1
|
Meng M, Shen C, Lin M, Jin J, Chen W, Zhang X, Xu C, Hu X, Zhu Q, Chen C, Xie Y, Jacob Pooe O, Crickmore N, Liu X, Lü P, Liu Y. Characterization of the individual domains of the Bacillus thuringiensis Cry2Aa implicates Domain I as a possible binding site to Helicoverpa armigera. J Invertebr Pathol 2024; 205:108129. [PMID: 38754546 DOI: 10.1016/j.jip.2024.108129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Bacillus thuringiensis (Bt) Cry2Aa is a member of the Cry pore-forming, 3-domain, toxin family with activity against both lepidopteran and dipteran insects. Although domains II and III of the Cry toxins are believed to represent the primary specificity determinant through specific binding to cell receptors, it has been proposed that the pore-forming domain I of Cry2Aa also has such a role. Thus, a greater understanding of the functions of Cry2Aa's different domains could potentially be helpful in the rational design of improved toxins. In this work, cry2Aa and its domain fragments (DI, DII, DIII, DI-II and DII-DIII) were subcloned into the vector pGEX-6P-1 and expressed in Escherichia coli. Each protein was recognized by anti-Cry2Aa antibodies and, except for the DII fragment, could block binding of the antibody to Cry2Aa. Cry2Aa and its DI and DI-II fragments bound to brush border membrane vesicles (BBMV) from H. armigera and also to a ca 150 kDa BBMV protein on a far western (ligand) blot. In contrast the DII, DIII and DII-III fragments bound to neither of these. None of the fragments were stable in H. armigera gut juice nor showed any toxicity towards this insect. Our results indicate that contrary to the general model of Cry toxin activity domain I plays a role in the binding of the toxin to the insect midgut.
Collapse
Affiliation(s)
- Meng Meng
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Cheng Shen
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Manman Lin
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Jiafeng Jin
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Wei Chen
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Xiao Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Chongxin Xu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Xiaodan Hu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Qing Zhu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Chengyu Chen
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Yajing Xie
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Ofentse Jacob Pooe
- School of Life Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Neil Crickmore
- School of Biological Sciences, University of Sussex, Brighton BN1 9RH, United Kingdom
| | - Xianjin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| | - Yuan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China.
| |
Collapse
|
2
|
Ay Alzahrani F, Crickmore N. N-terminal proteolysis determines the differential activity of Bacillus thuringiensis Cry2A toxins towards Aedes aegypti. J Invertebr Pathol 2024; 204:108100. [PMID: 38561070 DOI: 10.1016/j.jip.2024.108100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
It has long been known that while both the Bacillus thuringiensis pesticidal proteins Cry2Aa and Cry2Ab have wide-ranging activities against lepidopteran insects only the former has activity against the mosquito Aedes aegypti. We have previously shown that this differential specificity is influenced by the N-terminal region of these proteins and here demonstrate that this is due to these sections affecting proteolytic activation. Enzymes from the midgut of A. aegypti cleave Cry2Aa at the C-terminal side of amino acid 49 resulting in a 58 kDa fragment whereas these enzymes do not cleave Cry2Ab at this position. The 58 kDa, but not the protoxin, form of Cry2Aa is capable of interacting with brush border membrane vesicles from A. aegypti.
Collapse
Affiliation(s)
- Faisal Ay Alzahrani
- Department of Chemistry, College of Sciences and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia; School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
3
|
Shen C, Li YH, Lin MM, Zhang JZ, Wang J, Gao MJ, Zhang X, Hu XD, Liu Y, Liu XJ. Identifying the Epitopes of Bacillus thuringiensis Cry2Aa Toxin Involved in Cadherin Interaction by a Monoclonal Antibody. Appl Biochem Biotechnol 2022; 195:2709-2718. [PMID: 36074237 DOI: 10.1007/s12010-022-04162-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 11/26/2022]
Abstract
Antibodies are a useful tool for assistance to map the binding epitopes in Bacillus thuringiensis Cry toxins and their receptors, and even determine how receptors promote toxicity. In this work, a monoclonal antibody (mAb-1D2) was produced by the hybridoma cell line raised against Cry2Aa toxins, with a half inhibition concentration (IC50) of 9.16 μg/mL. The affinity constant of two recombinant toxin-binding fragments derived from Helicoverpa armigera and Plutella xylostella cadherin-like protein (HaCad-TBR or PxCad-TBR) to Cry2Aa toxin was measured to be 1.21 μM and 1.24 μM, respectively. Competitive ELISA showed that mAb-1D2 competed with HaCad-TBR or PxCad-TBR binding to Cry2Aa. Meanwhile, the toxicity of the Cry2Aa toxin to the H. armigera and P. xylostella larvae were greatly reduced when the toxin was mixed with mAb-1D2, which indicated that cadherin may play an important functional role in the toxicity of Cry2Aa. After transforming mAb-1D2 to a single-chain variable fragment (scFv), the hot spot residues of Cry2Aa with 1D2-scFv, PxCad-TBR, and HaCad-TBR were analyzed by molecular docking. It was demonstrated that the hot spot residues of Cry2Aa involving with 1D2-scFv interaction were mainly in Domain II, and some residues in Domain I. Moreover, mAb-1D2 and the two cadherin fragments shared the common hot spot residues on Cry2Aa, which could explain mAb-1D2 inhibited Cry2Aa binding with cadherin fragments. This monoclonal antibody could be a useful tool for identifying the binding epitopes between Cry2Aa and cadherin, and even assist to analyze the roles of cadherin in Cry2Aa toxicity.
Collapse
Affiliation(s)
- Cheng Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing, 210014, China
| | - Yi-Hang Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing, 210014, China
| | - Man-Man Lin
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing, 210014, China
| | - Jiang-Zhao Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing, 210014, China
| | - Jing Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing, 210014, China
| | - Mei-Jing Gao
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing, 210014, China
| | - Xiao Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing, 210014, China
| | - Xiao-Dan Hu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing, 210014, China
| | - Yuan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing, 210014, China.
| | - Xian-Jin Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing, 210014, China.
| |
Collapse
|
4
|
Lin M, Liu Y, Zhang X, Zhong J, Hu X, Xu C, Xie Y, Zhang C, Liang Y, Liu X, Lin J. Anti-idiotypic single-chain variable fragment antibody partially mimic the functionally spatial structure of Cry2Aa toxin. Anal Biochem 2021; 625:114222. [PMID: 33932355 DOI: 10.1016/j.ab.2021.114222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 01/12/2023]
Abstract
The anti-idiotypic antibody is widely used in the field of immunology to simulate structural features or even induce the biological activity of antigens. In this study, we obtained seven anti-idiotypic single-chain variable fragments (scFv) antibodies of Cry2Aa toxin from a phage-displayed mutant library constructed using error-prone PCR technique. A mutant designated 2-12B showed the best binding ability amongst all anti-idiotypic scFv isolates to Plutella xylostella brush border membrane vesicles (BBMVs). 2-12B and Cry2Aa toxin shared a potential receptor of polycalin in P. xylostella BBMVs. Homology modeling and molecular docking demonstrated that 2-12B and Cry2Aa toxin have seven common binding amino acid residues in polycalin. Insect bioassay results suggested that 2-12 had insecticidal efficacy against P. xylostella larvae. These results indicated that the Cry2Aa anti-idiotypic scFv antibody 2-12B partially mimicked the structure and function of Cry2Aa toxin. The anti-idiotypic scFv antibody provides the basic material for the future study of surrogate molecules or new insecticidal materials.
Collapse
Affiliation(s)
- Manman Lin
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Life Sciences, Discipline of Microbiology, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Yuan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xiao Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jianfeng Zhong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiaodan Hu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Life Sciences, Discipline of Microbiology, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Chongxin Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yajing Xie
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; School of Life Sciences, Discipline of Microbiology, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Cunzheng Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ying Liang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xianjin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality (Ministry of Agriculture), Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Johnson Lin
- School of Life Sciences, Discipline of Microbiology, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa.
| |
Collapse
|
5
|
Goje LJ, Elmi ED, Bracuti A, Courty T, Rao T, Alzahrani FA, Crickmore N. Identification of Aedes aegypti specificity motifs in the N-terminus of the Bacillus thuringiensis Cry2Aa pesticidal protein. J Invertebr Pathol 2020; 174:107423. [PMID: 32525026 DOI: 10.1016/j.jip.2020.107423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/21/2020] [Accepted: 06/04/2020] [Indexed: 10/24/2022]
Abstract
One advantage of using the Cry proteins of Bacillus thuringiensis as pesticides is their relatively narrow spectrum of activity, thus reducing the risk of non-target effects. Understanding the molecular basis of specificity has the potential to help us design improved products against emerging pests, or against pests that have developed resistance to other Cry proteins. Many previous studies have associated specificity with the binding of the Cry protein, particularly through the apical regions of domain II, to particular receptors on the midgut epithelial cells of the host insect. We have previously found that the specificity of Cry2A proteins against some insects is associated with domain I, which is traditionally associated with pore-formation but not receptor binding. In this work we identify four amino acids in the N-terminal region that, when mutated, can confer activity towards Aedes aegypti to Cry2Ab, a protein known to lack this toxicity. Intriguingly these amino acids are located in the region (amino acids 1-49) that is believed to be removed during proteolytic activation of the Cry protein. We discuss how the motifs containing these amino acids might be involved in the toxic process.
Collapse
Affiliation(s)
| | - Elmi Dahir Elmi
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Anthony Bracuti
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Thomas Courty
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Tejas Rao
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | - Neil Crickmore
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
6
|
Liu S, Wang S, Wu S, Wu Y, Yang Y. Proteolysis activation of Cry1Ac and Cry2Ab protoxins by larval midgut juice proteases from Helicoverpa armigera. PLoS One 2020; 15:e0228159. [PMID: 32004347 PMCID: PMC6994024 DOI: 10.1371/journal.pone.0228159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/08/2020] [Indexed: 12/31/2022] Open
Abstract
Proteolytic processing of Bacillus thuringiensis (Bt) Cry protoxins by insect midgut proteases is critical to their insecticidal activities against target insects. Although transgenic Bt cotton expressing Cry1Ac and Cry2Ab proteins have been widely used for control of the cotton bollworm (Helicoverpa armigera) in the field, the proteolytic cleavage sites in the two protoxins targeted by H. armigera midgut proteases are still not clear. In this study, the proteolysis of Cry1Ac and Cry2Ab protoxins by midgut juice prepared from midgut tissue of H. armigera larvae was investigated. Cleavage of Cry1Ac protoxin by midgut proteases formed a major protein fragment of ~65 kDa, and N-terminal sequencing revealed that cleavage occurred at Arg28 in the fore-end of helix α-1 in domain I of Cry1Ac. Cleavage of Cry2Ab protoxin by midgut juice proteases produced a major protein fragment of ~50 kDa, and the cleavage occurred at Arg139 between helices α-3 and α-4 in domain I of Cry2Ab. The amino acids Arg28 of Cry1Ac and Arg139 of Cry2Ab were predicted as putative trypsin cleavage sites. Bioassay data showed that the toxicities (LC50s) of Cry1Ac and Cry2Ab protoxins were equivalent to those of their respective midgut juice-activated toxins in the susceptible SCD strain of H. armigera. Identification of the exact sites of N-terminal activation of Cry1Ac and Cry2Ab protoxins will provide a basis for a better understanding of the mode of action and resistance mechanisms based on aberrant activation of these protoxins in H. armigera.
Collapse
Affiliation(s)
- Shaoyan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shuo Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shuwen Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
7
|
Shu C, Zhang F, Chen G, Joseph L, Barqawi A, Evans J, Song F, Li G, Zhang J, Crickmore N. A natural hybrid of a Bacillus thuringiensis Cry2A toxin implicates Domain I in specificity determination. J Invertebr Pathol 2017; 150:35-40. [PMID: 28888766 DOI: 10.1016/j.jip.2017.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 11/26/2022]
Abstract
A PCR-RFLP method was used to identify cry2A toxin genes in a collection of 300 strains of Bacillus thuringiensis. From 81 genes identified, the vast majority appeared to be cry2Aa or cry2Ab, however three showed a different pattern and were subsequently cloned and sequenced. The gene cloned from strain HD395 was named cry2Ba2. Since the proteins encoded by the genes cloned from LS5115-3 and DS415 shared >95% sequence identity with existing toxins their genes were named cry2Aa17 and cry2Ab29 respectively by the toxin nomenclature committee. Despite this overall similarity these two toxins resembled natural hybrids, with Cry2Ab29 resembling Cry2Ab for the majority of the protein but then showing identity to Cry2Aa for the last 66 amino acids. For Cry2Aa17, Domains II and III most closely resembled Cry2Aa (99% identity) whilst Domain I was identical to that of Cry2Ab. The toxicity of the recombinant toxins was tested against Aedes aegypti and Spodoptera exigua, and it was found that the toxicity profile of Cry2Aa17 more closely matched the profile of Cry2Ab than that of Cry2Aa, thus implicating Domain I in specificity determination. This association of Domain I with toxicity was confirmed when hybrids were made between Cry2Aa and Cry2Ab.
Collapse
Affiliation(s)
- Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Fengjiao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Guihua Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Lazarus Joseph
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Aminah Barqawi
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Jacob Evans
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Guoxun Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| |
Collapse
|
8
|
Liang H, Liu Y, Zhu J, Peng G, Li S, Wang S, Zheng A, Liu H, Li P. Characterization of cry2-type genes of bacillus thuringiensis strains from soilisolated of sichuan basin, china. Braz J Microbiol 2013; 42:140-6. [PMID: 24031615 PMCID: PMC3768927 DOI: 10.1590/s1517-83822011000100018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Accepted: 08/26/2010] [Indexed: 11/22/2022] Open
Abstract
Sichuan basin, situated in the west of China, is the fourth biggest basin in China. In order to describe a systematic study of the cry2-type genes resources from Bacillus thuringiensis strains of Sichuan basin, a total of 791 Bacillus thuringiensis strains have been screened from 2650 soil samples in different ecological regions. The method of PCR-restriction fragment length polymorphism (PCR-RFLP) was used to identify the type of cry2 genes. The results showed that 322 Bacillus thuringiensis strains harbored cry2-type genes and four different RFLP patterns were found. The combination of cry2Aa/cry2Ab genes was the most frequent (90.4%), followed by cry2Aa (6.8%) and cry2Ab alone (2.5%), and only one novel type of cry2 gene was cloned from one isolate (JF19-2). The full-length of this novel gene was obtained by the method of thermal asymmetric interlaced PCR (Tail-PCR), which was designated as cry2Ag1 (GenBank No. ACH91610) by the Bt Pesticide Crystal Protein Nomenclature Committee. In addition, the result of scanning electron microscopic (SEM) observation showed that these strains had erose, spherical, bipyramidal, and square crystal. And the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that these strains harbored about one to three major proteins. These strains exhibited a wide range of insecticidal spectrum toxic to Aedes aegypti (Diptera) and Pieris rapae Linnaeus, 1758 (Lepidoptera). Particularly, JF19-2 contained cry2Ag gene had the highest insecticidal activity. All these researches mentioned above revealed the diversity and particularity of cry2-type gene resources from Bacillus thuringiensis strains in Sichuan basin.
Collapse
Affiliation(s)
- Hongxia Liang
- Rice Research Institute , Sichuan Agricultural University, Wenjiang, Sichuan , China, 611130 ; Key laboratory of Southwest Crop Gene Resource & Genetic Improvement of Ministry of Education , Sichuan Agricultural University, Ya'an, Sichuan , China, 625014
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
van Frankenhuyzen K. Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal proteins. J Invertebr Pathol 2013; 114:76-85. [PMID: 23747826 DOI: 10.1016/j.jip.2013.05.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 10/26/2022]
Abstract
The increasing number of Bacillus thuringiensis proteins with pesticidal activities across orders and phyla raises the question how widespread cross-activities are and if they are of sufficient biological significance to have implications for ecological safety of those proteins in pest control applications. Cross-activity is reported for 27 proteins and 69 taxa and is substantiated by reasonable evidence (mortality estimates) in 19 cases involving 45 taxa. Cross-activities occur in 13 primary rank families across three classes of pesticidal proteins (Cry, Cyt and Vip), and comprise 13 proteins affecting species across two orders, five proteins affecting three orders and one protein affecting four orders, all within the class Insecta. Cross-activity was quantified (LC50 estimates) for 16 proteins and 25 taxa. Compared to toxicity ranges established for Diptera-, Coleoptera-, Lepidoptera- and Nematoda-active proteins, 13 cross-activities are in the low-toxicity range (10-1000μg/ml), 12 in the medium - (0.10-10μg/ml) and two in the high-toxicity range (0.01-0.10μg/ml). Although cross-activities need to be viewed with caution until they are confirmed through independent testing, current evidence suggests that cross-activity of B. thuringiensis pesticidal proteins needs to be taken into consideration when designing and approving their use in pest control applications.
Collapse
Affiliation(s)
- Kees van Frankenhuyzen
- Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, 1219 Queen Street East, Sault Ste. Marie, Ontario P6A 2E5, Canada.
| |
Collapse
|
10
|
Ibrahim MA, Griko N, Junker M, Bulla LA. Bacillus thuringiensis: a genomics and proteomics perspective. Bioeng Bugs 2011; 1:31-50. [PMID: 21327125 DOI: 10.4161/bbug.1.1.10519] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/04/2009] [Accepted: 11/04/2009] [Indexed: 02/03/2023] Open
Abstract
Bacillus thuringiensis (Bt) is a unique bacterium in that it shares a common place with a number of chemical compounds which are used commercially to control insects important to agriculture and public health. Although other bacteria, including B. popilliae and B. sphaericus, are used as microbial insecticides, their spectrum of insecticidal activity is quite limited compared to Bt. Importantly, Bt is safe for humans and is the most widely used environmentally compatible biopesticide worldwide. Furthermore, insecticidal Bt genes have been incorporated into several major crops, rendering them insect resistant, and thus providing a model for genetic engineering in agriculture.This review highlights what the authors consider the most relevant issues and topics pertaining to the genomics and proteomics of Bt. At least one of the authors (L.A.B.) has spent most of his professional life studying different aspects of this bacterium with the goal in mind of determining the mechanism(s) by which it kills insects. The other authors have a much shorter experience with Bt but their intellect and personal insight have greatly enriched our understanding of what makes Bt distinctive in the microbial world. Obviously, there is personal interest and bias reflected in this article notwithstanding oversight of a number of published studies. This review contains some material not published elsewhere although several ideas and concepts were developed from a broad base of scientific literature up to 2010.
Collapse
|
11
|
McNeil BC, Dean DH. Bacillus thuringiensis Cry2Ab is active on Anopheles mosquitoes: single D block exchanges reveal critical residues involved in activity. FEMS Microbiol Lett 2011; 325:16-21. [PMID: 22092857 DOI: 10.1111/j.1574-6968.2011.02403.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/18/2011] [Accepted: 08/26/2011] [Indexed: 01/19/2023] Open
Abstract
Cry2Aa exhibits dual activity to Lepidoptera and Diptera. Cry2Ab differs in amino acid sequence from Cry2Aa by 13% and has shown significant lepidopteran activity, but no mosquitocidal activity. Previous studies implicate 23 Cry2Aa specificity-conferring residues of domain II, which differ in Cry2Ab. Nine residues are putatively involved in conferring Cry2Aa dipteran specificity. To explore Cry2Ab dipteran toxicity, site-directed mutagenesis was employed to exchange Cry2Ab residues with Cry2Aa D (dipteran) block residues. Cry2Ab wild type demonstrated high toxicity (LC(50) of 540 ng mL(-1)) to Anopheles gambiae, but not to Aedes or Culex, within a 24-h time period. Cry2Ab should be reclassified as a dual active Cry toxin. Cry2Ab mutagenesis revealed critical residues for Cry2Ab protein function, as well as enhanced activity against the malarial mosquito, An. gambiae.
Collapse
Affiliation(s)
- Betina C McNeil
- Department of Biochemistry, The Ohio State University, Columbus, OH 43212, USA
| | | |
Collapse
|
12
|
Zheng A, Zhu J, Tan F, Guan P, Yu X, Wang S, Deng Q, Li S, Liu H, Li P. Characterisation and expression of a novel haplotype cry2A-type gene from Bacillus thuringiensis strain JF19-2. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-009-0011-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
13
|
Boonserm P, Davis P, Ellar DJ, Li J. Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J Mol Biol 2005; 348:363-82. [PMID: 15811374 DOI: 10.1016/j.jmb.2005.02.013] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 02/03/2005] [Accepted: 02/04/2005] [Indexed: 11/26/2022]
Abstract
Cry4Ba, isolated from Bacillus thuringiensis subsp. israelensis, is specifically toxic to the larvae of Aedes and Anopheles mosquitoes. The structure of activated Cry4Ba toxin has been determined by multiple isomorphous replacement with anomalous scattering and refined to R(cryst) = 20.5% and R(free)= 21.8% at 1.75 Angstroms resolution. It resembles previously reported Cry toxin structures but shows the following distinctions. In domain I the helix bundle contains only the long and amphipathic helices alpha3-alpha7. The N-terminal helices alpha1-alpha2b, absent due to proteolysis during crystallisation, appear inessential to toxicity. In domain II the beta-sheet prism presents short apical loops without the beta-ribbon extension of inner strands, thus placing the receptor combining sites close to the sheets. In domain III the beta-sandwich contains a helical extension from the C-terminal strand beta23, which interacts with a beta-hairpin excursion from the edge of the outer sheet. The structure provides a rational explanation of recent mutagenesis and biophysical data on this toxin. Furthermore, added to earlier structures from the Cry toxin family, Cry4Ba completes a minimal structural database covering the Coleoptera, Lepidoptera, Diptera and Lepidoptera/Diptera specificity classes. A multiple structure alignment found that the Diptera-specific Cry4Ba is structurally more closely similar to the Lepidoptera-specific Cry1Aa than the Coleoptera-specific Cry3Aa, but most distantly related to Lepidoptera/Diptera-specific Cry2Aa. The structures are most divergent in domain II, supporting the suggestion that this domain has a major role in specificity determination. They are most similar in the alpha3-alpha7 major fragment of domain I, which contains the alpha4-alpha5 hairpin crucial to pore formation. The collective knowledge of Cry toxin structure and mutagenesis data will lead to a more critical understanding of the structural basis for receptor binding and pore formation, as well as allowing the scope of diversity to be better appreciated.
Collapse
Affiliation(s)
- Panadda Boonserm
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | | | |
Collapse
|
14
|
Yamagiwa M, Sakagawa K, Sakai H. Functional analysis of two processed fragments of Bacillus thuringiensis Cry11A toxin. Biosci Biotechnol Biochem 2004; 68:523-8. [PMID: 15056882 DOI: 10.1271/bbb.68.523] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The 70-kDa protoxin of Cry11A, a dipteran-specific insecticidal protein, was processed by trypsin into 36- and 32-kDa fragments. To investigate the potent function of the two processed fragments, a GST (Glutathione-S-transferase) fusion protein of each polypeptide was constructed. While neither the 36- nor the 32-kDa fragment was toxic to Culex pipiens larvae, coexpression of the two fragments restored the insecticidal activity. Furthermore, the coprecipitation experiment demonstrated that the 36-kDa fragment was associated with the 32-kDa fragment. It was, therefore, shown that the coexistence of the two processed fragments of Cry11A was essential for the toxicity. The mutant of the 36-kDa fragment lacking the region from Gly(257) to Arg(360) bound to the 32-kDa fragment but the coexpression with the 32-kDa fragment resulted in no toxicity, suggesting that this region was involved in insecticidal activity.
Collapse
Affiliation(s)
- Masashi Yamagiwa
- Department of Bioscience and Biotechnology, Okayama University, Japan
| | | | | |
Collapse
|
15
|
Misra HS, Khairnar NP, Mathur M, Vijayalakshmi N, Hire RS, Dongre TK, Mahajan SK. Cloning and characterization of an insecticidal crystal protein gene from Bacillus thuringiensis subspecies kenyae. J Genet 2002; 81:5-11. [PMID: 12357073 DOI: 10.1007/bf02715864] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A sporulating culture of Bacillus thuringiensis subsp. kenyae strain HD549 is toxic to larvae of lepidopteran insect species such as Spodoptera litura, Helicoverpa armigera and Phthorimaea operculella, and a dipteran insect, Culex fatigans. A 1.9-kb DNA fragment, PCR-amplified from HD549 using cryII-gene-specific primers, was cloned and expressed in E. coli. The recombinant protein produced 92% mortality in first-instar larvae of Spodoptera litura and 86% inhibition of adult emergence in Phthorimaea operculella, but showed very low toxicity against Helicoverpa armigera, and lower mortality against third-instar larvae of dipteran insects Culex fatigans, Anopheles stephensi and Aedes aegypti. The sequence of the cloned crystal protein gene showed almost complete homology with a mosquitocidal toxin gene from Bacillus thuringiensis var. kurstaki, with only five mutations scattered in different regions. Amino acid alignment with different insecticidal crystal proteins using the MUTALIN program suggested presence of the conserved block 3 region in the sequence of this protein. A mutation in codon 409 of this gene that changes a highly conserved phenylalanine residue to serine lies in this block.
Collapse
Affiliation(s)
- Hari S Misra
- Molecular Biology and Agriculture Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
BACKGROUND Genetically modified (GM) crops that express insecticidal protein toxins are an integral part of modern agriculture. Proteins produced by Bacillus thuringiensis (Bt) during sporulation mediate the pathogenicity of Bt toward a spectrum of insect larvae whose breadth depends upon the Bt strain. These transmembrane channel-forming toxins are stored in Bt as crystalline inclusions called Cry proteins. These proteins are the active agents used in the majority of biorational pesticides and insect-resistant transgenic crops. Though Bt toxins are promising as a crop protection alternative and are ecologically friendlier than synthetic organic pesticides, resistance to Bt toxins by insects is recognized as a potential limitation to their application. RESULTS We have determined the 2.2 A crystal structure of the Cry2Aa protoxin by multiple isomorphous replacement. This is the first crystal structure of a Cry toxin specific to Diptera (mosquitoes and flies) and the first structure of a Cry toxin with high activity against larvae from two insect orders, Lepidoptera (moths and butterflies) and Diptera. Cry2Aa also provides the first structure of the proregion of a Cry toxin that is cleaved to generate the membrane-active toxin in the larval gut. CONCLUSIONS The crystal structure of Cry2Aa reported here, together with chimeric-scanning and domain-swapping mutagenesis, defines the putative receptor binding epitope on the toxin and so may allow for alteration of specificity to combat resistance or to minimize collateral effects on nontarget species. The putative receptor binding epitope of Cry2Aa identified in this study differs from that inferred from previous structural studies of other Cry toxins.
Collapse
Affiliation(s)
- R J Morse
- Department of Biochemistry and Biophysics, University of California, San Francisco, 94143, San Francisco, CA, USA
| | | | | |
Collapse
|
17
|
Jenkins JL, Dean DH. Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. GENETIC ENGINEERING 2001; 22:33-54. [PMID: 11501380 DOI: 10.1007/978-1-4615-4199-8_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- J L Jenkins
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
18
|
Audtho M, Valaitis AP, Alzate O, Dean DH. Production of chymotrypsin-resistant Bacillus thuringiensis Cry2Aa1 delta-endotoxin by protein engineering. Appl Environ Microbiol 1999; 65:4601-5. [PMID: 10508095 PMCID: PMC91613 DOI: 10.1128/aem.65.10.4601-4605.1999] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cleavage of the Cry2Aa1 protoxin (molecular mass, 63 kDa) from Bacillus thuringiensis by midgut juice of gypsy moth (Lymantria dispar) larvae resulted in two major protein fragments: a 58-kDa fragment which was highly toxic to the insect and a 49-kDa fragment which was not toxic. In the midgut juice, the protoxin was processed into a 58-kDa toxin within 1 min, but after digestion for 1 h, the 58-kDa fragment was further cleaved within domain I, resulting in the protease-resistant 49-kDa fragment. Both the 58-kDa and nontoxic 49-kDa fragments were also found in vivo when (125)I-labeled toxin was fed to the insects. N-terminal sequencing revealed that the protease cleavage sites are at the C termini of Tyr49 and Leu144 for the active fragment and the smaller fragment, respectively. To prevent the production of the nontoxic fragment during midgut processing, five mutant proteins were constructed by replacing Leu144 of the toxin with Asp (L144D), Ala (L144A), Gly (L144G), His (L144H), or Val (L144V) by using a pair of complementary mutagenic oligonucleotides in PCR. All of the mutant proteins were highly resistant to the midgut proteases and chymotrypsin. Digestion of the mutant proteins by insect midgut extract and chymotrypsin produced only the active 58-kDa fragment, except that L144H was partially cleaved at residue 144.
Collapse
Affiliation(s)
- M Audtho
- Department of Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
19
|
Rang C, Vachon V, de Maagd RA, Villalon M, Schwartz JL, Bosch D, Frutos R, Laprade R. Interaction between functional domains of Bacillus thuringiensis insecticidal crystal proteins. Appl Environ Microbiol 1999; 65:2918-25. [PMID: 10388684 PMCID: PMC91437 DOI: 10.1128/aem.65.7.2918-2925.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions among the three structural domains of Bacillus thuringiensis Cry1 toxins were investigated by functional analysis of chimeric proteins. Hybrid genes were prepared by exchanging the regions coding for either domain I or domain III among Cry1Ab, Cry1Ac, Cry1C, and Cry1E. The activity of the purified trypsin-activated chimeric toxins was evaluated by testing their effects on the viability and plasma membrane permeability of Sf9 cells. Among the parental toxins, only Cry1C was active against these cells and only chimeras possessing domain II from Cry1C were functional. Combination of domain I from Cry1E with domains II and III from Cry1C, however, resulted in an inactive toxin, indicating that domain II from an active toxin is necessary, but not sufficient, for activity. Pores formed by chimeric toxins in which domain I was from Cry1Ab or Cry1Ac were slightly smaller than those formed by toxins in which domain I was from Cry1C. The properties of the pores formed by the chimeras are therefore likely to result from an interaction between domain I and domain II or III. Domain III appears to modulate the activity of the chimeric toxins: combination of domain III from Cry1Ab with domains I and II of Cry1C gave a protein which was more strongly active than Cry1C.
Collapse
Affiliation(s)
- C Rang
- IGEPAM-PC, CIRAD, 34032 Montpellier Cedex 1, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hwang SH, Saitoh H, Mizuki E, Higuchi K, Ohba M. A novel class of mosquitocidal delta-endotoxin, Cry19B, encoded by a Bacillus thuringiensis serovar higo gene. Syst Appl Microbiol 1998; 21:179-84. [PMID: 9704107 DOI: 10.1016/s0723-2020(98)80022-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Partially digested HincII fragments of DNA from a mosquitocidal strain of Bacillus thuringiensis serovar higo were cloned into pBluescript II SK(+) and propagated in Escherichia coli. Recombinant cells were screened immunologically for the production of parasporal inclusion antigens. One E. coli clone harboring a recombinant plasmid exhibited larvicidal activity to Culex pipiens molestus, but not to Anopheles stephensi. Hybridization experiments revealed that the gene of the toxin protein is located on a 110 kb plasmid of B. thuringiensis serovar higo. Sequence analysis detected an open reading frame of 2046 nucleotides encoding a polypeptide of 682 amino acid residues with a predicted molecular weight of 78,467. The gene encoded five block regions commonly conserved in the insecticidal protein genes of B. thuringiensis. Amino acid sequence of the 78 kDa protein shared 49% identity and 56% similarity with that of the Cry19A protein from B. thuringiensis serovar jegathesan. A new class of delta-endotoxin protein, designated Cry19B, was established on the basis of this protein.
Collapse
Affiliation(s)
- S H Hwang
- Section of Applied Microbiology, Fukuoka Industrial Technology Centre, Japan
| | | | | | | | | |
Collapse
|
21
|
Kumar PA, Sharma RP, Malik VS. The insecticidal proteins of Bacillus thuringiensis. ADVANCES IN APPLIED MICROBIOLOGY 1996; 42:1-43. [PMID: 8865583 DOI: 10.1016/s0065-2164(08)70371-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- P A Kumar
- National Research Centre for Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, India
| | | | | |
Collapse
|
22
|
Liang Y, Patel SS, Dean DH. Irreversible binding kinetics of Bacillus thuringiensis CryIA delta-endotoxins to gypsy moth brush border membrane vesicles is directly correlated to toxicity. J Biol Chem 1995; 270:24719-24. [PMID: 7559587 DOI: 10.1074/jbc.270.42.24719] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
To examine the binding of Bacillus thuringiensis delta-endotoxins, CryIAa, CryIAb, and CryIAc, to Lymantria dispar (gypsy moth) brush border membrane vesicles (BBMV), saturation kinetic analyses were conducted according to a two-step interaction scheme [formula: see text] for delta-endotoxin binding to BBMV, rather than the one-step reversible binding presented in prior reports. The order of toxicity of the delta-endotoxins, as measured by the dose required for a 50% inhibition of weight gain (ID50), was CryIAa (77.3 ng) > CryIAb (157 ng) > CryIAc (187 ng). While both the maximum extent of binding, Bmax, and the half-maximum insertion rate concentration, K1/2, was observed to be indirectly related to toxicity, the rate constant of irreversible binding, k2, was found to be directly correlated to toxicity.
Collapse
Affiliation(s)
- Y Liang
- Department of Biochemistry, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|