition of one or two direct repeats of the same sequence, were occupied co-operatively by Fur with the same pattern of interactions as those observed with the core of three repeats. This indicated that functional sites with a range of affinities can be formed by the addition of discrete GATAAT extensions to a minimal recognition sequence. The fashion in which Fur binds its target, virtually unknown in prokaryotic transcriptional regulators, accounts for the observed helical wrapping of the protein around the DNA helix.
Collapse
Affiliation(s)
- L Escolar
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, 28049, Spain
| | | | | |
Collapse
|
31
|
Abstract
Six Gardnerella vaginalis strains were examined for the ability to utilize various iron-containing compounds as iron sources. In a plate bioassay, all six strains acquired iron from ferrous chloride, ferric chloride, ferrous sulfate, ferric ammonium citrate, ferrous ammonium sulfate, bovine and equine hemin, bovine catalase, and equine, bovine, rabbit, and human hemoglobin. All six strains also acquired iron from human lactoferrin, but not from human transferrin, as determined by a liquid broth growth assay. Siderophore production was detected in eight G. vaginalis strains by the chrome azurol S universal chemical assay. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the cytoplasmic membrane proteins isolated from G. vaginalis 594 grown under iron-replete and iron-restricted conditions revealed several iron-regulated proteins ranging in molecular mass from 33 to 94 kDa. These results indicate that G. vaginalis may acquire iron from iron salts and host iron compounds.
Collapse
Affiliation(s)
- G P Jarosik
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | | | | | |
Collapse
|
32
|
van Vliet AH, Wooldridge KG, Ketley JM. Iron-responsive gene regulation in a campylobacter jejuni fur mutant. J Bacteriol 1998; 180:5291-8. [PMID: 9765558 PMCID: PMC107575 DOI: 10.1128/jb.180.20.5291-5298.1998] [Citation(s) in RCA: 199] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/1998] [Accepted: 08/05/1998] [Indexed: 11/20/2022] Open
Abstract
The expression of iron-regulated systems in gram-negative bacteria is generally controlled by the Fur protein, which represses the transcription of iron-regulated promoters by using Fe2+ as a cofactor. Mutational analysis of the Campylobacter jejuni fur gene was carried out by generation of a set of mutant copies of fur which had a kanamycin or chloramphenicol resistance gene introduced into the regions encoding the N and C termini of the Fur protein. The mutated genes were recombined into the C. jejuni NCTC 11168 chromosome, and putative mutants were confirmed by Southern hybridization. C. jejuni mutants were obtained only when the resistance genes were transcribed in the same orientation as the fur gene. The C. jejuni fur mutant grew slower than the parental strain. Comparison of protein profiles of fractionated C. jejuni cells grown in low- or high-iron medium indicated derepressed expression of three iron-regulated outer membrane proteins with molecular masses of 70, 75, and 80 kDa. Characterization by N-terminal amino acid sequencing showed the 75-kDa protein to be identical to CfrA, a Campylobacter coli siderophore receptor homologue, whereas the 70-kDa protein was identified as a new siderophore receptor homologue. Periplasmic fractions contained four derepressed proteins with molecular masses of 19, 29, 32, and 36 kDa. The 19-kDa protein has been previously identified, but its function is unknown. The cytoplasmic fraction contained two iron-repressed and two iron-induced proteins with molecular masses of 26, 55, 31, and 40 kDa, respectively. The two iron-repressed proteins have been previously identified as the oxidative stress defense proteins catalase (KatA) and alkyl hydroperoxide reductase (AhpC). AhpC and KatA were still iron regulated in the fur mutant, suggesting the presence of Fur-independent iron regulation. Further analysis of the C. jejuni iron and Fur regulons by using two-dimensional gel electrophoresis demonstrated the total number of iron- and Fur-regulated proteins to be lower than for other bacterial pathogens.
Collapse
Affiliation(s)
- A H van Vliet
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | |
Collapse
|
33
|
Hill PJ, Cockayne A, Landers P, Morrissey JA, Sims CM, Williams P. SirR, a novel iron-dependent repressor in Staphylococcus epidermidis. Infect Immun 1998; 66:4123-9. [PMID: 9712757 PMCID: PMC108495 DOI: 10.1128/iai.66.9.4123-4129.1998] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Staphylococcus epidermidis and Staphylococcus aureus, a number of cell wall- and cytoplasmic membrane-associated lipoproteins are induced in response to iron starvation. To gain insights into the molecular basis of iron-dependent gene regulation in the staphylococci, we sequenced the DNA upstream of the 3-kb S. epidermidis sitABC operon, which Northern blot analysis indicates is transcriptionally regulated by the growth medium iron content. We identified two DNA sequences which are homologous to elements of the Corynebacterium diphtheriae DtxR regulon, which controls, in response to iron stress, for example, production of diphtheria toxin, siderophore, and a heme oxygenase. Upstream of the sitABC operon and divergently transcribed lies a 645-bp open reading frame (ORF), which codes for a polypeptide of approximately 25 kDa with homology to the DtxR family of metal-dependent repressor proteins. This ORF has been designated SirR (staphylococcal iron regulator repressor). Within the sitABC promoter/operator region, we also located a region of dyad symmetry overlapping the transcriptional start of sitABC which shows high homology to the DtxR operator consensus sequence, suggesting that this region, termed the Sir box, is the SirR-binding site. The SirR protein was overexpressed, purified, and used in DNA mobility shift assays; SirR retarded the migration of a synthetic oligonucleotide based on the Sir box in a metal (Fe2+ or Mn2+)-dependent manner, providing confirmatory evidence that this motif is the SirR-binding site. Furthermore, Southern blot analysis of staphylococcal chromosomal DNA with the synthetic Sir box as a probe confirmed that there are at least five Sir boxes in the S. epidermidis genome and at least three in the genome of S. aureus, suggesting that SirR controls the expression of multiple target genes. Using a monospecific polyclonal antibody raised against SirR to probe Western blots of whole-cell lysates of S. aureus, S. carnosus, S. epidermidis, S. hominis, S. cohnii, S. lugdunensis, and S. haemolyticus, we identified an approximately 25-kDa cross-reactive protein in each of the staphylococcal species examined. Taken together, these data suggest that SirR functions as a divalent metal cation-dependent transcriptional repressor which is widespread among the staphylococci.
Collapse
Affiliation(s)
- P J Hill
- Institute of Infections and Immunity, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| | | | | | | | | | | |
Collapse
|
34
|
Litwin CM, Byrne BL. Cloning and characterization of an outer membrane protein of Vibrio vulnificus required for heme utilization: regulation of expression and determination of the gene sequence. Infect Immun 1998; 66:3134-41. [PMID: 9632577 PMCID: PMC108324 DOI: 10.1128/iai.66.7.3134-3141.1998] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/1998] [Accepted: 04/22/1998] [Indexed: 02/07/2023] Open
Abstract
Vibrio vulnificus is a halophilic, marine pathogen that has been associated with septicemia and serious wound infections in patients with iron overload and preexisting liver disease. For V. vulnificus, the ability to acquire iron from the host has been shown to correlate with virulence. V. vulnificus is able to use host iron sources such as hemoglobin and heme. We previously constructed a fur mutant of V. vulnificus which constitutively expresses at least two iron-regulated outer membrane proteins, of 72 and 77 kDa. The N-terminal amino acid sequence of the 77-kDa protein purified from the V. vulnificus fur mutant had 67% homology with the first 15 amino acids of the mature protein of the Vibrio cholerae heme receptor, HutA. In this report, we describe the cloning, DNA sequence, mutagenesis, and analysis of transcriptional regulation of the structural gene for HupA, the heme receptor of V. vulnificus. DNA sequencing of hupA demonstrated a single open reading frame of 712 amino acids that was 50% identical and 66% similar to the sequence of V. cholerae HutA and similar to those of other TonB-dependent outer membrane receptors. Primer extension analysis localized one promoter for the V. vulnificus hupA gene. Analysis of the promoter region of V. vulnificus hupA showed a sequence homologous to the consensus Fur box. Northern blot analysis showed that the transcript was strongly regulated by iron. An internal deletion in the V. vulnificus hupA gene, done by using marker exchange, resulted in the loss of expression of the 77-kDa protein and the loss of the ability to use hemin or hemoglobin as a source of iron. The hupA deletion mutant of V. vulnificus will be helpful in future studies of the role of heme iron in V. vulnificus pathogenesis.
Collapse
Affiliation(s)
- C M Litwin
- Section of Clinical Immunology, Microbiology and Virology, Department of Pathology, University of Utah, Salt Lake City, Utah 84132, USA.
| | | |
Collapse
|
35
|
Lewis LA, Rohde K, Gipson M, Behrens B, Gray E, Toth SI, Roe BA, Dyer DW. Identification and molecular analysis of lbpBA, which encodes the two-component meningococcal lactoferrin receptor. Infect Immun 1998; 66:3017-23. [PMID: 9596785 PMCID: PMC108307 DOI: 10.1128/iai.66.6.3017-3023.1998] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We identified lbpB, encoding the lipoprotein component of the meningococcal lactoferrin receptor. An LbpB mutant was unable to acquire Fe from lactoferrin and exhibits decreased surface binding to lactoferrin. Primer extension and reverse transcription-PCR analysis indicate that lbpB and lbpA are cotranscribed on a polycistronic Fe-repressible mRNA.
Collapse
Affiliation(s)
- L A Lewis
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73103, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Escolar L, Pérez-Martín J, de Lorenzo V. Coordinated repression in vitro of the divergent fepA-fes promoters of Escherichia coli by the iron uptake regulation (Fur) protein. J Bacteriol 1998; 180:2579-82. [PMID: 9573216 PMCID: PMC107206 DOI: 10.1128/jb.180.9.2579-2582.1998] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mechanism involved in transcriptional repression of the fepA-fes divergent promoters of Escherichia coli by the Fur (ferric uptake regulation) protein has been examined in vitro. This DNA region includes a suboptimal and single Fur-binding site with two divergent and overlapped -35/-10 hexamers. Comparison of transcription patterns generated with runoff experiments in either the presence or the absence of heparin showed that access of the RNA polymerase to the principal -35/-10 hexamers was fully prevented by Fur-Mn2+ bound to its target site within the divergent promoter region. Neither RNA polymerase bound to the fes and fepA promoters could be displaced by Fur-Mn2+, nor could the bound repressor be outcompeted by an excess of the enzyme. However, the repressor blocked reinitiation as soon as the polymerase moved away from the fes promoter during transcription. The spatial distribution of regulatory elements within the DNA region allowed the simultaneous binding of the RNA polymerase to the fes and fepA promoters and their coordinate regulation regardless of their different transcriptional activities. Comparisons with other iron-regulated systems support a general mechanism for Fur-controlled promoters that implies a direct competition between the polymerase and the regulator for overlapping target sites in the DNA.
Collapse
Affiliation(s)
- L Escolar
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | | |
Collapse
|
37
|
Westenberg DJ, Guerinot ML. Regulation of bacterial gene expression by metals. ADVANCES IN GENETICS 1998; 36:187-238. [PMID: 9348656 DOI: 10.1016/s0065-2660(08)60310-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- D J Westenberg
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
38
|
Pettersson A, Prinz T, Umar A, van der Biezen J, Tommassen J. Molecular characterization of LbpB, the second lactoferrin-binding protein of Neisseria meningitidis. Mol Microbiol 1998; 27:599-610. [PMID: 9489671 DOI: 10.1046/j.1365-2958.1998.00707.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lbpA gene of Neisseria meningitidis encodes an outer membrane lactoferrin-binding protein and shows homology to the transferrin-binding protein, TbpA. Previously, we have detected part of an open reading frame upstream of lbpA. The putative product of this open reading frame, tentatively designated lbpB, showed homology to the transferrin-binding protein TbpB, suggesting that the lactoferrrin receptor, like the transferrin receptor, consists of two proteins. The complete nucleotide sequence of lbpB was determined. The gene encodes a 77.5 kDa protein, probably a lipoprotein, with homology, 33% identity to the TbpB of N. meningitidis. A unique feature of LbpB is the presence of two stretches of negatively charged residues, which might be involved in lactoferrin binding. Antisera were raised against synthetic peptides corresponding to the C-terminal part of the putative protein and used to demonstrate that the gene is indeed expressed. Consistent with the presence of a putative Fur binding site upstream of the lbpB gene, expression of both LbpA and LbpB was proved to be iron regulated in Western blot experiments. The LbpB protein appeared to be less stable than TbpB in SDS-containing sample buffer. Isogenic mutants lacking either LbpA or LbpB exhibited a reduced ability to bind lactoferrin. In contrast to the lbpB mutant, the lbpA mutant was completely unable to use lactoferrin as a sole source of iron.
Collapse
Affiliation(s)
- A Pettersson
- Department of Molecular Cell Biology and Institute of Biomembranes, Utrecht University, The Netherlands.
| | | | | | | | | |
Collapse
|
39
|
Crosa JH. Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol Mol Biol Rev 1997; 61:319-36. [PMID: 9293185 PMCID: PMC232614 DOI: 10.1128/mmbr.61.3.319-336.1997] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Iron is an essential element for nearly all living cells. Thus, the ability of bacteria to utilize iron is a crucial survival mechanism independent of the ecological niche in which the microorganism lives, because iron is scarce both in potential biological hosts, where it is bound by high-affinity iron-binding proteins, and in the environment, where it is present as part of insoluble complex hydroxides. Therefore, pathogens attempting to establish an infection and environmental microorganisms must all be able to utilize the otherwise unavailable iron. One of the strategies to perform this task is the possession of siderophore-mediated iron uptake systems that are capable of scavenging the hoarded iron. This metal is, however, a double-edged sword for the cell because it can catalyze the production of deadly free hydroxyl radicals, which are harmful to the cells. It is therefore imperative for the cell to control the concentration of iron at levels that permit key metabolic steps to occur without becoming a messenger of cell death. Early work identified a repressor, Fur, which as a complex with iron repressed the expression of most iron uptake systems as well as other iron-regulated genes when the iron concentration reached a certain level. However, later work demonstrated that this regulation by Fur was not the only answer under low-iron conditions, there was a need for activation of iron uptake genes as well as siderophore biosynthetic genes. Furthermore, it was also realized that in some instances the actual ferric iron-siderophore complex induced the transcription of the cognate receptor and transport genes. It became evident that control of the expression of iron-regulated genes was more complex than originally envisioned. In this review, I analyze the processes of signal transduction, transcriptional control, and posttranscriptional control of iron-regulated genes as reported for the ferric dicitrate system in Escherichia coli; the pyochelin, pyoverdin, and enterobactin systems in Pseudomonas species; the irgB system in Vibrio cholerae; and the plasmid-mediated anguibactin system in Vibrio anguillarum. I hope that by using these diverse paradigms, I will be able to convey a unifying picture of these mechanism and their importance in the maintenance and prosperity of bacteria within their ecological niches.
Collapse
Affiliation(s)
- J H Crosa
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland 97201, USA.
| |
Collapse
|
40
|
Forng RY, Ekechukwu CR, Subbarao S, Morse SA, Genco CA. Promoter mapping and transcriptional regulation of the iron-regulated Neisseria gonorrhoeae fbpA gene. J Bacteriol 1997; 179:3047-52. [PMID: 9139927 PMCID: PMC179073 DOI: 10.1128/jb.179.9.3047-3052.1997] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this study, we have mapped the promoter region of the Neisseria gonorrhoeae ferric iron binding protein-encoding gene fbpA, determined the start point of transcription, and examined the accumulation of fbpA mRNA Primer extension analysis of the fbpA promoter region indicated a single transcriptional start site located 51 bp upstream of the ATG translational start site. Northern blot analysis with a 200-bp fbpA structural gene probe detected one transcript of 1.0 kb in RNAs extracted from gonococcal cultures grown under iron-restricted conditions; the 1.0-kb transcript was observed to accumulate at a steady rate throughout the growth cycle. In comparison, in cultures grown under iron-sufficient conditions, the intensity of the 1.0-kb transcript was reduced considerably. Isolation of total RNA from rifampin-treated cells indicated that the half-life of the 1.0-kb fbpA transcript in cells grown under iron-restricted conditions was 1.2 +/- 0.2 min, while that of the 1.0-kb fbpA transcript obtained from cultures grown under iron-sufficient conditions was 0.5 +/- 0.1 min. Taken together, our results indicate that the fbpA promoter is regulated by iron and that transcription and translation of FbpA are closely linked.
Collapse
Affiliation(s)
- R Y Forng
- Department of Microbiology and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310-1495, USA
| | | | | | | | | |
Collapse
|
41
|
Watnick PI, Eto T, Takahashi H, Calderwood SB. Purification of Vibrio cholerae fur and estimation of its intracellular abundance by antibody sandwich enzyme-linked immunosorbent assay. J Bacteriol 1997; 179:243-7. [PMID: 8982004 PMCID: PMC178685 DOI: 10.1128/jb.179.1.243-247.1997] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Vibrio cholerae fur gene was previously cloned and sequenced. A putative Fur box was identified in the divergent promoters of irgA, a virulence factor of V. cholerae, and irgB, a transcriptional activator of irgA. In this work, V. cholerae Fur was overexpressed in Escherichia coli and purified to approximately 95% homogeneity. The purified protein bound a DNA fragment containing the irgA-irgB promoter in a gel shift assay. The purified protein was used to raise monoclonal and polyclonal antibodies to V. cholerae Fur, and a Fur sandwich enzyme-linked immunosorbent assay was developed to estimate the intracellular abundance of Fur under a variety of growth conditions. The number of Fur molecules per cell during exponential growth was approximately 2,500, which is higher than most measurements for other bacterial repressors but comparable to the intracellular concentration of the leucine-responsive regulatory protein. The number of Fur molecules per cell increased in the late logarithmic and stationary phases. Growth of V. cholerae in low-iron medium did not alter the intracellular abundance of Fur significantly. Growth under microaerophilic conditions resulted in a significant, approximately twofold decrease in the intracellular levels of Fur. The measurements of intracellular Fur abundance indicate that a large amount of this repressor is produced constitutively and that the concentration of Fur in the cell varies by less than a factor of 2 under the conditions studied. We hypothesize that the high constitutive expression of Fur is necessary for its role as an iron-responsive regulator.
Collapse
Affiliation(s)
- P I Watnick
- Infectious Disease Unit, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | |
Collapse
|
42
|
Hickey EK, Cianciotto NP. An iron- and fur-repressed Legionella pneumophila gene that promotes intracellular infection and encodes a protein with similarity to the Escherichia coli aerobactin synthetases. Infect Immun 1997; 65:133-43. [PMID: 8975903 PMCID: PMC174567 DOI: 10.1128/iai.65.1.133-143.1997] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Legionella pneumophila, a parasite of alveolar macrophages, requires iron for intra- and extracellular growth. Although its mechanisms for iron assimilation are poorly understood, this bacterium produces Fur, a protein that can repress gene transcription in response to iron concentration. Because iron- and Fur-regulated genes are important for infection in other bacteria, the identification of similar genes in L. pneumophila was undertaken. A wild-type strain of L. pneumophila was randomly mutated with a mini-Tn10' lacZ transposon, and the resulting gene fusions were tested for iron regulation by assessing beta-galactosidase production in the presence and absence of iron chelators. Of the initial six mutants with iron-repressed lacZ fusions, two strains, NU229 and NU232, possessed fusions that were stably iron regulated. To assay for Fur regulation, the levels of beta-galactosidase were measured in strains no longer producing Fur. As in a number of pathogenic bacteria, L. pneumophila fur could not be insertionally inactivated, but spontaneous Fur- derivatives were generated by selecting for manganese resistance. Strain NU229 contained a Fur-repressed fusion based on derepression of lacZ expression in its manganese-resistant derivative. Extracellular growth of NU229 in bacteriological media was similar to that of wild-type strain 130b. To assess the role of an iron- and Fur-regulated (frgA) gene in intracellular infection, the ability of NU229 to grow within U937 cell monolayers was tested. Quantitative infection assays demonstrated that intracellular growth of NU229 was impaired as much as 80-fold. Reconstruction of the mutant by allelic exchange proved that the infectivity defect in NU229 was due to the inactivation of frgA and not to a second-site mutation. Subsequently, complementation of the interrupted gene by an intact plasmid-encoded gene demonstrated that the infectivity defect was due to the loss of frgA and not to a polar effect. Nucleotide sequence analysis revealed that the 63-kDa FrgA protein has homology with the aerobactin synthetases IucA and IucC of Escherichia coli, raising the possibility that L. pneumophila encodes a siderophore which is required for optimal intracellular replication. Southern hybridization analysis determined that frgA is specific to L. pneumophila.
Collapse
Affiliation(s)
- E K Hickey
- Department of Microbiology-Immunology, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
43
|
Thomas CE, Carbonetti NH, Sparling PF. Pseudo-transposition of a Tn5 derivative in Neisseria gonorrhoeae. FEMS Microbiol Lett 1996; 145:371-6. [PMID: 8978091 DOI: 10.1111/j.1574-6968.1996.tb08603.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We constructed a Tn5 derivative for potential use in transposon mutagenesis of Neisseria gonorrhoeae. It was incorporated into the chromosome apparently at random following transformation, but the insertion events were dependent on a functional RecA and independent of a functional transposase. Furthermore, in most cases there was an incomplete transposon inserted with little or no IS50 insertion sequence. These observations suggest that Tn5 transposition may not be possible in N. gonorrhoeae and that this organism may have an unexplored illegitimate recombination system.
Collapse
Affiliation(s)
- C E Thomas
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill 27599, USA.
| | | | | |
Collapse
|
44
|
Bourke B, al Rashid ST, Bingham HL, Chan VL. Characterization of Campylobacter upsaliensis fur and its localization in a highly conserved region of the Campylobacter genome. Gene 1996; 183:219-24. [PMID: 8996110 DOI: 10.1016/s0378-1119(96)00562-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Despite increasing recognition of the importance of Campylobacter upsaliensis in human disease little is known about either the virulence properties or genetics of this enteric pathogen. The complete coding sequence of a C. upsaliensis gene has yet to be published. We have cloned and sequenced the complete iron-uptake regulatory (fur) gene from the type strain of this species. The C. upsaliensis fur homolog was isolated from a genomic library of C. upsaliensis ATCC 43954 constructed in phage lambdaGEM-11. The open reading frame identified encodes a polypeptide consisting of 156 amino acids. The 5'-flanking region of the C. upsaliensis fur gene contains 3 putative Fur-binding sequences and two catabolite activator-binding sequences indicating the potential for autogenous and cAMP-mediated regulation, respectively. Primer extension analysis identified a single transcription start site 262 nt upstream from the AUG initiation codon. Sequence analysis indicates that the Fur protein of C. upsaliensis is highly homologous (87% amino acid identity) to Campylobacter jejuni Fur. Furthermore, the arrangement of the lysS and glyA genes downstream of fur is precisely conserved in both C. upsaliensis ATCC 43954 and C. jejuni TGH9011. Using the polymerase chain reaction close linkage of fur with lysS and glyA was also observed among multiple isolates of C. upsaliensis, C. jejuni and C. coli suggesting a possible functional relevance for this conserved genetic arrangement in campylobacteria.
Collapse
Affiliation(s)
- B Bourke
- Division of Gastroenterology, Hospital for Sick Children, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
45
|
Abstract
Iron regulation in a growing number of bacterial species is being attributed to the presence of a fur (ferric uptake regulation) regulatory system. In the presence of iron, Fur acts as a classical negative regulator, binding conserved sequences within the promoter of iron-repressible genes and blocking transcription. Western blot analysis utilizing Escherichia coli Fur antisera detected a band of approximately 17 kDa in soluble extracts of Haemophilus ducreyi. Additionally, Southern blot hybridization of the H. ducreyi chromosome with a meningococcal fur probe indicated that H. ducreyi might contain a fur homolog. This putative fur homolog was cloned into the E. coli vector pACYC184. This clone was capable of repressing expression of a normally Furregulated lacZ fusion in the fur-background of E. coli strain H1780. The deduced amino acid sequence shows H. ducreyi fur to be 54% identical and 73% similar to E. coli fur, containing putative DNA-binding and metal-binding domains. These data demonstrate that H. ducreyi has a functional fur system.
Collapse
Affiliation(s)
- S D Carson
- Department of Microbiology, University of North Carolina at Chapel Hill 27599, USA
| | | | | |
Collapse
|
46
|
Desai PJ, Angerer A, Genco CA. Analysis of Fur binding to operator sequences within the Neisseria gonorrhoeae fbpA promoter. J Bacteriol 1996; 178:5020-3. [PMID: 8759870 PMCID: PMC178289 DOI: 10.1128/jb.178.16.5020-5023.1996] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The gene encoding Neisseria gonorrhoeae periplasmic binding protein FbpA contains two regions whose sequences exhibit homology with the Escherichia coli ferric uptake regulator protein (Fur) consensus binding sequence. In this study, DNase I footprinting experiments were employed to characterize the operator sequences within the fbpA promoter region to which E. coli Fur binds. A 160-bp fragment encompassing the promotor region and the putative iron boxes of the fbpA promoter was incubated with Fur, DNaseI was added, and the products of these reactions were sequenced to identify nucleotide peaks that were protected. At 50 nM Fur, a protected region that spanned 33 bp and extended 19 bp upstream and 8 bp downstream of the -35 region of the fbpA promoter was observed. At higher concentrations of Fur (75 and 100 nM), an extension of this protected region upstream of the -35 region was observed. Introduction of a plasmid carrying an fbpA-cat transcriptional fusion in E. coli H1717 (Fur+) resulted in an 88% induction of chloramphenicol acetyltransferase expression under conditions of iron restriction; however, chloramphenicol acetyltransferase expression was not responsive to iron in E. coli H1745 (Fur-), indicating that transcriptional regulation of fbpA in response to iron occurs via the negative regulator Fur. The extent of the fbpA operator sequence (42 bp), as defined by our footprinting analysis, would suggest the binding of two Fur repressor dimers.
Collapse
Affiliation(s)
- P J Desai
- Department of Microbiology and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310-1495, USA
| | | | | |
Collapse
|
47
|
Abstract
The pathogenic Neisseria spp. produce a number of iron-regulated gene products that are thought to be important in virulence. Iron-responsive regulation of these gene products has been attributed to the presence in Neisseria spp. of the Fur (ferric uptake regulation) protein. Evidence for the role of Fur in neisserial iron regulation has been indirect because of the inability to make fur null mutations. To circumvent this problem, we used manganese selection to isolate missense mutations of Neisseria gonorrhoeae fur. We show that a mutation in gonococcal fur resulted in reduced modulation of expression of four well-studied iron-repressed genes and affected the iron regulation of a broad range of other genes as judged by two-dimensional polyacrylamide gel electrophoresis (PAGE). All 15 of the iron-repressed spots observed by two-dimensional PAGE were at least partially derepressed in the fur mutant, and 17 of the 45 iron-induced spots were affected by the fur mutation. Thus, Fur plays a central role in regulation of iron-repressed gonococcal genes and appears to be involved in regulation of many iron-induced genes. The size and complexity of the iron regulons in N. gonorrhoeae are much greater than previously recognized.
Collapse
Affiliation(s)
- C E Thomas
- Department of Microbiology, School of Medicine, University of North Carolina at Chapel Hill, 27599, USA
| | | |
Collapse
|
48
|
Hassett DJ, Sokol PA, Howell ML, Ma JF, Schweizer HT, Ochsner U, Vasil ML. Ferric uptake regulator (Fur) mutants of Pseudomonas aeruginosa demonstrate defective siderophore-mediated iron uptake, altered aerobic growth, and decreased superoxide dismutase and catalase activities. J Bacteriol 1996; 178:3996-4003. [PMID: 8763923 PMCID: PMC178152 DOI: 10.1128/jb.178.14.3996-4003.1996] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pseudomonas aeruginosa is considered a strict aerobe that possesses several enzymes important in the disposal of toxic oxygen reduction products including iron- and manganese-cofactored superoxide dismutase and catalase. At present, the nature of the regulation of these enzymes in P. aeruginosa Is not understood. To address these issues, we used two mutants called A4 and C6 which express altered Fur (named for ferric uptake regulation) proteins and constitutively produce the siderophores pyochelin and pyoverdin. Both mutants required a significant lag phase prior to log-phase aerobic growth, but this lag was not as apparent when the organisms were grown under microaerobic conditions. The addition of iron salts to mutant A4 and, to a greater extent, C6 cultures allowed for an increased growth rate under both conditions relative to that of bacteria without added iron. Increased manganese superoxide dismutase (Mn-SOD) and decreased catalase activities were also apparent in the mutants, although the second catalase, KatB, was detected in cell extracts of each fur mutant. Iron deprivation by the addition of the iron chelator 2,2'-dipyridyl to wild-type bacteria produced an increase in Mn-SOD activity and a decrease in total catalase activity, similar to the fur mutant phenotype. Purified wild-type Fur bound more avidly than mutant Fur to a PCR product containing two palindromic 19-bp "iron box" regions controlling expression of an operon containing the sodA gene that encodes Mn-SOD. All mutants were defective in both ferripyochelin- and ferripyoverdin-mediated iron uptake. Two mutants of strain PAO1, defective in pyoverdin but not pyochelin biosynthesis, produced increased Mn-SOD activity. Sensitivity to both the redox-cycling agent paraquat and hydrogen peroxide was greater in each mutant than in the wild-type strain. In summary, the results indicate that mutations in the P. aeruginosa fur locus affect aerobic growth and SOD and catalase activities in P. aeruginosa. We postulate that reduced siderophore-mediated iron uptake, especially that by pyoverdin, may be one possible mechanism contributing to such effect.
Collapse
Affiliation(s)
- D J Hassett
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Pathogenic Neisseria species need to obtain iron from the host to grow in vivo. Several iron-transport systems are known, and regulation of Neisseria iron-transport genes occurs via the transcriptional regulator Fur. There is evidence that the ability to transport iron is crucial to the survival of these organisms in vivo.
Collapse
Affiliation(s)
- C A Genco
- Dept of Microbiology and Immunology, Morehouse School of Medicine, Atlanta, GA 30310-1495, USA.
| | | |
Collapse
|
50
|
Abstract
The ability to utilize hemin and hemin-containing compounds for nutritional iron (Fe) uptake has been documented for several pathogenic bacteria. Neisseria gonorrhoeae can utilize free hemin as a source of Fe for growth; however, little is known concerning the mechanisms involved in hemin transport. In this study we have characterized the binding and accumulation of hemin by N. gonorrhoeae and defined the specificity of the gonococcal hemin receptor. N. gonorrhoeae F62 was grown in a chemically defined medium containing the iron chelator Desferal, and hemin transport was initiated by the addition of [59Fe]hemin (4.0 or 8.0 microM; specific activity, 7.0 Ci/mol). 59Fe uptake from radiolabeled hemin by N. gonorrhoeae was energy dependent, and 59Fe was shown to accumulate in the cell at a constant rate during logarithmic growth. However, we observed a decrease in the uptake of 59Fe from radiolabeled hemin when inorganic iron was present in the growth medium. Binding of 59Fe from radiolabeled hemin was inhibited by the addition of either cold hemin, hematoporphyrin, or hemoglobin, but not by ferric citrate. Although [14C]hemin was found to support the growth of N. gonorrhoeae, we did not detect the uptake of 14C from radiolabeled hemin. Extraction of the gonococcal periplasmic ferric binding protein (Fbp) from cultures grown with [59Fe]hemin indicated that a majority of the 59Fe was associated with the Fbp. Taken together, the results presented here indicate that hemin binds to a gonococcal outer membrane receptor through the protoporphyrin portion of the molecule and that following binding, iron is removed and transported into the cell, where it is associated with the gonococcal periplasmic ferric binding protein, Fbp.
Collapse
Affiliation(s)
- P J Desai
- Department of Microbiology and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310-1495, USA
| | | | | |
Collapse
|