1
|
Zang Z, Zhang C, Park KJ, Schwartz DA, Podicheti R, Lennon JT, Gerdt JP. Streptomyces secretes a siderophore that sensitizes competitor bacteria to phage infection. Nat Microbiol 2025; 10:362-373. [PMID: 39779880 DOI: 10.1038/s41564-024-01910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
To overtake competitors, microbes produce and secrete secondary metabolites that kill neighbouring cells and sequester nutrients. This metabolite-mediated competition probably evolved in complex microbial communities in the presence of viral pathogens. We therefore hypothesized that microbes secrete natural products that make competitors sensitive to phage infection. We used a binary-interaction screen and chemical characterization to identify a secondary metabolite (coelichelin) produced by Streptomyces sp. that sensitizes its soil competitor Bacillus subtilis to phage infection in vitro. The siderophore coelichelin sensitized B. subtilis to a panel of lytic phages (SPO1, SP10, SP50, Goe2) via iron sequestration, which prevented the activation of B. subtilis Spo0A, the master regulator of the stationary phase and sporulation. Metabolomics analysis revealed that other bacterial natural products may also provide phage-mediated competitive advantages to their producers. Overall, this work reveals that synergy between natural products and phages can shape the outcomes of competition between microbes.
Collapse
Affiliation(s)
- Zhiyu Zang
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Chengqian Zhang
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Kyoung Jin Park
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | | | - Ram Podicheti
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Joseph P Gerdt
- Department of Chemistry, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
2
|
Harms M, Michalik S, Hildebrandt P, Schaffer M, Gesell Salazar M, Gerth U, Mäder U, van Dijl JM, Hecker M, Völker U, Reder A. Activation of the general stress response sigma factor SigB prevents competence development in Bacillus subtilis. mBio 2024; 15:e0227424. [PMID: 39470193 PMCID: PMC11633097 DOI: 10.1128/mbio.02274-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Seemingly simple bacteria mount intricate adaptive responses when exposed to physical stress or nutrient limitation, and the activation of these responses is governed by complex signal transduction networks. Upon entry into the stationary growth phase, the soil bacterium Bacillus subtilis may develop natural competence, form biofilms or stress-resistant cells, or ultimately trigger a cellular differentiation program leading to spore formation. Master regulators, such as Spo0A, ComK, SinR, and SigB, constantly monitor the bacterium's environment and then determine appropriate adaptive responses. Here, we show that exposure of B. subtilis to visible light and other stresses triggers a general stress response-dependent block in competence development. SigB serves as an "emergency system" to silence inappropriate expression of an alternative developmental program in the face of unfavorable conditions. In particular, we document a stress-dependent molecular mechanism that prevents accumulation of the central competence regulator ComK via expression of a SigB-driven antisense RNA (as-comK, S365) which is part of a noncontiguous operon. IMPORTANCE Bacillus subtilis exhibits a large number of different specific and general adaptation reactions, which need to be well balanced to sustain survival under largely unfavorable conditions. Under specific conditions, natural competence develops, which enables B. subtilis to actively take up exogenous DNA to integrate it into its own genome. In contrast to this specific adaptation, the general stress response is induced by a variety of exogenous stress and starvation stimuli, providing comprehensive protection and enabling survival of vegetative B. subtilis cells. In the present work, we reveal the molecular basis for the interconnection of these two important responses in the regulatory network. We describe that the master regulator of the general stress response SigB is activated by physiological stress stimuli, including daylight and ethanol stress, leading to the inactivation of the competence master regulator ComK by transcriptional anti-sense regulation, showing a strict hierarchy of adaptational responses under severe stress.
Collapse
Affiliation(s)
- Marco Harms
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Stephan Michalik
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Petra Hildebrandt
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Marc Schaffer
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Manuela Gesell Salazar
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Ulf Gerth
- University of Greifswald, Center for Functional Genomics of Microbes, Institute of Microbiology, Greifswald, Germany
| | - Ulrike Mäder
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michael Hecker
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
- University of Greifswald, Center for Functional Genomics of Microbes, Institute of Microbiology, Greifswald, Germany
| | - Uwe Völker
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| | - Alexander Reder
- University Medicine Greifswald, Center for Functional Genomics of Microbes, Interfaculty Institute for Genetics and Functional Genomics, Greifswald, Germany
| |
Collapse
|
3
|
Kilb A, Burghard-Schrod M, Holtrup S, Graumann PL. Uptake of environmental DNA in Bacillus subtilis occurs all over the cell surface through a dynamic pilus structure. PLoS Genet 2023; 19:e1010696. [PMID: 37816065 PMCID: PMC10564135 DOI: 10.1371/journal.pgen.1010696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/28/2023] [Indexed: 10/12/2023] Open
Abstract
At the transition to stationary phase, a subpopulation of Bacillus subtilis cells can enter the developmental state of competence, where DNA is taken up through the cell envelope, and is processed to single stranded DNA, which is incorporated into the genome if sufficient homology between sequences exists. We show here that the initial step of transport across the cell wall occurs via a true pilus structure, with an average length of about 500 nm, which assembles at various places on the cell surface. Once assembled, the pilus remains at one position and can be retracted in a time frame of seconds. The major pilin, ComGC, was studied at a single molecule level in live cells. ComGC was found in two distinct populations, one that would correspond to ComGC freely diffusing throughout the cell membrane, and one that is relatively stationary, likely reflecting pilus-incorporated molecules. The ratio of 65% diffusing and 35% stationary ComGC molecules changed towards more stationary molecules upon addition of external DNA, while the number of pili in the population did not strongly increase. These findings suggest that the pilus assembles stochastically, but engages more pilin monomers from the membrane fraction in the presence of transport substrate. Our data support a model in which transport of environmental DNA occurs through the entire cell surface by a dynamic pilus, mediating efficient uptake through the cell wall into the periplasm, where DNA diffuses to a cell pole containing the localized transport machinery mediating passage into the cytosol.
Collapse
Affiliation(s)
- Alexandra Kilb
- Fachbereich Chemie und Zentrum für Synthetische Mikrobiologie, SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Marie Burghard-Schrod
- Fachbereich Chemie und Zentrum für Synthetische Mikrobiologie, SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Sven Holtrup
- Fachbereich Chemie und Zentrum für Synthetische Mikrobiologie, SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| | - Peter L. Graumann
- Fachbereich Chemie und Zentrum für Synthetische Mikrobiologie, SYNMIKRO, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
4
|
Feng SY, Hauck Y, Morgene F, Mohammedi R, Mirouze N. The complex regulation of competence in Staphylococcus aureus under microaerobic conditions. Commun Biol 2023; 6:512. [PMID: 37173437 PMCID: PMC10182052 DOI: 10.1038/s42003-023-04892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
To perform natural transformation, one of the three main Horizontal Gene Transfer mechanisms, bacteria need to enter a physiological differentiated state called genetic competence. Interestingly, new bacteria displaying such aptitude are often discovered, and one of the latest is the human pathogen Staphylococcus aureus.Here, we show an optimized protocol, based on planktonic cells cultures, leading to a large percentage of the population activating the development of competence and a significant improvement of S. aureus natural transformation efficiencies. Taking advantage of these conditions, we perform transcriptomics analyses to characterize the regulon of each central competence regulator. SigH and ComK1 are both found essential for activating natural transformation genes but also important for activation or repression of peripheral functions. Even though ComK2 is not found important for the control of transformation genes, its regulon shows an important overlap with that of SigH and ComK1. Finally, we propose that microaerobic conditions, sensed by the SrrAB two-component system, are key to activate competence in S. aureus.
Collapse
Affiliation(s)
- Shi Yuan Feng
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-Sur-Yvette, France
| | - Yolande Hauck
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-Sur-Yvette, France
| | - Fedy Morgene
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-Sur-Yvette, France
| | - Roza Mohammedi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-Sur-Yvette, France
| | - Nicolas Mirouze
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-Sur-Yvette, France.
| |
Collapse
|
5
|
Termination factor Rho mediates transcriptional reprogramming of Bacillus subtilis stationary phase. PLoS Genet 2023; 19:e1010618. [PMID: 36735730 PMCID: PMC9931155 DOI: 10.1371/journal.pgen.1010618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/15/2023] [Accepted: 01/14/2023] [Indexed: 02/04/2023] Open
Abstract
Transcription termination factor Rho is known for its ubiquitous role in suppression of pervasive, mostly antisense, transcription. In the model Gram-positive bacterium Bacillus subtilis, de-repression of pervasive transcription by inactivation of rho revealed the role of Rho in the regulation of post-exponential differentiation programs. To identify other aspects of the regulatory role of Rho during adaptation to starvation, we have constructed a B. subtilis strain (Rho+) that expresses rho at a relatively stable high level in order to compensate for its decrease in the wild-type cells entering stationary phase. The RNAseq analysis of Rho+, WT and Δrho strains (expression profiles can be visualized at http://genoscapist.migale.inrae.fr/seb_rho/) shows that Rho over-production enhances the termination efficiency of Rho-sensitive terminators, thus reducing transcriptional read-through and antisense transcription genome-wide. Moreover, the Rho+ strain exhibits global alterations of sense transcription with the most significant changes observed for the AbrB, CodY, and stringent response regulons, forming the pathways governing the transition to stationary phase. Subsequent physiological analyses demonstrated that maintaining rho expression at a stable elevated level modifies stationary phase-specific physiology of B. subtilis cells, weakens stringent response, and thereby negatively affects the cellular adaptation to nutrient limitations and other stresses, and blocks the development of genetic competence and sporulation. These results highlight the Rho-specific termination of transcription as a novel element controlling stationary phase. The release of this control by decreasing Rho levels during the transition to stationary phase appears crucial for the functionality of complex gene networks ensuring B. subtilis survival in stationary phase.
Collapse
|
6
|
Mitra S, Dhar R, Sen R. Designer bacterial cell factories for improved production of commercially valuable non-ribosomal peptides. Biotechnol Adv 2022; 60:108023. [PMID: 35872292 DOI: 10.1016/j.biotechadv.2022.108023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022]
Abstract
Non-ribosomal peptides have gained significant attention as secondary metabolites of high commercial importance. This group houses a diverse range of bioactive compounds, ranging from biosurfactants to antimicrobial and cytotoxic agents. However, low yield of synthesis by bacteria and excessive losses during purification hinders the industrial-scale production of non-ribosomal peptides, and subsequently limits their widespread applicability. While isolation of efficient producer strains and optimization of bioprocesses have been extensively used to enhance yield, further improvement can be made by optimization of the microbial strain using the tools and techniques of metabolic engineering, synthetic biology, systems biology, and adaptive laboratory evolution. These techniques, which directly target the genome of producer strains, aim to redirect carbon and nitrogen fluxes of the metabolic network towards the desired product, bypass the feedback inhibition and repression mechanisms that limit the maximum productivity of the strain, and even extend the substrate range of the cell for synthesis of the target product. The present review takes a comprehensive look into the biosynthesis of bacterial NRPs, how the same is regulated by the cell, and dives deep into the strategies that have been undertaken for enhancing the yield of NRPs, while also providing a perspective on other potential strategies that can allow for further yield improvement. Furthermore, this review provides the reader with a holistic perspective on the design of cellular factories of NRP production, starting from general techniques performed in the laboratory to the computational techniques that help a biochemical engineer model and subsequently strategize the architectural plan.
Collapse
Affiliation(s)
- Sayak Mitra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Riddhiman Dhar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
7
|
Insights in the Complex DegU, DegS, and Spo0A Regulation System of Paenibacillus polymyxa by CRISPR-Cas9-Based Targeted Point Mutations. Appl Environ Microbiol 2022; 88:e0016422. [PMID: 35588272 PMCID: PMC9195935 DOI: 10.1128/aem.00164-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite being unicellular organisms, bacteria undergo complex regulation mechanisms which coordinate different physiological traits. Among others, DegU, DegS, and Spo0A are the pleiotropic proteins which govern various cellular responses and behaviors. However, the functions and regulatory networks between these three proteins are rarely described in the highly interesting bacterium Paenibacillus polymyxa. In this study, we investigate the roles of DegU, DegS, and Spo0A by introduction of targeted point mutations facilitated by a CRISPR-Cas9-based system. In total, five different mutant strains were generated, the single mutants DegU Q218*, DegS L99F, and Spo0A A257V, the double mutant DegU Q218* DegS L99F, and the triple mutant DegU Q218* DegS L99F Spo0A A257V. Characterization of the wild-type and the engineered strains revealed differences in swarming behavior, conjugation efficiency, sporulation, and viscosity formation of the culture broth. In particular, the double mutant DegU Q218* DegS L99F showed a significant increase in conjugation efficiency as well as a stable exopolysaccharides formation. Furthermore, we highlight similarities and differences in the roles of DegU, DegS, and Spo0A between P. polymyxa and related species. Finally, this study provides novel insights into the complex regulatory system of P. polymyxa DSM 365. IMPORTANCE To date, only limited knowledge is available on how complex cellular behaviors are regulated in P. polymyxa. In this study, we investigate several regulatory proteins which play a role in governing different physiological traits. Precise targeted point mutations were introduced to their respective genes by employing a highly efficient CRISPR-Cas9-based system. Characterization of the strains revealed some similarities, but also differences, to the model bacterium Bacillus subtilis with regard to the regulation of cellular behaviors. Furthermore, we identified several strains which have superior performance over the wild-type. The applicability of the CRISPR-Cas9 system as a robust genome editing tool, in combination with the engineered strain with increased genetic accessibility, would boost further research in P. polymyxa and support its utilization for biotechnological applications. Overall, our study provides novel insights, which will be of importance in understanding how multiple cellular processes are regulated in Paenibacillus species.
Collapse
|
8
|
Abstract
Bacillus subtilis is a widely studied Gram-positive bacterium that serves as an important model for understanding processes critical for several areas of biology including biotechnology and human health. B. subtilis has several advantages as a model organism: it is easily grown under laboratory conditions, it has a rapid doubling time, it is relatively inexpensive to maintain, and it is nonpathogenic. Over the last 50 years, advancements in genetic engineering have continued to make B. subtilis a genetic workhorse in scientific discovery. In this chapter, we describe methods for traditional gene disruptions, use of gene deletion libraries from the Bacillus Genetic Stock Center, allelic exchange, CRISPRi, and CRISPR/Cas9. Additionally, we provide general materials and equipment needed, strengths and limitations, time considerations, and troubleshooting notes to perform each method. Use of the methods outlined in this chapter will allow researchers to create gene insertions, deletions, substitutions, and RNA interference strains through a variety of methods custom to each application.
Collapse
Affiliation(s)
- Katherine J Wozniak
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Single molecule dynamics of DNA receptor ComEA, membrane permease ComEC and taken up DNA in competent Bacillus subtilis cells. J Bacteriol 2021; 204:e0057221. [PMID: 34928178 DOI: 10.1128/jb.00572-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In competent Gram-negative and Gram-positive bacteria, double stranded DNA is taken up through the outer cell membrane and/or the cell wall, and is bound by ComEA, which in Bacillus subtilis is a membrane protein. DNA is converted to single stranded DNA, and transported through the cell membrane via ComEC. We show that in Bacillus subtilis, the C-terminus of ComEC, thought to act as a nuclease, is not only important for DNA uptake, as judged from a loss of transformability, but also for the localization of ComEC to the cell pole and its mobility within the cell membrane. Using single molecule tracking, we show that only 13% of ComEC molecules are statically localised at the pole, while 87% move throughout the cell membrane. These experiments suggest that recruitment of ComEC to the cell pole is mediated by a diffusion/capture mechanism. Mutation of a conserved aspartate residue in the C-terminus, likely affecting metal binding, strongly impairs transformation efficiency, suggesting that this periplasmic domain of ComEC could indeed serve a catalytic function as nuclease. By tracking fluorescently labeled DNA, we show that taken up DNA has a similar mobility as a protein, in spite of being a large polymer. DNA dynamics are similar within the periplasm as those of ComEA, suggesting that most taken up molecules are bound to ComEA. We show that DNA can be highly mobile within the periplasm, indicating that this subcellular space can act as reservoir for taken up DNA, before its entry into the cytosol. Importance Bacteria can take up DNA from the environment and incorporate it into their chromosome, termed "natural competence" that can result in the uptake of novel genetic information. We show that fluorescently labelled DNA moves within the periplasm of competent Bacillus subtilis cells, with similar dynamics as DNA receptor ComEA. This indicates that DNA can accumulate in the periplasm, likely bound by ComEA, and thus can be stored before uptake at the cell pole, via integral membrane DNA permease ComEC. Assembly of the latter assembles at the cell pole likely occurs by a diffusion-capture mechanism. DNA uptake into cells thus takes a detour through the entire periplasm, and involves a high degree of free diffusion along and within the cell membrane.
Collapse
|
10
|
Deng A, Sun Z, Wang T, Cui D, Li L, Liu S, Huang F, Wen T. Simultaneous Multiplex Genome Engineering via Accelerated Natural Transformation in Bacillus subtilis. Front Microbiol 2021; 12:714449. [PMID: 34484154 PMCID: PMC8416114 DOI: 10.3389/fmicb.2021.714449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Multiplex engineering at the scale of whole genomes has become increasingly important for synthetic biology and biotechnology applications. Although several methods have been reported for engineering microbe genomes, their use is limited by their complex procedures using multi-cycle transformations. Natural transformation, involving in species evolution by horizontal gene transfer in many organisms, indicates its potential as a genetic tool. Here, we aimed to develop simultaneous multiplex genome engineering (SMGE) for the simple, rapid, and efficient design of bacterial genomes via one-step of natural transformation in Bacillus subtilis. The transformed DNA, competency factors, and recombinases were adapted to improved co-editing frequencies above 27-fold. Single to octuplet variants with genetic diversity were simultaneously generated using all-in-one vectors harboring multi-gene cassettes. To demonstrate its potential application, the tyrosine biosynthesis pathway was further optimized for producing commercially important resveratrol by high-throughput screening of variant pool in B. subtilis. SMGE represents an accelerated evolution platform that generates diverse multiplex mutations for large-scale genetic engineering and synthetic biology in B. subtilis.
Collapse
Affiliation(s)
- Aihua Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhaopeng Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Tiantian Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Di Cui
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lai Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuwen Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,China Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, China
| | - Fei Huang
- Zenbio Biotech Co., Ltd., Chengdu, China
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,China Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Kin discrimination promotes horizontal gene transfer between unrelated strains in Bacillus subtilis. Nat Commun 2021; 12:3457. [PMID: 34103505 PMCID: PMC8187645 DOI: 10.1038/s41467-021-23685-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 05/07/2021] [Indexed: 11/08/2022] Open
Abstract
Bacillus subtilis is a soil bacterium that is competent for natural transformation. Genetically distinct B. subtilis swarms form a boundary upon encounter, resulting in killing of one of the strains. This process is mediated by a fast-evolving kin discrimination (KD) system consisting of cellular attack and defence mechanisms. Here, we show that these swarm antagonisms promote transformation-mediated horizontal gene transfer between strains of low relatedness. Gene transfer between interacting non-kin strains is largely unidirectional, from killed cells of the donor strain to surviving cells of the recipient strain. It is associated with activation of a stress response mediated by sigma factor SigW in the donor cells, and induction of competence in the recipient strain. More closely related strains, which in theory would experience more efficient recombination due to increased sequence homology, do not upregulate transformation upon encounter. This result indicates that social interactions can override mechanistic barriers to horizontal gene transfer. We hypothesize that KD-mediated competence in response to the encounter of distinct neighbouring strains could maximize the probability of efficient incorporation of novel alleles and genes that have proved to function in a genomically and ecologically similar context.
Collapse
|
12
|
Sánchez-Romero MA, Casadesús J. Waddington's Landscapes in the Bacterial World. Front Microbiol 2021; 12:685080. [PMID: 34149674 PMCID: PMC8212987 DOI: 10.3389/fmicb.2021.685080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
Conrad Waddington’s epigenetic landscape, a visual metaphor for the development of multicellular organisms, is appropriate to depict the formation of phenotypic variants of bacterial cells. Examples of bacterial differentiation that result in morphological change have been known for decades. In addition, bacterial populations contain phenotypic cell variants that lack morphological change, and the advent of fluorescent protein technology and single-cell analysis has unveiled scores of examples. Cell-specific gene expression patterns can have a random origin or arise as a programmed event. When phenotypic cell-to-cell differences are heritable, bacterial lineages are formed. The mechanisms that transmit epigenetic states to daughter cells can have strikingly different levels of complexity, from the propagation of simple feedback loops to the formation of complex DNA methylation patterns. Game theory predicts that phenotypic heterogeneity can facilitate bacterial adaptation to hostile or unpredictable environments, serving either as a division of labor or as a bet hedging that anticipates future challenges. Experimental observation confirms the existence of both types of strategies in the bacterial world.
Collapse
Affiliation(s)
| | - Josep Casadesús
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
13
|
Benda M, Schulz LM, Stülke J, Rismondo J. Influence of the ABC Transporter YtrBCDEF of Bacillus subtilis on Competence, Biofilm Formation and Cell Wall Thickness. Front Microbiol 2021; 12:587035. [PMID: 33897624 PMCID: PMC8060467 DOI: 10.3389/fmicb.2021.587035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Bacillus subtilis develops genetic competence for the uptake of foreign DNA when cells enter stationary phase and a high cell density is reached. These signals are integrated by the competence transcription factor ComK, which is subject to transcriptional, post-transcriptional and post-translational regulation. Many proteins are involved in the development of competence, both to control ComK activity and to mediate DNA uptake. However, for many proteins, the precise function they play in competence development is unknown. In this study, we assessed whether proteins required for genetic transformation play a role in the activation of ComK or rather act downstream of competence gene expression. While these possibilities could be distinguished for most of the tested factors, we assume that two proteins, PNPase and the transcription factor YtrA, are required both for full ComK activity and for the downstream processes of DNA uptake and integration. Further analyses of the role of the transcription factor YtrA for the competence development revealed that the overexpression of the YtrBCDEF ABC transporter in the ytrA mutant causes the loss of genetic competence. Moreover, overexpression of this ABC transporter also affects biofilm formation. Since the ytrGABCDEF operon is naturally induced by cell wall-targeting antibiotics, we tested the cell wall properties upon overexpression of the ABC transporter and observed an increased thickness of the cell wall. The composition and properties of the cell wall are important for competence development and biofilm formation, suggesting that the observed phenotypes are the result of the increased cell wall thickness as an outcome of YtrBCDEF overexpression.
Collapse
Affiliation(s)
- Martin Benda
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Lisa Maria Schulz
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Jeanine Rismondo
- Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Alternative σ Factors Regulate Overlapping as Well as Distinct Stress Response and Metabolic Functions in Listeria monocytogenes under Stationary Phase Stress Condition. Pathogens 2021; 10:pathogens10040411. [PMID: 33915780 PMCID: PMC8066629 DOI: 10.3390/pathogens10040411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Listeria monocytogenes can regulate and fine-tune gene expression, to adapt to diverse stress conditions encountered during foodborne transmission. To further understand the contributions of alternative sigma (σ) factors to the regulation of L. monocytogenes gene expression, RNA-Seq was performed on L. monocytogenes strain 10403S and five isogenic mutants (four strains bearing in-frame null mutations in three out of four alternative σ factor genes, ΔCHL, ΔBHL, ΔBCL, and ΔBCH, and one strain bearing null mutations in all four genes, ΔBCHL), grown to stationary phase. Our data showed that 184, 35, 34, and 20 genes were positively regulated by σB, σL, σH, and σC (posterior probability > 0.9 and Fold Change (FC) > 5.0), respectively. Moreover, σB-dependent genes showed the highest FC (based on comparisons between the ΔCHL and the ΔBCHL strain), with 44 genes showing an FC > 100; only four σL-dependent, and no σH- or σC-dependent genes showed FC >100. While σB-regulated genes identified in this study are involved in stress-associated functions and metabolic pathways, σL appears to largely regulate genes involved in a few specific metabolic pathways, including positive regulation of operons encoding phosphoenolpyruvate (PEP)-dependent phosphotransferase systems (PTSs). Overall, our data show that (i) σB and σL directly and indirectly regulate genes involved in several energy metabolism-related functions; (ii) alternative σ factors are involved in complex regulatory networks and appear to have epistatic effects in stationary phase cells; and (iii) σB regulates multiple stress response pathways, while σL and σH positively regulate a smaller number of specific pathways.
Collapse
|
15
|
Negative Interplay between Biofilm Formation and Competence in the Environmental Strains of Bacillus subtilis. mSystems 2020; 5:5/5/e00539-20. [PMID: 32873610 PMCID: PMC7470987 DOI: 10.1128/msystems.00539-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The soil bacterium Bacillus subtilis can form robust biofilms, which are important for its survival in the environment. B. subtilis also exhibits natural competence. By investigating competence development in B. subtilisin situ during biofilm formation, we reveal that robust biofilm formation often greatly reduces the frequency of competent cells within the biofilm. We then characterize a cross-pathway regulation that allows cells in these two developmental events to undergo mutually exclusive cell differentiation during biofilm formation. Finally, we discuss potential biological implications of limiting competence in a bacterial biofilm. Environmental strains of the soil bacterium Bacillus subtilis have valuable applications in agriculture, industry, and biotechnology; however, environmental strains are genetically less accessible. This reduced accessibility is in sharp contrast to laboratory strains, which are well known for their natural competence, and a limitation in their applications. In this study, we observed that robust biofilm formation by environmental strains of B. subtilis greatly reduced the frequency of competent cells in the biofilm. By using model strain 3610, we revealed a cross-pathway regulation that allows biofilm matrix producers and competence-developing cells to undergo mutually exclusive cell differentiation. We further demonstrated that the competence activator ComK represses the key biofilm regulatory gene sinI by directly binding to the sinI promoter, thus blocking competent cells from simultaneously becoming matrix producers. In parallel, the biofilm activator SlrR represses competence through three distinct mechanisms involving both genetic regulation and cell morphological changes. Finally, we discuss the potential implications of limiting competence in a bacterial biofilm. IMPORTANCE The soil bacterium Bacillus subtilis can form robust biofilms, which are important for its survival in the environment. B. subtilis also exhibits natural competence. By investigating competence development in B. subtilisin situ during biofilm formation, we reveal that robust biofilm formation often greatly reduces the frequency of competent cells within the biofilm. We then characterize a cross-pathway regulation that allows cells in these two developmental events to undergo mutually exclusive cell differentiation during biofilm formation. Finally, we discuss potential biological implications of limiting competence in a bacterial biofilm.
Collapse
|
16
|
Multiple and Overlapping Functions of Quorum Sensing Proteins for Cell Specialization in Bacillus Species. J Bacteriol 2020; 202:JB.00721-19. [PMID: 32071096 DOI: 10.1128/jb.00721-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In bacterial populations, quorum sensing (QS) systems participate in the regulation of specialization processes and regulate collective behaviors that mediate interactions and allow survival of the species. In Gram-positive bacteria, QS systems of the RRNPP family (Rgg, Rap, NprR, PlcR, and PrgX) consist of intracellular receptors and their cognate signaling peptides. Two of these receptors, Rap and NprR, have regained attention in Bacillus subtilis and the Bacillus cereus group. Some Rap proteins, such as RapH and Rap60, are multifunctional and/or redundant in function, linking the specialization processes of sporulation and competence, as well as global expression changes in the transition phase in B. subtilis NprR, an evolutionary intermediate between Rap and RRNPP transcriptional activators, is a bifunctional regulator that modulates sporulation initiation and activates nutrient scavenging genes. In this review, we discuss how these receptors switch between functions and connect distinct signaling pathways. Based on structural evidence, we propose that RapH and Rap60 should be considered moonlighting proteins. Additionally, we analyze an evolutionary and ecological perspective to understand the multifunctionality and functional redundancy of these regulators in both Bacillus spp. and non-Bacillus Firmicutes Understanding the mechanistic, structural, ecological, and evolutionary basis for the multifunctionality and redundancy of these QS systems is a key step for achieving the development of innovative technologies for health and agriculture.
Collapse
|
17
|
Boonstra M, Schaffer M, Sousa J, Morawska L, Holsappel S, Hildebrandt P, Sappa PK, Rath H, de Jong A, Lalk M, Mäder U, Völker U, Kuipers OP. Analyses of competent and non-competent subpopulations of Bacillus subtilis reveal yhfW, yhxC and ncRNAs as novel players in competence. Environ Microbiol 2020; 22:2312-2328. [PMID: 32249531 PMCID: PMC7317962 DOI: 10.1111/1462-2920.15005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 03/29/2020] [Indexed: 11/28/2022]
Abstract
Upon competence-inducing nutrient-limited conditions, only part of the Bacillus subtilis population becomes competent. Here, we separated the two subpopulations by fluorescence-assisted cell sorting (FACS). Using RNA-seq, we confirmed the previously described ComK regulon. We also found for the first time significantly downregulated genes in the competent subpopulation. The downregulated genes are not under direct control by ComK but have higher levels of corresponding antisense RNAs in the competent subpopulation. During competence, cell division and replication are halted. By investigating the proteome during competence, we found higher levels of the regulators of cell division, MinD and Noc. The exonucleases SbcC and SbcD were also primarily regulated at the post-transcriptional level. In the competent subpopulation, yhfW was newly identified as being highly upregulated. Its absence reduces the expression of comG, and has a modest, but statistically significant effect on the expression of comK. Although expression of yhfW is higher in the competent subpopulation, no ComK-binding site is present in its promoter region. Mutants of yhfW have a small but significant defect in transformation. Metabolomic analyses revealed significant reductions in tricarboxylic acid (TCA) cycle metabolites and several amino acids in a ΔyhfW mutant. RNA-seq analysis of ΔyhfW revealed higher expression of the NAD synthesis genes nadA, nadB and nadC.
Collapse
Affiliation(s)
- Mirjam Boonstra
- Molecular Genetics group, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, the Netherlands
| | - Marc Schaffer
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Joana Sousa
- Department of Cellular Biochemistry/Metabolomics, Institute of Biochemistry, University of Greifswald, Germany
| | - Luiza Morawska
- Molecular Genetics group, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, the Netherlands
| | - Siger Holsappel
- Molecular Genetics group, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, the Netherlands
| | - Petra Hildebrandt
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Praveen Kumar Sappa
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Hermann Rath
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Anne de Jong
- Molecular Genetics group, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, the Netherlands
| | - Michael Lalk
- Department of Cellular Biochemistry/Metabolomics, Institute of Biochemistry, University of Greifswald, Germany
| | - Ulrike Mäder
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Germany
| | - Oscar P Kuipers
- Molecular Genetics group, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, the Netherlands
| |
Collapse
|
18
|
Prathiviraj R, Chellapandi P. Modeling a global regulatory network of Methanothermobacter thermautotrophicus strain ∆H. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s13721-020-0223-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Burghard-Schrod M, Altenburger S, Graumann PL. The Bacillus subtilis dCMP deaminase ComEB acts as a dynamic polar localization factor for ComGA within the competence machinery. Mol Microbiol 2020; 113:906-922. [PMID: 31954084 DOI: 10.1111/mmi.14457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 01/15/2023]
Abstract
Bacillus subtilis can import DNA from the environment by an uptake machinery that localizes to a single cell pole. We investigated the roles of ComEB and of the ATPase ComGA during the state of competence. We show that ComEB plays an important role during competence, possibly because it is necessary for the recruitment of GomGA to the cell pole. ComEB localizes to the cell poles even upon expression during exponential phase, indicating that it can serve as polar marker. ComEB is also a deoxycytidylate monophosphate (dCMP) deaminase, for the function of which a conserved cysteine residue is important. However, cysteine-mutant ComEB is still capable of natural transformation, while a comEB deletion strain is highly impaired in competence, indicating that ComEB confers two independent functions. Single-molecule tracking (SMT) reveals that both proteins exchange at the cell poles between bound and unbound in a time scale of a few milliseconds, but turnover of ComGA increases during DNA uptake, whereas the mobility of ComEB is not affected. Our data reveal a highly dynamic role of ComGA during DNA uptake and an unusual role for ComEB as a mediator of polar localization, localizing by diffusion-capture on an extremely rapid time scale and functioning as a moonlighting enzyme.
Collapse
Affiliation(s)
- Marie Burghard-Schrod
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany.,Department of Chemistry, Philipps Universität Marburg, Marburg, Germany
| | - Stephan Altenburger
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany.,Department of Chemistry, Philipps Universität Marburg, Marburg, Germany
| | - Peter L Graumann
- SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany.,Department of Chemistry, Philipps Universität Marburg, Marburg, Germany
| |
Collapse
|
20
|
Abstract
Until now, bacterial cells facing nutrient deprivation were shown to enter dormancy as a strategy to survive prolonged stress, with the most established examples being sporulation, stationary phase, and persistence. Here, we uncovered an opposing strategy for long-term bacterial survival, in which mutant subpopulations cope with a challenging niche by proliferating rather than by stalling division. We show that this feature stems from mutations in genes disturbing the capability of the cells to differentiate into a quiescent state, enabling them to divide under restrictive conditions. Our study challenges the dogma of bacterial aging by highlighting an additional survival strategy resembling that of cancerous cells in animal organs. Bacteria in nature are known to survive for long periods under restricting conditions, mainly by reducing their growth rate and metabolic activity. Here, we uncover a novel strategy utilized by bacterial cells to resist aging by propagating rather than halting division. Bacterial aging was monitored by inspecting colonies of the Gram-positive soil bacterium Bacillus subtilis, which is capable of differentiating into various cell types under nutrient exhaustion. We revealed that after days of incubation, rejuvenating subpopulations, arrayed over the mother colony, emerged. These subpopulations were found to harbor mutations in a variety of genes, restricting the ability of the cells to differentiate. Surprisingly, even mutations that are not classically designated to developmental pathways, concluded in differentiation deficiency, indicating that multiple paths can reach this same outcome. We provide evidence that the evolved mutants continue to divide under conditions that favor entry into quiescence, hence becoming abundant within the aging population. The occurrence of such nondifferentiating mutants could impact bacterial population dynamics in natural niches.
Collapse
|
21
|
Stingl K, Koraimann G. Prokaryotic Information Games: How and When to Take up and Secrete DNA. Curr Top Microbiol Immunol 2019. [PMID: 29536355 DOI: 10.1007/978-3-319-75241-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Besides transduction via bacteriophages natural transformation and bacterial conjugation are the most important mechanisms driving bacterial evolution and horizontal gene spread. Conjugation systems have evolved in eubacteria and archaea. In Gram-positive and Gram-negative bacteria, cell-to-cell DNA transport is typically facilitated by a type IV secretion system (T4SS). T4SSs also mediate uptake of free DNA in Helicobacter pylori, while most transformable bacteria use a type II secretion/type IV pilus system. In this chapter, we focus on how and when bacteria "decide" that such a DNA transport apparatus is to be expressed and assembled in a cell that becomes competent. Development of DNA uptake competence and DNA transfer competence is driven by a variety of stimuli and often involves intricate regulatory networks leading to dramatic changes in gene expression patterns and bacterial physiology. In both cases, genetically homogeneous populations generate a distinct subpopulation that is competent for DNA uptake or DNA transfer or might uniformly switch into competent state. Phenotypic conversion from one state to the other can rely on bistable genetic networks that are activated stochastically with the integration of external signaling molecules. In addition, we discuss principles of DNA uptake processes in naturally transformable bacteria and intend to understand the exceptional use of a T4SS for DNA import in the gastric pathogen H. pylori. Realizing the events that trigger developmental transformation into competence within a bacterial population will eventually help to create novel and effective therapies against the transmission of antibiotic resistances among pathogens.
Collapse
Affiliation(s)
- Kerstin Stingl
- National Reference Laboratory for Campylobacter, Department Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany.
| | - Günther Koraimann
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010, Graz, Austria.
| |
Collapse
|
22
|
Mirouze N, Ferret C, Cornilleau C, Carballido-López R. Antibiotic sensitivity reveals that wall teichoic acids mediate DNA binding during competence in Bacillus subtilis. Nat Commun 2018; 9:5072. [PMID: 30498236 PMCID: PMC6265299 DOI: 10.1038/s41467-018-07553-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 10/22/2018] [Indexed: 12/02/2022] Open
Abstract
Despite decades of investigation of genetic transformation in the model Gram-positive bacterium Bacillus subtilis, the factors responsible for exogenous DNA binding at the surface of competent cells remain to be identified. Here, we report that wall teichoic acids (WTAs), cell wall-anchored anionic glycopolymers associated to numerous critical functions in Gram-positive bacteria, are involved in this initial step of transformation. Using a combination of cell wall-targeting antibiotics and fluorescence microscopy, we show that competence-specific WTAs are produced and specifically localized in the competent cells to mediate DNA binding at the proximity of the transformation apparatus. Furthermore, we propose that TuaH, a putative glycosyl transferase induced during competence, modifies competence-induced WTAs in order to promote (directly or indirectly) DNA binding. On the basis of our results and previous knowledge in the field, we propose a model for DNA binding and transport during genetic transformation in B. subtilis. Natural genetic transformation in bacteria requires DNA binding at the surface of competent cells. Here, Mirouze et al. show that wall teichoic acids are specifically produced or modified during competence in Bacillus subtilis and promote (directly or indirectly) DNA binding at the cell surface.
Collapse
Affiliation(s)
- Nicolas Mirouze
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France. .,Institute for Integrative Biology of the Cell (I2BC), INSERM, CEA, CNRS, Université Paris-Sud, Orsay, 91190, Gif sur Yvette, France.
| | - Cécile Ferret
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Charlène Cornilleau
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Inovarion, 75013, Paris, France
| | - Rut Carballido-López
- MICALIS, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| |
Collapse
|
23
|
Abstract
Transfer of mobile genetic elements from one bacterium to another is the principal cause of the spread of antibiotic resistance. However, the dissemination of these elements in environmental contexts is poorly understood. In clinical and environmental settings, bacteria are often found living in multicellular communities encased in a matrix, a structure known as a biofilm. In this study, we examined how forming a biofilm influences the transmission of an integrative and conjugative element (ICE). Using the model Gram-positive bacterium B. subtilis, we observed that biofilm formation highly favors ICE transfer. This increase in conjugative transfer is due to the production of extracellular matrix, which creates an ideal biophysical context. Our study provides important insights into the role of the biofilm structure in driving conjugative transfer, which is of major importance since biofilm is a widely preponderant bacterial lifestyle for clinically relevant bacterial strains. Horizontal gene transfer by integrative and conjugative elements (ICEs) is a very important mechanism for spreading antibiotic resistance in various bacterial species. In environmental and clinical settings, most bacteria form biofilms as a way to protect themselves against extracellular stress. However, much remains to be known about ICE transfer in biofilms. Using ICEBs1 from Bacillus subtilis, we show that the natural conjugation efficiency of this ICE is greatly affected by the ability of the donor and recipient to form a biofilm. ICEBs1 transfer considerably increases in biofilm, even at low donor/recipient ratios. Also, while there is a clear temporal correlation between biofilm formation and ICEBs1 transfer, biofilms do not alter the level of ICEBs1 excision in donor cells. Conjugative transfer appears to be favored by the biophysical context of biofilms. Indeed, extracellular matrix production, particularly from the recipient cells, is essential for biofilms to promote ICEBs1 transfer. Our study provides basic new knowledge on the high rate of conjugative transfer of ICEs in biofilms, a widely preponderant bacterial lifestyle in the environment, which could have a major impact on our understanding of horizontal gene transfer in natural and clinical environments. IMPORTANCE Transfer of mobile genetic elements from one bacterium to another is the principal cause of the spread of antibiotic resistance. However, the dissemination of these elements in environmental contexts is poorly understood. In clinical and environmental settings, bacteria are often found living in multicellular communities encased in a matrix, a structure known as a biofilm. In this study, we examined how forming a biofilm influences the transmission of an integrative and conjugative element (ICE). Using the model Gram-positive bacterium B. subtilis, we observed that biofilm formation highly favors ICE transfer. This increase in conjugative transfer is due to the production of extracellular matrix, which creates an ideal biophysical context. Our study provides important insights into the role of the biofilm structure in driving conjugative transfer, which is of major importance since biofilm is a widely preponderant bacterial lifestyle for clinically relevant bacterial strains.
Collapse
|
24
|
Wu F, Chen X, Zheng Y, Duan J, Kurths J, Li X. Lévy noise induced transition and enhanced stability in a gene regulatory network. CHAOS (WOODBURY, N.Y.) 2018; 28:075510. [PMID: 30070513 DOI: 10.1063/1.5025235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
We investigate a quantitative bistable two-dimensional model (MeKS network) of gene expression dynamics describing the competence development in the Bacillus subtilis under the influence of Lévy as well as Brownian motions. To analyze the transitions between the vegetative and the competence regions therein, two dimensionless deterministic quantities, the mean first exit time (MFET) and the first escape probability, are determined from a microscopic perspective, as well as their averaged versions from a macroscopic perspective. The relative contribution factor λ, the ratio of non-Gaussian and Gaussian noise strengths, is adopted to identify an optimum choice in these transitions. Additionally, we use a recent geometric concept, the stochastic basin of attraction (SBA), to exhibit a pictorial comprehension about the influence of the Lévy motion on the basin stability of the competence state. Our main results indicate that (i) the transitions between the vegetative and the competence regions can be induced by the noise intensities, the relative contribution factor λ and the Lévy motion index α; (ii) a higher noise intensity and a larger α with smaller jump magnitude make the MFET shorter, and the MFET as a function of λ exhibits one maximum value, which is a signature of the noise-enhanced stability phenomenon for the vegetative state; (iii) a larger α makes the transition from the vegetative to the adjacent competence region to occur at the highest probability. The Lévy motion index α0≈0.5 (a larger jump magnitude with a lower frequency) is an ideal choice to implement the transition to the non-adjacent competence region; (iv) there is an expansion in SBA when α decreases.
Collapse
Affiliation(s)
- Fengyan Wu
- Center for Mathematical Sciences & School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoli Chen
- Center for Mathematical Sciences & School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yayun Zheng
- Center for Mathematical Sciences & School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinqiao Duan
- Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
| | - Jürgen Kurths
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - Xiaofan Li
- Wuhan National Laboratory for Optoelectronics, Wuhan 430074, China
| |
Collapse
|
25
|
Miller HK, Burda WN, Carroll RK, Shaw LN. Identification of a unique transcriptional architecture for the sigS operon in Staphylococcus aureus. FEMS Microbiol Lett 2018; 365:4983123. [PMID: 29688345 DOI: 10.1093/femsle/fny108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 04/21/2018] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus possess three alternative σ factors, including a lone extracytoplasmic function σ factor, σS. Our group previously identified and characterized this element, mapping three sigS promoters, demonstrating its inducibility during stress and virulence inducing conditions and demonstrating a role for this factor in disease causation. In the present study, we identify a fourth promoter of the sigS operon, termed P4, located in a unique position internal to the sigS coding region. Transcriptional profiling revealed that expression from P4 is dominant to the three upstream promoters, particularly upon exposure to chemical stressors that elicit DNA damage and disrupt cell wall stability; each of which have previously been shown to stimulate sigS expression. Importantly, expression of this fourth promoter, followed by at least one or more of the upstream promoters, is induced during growth in serum and upon phagocytosis by RAW 264.7 murine macrophage-like cells. Finally, we demonstrate that a downstream gene, SACOL1829, bears a large 3΄ UTR that spans the sigS-SACOL1828 coding region, and may serve to compete with the P4 transcript to inhibit σS production. Collectively, these findings reveal a unique operon architecture for the sigS locus that indicates the potential for novel regulatory mechanisms governing its expression.
Collapse
Affiliation(s)
- Halie K Miller
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | - Whittney N Burda
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | - Ronan K Carroll
- Department of Biological Sciences, Ohio University, Athens, OH, 45701, USA
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| |
Collapse
|
26
|
Liu TY, Chu SH, Shaw GC. Deletion of the cell wall peptidoglycan hydrolase gene cwlO or lytE severely impairs transformation efficiency in Bacillus subtilis. J GEN APPL MICROBIOL 2018; 64:139-144. [PMID: 29553055 DOI: 10.2323/jgam.2017.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Tai-Yen Liu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University
| | - Shu-Hung Chu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University
| | - Gwo-Chyuan Shaw
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University
| |
Collapse
|
27
|
Hölscher T, Schiklang T, Dragoš A, Dietel AK, Kost C, Kovács ÁT. Impaired competence in flagellar mutants of Bacillus subtilis is connected to the regulatory network governed by DegU. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:23-32. [PMID: 29124898 DOI: 10.1111/1758-2229.12601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 06/07/2023]
Abstract
The competent state is a developmentally distinct phase, in which bacteria are able to take up and integrate exogenous DNA into their genome. Bacillus subtilis is one of the naturally competent bacterial species and the domesticated laboratory strain 168 is easily transformable. In this study, we report a reduced transformation frequency of B. subtilis mutants lacking functional and structural flagellar components. This includes hag, the gene encoding the flagellin protein forming the filament of the flagellum. We confirm that the observed decrease of the transformation frequency is due to reduced expression of competence genes, particularly of the main competence regulator gene comK. The impaired competence is due to an increase in the phosphorylated form of the response regulator DegU, which is involved in regulation of both flagellar motility and competence. Altogether, our study identified a close link between motility and natural competence in B. subtilis suggesting that hindrance in motility has great impact on differentiation of this bacterium not restricted only to the transition towards sessile growth stage.
Collapse
Affiliation(s)
- Theresa Hölscher
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Tina Schiklang
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Anna Dragoš
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Anne-Kathrin Dietel
- Experimental Ecology and Evolution Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Christian Kost
- Experimental Ecology and Evolution Group, Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Department of Ecology, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Ákos T Kovács
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs Lyngby, Denmark
| |
Collapse
|
28
|
Muth C, Buchholz M, Schmidt C, Volland S, Meinhardt F. Genetic evidence for a novel competence inhibitor in the industrially important Bacillus licheniformis. AMB Express 2017; 7:149. [PMID: 28697584 PMCID: PMC5503854 DOI: 10.1186/s13568-017-0447-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/04/2017] [Indexed: 12/30/2022] Open
Abstract
Natural genetic competence renders bacteria able to take up and, in case there is sufficient homology to the recipient's chromosome, integrate exogenously supplied DNA. Well studied in Bacillus subtilis, genetic competence is-in several aspects-known to be differently regulated in Bacillus licheniformis. We now report on the identification of a novel, chromosomally encoded homolog of a competence inhibitor in B. licheniformis (ComI) that has hitherto only been described as a plasmid borne trait in the ancestral B. subtilis NCIB3610. Bioinformatical analysis that included 80 Bacillus strains covering 20 different species revealed a ComI encoding gene in all of the examined B. licheniformis representatives, and was identified in few among the other species investigated. The predicted ComI of B. licheniformis is a highly conserved peptide consisting of 28 amino acids. Since deletion of comI in B. licheniformis DSM13 resulted in twofold increased transformation efficiency by genetic competence and overexpression resulted in threefold decreased transformability, the function as a competence inhibitor became evident.
Collapse
|
29
|
Diethmaier C, Chawla R, Canzoneri A, Kearns DB, Lele PP, Dubnau D. Viscous drag on the flagellum activates Bacillus subtilis entry into the K-state. Mol Microbiol 2017; 106:367-380. [PMID: 28800172 DOI: 10.1111/mmi.13770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2017] [Indexed: 12/23/2022]
Abstract
Bacillus subtilis flagella are not only required for locomotion but also act as sensors that monitor environmental changes. Although how the signal transmission takes place is poorly understood, it has been shown that flagella play an important role in surface sensing by transmitting a mechanical signal to control the DegS-DegU two-component system. Here we report a role for flagella in the regulation of the K-state, which enables transformability and antibiotic tolerance (persistence). Mutations impairing flagellar synthesis are inferred to increase DegU-P, which inhibits the expression of ComK, the master regulator for the K-state, and reduces transformability. Tellingly, both deletion of the flagellin gene and straight filament (hagA233V ) mutations increased DegU phosphorylation despite the fact that both mutants had wild type numbers of basal bodies and the flagellar motors were functional. We propose that higher viscous loads on flagellar motors result in lower DegU-P levels through an unknown signaling mechanism. This flagellar-load based mechanism ensures that cells in the motile subpopulation have a tenfold enhanced likelihood of entering the K-state and taking up DNA from the environment. Further, our results suggest that the developmental states of motility and competence are related and most commonly occur in the same epigenetic cell type.
Collapse
Affiliation(s)
- Christine Diethmaier
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - Ravi Chawla
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station Texas, TX, USA
| | | | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station Texas, TX, USA
| | - David Dubnau
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
30
|
Elsholz AKW, Birk MS, Charpentier E, Turgay K. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis. Front Mol Biosci 2017; 4:44. [PMID: 28748186 PMCID: PMC5506225 DOI: 10.3389/fmolb.2017.00044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/15/2017] [Indexed: 12/20/2022] Open
Abstract
Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis. We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics.
Collapse
Affiliation(s)
- Alexander K W Elsholz
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Marlene S Birk
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany
| | - Emmanuelle Charpentier
- Department of Regulation in Infection Biology, Max Planck Institute for Infection BiologyBerlin, Germany.,The Laboratory for Molecular Infection Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden.,Humboldt UniversityBerlin, Germany
| | - Kürşad Turgay
- Faculty of Natural Sciences, Institute of Microbiology, Leibniz UniversitätHannover, Germany
| |
Collapse
|
31
|
Control of Recombination Directionality by the Listeria Phage A118 Protein Gp44 and the Coiled-Coil Motif of Its Serine Integrase. J Bacteriol 2017; 199:JB.00019-17. [PMID: 28289084 DOI: 10.1128/jb.00019-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/06/2017] [Indexed: 02/04/2023] Open
Abstract
The serine integrase of phage A118 catalyzes integrative recombination between attP on the phage and a specific attB locus on the chromosome of Listeria monocytogenes, but it is unable to promote excisive recombination between the hybrid attL and attR sites found on the integrated prophage without assistance by a recombination directionality factor (RDF). We have identified and characterized the phage-encoded RDF Gp44, which activates the A118 integrase for excision and inhibits integration. Gp44 binds to the C-terminal DNA binding domain of integrase, and we have localized the primary binding site to be within the mobile coiled-coil (CC) motif but distinct from the distal tip of the CC that is required for recombination. This interaction is sufficient to inhibit integration, but a second interaction involving the N-terminal end of Gp44 is also required to activate excision. We provide evidence that these two contacts modulate the trajectory of the CC motifs as they extend out from the integrase core in a manner dependent upon the identities of the four att sites. Our results support a model whereby Gp44 shapes the Int-bound complexes to control which att sites can synapse and recombine.IMPORTANCE Serine integrases mediate directional recombination between bacteriophage and bacterial chromosomes. These highly regulated site-specific recombination reactions are integral to the life cycle of temperate phage and, in the case of Listeria monocytogenes lysogenized by A118 family phage, are an essential virulence determinant. Serine integrases are also utilized as tools for genetic engineering and synthetic biology because of their exquisite unidirectional control of the DNA exchange reaction. Here, we identify and characterize the recombination directionality factor (RDF) that activates excision and inhibits integration reactions by the phage A118 integrase. We provide evidence that the A118 RDF binds to and modulates the trajectory of the long coiled-coil motif that extends from the large carboxyl-terminal DNA binding domain and is postulated to control the early steps of recombination site synapsis.
Collapse
|
32
|
Acquisition of Phage Sensitivity by Bacteria through Exchange of Phage Receptors. Cell 2017; 168:186-199.e12. [DOI: 10.1016/j.cell.2016.12.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/29/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022]
|
33
|
Miras M, Dubnau D. A DegU-P and DegQ-Dependent Regulatory Pathway for the K-state in Bacillus subtilis. Front Microbiol 2016; 7:1868. [PMID: 27920766 PMCID: PMC5118428 DOI: 10.3389/fmicb.2016.01868] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/07/2016] [Indexed: 12/04/2022] Open
Abstract
The K-state in the model bacterium Bacillus subtilis is associated with transformability (competence) as well as with growth arrest and tolerance for antibiotics. Entry into the K-state is determined by the stochastic activation of the transcription factor ComK and occurs in about ∼15% of the population in domesticated strains. Although the upstream mechanisms that regulate the K-state have been intensively studied and are well understood, it has remained unexplained why undomesticated isolates of B. subtilis are poorly transformable compared to their domesticated counterparts. We show here that this is because fewer cells enter the K-state, suggesting that a regulatory pathway limiting entry to the K-state is missing in domesticated strains. We find that loss of this limitation is largely due to an inactivating point mutation in the promoter of degQ. The resulting low level of DegQ decreases the concentration of phosphorylated DegU, which leads to the de-repression of the srfA operon and ultimately to the stabilization of ComK. As a result, more cells reach the threshold concentration of ComK needed to activate the auto-regulatory loop at the comK promoter. In addition, we demonstrate that the activation of srfA transcription in undomesticated strains is transient, turning off abruptly as cells enter the stationary phase. Thus, the K-state and transformability are more transient and less frequently expressed in the undomesticated strains. This limitation is more extreme than appreciated from studies of domesticated strains. Selection has apparently limited both the frequency and the duration of the bistably expressed K-state in wild strains, likely because of the high cost of growth arrest associated with the K-state. Future modeling of K-state regulation and of the fitness advantages and costs of the K-state must take these features into account.
Collapse
Affiliation(s)
- Mathieu Miras
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, NewarkNJ, USA; Laboratoire de Microbiologie et Génétique Moléculaires, Université de ToulouseToulouse, France
| | - David Dubnau
- Public Health Research Institute Center, New Jersey Medical School, Rutgers University, Newark NJ, USA
| |
Collapse
|
34
|
Listeria monocytogenes σH Contributes to Expression of Competence Genes and Intracellular Growth. J Bacteriol 2016; 198:1207-17. [PMID: 26833412 DOI: 10.1128/jb.00718-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/26/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The alternative sigma factor σ(H)has two functions in Gram-positive bacteria: it regulates sporulation and the development of genetic competence. Listeria monocytogenes is a nonsporulating species in which competence has not yet been detected. Nevertheless, the main competence regulators and a series of orthologous genes that form the competence machinery are present in its genome; some of the competence genes play a role in optimal phagosomal escape. In this study, strains overexpressing σ(H) and strains with a σ(H) deletion were used to elucidate the contribution of σ(H) to the expression of the competence machinery genes inL. monocytogenes Gene expression analysis showed that σ(H) is, indeed, involved in comG and come regulation. Unexpectedly, we observed a unique regulation scheme in which σ(H) and the transcription factor ComK were involved. Population-level analysis showed that even with the overexpression of both factors, only a fraction of the cells expressed the competence machinery genes. Although we could not detect competence, σ(H) was crucial for phagosomal escape, which implies that this alternative sigma factor has specifically evolved to regulate the L. monocytogenes intracellular life cycle. IMPORTANCE Listeria monocytogenes can be an intracellular pathogen capable of causing serious infections in humans and animal species. Recently, the competence machinery genes were described as being necessary for optimal phagosomal escape, in which the transcription factor ComK plays an important role. On the other hand, our previous phylogenetic analysis suggested that the alternative sigma factor σ(H) might play a role in the regulation of competence genes. The present study shows that some of the competence genes belong to the σ(H) regulon and, importantly, that σ(H) is essential for intracellular growth, implying a unique physiological role of σ(H) among Firmicutes.
Collapse
|
35
|
Abstract
Bacillus subtilis is an important model bacterium for the study of developmental adaptations that enhance survival in the face of fluctuating environmental challenges. These adaptations include sporulation, biofilm formation, motility, cannibalism, and competence. Remarkably, not all the cells in a given population exhibit the same response. The choice of fate by individual cells is random but is also governed by complex signal transduction pathways and cross talk mechanisms that reinforce decisions once made. The interplay of stochastic and deterministic mechanisms governing the selection of developmental fate on the single-cell level is discussed in this article.
Collapse
|
36
|
Phenotypic Heterogeneity, a Phenomenon That May Explain Why Quorum Sensing Does Not Always Result in Truly Homogenous Cell Behavior. Appl Environ Microbiol 2015. [PMID: 26025903 DOI: 10.1128/aem.00900-15/format/epub] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Phenotypic heterogeneity describes the occurrence of "nonconformist" cells within an isogenic population. The nonconformists show an expression profile partially different from that of the remainder of the population. Phenotypic heterogeneity affects many aspects of the different bacterial lifestyles, and it is assumed that it increases bacterial fitness and the chances for survival of the whole population or smaller subpopulations in unfavorable environments. Well-known examples for phenotypic heterogeneity have been associated with antibiotic resistance and frequently occurring persister cells. Other examples include heterogeneous behavior within biofilms, DNA uptake and bacterial competence, motility (i.e., the synthesis of additional flagella), onset of spore formation, lysis of phages within a small subpopulation, and others. Interestingly, phenotypic heterogeneity was recently also observed with respect to quorum-sensing (QS)-dependent processes, and the expression of autoinducer (AI) synthase genes and other QS-dependent genes was found to be highly heterogeneous at a single-cell level. This phenomenon was observed in several Gram-negative bacteria affiliated with the genera Vibrio, Dinoroseobacter, Pseudomonas, Sinorhizobium, and Mesorhizobium. A similar observation was made for the Gram-positive bacterium Listeria monocytogenes. Since AI molecules have historically been thought to be the keys to homogeneous behavior within isogenic populations, the observation of heterogeneous expression is quite intriguing and adds a new level of complexity to the QS-dependent regulatory networks. All together, the many examples of phenotypic heterogeneity imply that we may have to partially revise the concept of homogeneous and coordinated gene expression in isogenic bacterial populations.
Collapse
|
37
|
Gamba P, Jonker MJ, Hamoen LW. A Novel Feedback Loop That Controls Bimodal Expression of Genetic Competence. PLoS Genet 2015; 11:e1005047. [PMID: 26110430 PMCID: PMC4482431 DOI: 10.1371/journal.pgen.1005047] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 02/01/2015] [Indexed: 01/25/2023] Open
Abstract
Gene expression can be highly heterogeneous in isogenic cell populations. An extreme type of heterogeneity is the so-called bistable or bimodal expression, whereby a cell can differentiate into two alternative expression states. Stochastic fluctuations of protein levels, also referred to as noise, provide the necessary source of heterogeneity that must be amplified by specific genetic circuits in order to obtain a bimodal response. A classical model of bimodal differentiation is the activation of genetic competence in Bacillus subtilis. The competence transcription factor ComK activates transcription of its own gene, and an intricate regulatory network controls the switch to competence and ensures its reversibility. However, it is noise in ComK expression that determines which cells activate the ComK autostimulatory loop and become competent for genetic transformation. Despite its important role in bimodal gene expression, noise remains difficult to investigate due to its inherent stochastic nature. We adapted an artificial autostimulatory loop that bypasses all known ComK regulators to screen for possible factors that affect noise. This led to the identification of a novel protein Kre (YkyB) that controls the bimodal regulation of ComK. Interestingly, Kre appears to modulate the induction of ComK by affecting the stability of comK mRNA. The protein influences the expression of many genes, however, Kre is only found in bacteria that contain a ComK homologue and, importantly, kre expression itself is downregulated by ComK. The evolutionary significance of this new feedback loop for the reduction of transcriptional noise in comK expression is discussed. Our findings show the importance of mRNA stability in bimodal regulation, a factor that requires more attention when studying and modelling this non-deterministic developmental mechanism. Gene expression can be highly heterogeneous in clonal cell populations. An extreme type of heterogeneity is the so-called bistable or bimodal expression, whereby a cell can differentiate into two alternative expression states, and consequently a population will be composed of cells that are ‘ON’ and cells that are ‘OFF’. Stochastic fluctuations of protein levels, also referred to as noise, provide the necessary source of heterogeneity that must be amplified by autostimulatory feedback regulation to obtain the bimodal response. A classical model of bistable differentiation is the development of genetic competence in Bacillus subtilis. Noise in expression of the transcription factor ComK ultimately determines the fraction of cells that enter the competent state. Due to its intrinsic random nature, noise is difficult to investigate. We adapted an artificial autostimulatory loop that bypasses all known ComK regulators, to screen for possible factors that affect noise in the bimodal regulation of ComK. This led to the discovery of Kre, a novel factor that controls the bimodal expression of ComK. Kre appears to affect the stability of comK mRNA. Interestingly, ComK itself represses the expression of kre, adding a new double negative feedback loop to the intricate ComK regulation circuit. Our data emphasize that mRNA stability is an important factor in bimodal regulation.
Collapse
Affiliation(s)
- Pamela Gamba
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail: (PG); (LWH)
| | - Martijs J. Jonker
- MicroArray Department and Integrative Bioinformatics Unit, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Leendert W. Hamoen
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail: (PG); (LWH)
| |
Collapse
|
38
|
Phenotypic Heterogeneity, a Phenomenon That May Explain Why Quorum Sensing Does Not Always Result in Truly Homogenous Cell Behavior. Appl Environ Microbiol 2015; 81:5280-9. [PMID: 26025903 DOI: 10.1128/aem.00900-15] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phenotypic heterogeneity describes the occurrence of "nonconformist" cells within an isogenic population. The nonconformists show an expression profile partially different from that of the remainder of the population. Phenotypic heterogeneity affects many aspects of the different bacterial lifestyles, and it is assumed that it increases bacterial fitness and the chances for survival of the whole population or smaller subpopulations in unfavorable environments. Well-known examples for phenotypic heterogeneity have been associated with antibiotic resistance and frequently occurring persister cells. Other examples include heterogeneous behavior within biofilms, DNA uptake and bacterial competence, motility (i.e., the synthesis of additional flagella), onset of spore formation, lysis of phages within a small subpopulation, and others. Interestingly, phenotypic heterogeneity was recently also observed with respect to quorum-sensing (QS)-dependent processes, and the expression of autoinducer (AI) synthase genes and other QS-dependent genes was found to be highly heterogeneous at a single-cell level. This phenomenon was observed in several Gram-negative bacteria affiliated with the genera Vibrio, Dinoroseobacter, Pseudomonas, Sinorhizobium, and Mesorhizobium. A similar observation was made for the Gram-positive bacterium Listeria monocytogenes. Since AI molecules have historically been thought to be the keys to homogeneous behavior within isogenic populations, the observation of heterogeneous expression is quite intriguing and adds a new level of complexity to the QS-dependent regulatory networks. All together, the many examples of phenotypic heterogeneity imply that we may have to partially revise the concept of homogeneous and coordinated gene expression in isogenic bacterial populations.
Collapse
|
39
|
Goldschmidt Y, Yurkovsky E, Reif A, Rosner R, Akiva A, Nachman I. Control of relative timing and stoichiometry by a master regulator. PLoS One 2015; 10:e0127339. [PMID: 26000862 PMCID: PMC4441471 DOI: 10.1371/journal.pone.0127339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/14/2015] [Indexed: 02/03/2023] Open
Abstract
Developmental processes in cells require a series of complex steps. Often only a single master regulator activates genes in these different steps. This poses several challenges: some targets need to be ordered temporally, while co-functional targets may need to be synchronized in both time and expression level. Here we study in single cells the dynamic activation patterns of early meiosis genes in budding yeast, targets of the meiosis master regulator Ime1. We quantify the individual roles of the promoter and protein levels in expression pattern control, as well as the roles of individual promoter elements. We find a consistent expression pattern difference between a non-cofunctional pair of genes, and a highly synchronized activation of a co-functional pair. We show that dynamic control leading to these patterns is distributed between promoter, gene and external regions. Through specific reciprocal changes to the promoters of pairs of genes, we show that different genes can use different promoter elements to reach near identical activation patterns.
Collapse
Affiliation(s)
- Yifat Goldschmidt
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Evgeny Yurkovsky
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Amit Reif
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Roni Rosner
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Amit Akiva
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Iftach Nachman
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
40
|
Jakobs M, Meinhardt F. What renders Bacilli genetically competent? A gaze beyond the model organism. Appl Microbiol Biotechnol 2014; 99:1557-70. [DOI: 10.1007/s00253-014-6316-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022]
|
41
|
The two putative comS homologs of the biotechnologically important Bacillus licheniformis do not contribute to competence development. Appl Microbiol Biotechnol 2014; 99:2255-66. [PMID: 25520171 DOI: 10.1007/s00253-014-6291-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 01/17/2023]
Abstract
In Bacillus subtilis, natural genetic competence is subject to complex genetic regulation and quorum sensing dependent. Upon extracellular accumulation of the peptide-pheromone ComX, the membrane-bound sensor histidine kinase ComP initiates diverse signaling pathways by activating-among others-DegQ and ComS. While DegQ favors the expression of extracellular enzymes rather than competence development, ComS is crucial for competence development as it prevents proteolytic degradation of ComK, the key transcriptional activator of all genes required for the uptake and integration of DNA. In Bacillus licheniformis, ComX/ComP sensed cell density negatively influences competence development, suggesting differences from the quorum-sensing-dependent control mechanism in Bacillus subtilis. Here, we show that each of six investigated strains possesses both of two different, recently identified putative comS genes. When expressed from an inducible promoter, none of the comS candidate genes displayed an impact on competence development neither in B. subtilis nor in B. licheniformis. Moreover, disruption of the genes did not reduce transformation efficiency. While the putative comS homologs do not contribute to competence development, we provide evidence that the degQ gene as for B. subtilis negatively influences genetic competency in B. licheniformis.
Collapse
|
42
|
Unravelling the genetic basis for competence development of auxotrophic Bacillus licheniformis 9945A strains. Microbiology (Reading) 2014; 160:2136-2147. [DOI: 10.1099/mic.0.079236-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacterial natural genetic competence – well studied in Bacillus subtilis – enables cells to take up and integrate extracellularly supplied DNA into their own genome. However, little is known about competence development and its regulation in other members of the genus, although DNA uptake machineries are routinely encoded. Auxotrophic Bacillus licheniformis 9945A derivatives, obtained from repeated rounds of random mutagenesis, were long known to develop natural competence. Inspection of the colony morphology and extracellular enzyme secretion of two of these derivatives, M28 and M18, suggested that regulator genes are collaterally hit. M28 emerged as a 14 bp deletion mutant concomitantly displaying a shift in the reading frame of degS that encodes the sensor histidine kinase, which is part of the molecular switch that directs cells to genetic competence, the synthesis of extracellular enzymes or biofilm formation, while for M18, sequencing of the suspected gene revealed a 375 bp deletion in abrB, encoding the major transition state regulator. With respect to colony morphology, enzyme secretion and competence development, both of the mutations, when newly generated on the wild-type B. licheniformis 9945A genetic background, resulted in phenotypes resembling M28 and M18, respectively. All of the known naturally competent B. licheniformis representatives, hitherto thoroughly investigated in this regard, carry mutations in regulator genes, and hence genetic competence observed in domesticated strains supposedly results from deregulation.
Collapse
|
43
|
Fagerlund A, Granum PE, Håvarstein LS. Staphylococcus aureus competence genes: mapping of the SigH, ComK1 and ComK2 regulons by transcriptome sequencing. Mol Microbiol 2014; 94:557-79. [PMID: 25155269 DOI: 10.1111/mmi.12767] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2014] [Indexed: 01/17/2023]
Abstract
Staphylococcus aureus is a major human pathogen. Hospital infections caused by methicillin-resistant strains (MRSA), which have acquired resistance to a broad spectrum of antibiotics through horizontal gene transfer (HGT), are of particular concern. In S. aureus, virulence and antibiotic resistance genes are often encoded on mobile genetic elements that are disseminated by HGT. Conjugation and phage transduction have long been known to mediate HGT in this species, but it is unclear whether natural genetic transformation contributes significantly to the process. Recently, it was reported that expression of the alternative sigma factor SigH induces the competent state in S. aureus. The transformation efficiency obtained, however, was extremely low, indicating that the optimal conditions for competence development had not been found. We therefore used transcriptome sequencing to determine whether the full set of genes known to be required for competence in other naturally transformable bacteria is part of the SigH regulon. Our results show that several essential competence genes are not controlled by SigH. This presumably explains the low transformation efficiency previously reported, and demonstrates that additional regulating mechanisms must be involved. We found that one such mechanism involves ComK1, a transcriptional activator that acts synergistically with SigH.
Collapse
Affiliation(s)
- Annette Fagerlund
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | | |
Collapse
|
44
|
Abstract
ABSTRACT
The family
Bacillaceae
constitutes a phenotypically diverse and globally ubiquitous assemblage of bacteria. Investigation into how evolution has shaped, and continues to shape, this family has relied on several widely ranging approaches from classical taxonomy, ecological field studies, and evolution in soil microcosms to genomic-scale phylogenetics, laboratory, and directed evolution experiments. One unifying characteristic of the
Bacillaceae
, the endospore, poses unique challenges to answering questions regarding both the calculation of evolutionary rates and claims of extreme longevity in ancient environmental samples.
Collapse
|
45
|
Mann JM, Carabetta VJ, Cristea IM, Dubnau D. Complex formation and processing of the minor transformation pilins of Bacillus subtilis. Mol Microbiol 2013; 90:1201-15. [PMID: 24164455 PMCID: PMC5687075 DOI: 10.1111/mmi.12425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2013] [Indexed: 01/06/2023]
Abstract
Transformation in most bacteria is dependent on orthologues of Type 2 secretion and Type 4 pilus system proteins. In each system, pilin proteins (major and minor) are required to make the pilus structure and are essential to the process, although the precise roles of the minor pilins remain unclear. We have explored protein-protein interactions among the competence minor pilins of Bacillus subtilis through in vitro binding studies, immunopurification and mass spectrometry. We demonstrate that the minor pilins directly interact, and the minor pilin ComGG interacts with most of the known proteins required for transformation. We find that ComGG requires other ComG proteins for its stabilization and for processing by the pre-pilin peptidase. These observations, C-terminal mutations in ComGG that prevent processing and the inaccessibility of pre-ComGG to externally added protease suggest a model in which pre-ComGG must be associated with other minor pilins for processing to take place. We propose that ComGG does not become a transmembrane protein until after processing. These behaviours contrast with that of pre-ComGC, the major pilin, which is accessible to externally added protease and requires only the peptidase to be processed. The roles of the pilins and of the pilus in transformation are discussed.
Collapse
Affiliation(s)
- Jessica M. Mann
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 07103, USA
| | - Valerie J. Carabetta
- Public Health Research Institute, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 07103, USA
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - David Dubnau
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 07103, USA
- Public Health Research Institute, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 07103, USA
| |
Collapse
|
46
|
Xi H, Yang Z, Turcotte M. Subtle interplay of stochasticity and deterministic dynamics pervades an evolutionary plausible genetic circuit for Bacillus subtilis competence. Math Biosci 2013; 246:148-63. [DOI: 10.1016/j.mbs.2013.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 07/08/2013] [Accepted: 08/14/2013] [Indexed: 11/28/2022]
|
47
|
Mason E, Henderson MW, Scheller EV, Byrd MS, Cotter PA. Evidence for phenotypic bistability resulting from transcriptional interference of bvgAS in Bordetella bronchiseptica. Mol Microbiol 2013; 90:716-33. [PMID: 24007341 PMCID: PMC4216693 DOI: 10.1111/mmi.12394] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2013] [Indexed: 11/27/2022]
Abstract
Bordetella species cause respiratory infections in mammals. Their master regulatory system BvgAS controls expression of at least three distinct phenotypic phases in response to environmental cues. The Bvg⁺ phase is necessary and sufficient for respiratory infection while the Bvg⁻ phase is required for survival ex vivo. We obtained large colony variants (LCVs) from the lungs of mice infected with B. bronchiseptica strain RBX9, which contains an in-frame deletion mutation in fhaB, encoding filamentous haemagglutinin. RBX9 also yielded LCVs when switched from Bvg⁻ phase conditions to Bvg⁺ phase conditions in vitro. We determined that LCVs are composed of both Bvg⁺ and Bvg⁻ phase bacteria and that they result from defective bvgAS positive autoregulation. The LCV phenotype was linked to the presence of a divergent promoter 5' to bvgAS, suggesting a previously undescribed mechanism of transcriptional interference that, in this case, leads to feedback-based bistability (FBM). Our results also indicate that a small proportion of RBX9 bacteria modulates to the Bvg⁻ phase in vivo. In addition to providing insight into transcriptional interference and FBM, our data provide an example of an in-frame deletion mutation exerting a 'polar' effect on nearby genes.
Collapse
Affiliation(s)
- Eliza Mason
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Michael W. Henderson
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Erich V. Scheller
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Matthew S. Byrd
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | - Peggy A. Cotter
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| |
Collapse
|
48
|
Genetic variation in the Staphylococcus aureus 8325 strain lineage revealed by whole-genome sequencing. PLoS One 2013; 8:e77122. [PMID: 24098817 PMCID: PMC3786944 DOI: 10.1371/journal.pone.0077122] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 09/05/2013] [Indexed: 01/05/2023] Open
Abstract
Staphylococcus aureus strains of the 8325 lineage, especially 8325-4 and derivatives lacking prophage, have been used extensively for decades of research. We report herein the results of our deep sequence analysis of strain 8325-4. Assignment of sequence variants compared with the reference strain 8325 (NRS77/PS47) required correction of errors in the 8325 reference genome, and reassessment of variation previously attributed to chemical mutagenesis of the restriction-defective RN4220. Using an extensive strain pedigree analysis, we discovered that 8325-4 contains 16 single nucleotide polymorphisms (SNP) arising prior to the construction of RN4220. We identified 5 indels in 8325-4 compared with 8325. Three indels correspond to expected Φ11, 12, 13 excisions, one indel is explained by a sequence assembly artifact, and the final indel (Δ63bp) in the spa-sarS intergenic region is common to only a sub-lineage of 8325-4 strains including SH1000. This deletion was found to significantly decrease (75%) steady state sarS but not spa transcript levels in post-exponential phase. The sub-lineage 8325-4 was also found to harbor 4 additional SNPs. We also found large sequence variation between 8325, 8325-4 and RN4220 in a cluster of repetitive hypothetical proteins (SA0282 homologs) near the Ess secretion cluster. The overall 8325-4 SNP set results in 17 alterations within coding sequences. Remarkably, we discovered that all tested strains of the 8325-4 lineage lack phenol soluble modulin α3 (PSMα3), a virulence determinant implicated in neutrophil chemotaxis, biofilm architecture and surface spreading. Collectively, our results clarify and define the 8325-4 pedigree and reveal clear evidence that mutations existing throughout all branches of this lineage, including the widely used RN6390 and SH1000 strains, could conceivably impact virulence regulation.
Collapse
|
49
|
Xi H, Duan L, Turcotte M. Point-cycle bistability and stochasticity in a regulatory circuit for Bacillus subtilis competence. Math Biosci 2013; 244:135-47. [PMID: 23693123 DOI: 10.1016/j.mbs.2013.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 02/28/2013] [Accepted: 05/07/2013] [Indexed: 12/19/2022]
|
50
|
A genome-wide transcriptional profiling of sporulating Bacillus subtilis strain lacking PrpE protein phosphatase. Mol Genet Genomics 2013; 288:469-81. [PMID: 23824080 PMCID: PMC3782651 DOI: 10.1007/s00438-013-0763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/15/2013] [Indexed: 11/01/2022]
Abstract
The sporulation process is a complex genetic developmental program leading to profound changes in global gene expression profile. In this work, we have applied genome-wide microarray approach for transcriptional profiling of Bacillus subtilis strain lacking a gene coding for PrpE protein phosphatase. This protein was previously shown to be involved in the regulation of germination of B. subtilis spores. Moreover, the deletion of prpE gene resulted in changing the resistance properties of spores. Our results provide genome-wide insight into the influence of this protein phosphatase on the physiology of B. subtilis cells. Although the precise role of PrpE in shaping the observed phenotype of ΔprpE mutant strain still remains beyond the understanding, our experiments brought observations of possible indirect implication of this protein in the regulation of cell motility and chemotaxis, as well as the development of competence. Surprisingly, prpE-deleted cells showed elevated level of general stress response, which turned out to be growth medium specific.
Collapse
|