1
|
Howard CB, Rabinovitch A, Yehezkel G, Zaritsky A. Tight coupling of cell width to nucleoid structure in Escherichia coli. Biophys J 2024; 123:502-508. [PMID: 38243596 PMCID: PMC10912912 DOI: 10.1016/j.bpj.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/24/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024] Open
Abstract
Cell dimensions of rod-shaped bacteria such as Escherichia coli are connected to mass growth and chromosome replication. During their interdivision cycle (τ min), cells enlarge by elongation only, but at faster growth in richer media, they are also wider. Changes in width W upon nutritional shift-up (shortening τ) occur during the division process. The elusive signal directing the mechanism for W determination is likely related to the tightly linked duplications of the nucleoid (DNA) and the sacculus (peptidoglycan), the only two structures (macromolecules) existing in a single copy that are coupled, temporally and spatially. Six known parameters related to the nucleoid structure and replication are reasonable candidates to convey such a signal, all simple functions of the key number of replication positions n(=C/τ), the ratio between the rates of growth (τ-1) and of replication (C-1). The current analysis of available literature-recorded data discovered that, of these, nucleoid complexity NC[=(2n-1)/(n×ln2)] is by far the most likely parameter affecting cell width W. The exceedingly high correlations found between these two seemingly unrelated measures (NC and W) indicate that coupling between them is of major importance to the species' survival. As an exciting corollary, to the best of our knowledge, a new, indirect approach to estimate DNA replication rate is revealed. Potential involvement of DNA topoisomerases in W determination is also proposed and discussed.
Collapse
Affiliation(s)
- Charles B Howard
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Avinoam Rabinovitch
- Department of Physics, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Galit Yehezkel
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | - Arieh Zaritsky
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.
| |
Collapse
|
2
|
Roller BRK, Hellerschmied C, Wu Y, Miettinen TP, Gomez AL, Manalis SR, Polz MF. Single-cell mass distributions reveal simple rules for achieving steady-state growth. mBio 2023; 14:e0158523. [PMID: 37671861 PMCID: PMC10653891 DOI: 10.1128/mbio.01585-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 09/07/2023] Open
Abstract
IMPORTANCE Microbiologists have watched clear liquid turn cloudy for over 100 years. While the cloudiness of a culture is proportional to its total biomass, growth rates from optical density measurements are challenging to interpret when cells change size. Many bacteria adjust their size at different steady-state growth rates, but also when shifting between starvation and growth. Optical density cannot disentangle how mass is distributed among cells. Here, we use single-cell mass measurements to demonstrate that a population of cells in batch culture achieves a stable mass distribution for only a short period of time. Achieving steady-state growth in rich medium requires low initial biomass concentrations and enough time for individual cell mass accumulation and cell number increase via cell division to balance out. Steady-state growth is important for reliable cell mass distributions and experimental reproducibility. We discuss how mass variation outside of steady-state can impact physiology, ecology, and evolution experiments.
Collapse
Affiliation(s)
- Benjamin R. K. Roller
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Cathrine Hellerschmied
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Yanqi Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Teemu P. Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Annika L. Gomez
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Scott R. Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Martin F. Polz
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Nanninga N. Molecular Cytology of 'Little Animals': Personal Recollections of Escherichia coli (and Bacillus subtilis). Life (Basel) 2023; 13:1782. [PMID: 37629639 PMCID: PMC10455606 DOI: 10.3390/life13081782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
This article relates personal recollections and starts with the origin of electron microscopy in the sixties of the previous century at the University of Amsterdam. Novel fixation and embedding techniques marked the discovery of the internal bacterial structures not visible by light microscopy. A special status became reserved for the freeze-fracture technique. By freeze-fracturing chemically fixed cells, it proved possible to examine the morphological effects of fixation. From there on, the focus switched from bacterial structure as such to their cell cycle. This invoked bacterial physiology and steady-state growth combined with electron microscopy. Electron-microscopic autoradiography with pulses of [3H] Dap revealed that segregation of replicating DNA cannot proceed according to a model of zonal growth (with envelope-attached DNA). This stimulated us to further investigate the sacculus, the peptidoglycan macromolecule. In particular, we focused on the involvement of penicillin-binding proteins such as PBP2 and PBP3, and their role in division. Adding aztreonam (an inhibitor of PBP3) blocked ongoing divisions but not the initiation of new ones. A PBP3-independent peptidoglycan synthesis (PIPS) appeared to precede a PBP3-dependent step. The possible chemical nature of PIPS is discussed.
Collapse
Affiliation(s)
- Nanne Nanninga
- Molecular Cytology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
4
|
Cao Q, Huang W, Zhang Z, Chu P, Wei T, Zheng H, Liu C. The Quantification of Bacterial Cell Size: Discrepancies Arise from Varied Quantification Methods. Life (Basel) 2023; 13:1246. [PMID: 37374027 PMCID: PMC10302572 DOI: 10.3390/life13061246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
The robust regulation of the cell cycle is critical for the survival and proliferation of bacteria. To gain a comprehensive understanding of the mechanisms regulating the bacterial cell cycle, it is essential to accurately quantify cell-cycle-related parameters and to uncover quantitative relationships. In this paper, we demonstrate that the quantification of cell size parameters using microscopic images can be influenced by software and by the parameter settings used. Remarkably, even if the consistent use of a particular software and specific parameter settings is maintained throughout a study, the type of software and the parameter settings can significantly impact the validation of quantitative relationships, such as the constant-initiation-mass hypothesis. Given these inherent characteristics of microscopic image-based quantification methods, it is recommended that conclusions be cross-validated using independent methods, especially when the conclusions are associated with cell size parameters that were obtained under different conditions. To this end, we presented a flexible workflow for simultaneously quantifying multiple bacterial cell-cycle-related parameters using microscope-independent methods.
Collapse
Affiliation(s)
- Qian’andong Cao
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqi Huang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Zhang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Chu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wei
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Zheng
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenli Liu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zaritsky A. Extending Validity of the Bacterial Cell Cycle Model through Thymine Limitation: A Personal View. Life (Basel) 2023; 13:life13040906. [PMID: 37109435 PMCID: PMC10146623 DOI: 10.3390/life13040906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
The contemporary view of bacterial physiology was established in 1958 at the "Copenhagen School", culminating a decade later in a detailed description of the cell cycle based on four parameters. This model has been subsequently supported by numerous studies, nicknamed BCD (The Bacterial Cell-Cycle Dogma). It readily explains, quantitatively, the coupling between chromosome replication and cell division, size and DNA content. An important derivative is the number of replication positions n, the ratio between the time C to complete a round of replication and the cell mass doubling time τ; the former is constant at any temperature and the latter is determined by the medium composition. Changes in cell width W are highly correlated to n through the equation for so-called nucleoid complexity NC (=(2n - 1)/(ln2 × n)), the amount of DNA per terC (i.e., chromosome) in genome equivalents. The narrow range of potential n can be dramatically extended using the method of thymine limitation of thymine-requiring mutants, which allows a more rigorous testing of the hypothesis that the nucleoid structure is the primary source of the signal that determines W during cell division. How this putative signal is relayed from the nucleoid to the divisome is still highly enigmatic. The aim of this Opinion article is to suggest the possibility of a new signaling function for nucleoid DNA.
Collapse
Affiliation(s)
- Arieh Zaritsky
- Faculty of Natural Sciences, Life Sciences Department, Ben-Gurion University of the Negev, Kiryat Bergman, HaShalom St. 1, Be'er-Sheva 8410501, Israel
| |
Collapse
|
6
|
Kannoly S, Singh A, Dennehy JJ. An Optimal Lysis Time Maximizes Bacteriophage Fitness in Quasi-Continuous Culture. mBio 2022; 13:e0359321. [PMID: 35467417 PMCID: PMC9239172 DOI: 10.1128/mbio.03593-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/08/2022] [Indexed: 11/20/2022] Open
Abstract
Optimality models have a checkered history in evolutionary biology. While optimality models have been successful in providing valuable insight into the evolution of a wide variety of biological traits, a common objection is that optimality models are overly simplistic and ignore organismal genetics. We revisit evolutionary optimization in the context of a major bacteriophage life history trait, lysis time. Lysis time refers to the period spanning phage infection of a host cell and its lysis, whereupon phage progenies are released. Lysis time, therefore, directly determines phage fecundity assuming progeny assembly does not exhaust host resources prior to lysis. Noting that previous tests of lysis time optimality rely on batch culture, we implemented a quasi-continuous culture system to observe productivity of a panel of isogenic phage λ genotypes differing in lysis time. We report that under our experimental conditions, λ phage productivity is maximized around optimal lysis times ranging from 60 to 100 min, and λ wildtype strain falls within this range. It would appear that natural selection on phage λ lysis time uncovered a set of genetic solutions that optimized progeny production in its ecological milieu relative to alternative genotypes. We discuss this finding in light of recent results that lysis time variation is also minimized in the strains with lysis times closer to the λ wild-type strain. IMPORTANCE Optimality theory presents the idea that natural selection acts on organismal traits to produce genotypes that maximize organismal survival and reproduction. As such, optimality theory is a valuable tool in guiding our understanding of the genetic constraints and tradeoffs organisms experience as their genotypes are selected to produce optimal solutions to biological problems. However, optimality theory is often critiqued as being overly simplistic and ignoring the roles of chance and history in the evolution of organismal traits. We show here that the wild-type genotype of a popular laboratory model organism, the bacteriophage λ, produces a phenotype for a major life history trait, lysis time, that maximizes the reproductive success of bearers of that genotype relative to other possible genotypes. This result demonstrates, as is rarely shown experimentally, that natural selection can achieve optimal solutions to ecological challenges.
Collapse
Affiliation(s)
- Sherin Kannoly
- Biology Department, Queens College of The City University of New York, New York City, New York, USA
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, USA
| | - John J. Dennehy
- Biology Department, Queens College of The City University of New York, New York City, New York, USA
- The Graduate Center of the City University of New York, New York City, New York, USA
| |
Collapse
|
7
|
Gelber I, Aranovich A, Feingold M, Fishov I. Stochastic nucleoid segregation dynamics as a source of the phenotypic variability in E. coli. Biophys J 2021; 120:5107-5123. [PMID: 34627765 PMCID: PMC8633714 DOI: 10.1016/j.bpj.2021.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/29/2021] [Accepted: 10/05/2021] [Indexed: 11/23/2022] Open
Abstract
Segregation of the replicating chromosome from a single to two nucleoid bodies is one of the major processes in growing bacterial cells. The segregation dynamics is tuned by intricate interactions with other cellular processes such as growth and division, ensuring flexibility in a changing environment. We hypothesize that the internal stochasticity of the segregation process may be the source of cell-to-cell phenotypic variability, in addition to the well-established gene expression noise and uneven partitioning of low copy number components. We compare dividing cell lineages with filamentous cells, where the lack of the diffusion barriers is expected to reduce the impact of other factors on the variability of nucleoid segregation dynamics. The nucleoid segregation was monitored using time-lapse microscopy in live E. coli cells grown in linear grooves. The main characteristics of the segregation process, namely, the synchrony of partitioning, rates of separation, and final positions, as well as the variability of these characteristics, were determined for dividing and filamentous lineages growing under the same conditions. Indeed, the gene expression noise was considerably homogenized along filaments as determined from the distribution of CFP and YFP stochastically expressed from the chromosome. We find that 1) the synchrony of nucleoid partitioning is progressively decreasing during consecutive cell cycles, but to a significantly lesser degree in filamentous than in dividing cells; 2) the mean partitioning rate of nucleoids is essentially the same in dividing and filamentous cells, displaying a substantial variability in both; and 3) nucleoids segregate to the same distances in dividing and filamentous cells. Variability in distances is increasing during successive cell cycles, but to a much lesser extent in filamentous cells. Our findings indicate that the variability of the chromosome segregation dynamics is reduced upon removal of boundaries between nucleoids, whereas the remaining variability is essentially inherent to the nucleoid itself.
Collapse
Affiliation(s)
- Itay Gelber
- Department of Physics, Ben-Gurion University of the Negev, Beer Sheva, Israel; The Ilse Katz Center for Nanotechnology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Alexander Aranovich
- Department of Physics, Ben-Gurion University of the Negev, Beer Sheva, Israel; Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Mario Feingold
- Department of Physics, Ben-Gurion University of the Negev, Beer Sheva, Israel; The Ilse Katz Center for Nanotechnology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Itzhak Fishov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
8
|
Wang X, Bai D. Self‐Organization Principles of Cell Cycles and Gene Expressions in the Development of Cell Populations. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoliang Wang
- College of Life Sciences Zhejiang University Hangzhou 310058 China
- School of Physical Sciences University of Science and Technology of China Hefei 230026 China
| | - Dongyun Bai
- School of Physics and Astronomy Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
9
|
Di Caprio F. A fattening factor to quantify the accumulation ability of microorganisms under N-starvation. N Biotechnol 2021; 66:70-78. [PMID: 33862285 DOI: 10.1016/j.nbt.2021.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 01/04/2023]
Abstract
Many microorganisms can accumulate biomass in the form of lipids and polysaccharides, which can be used for biofuels, bioplastics, food and feed. Some innovative bioprocesses exploit the competitive advantage provided by such accumulation ability, mainly under N-starvation, to select high-accumulating strains against biological contaminants, by using uncoupled nutrient feeding. However, there is no general and easily comparable parameter available to compare biomass accumulation ability among different microbial strains, which could measure the competitive advantage. Here, a parameter termed "fattening factor" (ηx) is described to quantify such strain-specific biomass accumulation ability in bacteria, yeasts and microalgae. This parameter measures how many fold a microbial population can increase its biomass just as the result of accumulation. It is derived from considerations about the main metabolic aspects of cells' response to N-starvation, which induces variations in cell cycle, biomass production and biochemical composition. The fattening factor described here should be easily estimatable in N-starvation for every culturable microbial strain, by measuring the amount of accumulated biomass.
Collapse
Affiliation(s)
- Fabrizio Di Caprio
- Department of Chemistry, University Sapienza of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
10
|
Nordholt N, van Heerden JH, Bruggeman FJ. Biphasic Cell-Size and Growth-Rate Homeostasis by Single Bacillus subtilis Cells. Curr Biol 2020; 30:2238-2247.e5. [DOI: 10.1016/j.cub.2020.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/19/2020] [Accepted: 04/14/2020] [Indexed: 12/29/2022]
|
11
|
General quantitative relations linking cell growth and the cell cycle in Escherichia coli. Nat Microbiol 2020; 5:995-1001. [PMID: 32424336 DOI: 10.1038/s41564-020-0717-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/01/2020] [Indexed: 01/15/2023]
Abstract
Growth laws emerging from studies of cell populations provide essential constraints on the global mechanisms that coordinate cell growth1-3. The foundation of bacterial cell cycle studies relies on two interconnected dogmas that were proposed more than 50 years ago-the Schaechter-Maaloe-Kjeldgaard growth law that relates cell mass to growth rate1 and Donachie's hypothesis of a growth-rate-independent initiation mass4. These dogmas spurred many efforts to understand their molecular bases and physiological consequences5-14. Although they are generally accepted in the fast-growth regime, that is, for doubling times below 1 h, extension of these dogmas to the slow-growth regime has not been consistently achieved. Here, through a quantitative physiological study of Escherichia coli cell cycles over an extensive range of growth rates, we report that neither dogma holds in either the slow- or fast-growth regime. In their stead, linear relations between the cell mass and the rate of chromosome replication-segregation were found across the range of growth rates. These relations led us to propose an integral-threshold model in which the cell cycle is controlled by a licensing process, the rate of which is related in a simple way to chromosomal dynamics. These results provide a quantitative basis for predictive understanding of cell growth-cell cycle relationships.
Collapse
|
12
|
Fessler M, Gummesson B, Charbon G, Svenningsen SL, Sørensen MA. Short‐term kinetics of rRNA degradation inEscherichia coliupon starvation for carbon, amino acid or phosphate. Mol Microbiol 2020; 113:951-963. [DOI: 10.1111/mmi.14462] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Mathias Fessler
- Department of Biology University of Copenhagen Copenhagen N Denmark
- DTU Environment Technical University of Denmark Kongens Lyngby Denmark
| | - Bertil Gummesson
- Department of Biology University of Copenhagen Copenhagen N Denmark
| | | | | | | |
Collapse
|
13
|
de Groot DH, Hulshof J, Teusink B, Bruggeman FJ, Planqué R. Elementary Growth Modes provide a molecular description of cellular self-fabrication. PLoS Comput Biol 2020; 16:e1007559. [PMID: 31986156 PMCID: PMC7004393 DOI: 10.1371/journal.pcbi.1007559] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 02/06/2020] [Accepted: 11/22/2019] [Indexed: 02/04/2023] Open
Abstract
In this paper we try to describe all possible molecular states (phenotypes) for a cell that fabricates itself at a constant rate, given its enzyme kinetics and the stoichiometry of all reactions. For this, we must understand the process of cellular growth: steady-state self-fabrication requires a cell to synthesize all of its components, including metabolites, enzymes and ribosomes, in proportions that match its own composition. Simultaneously, the concentrations of these components affect the rates of metabolism and biosynthesis, and hence the growth rate. We here derive a theory that describes all phenotypes that solve this circular problem. All phenotypes can be described as a combination of minimal building blocks, which we call Elementary Growth Modes (EGMs). EGMs can be used as the theoretical basis for all models that explicitly model self-fabrication, such as the currently popular Metabolism and Expression models. We then use our theory to make concrete biological predictions. We find that natural selection for maximal growth rate drives microorganisms to states of minimal phenotypic complexity: only one EGM will be active when growth rate is maximised. The phenotype of a cell is only extended with one more EGM whenever growth becomes limited by an additional biophysical constraint, such as a limited solvent capacity of a cellular compartment. The theory presented here extends recent results on Elementary Flux Modes: the minimal building blocks of cellular growth models that lack the self-fabrication aspect. Our theory starts from basic biochemical and evolutionary considerations, and describes unicellular life, both in growth-promoting and in stress-inducing environments, in terms of EGMs.
Collapse
Affiliation(s)
- Daan H. de Groot
- Systems Bioinformatics, Amsterdam Institute for Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Josephus Hulshof
- Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bas Teusink
- Systems Bioinformatics, Amsterdam Institute for Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank J. Bruggeman
- Systems Bioinformatics, Amsterdam Institute for Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Robert Planqué
- Systems Bioinformatics, Amsterdam Institute for Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Norris V. Successive Paradigm Shifts in the Bacterial Cell Cycle and Related Subjects. Life (Basel) 2019; 9:E27. [PMID: 30866455 PMCID: PMC6462897 DOI: 10.3390/life9010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 11/26/2022] Open
Abstract
A paradigm shift in one field can trigger paradigm shifts in other fields. This is illustrated by the paradigm shifts that have occurred in bacterial physiology following the discoveries that bacteria are not unstructured, that the bacterial cell cycle is not controlled by the dynamics of peptidoglycan, and that the growth rates of bacteria in the same steady-state population are not at all the same. These paradigm shifts are having an effect on longstanding hypotheses about the regulation of the bacterial cell cycle, which appear increasingly to be inadequate. I argue that, just as one earthquake can trigger others, an imminent paradigm shift in the regulation of the bacterial cell cycle will have repercussions or "paradigm quakes" on hypotheses about the origins of life and about the regulation of the eukaryotic cell cycle.
Collapse
Affiliation(s)
- Vic Norris
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen, 76821 Mont Saint Aignan, France.
| |
Collapse
|
15
|
Jun S, Si F, Pugatch R, Scott M. Fundamental principles in bacterial physiology-history, recent progress, and the future with focus on cell size control: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:056601. [PMID: 29313526 PMCID: PMC5897229 DOI: 10.1088/1361-6633/aaa628] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bacterial physiology is a branch of biology that aims to understand overarching principles of cellular reproduction. Many important issues in bacterial physiology are inherently quantitative, and major contributors to the field have often brought together tools and ways of thinking from multiple disciplines. This article presents a comprehensive overview of major ideas and approaches developed since the early 20th century for anyone who is interested in the fundamental problems in bacterial physiology. This article is divided into two parts. In the first part (sections 1-3), we review the first 'golden era' of bacterial physiology from the 1940s to early 1970s and provide a complete list of major references from that period. In the second part (sections 4-7), we explain how the pioneering work from the first golden era has influenced various rediscoveries of general quantitative principles and significant further development in modern bacterial physiology. Specifically, section 4 presents the history and current progress of the 'adder' principle of cell size homeostasis. Section 5 discusses the implications of coarse-graining the cellular protein composition, and how the coarse-grained proteome 'sectors' re-balance under different growth conditions. Section 6 focuses on physiological invariants, and explains how they are the key to understanding the coordination between growth and the cell cycle underlying cell size control in steady-state growth. Section 7 overviews how the temporal organization of all the internal processes enables balanced growth. In the final section 8, we conclude by discussing the remaining challenges for the future in the field.
Collapse
Affiliation(s)
- Suckjoon Jun
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America. Section of Molecular Biology, Division of Biology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America
| | | | | | | |
Collapse
|
16
|
García MR, Vázquez JA, Teixeira IG, Alonso AA. Stochastic Individual-Based Modeling of Bacterial Growth and Division Using Flow Cytometry. Front Microbiol 2018; 8:2626. [PMID: 29354110 PMCID: PMC5760514 DOI: 10.3389/fmicb.2017.02626] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/15/2017] [Indexed: 11/30/2022] Open
Abstract
A realistic description of the variability in bacterial growth and division is critical to produce reliable predictions of safety risks along the food chain. Individual-based modeling of bacteria provides the theoretical framework to deal with this variability, but it requires information about the individual behavior of bacteria inside populations. In this work, we overcome this problem by estimating the individual behavior of bacteria from population statistics obtained with flow cytometry. For this objective, a stochastic individual-based modeling framework is defined based on standard assumptions during division and exponential growth. The unknown single-cell parameters required for running the individual-based modeling simulations, such as cell size growth rate, are estimated from the flow cytometry data. Instead of using directly the individual-based model, we make use of a modified Fokker-Plank equation. This only equation simulates the population statistics in function of the unknown single-cell parameters. We test the validity of the approach by modeling the growth and division of Pediococcus acidilactici within the exponential phase. Estimations reveal the statistics of cell growth and division using only data from flow cytometry at a given time. From the relationship between the mother and daughter volumes, we also predict that P. acidilactici divide into two successive parallel planes.
Collapse
Affiliation(s)
- Míriam R García
- Bioprocess Engineering Group, Marine Research Institute-Spanish National Research Council (IIM-CSIC), Vigo, Spain
| | - José A Vázquez
- Group of Recycling and Valorisation of Waste Materials, Marine Research Institute-Spanish National Research Council (IIM-CSIC), Vigo, Spain
| | - Isabel G Teixeira
- Oceanology, Marine Research Institute-Spanish National Research Council (IIM-CSIC), Vigo, Spain
| | - Antonio A Alonso
- Bioprocess Engineering Group, Marine Research Institute-Spanish National Research Council (IIM-CSIC), Vigo, Spain
| |
Collapse
|
17
|
Zaritsky A, Rabinovitch A, Liu C, Woldringh CL. Does the eclipse limit bacterial nucleoid complexity and cell width? Synth Syst Biotechnol 2017; 2:267-275. [PMID: 29552651 PMCID: PMC5851910 DOI: 10.1016/j.synbio.2017.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022] Open
Abstract
Cell size of bacteria M is related to 3 temporal parameters: chromosome replication time C, period from replication-termination to subsequent division D, and doubling time τ. Steady-state, bacillary cells grow exponentially by extending length L only, but their constant width W is larger at shorter τ's or longer C's, in proportion to the number of chromosome replication positions n (= C/τ), at least in Escherichia coli and Salmonella typhimurium. Extending C by thymine limitation of fast-growing thyA mutants result in continuous increase of M, associated with rising W, up to a limit before branching. A set of such puzzling observations is qualitatively consistent with the view that the actual cell mass (or volume) at the time of replication-initiation Mi (or Vi), usually relatively constant in growth at varying τ's, rises with time under thymine limitation of fast-growing, thymine-requiring E. coli strains. The hypothesis will be tested that presumes existence of a minimal distance lmin between successive moving replisomes, translated into the time needed for a replisome to reach lmin before a new replication-initiation at oriC is allowed, termed Eclipse E. Preliminary analysis of currently available data is inconsistent with a constant E under all conditions, hence other explanations and ways to test them are proposed in an attempt to elucidate these and other results. The complex hypothesis takes into account much of what is currently known about Bacterial Physiology: the relationships between cell dimensions, growth and cycle parameters, particularly nucleoid structure, replication and position, and the mode of peptidoglycan biosynthesis. Further experiments are mentioned that are necessary to test the discussed ideas and hypotheses.
Collapse
Affiliation(s)
- Arieh Zaritsky
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva, 84105, Israel
| | - Avinoam Rabinovitch
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva, 84105, Israel
| | - Chenli Liu
- Center for Synthetic Biology Engineering Research, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, PR China
| | - Conrad L Woldringh
- Bacterial Cell Biology, SILS, Boelelaan 1108, Amsterdam, The Netherlands
| |
Collapse
|
18
|
de Jong H, Casagranda S, Giordano N, Cinquemani E, Ropers D, Geiselmann J, Gouzé JL. Mathematical modelling of microbes: metabolism, gene expression and growth. J R Soc Interface 2017; 14:20170502. [PMID: 29187637 PMCID: PMC5721159 DOI: 10.1098/rsif.2017.0502] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/31/2017] [Indexed: 11/12/2022] Open
Abstract
The growth of microorganisms involves the conversion of nutrients in the environment into biomass, mostly proteins and other macromolecules. This conversion is accomplished by networks of biochemical reactions cutting across cellular functions, such as metabolism, gene expression, transport and signalling. Mathematical modelling is a powerful tool for gaining an understanding of the functioning of this large and complex system and the role played by individual constituents and mechanisms. This requires models of microbial growth that provide an integrated view of the reaction networks and bridge the scale from individual reactions to the growth of a population. In this review, we derive a general framework for the kinetic modelling of microbial growth from basic hypotheses about the underlying reaction systems. Moreover, we show that several families of approximate models presented in the literature, notably flux balance models and coarse-grained whole-cell models, can be derived with the help of additional simplifying hypotheses. This perspective clearly brings out how apparently quite different modelling approaches are related on a deeper level, and suggests directions for further research.
Collapse
Affiliation(s)
| | - Stefano Casagranda
- University Côte d'Azur, Inria, INRA, CNRS, UPMC University Paris 06, BIOCORE team, Sophia-Antipolis, France
| | - Nils Giordano
- University Grenoble-Alpes, Inria, Grenoble, France
- University Grenoble-Alpes, CNRS, LIPhy, Grenoble, France
| | | | | | - Johannes Geiselmann
- University Grenoble-Alpes, Inria, Grenoble, France
- University Grenoble-Alpes, CNRS, LIPhy, Grenoble, France
| | - Jean-Luc Gouzé
- University Côte d'Azur, Inria, INRA, CNRS, UPMC University Paris 06, BIOCORE team, Sophia-Antipolis, France
| |
Collapse
|
19
|
Nordholt N, van Heerden J, Kort R, Bruggeman FJ. Effects of growth rate and promoter activity on single-cell protein expression. Sci Rep 2017; 7:6299. [PMID: 28740089 PMCID: PMC5524720 DOI: 10.1038/s41598-017-05871-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/05/2017] [Indexed: 12/01/2022] Open
Abstract
Protein expression in a single cell depends on its global physiological state. Moreover, genetically-identical cells exhibit variability (noise) in protein expression, arising from the stochastic nature of biochemical processes, cell growth and division. While it is well understood how cellular growth rate influences mean protein expression, little is known about the relationship between growth rate and noise in protein expression. Here we quantify this relationship in Bacillus subtilis by a novel combination of experiments and theory. We measure the effects of promoter activity and growth rate on the expression of a fluorescent protein in single cells. We disentangle the observed protein expression noise into protein-specific and systemic contributions, using theory and variance decomposition. We find that noise in protein expression depends solely on mean expression levels, regardless of whether expression is set by promoter activity or growth rate, and that noise increases linearly with growth rate. Our results can aid studies of (synthetic) gene circuits of single cells and their condition dependence.
Collapse
Affiliation(s)
- Niclas Nordholt
- Systems Bioinformatics, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU Amsterdam, De Boelelaan 1087, NL1081, HV, Amsterdam, The Netherlands
| | - Johan van Heerden
- Systems Bioinformatics, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU Amsterdam, De Boelelaan 1087, NL1081, HV, Amsterdam, The Netherlands
| | - Remco Kort
- Molecular Cell Physiology, AIMMS, VU Amsterdam, De Boelelaan 1087, NL1081, HV, Amsterdam, The Netherlands
| | - Frank J Bruggeman
- Systems Bioinformatics, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), VU Amsterdam, De Boelelaan 1087, NL1081, HV, Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Zaritsky A. Cell-shape homeostasis in Escherichia coli is driven by growth, division, and nucleoid complexity. Biophys J 2016. [PMID: 26200854 DOI: 10.1016/j.bpj.2015.06.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Analysis of recently published high-throughput measurements of wild-type Escherichia coli cells growing at a wide range of rates demonstrates that cell width W, which is constant at any particular growth rate, is related (with a CV = 2.4%) to the level of nucleoid complexity, expressed as the amount of DNA in genome equivalents that is associated with chromosome terminus (G/terC). The relatively constant (CV = 7.3%) aspect ratio of newborn cells (Lb/W) in populations growing at different rates indicates existence of cell-shape homeostasis. Enlarged W of thymine-limited thyA mutants growing at identical rates support the hypothesis that nucleoid complexity actively affects W. Nucleoid dynamics is proposed to transmit a primary signal to the peptidoglycan-synthesizing system through the transertion mechanism, i.e., coupled transcription/translation of genes encoding membrane proteins and inserting these proteins into the membrane.
Collapse
Affiliation(s)
- Arieh Zaritsky
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.
| |
Collapse
|
21
|
Giordano N, Mairet F, Gouzé JL, Geiselmann J, de Jong H. Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies. PLoS Comput Biol 2016; 12:e1004802. [PMID: 26958858 PMCID: PMC4784908 DOI: 10.1371/journal.pcbi.1004802] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/08/2016] [Indexed: 02/03/2023] Open
Abstract
Microbial physiology exhibits growth laws that relate the macromolecular composition of the cell to the growth rate. Recent work has shown that these empirical regularities can be derived from coarse-grained models of resource allocation. While these studies focus on steady-state growth, such conditions are rarely found in natural habitats, where microorganisms are continually challenged by environmental fluctuations. The aim of this paper is to extend the study of microbial growth strategies to dynamical environments, using a self-replicator model. We formulate dynamical growth maximization as an optimal control problem that can be solved using Pontryagin’s Maximum Principle. We compare this theoretical gold standard with different possible implementations of growth control in bacterial cells. We find that simple control strategies enabling growth-rate maximization at steady state are suboptimal for transitions from one growth regime to another, for example when shifting bacterial cells to a medium supporting a higher growth rate. A near-optimal control strategy in dynamical conditions is shown to require information on several, rather than a single physiological variable. Interestingly, this strategy has structural analogies with the regulation of ribosomal protein synthesis by ppGpp in the enterobacterium Escherichia coli. It involves sensing a mismatch between precursor and ribosome concentrations, as well as the adjustment of ribosome synthesis in a switch-like manner. Our results show how the capability of regulatory systems to integrate information about several physiological variables is critical for optimizing growth in a changing environment. Microbial growth is the process by which cells sustain and reproduce themselves from available matter and energy. Strategies enabling microorganisms to optimize their growth rate have been extensively studied, but mostly in stable environments. Here, we build a coarse-grained model of microbial growth and use methods from optimal control theory to determine a resource allocation scheme that would lead to maximal biomass accumulation when the cells are dynamically shifted from one growth medium to another. We compare this optimal solution with several cellular implementations of growth control, based on the capacity of the cell to sense different physiological variables. We find that strategies maximizing growth in steady-state conditions perform quite differently in dynamical conditions. Moreover, the control strategy with performance close to the theoretical maximum exploits information of more than one physiological variable, suggesting that optimization of microbial growth in dynamical rather than steady environments requires broader sensory capacities. Interestingly, the ppGpp alarmone system in the enterobacterium Escherichia coli, known to play an important role in growth control, has structural similarities with the control strategy approaching the theoretical maximum. It senses a discrepancy between the concentrations of precursors and ribosomes, and adjusts ribosome synthesis in an on-off fashion. This suggests that E. coli is adapted for environments with intermittent, rapid changes in nutrient availability.
Collapse
Affiliation(s)
- Nils Giordano
- Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique (CNRS UMR 5588), Saint Martin d’Hères, France
- Inria, Grenoble - Rhône-Alpes research centre, Montbonnot, Saint Ismier Cedex, France
| | - Francis Mairet
- Inria, Sophia-Antipolis Méditerranée research centre, Sophia-Antipolis Cedex, France
| | - Jean-Luc Gouzé
- Inria, Sophia-Antipolis Méditerranée research centre, Sophia-Antipolis Cedex, France
| | - Johannes Geiselmann
- Université Grenoble Alpes, Laboratoire Interdisciplinaire de Physique (CNRS UMR 5588), Saint Martin d’Hères, France
- Inria, Grenoble - Rhône-Alpes research centre, Montbonnot, Saint Ismier Cedex, France
- * E-mail: (JG); (HdJ)
| | - Hidde de Jong
- Inria, Grenoble - Rhône-Alpes research centre, Montbonnot, Saint Ismier Cedex, France
- * E-mail: (JG); (HdJ)
| |
Collapse
|
22
|
Zaritsky A, Woldringh CL. Chromosome replication, cell growth, division and shape: a personal perspective. Front Microbiol 2015; 6:756. [PMID: 26284044 PMCID: PMC4522554 DOI: 10.3389/fmicb.2015.00756] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/10/2015] [Indexed: 11/13/2022] Open
Abstract
The origins of Molecular Biology and Bacterial Physiology are reviewed, from our personal standpoints, emphasizing the coupling between bacterial growth, chromosome replication and cell division, dimensions and shape. Current knowledge is discussed with historical perspective, summarizing past and present achievements and enlightening ideas for future studies. An interactive simulation program of the bacterial cell division cycle (BCD), described as "The Central Dogma in Bacteriology," is briefly represented. The coupled process of transcription/translation of genes encoding membrane proteins and insertion into the membrane (so-called transertion) is invoked as the functional relationship between the only two unique macromolecules in the cell, DNA and peptidoglycan embodying the nucleoid and the sacculus respectively. We envision that the total amount of DNA associated with the replication terminus, so called "nucleoid complexity," is directly related to cell size and shape through the transertion process. Accordingly, the primary signal for cell division transmitted by DNA dynamics (replication, transcription and segregation) to the peptidoglycan biosynthetic machinery is of a physico-chemical nature, e.g., stress in the plasma membrane, relieving nucleoid occlusion in the cell's center hence enabling the divisome to assemble and function between segregated daughter nucleoids.
Collapse
Affiliation(s)
- Arieh Zaritsky
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
| | - Conrad L. Woldringh
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
23
|
Abstract
The problem of not only how but also why cells divide can be tackled using recent ideas. One idea from the origins of life – Life as independent of its constituents – is that a living entity like a cell is a particular pattern of connectivity between its constituents. This means that if the growing cell were just to get bigger the average connectivity between its constituents per unit mass – its cellular connectivity – would decrease and the cell would lose its identity. The solution is division which restores connectivity. The corollary is that the cell senses decreasing cellular connectivity and uses this information to trigger division. A second idea from phenotypic diversity – Life on the Scales of Equilibria – is that a bacterium must find strategies that allow it to both survive and grow. This means that it has learnt to reconcile the opposing constraints that these strategies impose. The solution is that the cell cycle generates daughter cells with different phenotypes based on sufficiently complex equilibrium (E) and non-equilibrium (NE) cellular compounds and structures appropriate for survival and growth, respectively, alias ‘hyperstructures.’ The corollary is that the cell senses both the quantity of E material and the intensity of use of NE material and then uses this information to trigger the cell cycle. A third idea from artificial intelligence – Competitive Coherence – is that a cell selects the active subset of elements that actively determine its phenotype from a much larger set of available elements. This means that the selection of an active subset of a specific size and composition must be done so as to generate both a coherent cell state, in which the cell’s contents work together harmoniously, and a coherent sequence of cell states, each coherent with respect to itself and to an unpredictable environment. The solution is the use of a range of mechanisms ranging from hyperstructure dynamics to the cell cycle itself.
Collapse
Affiliation(s)
- Vic Norris
- Laboratory of Microbiology Signals and Microenvironment, Theoretical Biology Unit, University of Rouen, Mont Saint Aignan France
| |
Collapse
|
24
|
Itsko M, Schaaper RM. dGTP starvation in Escherichia coli provides new insights into the thymineless-death phenomenon. PLoS Genet 2014; 10:e1004310. [PMID: 24810600 PMCID: PMC4014421 DOI: 10.1371/journal.pgen.1004310] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
Starvation of cells for the DNA building block dTTP is strikingly lethal (thymineless death, TLD), and this effect is observed in all organisms. The phenomenon, discovered some 60 years ago, is widely used to kill cells in anticancer therapies, but many questions regarding the precise underlying mechanisms have remained. Here, we show for the first time that starvation for the DNA precursor dGTP can kill E. coli cells in a manner sharing many features with TLD. dGTP starvation is accomplished by combining up-regulation of a cellular dGTPase with a deficiency of the guanine salvage enzyme guanine-(hypoxanthine)-phosphoribosyltransferase. These cells, when grown in medium without an exogenous purine source like hypoxanthine or adenine, display a specific collapse of the dGTP pool, slow-down of chromosomal replication, the generation of multi-branched nucleoids, induction of the SOS system, and cell death. We conclude that starvation for a single DNA building block is sufficient to bring about cell death.
Collapse
Affiliation(s)
- Mark Itsko
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Roel M. Schaaper
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
25
|
van Heeswijk WC, Westerhoff HV, Boogerd FC. Nitrogen assimilation in Escherichia coli: putting molecular data into a systems perspective. Microbiol Mol Biol Rev 2013; 77:628-95. [PMID: 24296575 PMCID: PMC3973380 DOI: 10.1128/mmbr.00025-13] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now.
Collapse
|
26
|
Norris V, Nana GG, Audinot JN. New approaches to the problem of generating coherent, reproducible phenotypes. Theory Biosci 2013; 133:47-61. [PMID: 23794321 DOI: 10.1007/s12064-013-0185-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 06/03/2013] [Indexed: 12/01/2022]
Abstract
Fundamental, unresolved questions in biology include how a bacterium generates coherent phenotypes, how a population of bacteria generates a coherent set of such phenotypes, how the cell cycle is regulated and how life arose. To try to help answer these questions, we have developed the concepts of hyperstructures, competitive coherence and life on the scales of equilibria. Hyperstructures are large assemblies of macromolecules that perform functions. Competitive coherence describes the way in which organisations such as cells select a subset of their constituents to be active in determining their behaviour; this selection results from a competition between a process that is responsible for a historical coherence and another process responsible for coherence with the current environment. Life on the scales of equilibria describes how bacteria depend on the cell cycle to negotiate phenotype space and, in particular, to satisfy the conflicting constraints of having to grow in favourable conditions so as to reproduce yet not grow in hostile conditions so as to survive. Both competitive coherence and life on the scales deal with the problem of reconciling conflicting constraints. Here, we bring together these concepts in the common framework of hyperstructures and make predictions that may be tested using a learning program, Coco, and secondary ion mass spectrometry.
Collapse
Affiliation(s)
- Vic Norris
- Theoretical Biology Unit, University of Rouen, 76821, Mont Saint Aignan, France,
| | | | | |
Collapse
|
27
|
González Moreno S, Mata Martín C, Ferrera Guillén E, Guzmán EC. Tuning the replication fork progression by the initiation frequency. Environ Microbiol 2013; 15:3240-51. [PMID: 23607621 DOI: 10.1111/1462-2920.12127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 11/30/2022]
Abstract
The thermo-resistant period of the thermo-sensitive ribonucleotide reductase RNR101 encoded by the nrdA101 allele in Escherichia coli is prolonged for 50 min at 42°C, enabling an increase in DNA content of about 45%. Assuming that fork progression in the nrdA101 mutant is impaired, the question whether reduced number of ongoing replication rounds altered the thermo-resistant period in this strain was investigated. Decreases in the oriC/terC ratio and in the number of oriC per cell at 30°C were found in the presence of oriC228, oriC229 and oriC239 alleles in strain nrdA101. Correlated with this effect, increased thermo-resistance period of the RNR101 was allowed, and the detrimental effects on cell division, chromosome segregation and cell viability observed in the nrdA101 mutant at 42°C were suppressed. These results indicate that conditions leading to chromosome initiation deficiency at 30°C enhance the replication fork progression in the nrdA101 mutant at 42°C. We propose that coordination between initiation frequency and replication fork progression could be significant for most of the replication systems with important consequences in their cell cycle regulation.
Collapse
Affiliation(s)
- Sara González Moreno
- Departmento de Bioquímica Biología Molecular y Genética, Universidad de Extremadura, 06071, Badajoz, Spain
| | | | | | | |
Collapse
|
28
|
Dressaire C, Picard F, Redon E, Loubière P, Queinnec I, Girbal L, Cocaign-Bousquet M. Role of mRNA stability during bacterial adaptation. PLoS One 2013; 8:e59059. [PMID: 23516597 PMCID: PMC3596320 DOI: 10.1371/journal.pone.0059059] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/11/2013] [Indexed: 11/18/2022] Open
Abstract
Bacterial adaptation involves extensive cellular reorganization. In particular, growth rate adjustments are associated with substantial modifications of gene expression and mRNA abundance. In this work we aimed to assess the role of mRNA degradation during such variations. A genome-wide transcriptomic-based method was used to determine mRNA half-lives. The model bacterium Lactococcus lactis was used and different growth rates were studied in continuous cultures under isoleucine-limitation and in batch cultures during the adaptation to the isoleucine starvation. During continuous isoleucine-limited growth, the mRNAs of different genes had different half-lives. The stability of most of the transcripts was not constant, and increased as the growth rate decreased. This half-life diversity was analyzed to investigate determinants of mRNA stability. The concentration, length, codon adaptation index and secondary structures of mRNAs were found to contribute to the determination of mRNA stability in these conditions. However, the growth rate was, by far, the most influential determinant. The respective influences of mRNA degradation and transcription on the regulation of intra-cellular transcript concentration were estimated. The role of degradation on mRNA homeostasis was clearly evidenced: for more than 90% of the mRNAs studied during continuous isoleucine-limited growth of L. lactis, degradation was antagonistic to transcription. Although both transcription and degradation had, opposite effects, the mRNA changes in response to growth rate were driven by transcription. Interestingly, degradation control increased during the dynamic adaptation of bacteria as the growth rate reduced due to progressive isoleucine starvation in batch cultures. This work shows that mRNA decay differs between gene transcripts and according to the growth rate. It demonstrates that mRNA degradation is an important regulatory process involved in bacterial adaptation. However, its impact on the regulation of mRNA levels is smaller than that of transcription in the conditions studied.
Collapse
Affiliation(s)
- Clémentine Dressaire
- Université de Toulouse; The Institut National des Sciences Appliquées, UPS, INP, LISBP, Toulouse, France.
| | | | | | | | | | | | | |
Collapse
|
29
|
Long Z, Nugent E, Javer A, Cicuta P, Sclavi B, Cosentino Lagomarsino M, Dorfman KD. Microfluidic chemostat for measuring single cell dynamics in bacteria. LAB ON A CHIP 2013; 13:947-54. [PMID: 23334753 DOI: 10.1039/c2lc41196b] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We designed a microfluidic chemostat consisting of 600 sub-micron trapping/growth channels connected to two feeding channels. The microchemostat traps E. coli cells and forces them to grow in lines for over 50 generations. Excess cells, including the mother cells captured at the start of the process, are removed from both ends of the growth channels by the media flow. With the aid of time-lapse microscopy, we have monitored dynamic properties such as growth rate and GFP expression at the single-cell level for many generations while maintaining a population of bacteria of similar age. We also use the microchemostat to show how the population responds to dynamic changes in the environment. Since more than 100 individual bacterial cells are aligned and immobilized in a single field of view, the microchemostat is an ideal platform for high-throughput intracellular measurements. We demonstrate this capability by tracking with sub-diffraction resolution the movements of fluorescently tagged loci in more than one thousand cells on a single device. The device yields results comparable to conventional agar microscopy experiments with substantial increases in throughput and ease of analysis.
Collapse
Affiliation(s)
- Zhicheng Long
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Norris V, Amar P. Chromosome Replication in Escherichia coli: Life on the Scales. Life (Basel) 2012; 2:286-312. [PMID: 25371267 PMCID: PMC4187155 DOI: 10.3390/life2040286] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 10/01/2012] [Accepted: 10/15/2012] [Indexed: 12/22/2022] Open
Abstract
At all levels of Life, systems evolve on the 'scales of equilibria'. At the level of bacteria, the individual cell must favor one of two opposing strategies and either take risks to grow or avoid risks to survive. It has been proposed in the Dualism hypothesis that the growth and survival strategies depend on non-equilibrium and equilibrium hyperstructures, respectively. It has been further proposed that the cell cycle itself is the way cells manage to balance the ratios of these types of hyperstructure so as to achieve the compromise solution of living on the two scales. Here, we attempt to re-interpret a major event, the initiation of chromosome replication in Escherichia coli, in the light of scales of equilibria. This entails thinking in terms of hyperstructures as responsible for intensity sensing and quantity sensing and how this sensing might help explain the role of the DnaA protein in initiation of replication. We outline experiments and an automaton approach to the cell cycle that should test and refine the scales concept.
Collapse
Affiliation(s)
- Vic Norris
- Theoretical Biology Unit, EA 3829, Department of Biology, University of Rouen, 76821, Mont Saint Aignan, France.
| | - Patrick Amar
- Laboratoire de Recherche en Informatique, Université Paris-Sud, and INRIA Saclay - Ile de France, AMIB Project, Orsay, France.
| |
Collapse
|
31
|
Banzhaf M, van den Berg van Saparoea B, Terrak M, Fraipont C, Egan A, Philippe J, Zapun A, Breukink E, Nguyen-Distèche M, den Blaauwen T, Vollmer W. Cooperativity of peptidoglycan synthases active in bacterial cell elongation. Mol Microbiol 2012; 85:179-94. [PMID: 22606933 DOI: 10.1111/j.1365-2958.2012.08103.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Growth of the bacterial cell wall peptidoglycan sacculus requires the co-ordinated activities of peptidoglycan synthases, hydrolases and cell morphogenesis proteins, but the details of these interactions are largely unknown. We now show that the Escherichia coli peptidoglycan glycosyltrasferase-transpeptidase PBP1A interacts with the cell elongation-specific transpeptidase PBP2 in vitro and in the cell. Cells lacking PBP1A are thinner and initiate cell division later in the cell cycle. PBP1A localizes mainly to the cylindrical wall of the cell, supporting its role in cell elongation. Our in vitro peptidoglycan synthesis assays provide novel insights into the cooperativity of peptidoglycan synthases with different activities. PBP2 stimulates the glycosyltransferase activity of PBP1A, and PBP1A and PBP2 cooperate to attach newly synthesized peptidoglycan to sacculi. PBP2 has peptidoglycan transpeptidase activity in the presence of active PBP1A. Our data also provide a possible explanation for the depletion of lipid II precursors in penicillin-treated cells.
Collapse
Affiliation(s)
- Manuel Banzhaf
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Itsko M, Schaaper RM. The dgt gene of Escherichia coli facilitates thymine utilization in thymine-requiring strains. Mol Microbiol 2011; 81:1221-32. [PMID: 21736641 DOI: 10.1111/j.1365-2958.2011.07756.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Escherichia coli dGTP triphosphohydrolase (dGTPase) encoded by the dgt gene catalyses the hydrolysis of dGTP to deoxyguanosine and triphosphate. The recent discovery of a mutator effect associated with deletion of dgt indicated participation of the triphosphohydrolase in preventing mutagenesis. Here, we have investigated the possible involvement of dgt in facilitating thymine utilization through its ability to provide intracellular deoxyguanosine, which is readily converted by the DeoD phosphorylase to deoxyribose-1-phosphate, the critical intermediate that enables uptake and utilization of thymine. Indeed, we observed that the minimal amount of thymine required for growth of thymine-requiring (thyA) strains decreased with increased expression level of the dgt gene. As expected, this dgt-mediated effect was dependent on the DeoD purine nucleoside phosphorylase. We also observed that thyA strains experience growth difficulties upon nutritional shift-up and that the dgt gene facilitates adaptation to the new growth conditions. Blockage of the alternative yjjG (dUMP phosphatase) pathway for deoxyribose-1-phosphate generation greatly exacerbated the severity of thymine starvation in enriched media, and under these conditions the dgt pathway becomes crucial in protecting the cells against thymineless death. Overall, our results suggest that the dgt-dependent pathway for deoxyribose-1-phosphate generation may operate under various cell conditions to provide deoxyribosyl donors.
Collapse
Affiliation(s)
- Mark Itsko
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
33
|
Zaritsky A, Wang P, Vischer NOE. Instructive simulation of the bacterial cell division cycle. Microbiology (Reading) 2011; 157:1876-1885. [DOI: 10.1099/mic.0.049403-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The coupling between chromosome replication and cell division includes temporal and spatial elements. In bacteria, these have globally been resolved during the last 40 years, but their full details and action mechanisms are still under intensive study. The physiology of growth and the cell cycle are reviewed in the light of an established dogma that has formed a framework for development of new ideas, as exemplified here, using the Cell Cycle Simulation (CCSim) program. CCSim, described here in detail for the first time, employs four parameters related to time (replication, division and inter-division) and size (cell mass at replication initiation) that together are sufficient to describe bacterial cells under various conditions and states, which can be manipulated environmentally and genetically. Testing the predictions of CCSim by analysis of time-lapse micrographs of Escherichia coli during designed manipulations of the rate of DNA replication identified aspects of both coupling elements. Enhanced frequencies of cell division were observed following an interval of reduced DNA replication rate, consistent with the prediction of a minimum possible distance between successive replisomes (an eclipse). As a corollary, the notion that cell poles are not always inert was confirmed by observed placement of division planes at perpendicular planes in monstrous and cuboidal cells containing multiple, segregating nucleoids.
Collapse
Affiliation(s)
- Arieh Zaritsky
- Life Sciences Department, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva 84105, Israel
| | - Ping Wang
- FAS Center for Systems Biology, Harvard University, 52 Oxford St, Cambridge, MA 02138, USA
| | - Norbert O. E. Vischer
- Molecular Cytology, Faculty of Science, University of Amsterdam, NL1098 XH, The Netherlands
| |
Collapse
|
34
|
Olrichs NK, Aarsman MEG, Verheul J, Arnusch CJ, Martin NI, Hervé M, Vollmer W, de Kruijff B, Breukink E, den Blaauwen T. A novel in vivo cell-wall labeling approach sheds new light on peptidoglycan synthesis in Escherichia coli. Chembiochem 2011; 12:1124-33. [PMID: 21472954 DOI: 10.1002/cbic.201000552] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Indexed: 11/12/2022]
Abstract
Peptidoglycan synthesis and turnover in relation to cell growth and division has been studied by using a new labeling method. This method involves the incorporation of fluorescently labeled peptidoglycan precursors into the cell wall by means of the cell-wall recycling pathway. We show that Escherichia coli is able to import exogenous added murein tripeptide labeled with N-7-nitro-2,1,3-benzoxadiazol-4-yl (AeK-NBD) into the cytoplasm where it enters the peptidoglycan biosynthesis route, resulting in fluorescent labels specifically located in the cell wall. When wild-type cells were grown in the presence of the fluorescent peptide, peptidoglycan was uniformly labeled in cells undergoing elongation. Cells in the process of division displayed a lack of labeled peptidoglycan at mid-cell. Analysis of labeling patterns in cell division mutants showed that the occurrence of unlabeled peptidoglycan is dependent on the presence of FtsZ, but independent of FtsQ and FtsI. Accumulation of fluorescence at the division sites of a triple amidase mutant (ΔamiABC) revealed that AeK-NBD is incorporated into septal peptidoglycan. AmiC was shown to be involved in the rapid removal of labeled peptidoglycan side chains at division sites in wild-type cells. Because septal localization of AmiC is dependent on FtsQ and FtsI, this points to the presence of another peptidoglycan hydrolase activity directly dependent on FtsZ.
Collapse
Affiliation(s)
- Nick K Olrichs
- Department of Chemical Biology and Organic Chemistry, University of Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Potluri L, Karczmarek A, Verheul J, Piette A, Wilkin JM, Werth N, Banzhaf M, Vollmer W, Young KD, Nguyen-Distèche M, den Blaauwen T. Septal and lateral wall localization of PBP5, the major D,D-carboxypeptidase of Escherichia coli, requires substrate recognition and membrane attachment. Mol Microbiol 2010; 77:300-23. [PMID: 20545860 PMCID: PMC2909392 DOI: 10.1111/j.1365-2958.2010.07205.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The distribution of PBP5, the major D,D-carboxypeptidase in Escherichia coli, was mapped by immunolabelling and by visualization of GFP fusion proteins in wild-type cells and in mutants lacking one or more D,D-carboxypeptidases. In addition to being scattered around the lateral envelope, PBP5 was also concentrated at nascent division sites prior to visible constriction. Inhibiting PBP2 activity (which eliminates wall elongation) shifted PBP5 to midcell, whereas inhibiting PBP3 (which aborts divisome invagination) led to the creation of PBP5 rings at positions of preseptal wall formation, implying that PBP5 localizes to areas of ongoing peptidoglycan synthesis. A PBP5(S44G) active site mutant was more evenly dispersed, indicating that localization required enzyme activity and the availability of pentapeptide substrates. Both the membrane bound and soluble forms of PBP5 converted pentapeptides to tetrapeptides in vitro and in vivo, and the enzymes accepted the same range of substrates, including sacculi, Lipid II, muropeptides and artificial substrates. However, only the membrane-bound form localized to the developing septum and restored wild-type rod morphology to shape defective mutants, suggesting that the two events are related. The results indicate that PBP5 localization to sites of ongoing peptidoglycan synthesis is substrate dependent and requires membrane attachment.
Collapse
Affiliation(s)
- Lakshmiprasad Potluri
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Alexeeva S, Gadella TWJ, Verheul J, Verhoeven GS, Den Blaauwen T. Direct interactions of early and late assembling division proteins in Escherichia coli cells resolved by FRET. Mol Microbiol 2010; 77:384-98. [DOI: 10.1111/j.1365-2958.2010.07211.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Mohammadi T, Ploeger GEJ, Verheul J, Comvalius AD, Martos A, Alfonso C, van Marle J, Rivas G, den Blaauwen T. The GTPase activity of Escherichia coli FtsZ determines the magnitude of the FtsZ polymer bundling by ZapA in vitro. Biochemistry 2009; 48:11056-66. [PMID: 19842714 PMCID: PMC2778355 DOI: 10.1021/bi901461p] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
FtsZ polymerizes in a ring-like structure at mid cell to initiate cell division in Escherichia coli. The ring is stabilized by a number of proteins among which the widely conserved ZapA protein. Using antibodies against ZapA, we found surprisingly that the cellular concentration of ZapA is approximately equal to that of FtsZ. This raised the question of how the cell can prevent their interaction and thereby the premature stabilization of FtsZ protofilaments in nondividing cells. Therefore, we studied the FtsZ−ZapA interaction at the physiological pH of 7.5 instead of pH 6.5 (the optimal pH for FtsZ polymerization), under conditions that stimulate protofilament formation (5 mM MgCl2) and under conditions that stimulate and stabilize protofilaments (10 mM MgCl2). Using pelleting, light scattering, and GTPase assays, it was found that stabilization and bundling of FtsZ polymers by ZapA was inversely correlated to the GTPase activity of FtsZ. As GTP hydrolysis is the rate-limiting factor for depolymerization of FtsZ, we propose that ZapA will only enhance the cooperativity of polymer association during the transition from helical filament to mid cell ring and will not stabilize the short single protofilaments in the cytoplasm. All thus far published in vitro data on the interaction between FtsZ and ZapA have been obtained with His-ZapA. We found that in our case the presence of a His tag fused to ZapA prevented the protein to complement a ΔzapA strain in vivo and that it affected the interaction between FtsZ and ZapA in vitro.
Collapse
Affiliation(s)
- Tamimount Mohammadi
- Swammerdam Institute for Life Sciences, Molecular Cytology, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Transcriptome and proteome exploration to model translation efficiency and protein stability in Lactococcus lactis. PLoS Comput Biol 2009; 5:e1000606. [PMID: 20019804 PMCID: PMC2787624 DOI: 10.1371/journal.pcbi.1000606] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 11/12/2009] [Indexed: 11/19/2022] Open
Abstract
This genome-scale study analysed the various parameters influencing protein levels in cells. To achieve this goal, the model bacterium Lactococcus lactis was grown at steady state in continuous cultures at different growth rates, and proteomic and transcriptomic data were thoroughly compared. Ratios of mRNA to protein were highly variable among proteins but also, for a given gene, between the different growth conditions. The modeling of cellular processes combined with a data fitting modeling approach allowed both translation efficiencies and degradation rates to be estimated for each protein in each growth condition. Estimated translational efficiencies and degradation rates strongly differed between proteins and were tested for their biological significance through statistical correlations with relevant parameters such as codon or amino acid bias. These efficiencies and degradation rates were not constant in all growth conditions and were inversely proportional to the growth rate, indicating a more efficient translation at low growth rate but an antagonistic higher rate of protein degradation. Estimated protein median half-lives ranged from 23 to 224 min, underlying the importance of protein degradation notably at low growth rates. The regulation of intracellular protein level was analysed through regulatory coefficient calculations, revealing a complex control depending on protein and growth conditions. The modeling approach enabled translational efficiencies and protein degradation rates to be estimated, two biological parameters extremely difficult to determine experimentally and generally lacking in bacteria. This method is generic and can now be extended to other environments and/or other micro-organisms. This work is in the field of systems biology. Via an in-depth comparison of proteomic and transcriptomic data in various culture conditions, our objective was to better understand the regulation of protein levels. We have demonstrated that bacteria exert a tight control on intracellular protein levels, through a multi-level regulation involving translation but also dilution due to growth and protein degradation. We have estimated translational efficiencies and protein degradation rates by modeling. These two biological parameters are extremely difficult to measure experimentally and have not been previously determined in bacteria. We have found that they are growth rate dependent, indicating a fine control of translation and degradation processes. We have worked with the small genome bacterium Lactococcus lactis on a limited number of mRNA-protein couples but keeping in mind that this approach could be extended to other micro-organisms and biological phenomena. We have exhibited that mathematical modeling associated to experimental steady-states cultures is a powerful tool to understand microbial physiology.
Collapse
|
39
|
Zhivkov AM, Gyurova AY. Electric polarizability changes during E. coli culture growth. J Colloid Interface Sci 2009; 339:404-8. [PMID: 19729167 DOI: 10.1016/j.jcis.2009.07.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 07/21/2009] [Accepted: 07/22/2009] [Indexed: 10/20/2022]
Abstract
The electric polarizability of bacteria has two main components: surface-charge dependent (SChD) and Maxwell-Wagner (MW). It has been reported that the low frequency SChD component of Escherichia coli K12 still arise in the frequency range 20kHz - 2MHz, together with the high-frequency MW one. All the previous experiments were carried out with bacterial cultures of E. coli K12 in the stationary phase. In the present work we study electric polarizability during culture growth with the aim of finding out how it is influenced by the physiological state of the cells. The electro-optical method of electric turbidimetry is used, which is based on the change in the optical density as a result of orientation of bacterial cells under the action of an applied electric field. Our results show that until the cell concentration increases exponentially, the polarizability and the cell size change synchronously, so that the polarizability is approximately a quadratic function of the average bacterial length. We explain this with dominance of the SChD component. However, that after the polarizability deceases twofold at insignificant length oscillations and the power of the function decreases to 1.5. The last result is interpreted as an increase in the MW component.
Collapse
Affiliation(s)
- Alexandar M Zhivkov
- Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.11, 1113 Sofia, Bulgaria.
| | | |
Collapse
|
40
|
González-Soltero R, Jiménez-Sánchez A, Botello E. Functional requirements for heat induced genome amplification in Escherichia coli. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
41
|
Prats C, Giró A, Ferrer J, López D, Vives-Rego J. Analysis and IbM simulation of the stages in bacterial lag phase: basis for an updated definition. J Theor Biol 2008; 252:56-68. [PMID: 18329047 DOI: 10.1016/j.jtbi.2008.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 01/22/2008] [Accepted: 01/22/2008] [Indexed: 11/26/2022]
Abstract
The lag phase is the initial phase of a culture that precedes exponential growth and occurs when the conditions of the culture medium differ from the pre-inoculation conditions. It is usually defined by means of cell density because the number of individuals remains approximately constant or slowly increases, and it is quantified with the lag parameter lambda. The lag phase has been studied through mathematical modelling and by means of specific experiments. In recent years, Individual-based Modelling (IbM) has provided helpful insights into lag phase studies. In this paper, the definition of lag phase is thoroughly examined. Evolution of the total biomass and the total number of bacteria during lag phase is tackled separately. The lag phase lasts until the culture reaches a maximum growth rate both in biomass and cell density. Once in the exponential phase, both rates are constant over time and equal to each other. Both evolutions are split into an initial phase and a transition phase, according to their growth rates. A population-level mathematical model is presented to describe the transitional phase in cell density. INDividual DIScrete SIMulation (INDISIM) is used to check the outcomes of this analysis. Simulations allow the separate study of the evolution of cell density and total biomass in a batch culture, they provide a depiction of different observed cases in lag evolution at the individual-cell level, and are used to test the population-level model. The results show that the geometrical lag parameter lambda is not appropriate as a universal definition for the lag phase. Moreover, the lag phase cannot be characterized by a single parameter. For the studied cases, the lag phases of both the total biomass and the population are required to fully characterize the evolution of bacterial cultures. The results presented prove once more that the lag phase is a complex process that requires a more complete definition. This will be possible only after the phenomena governing the population dynamics at an individual level of description, and occurring during the lag and exponential growth phases, are well understood.
Collapse
Affiliation(s)
- Clara Prats
- Escola Superior d'Agricultura de Barcelona, Departament de Física i Enginyeria Nuclear, Campus del Baix Llobregat, Universitat Politècnica de Catalunya, Av. del Canal Olímpic s/n, 08860 Castelldefels, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
42
|
Karczmarek A, Martínez-Arteaga R, Baselga RMA, Alexeeva S, Hansen FG, Vicente M, Nanninga N, den Blaauwen T. DNA and origin region segregation are not affected by the transition from rod to sphere after inhibition of Escherichia coli MreB by A22. Mol Microbiol 2007; 65:51-63. [PMID: 17581120 DOI: 10.1111/j.1365-2958.2007.05777.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The bacterial actin homologue MreB forms a helix underneath the cytoplasmic membrane and was shown to be essential in the morphogenesis of the rod-shaped cells. Additionally, MreB was implicated to be involved in DNA segregation. However, in our hands the mreBCD deletion strain (PA340-678) grew without apparent DNA segregation defect, suggesting that the reported chromosome segregation inhibition could be caused by a temporarily effect of MreB inhibition or depletion. To assess the involvement of MreB in DNA segregation during the transition from rod to sphere, we compared the effect of A22 and the PBP2 inhibitor mecillinam on the percentage of cells with segregated nucleoids and the number of oriC foci in wild-type Escherichia coli cells. Cells became spherical in the same time window during both treatments and we could not detect any difference in the chromosome or oriC segregation between these two treatments. Additionally, flow cytometric analyses showed that A22 and mecillinam treatment gave essentially the same chromosome segregation pattern. We conclude that MreB is not directly involved in DNA segregation of E. coli.
Collapse
Affiliation(s)
- Aneta Karczmarek
- Swammerdam Institute for Life Sciences, Kruislaan 316, 1098 SM Amsterdam, PO Box 194062, 1090 GB Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Luria-Bertani broth supports Escherichia coli growth to an optical density at 600 nm (OD(600)) of 7. Surprisingly, however, steady-state growth ceases at an OD(600) of 0.3, when the growth rate slows down and cell mass decreases. Growth stops for lack of a utilizable carbon source. The carbon sources for E. coli in Luria-Bertani broth are catabolizable amino acids, not sugars.
Collapse
Affiliation(s)
- Guennadi Sezonov
- Unité Biologie Moléculaire du Gène chez les Extrémophiles, Institut Pasteur, 25, rue du Docteur Roux, F-75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
44
|
Pesakhov S, Benisty R, Sikron N, Cohen Z, Gomelsky P, Khozin-Goldberg I, Dagan R, Porat N. Effect of hydrogen peroxide production and the Fenton reaction on membrane composition of Streptococcus pneumoniae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:590-7. [PMID: 17292324 DOI: 10.1016/j.bbamem.2006.12.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 12/10/2006] [Accepted: 12/22/2006] [Indexed: 11/21/2022]
Abstract
As part of its aerobic metabolism, Streptococcus pneumoniae generates high levels of H(2)O(2) by pyruvate oxidase (SpxB), which can be further reduced to yield the damaging hydroxyl radicals via the Fenton reaction. A universal conserved adaptation response observed among bacteria is the adjustment of the membrane fatty acids to various growth conditions. The aim of the present study was to reveal the effect of endogenous reactive oxygen species (ROS) formation on membrane composition of S. pneumoniae. Blocking carbon aerobic metabolism, by growing the bacteria at anaerobic conditions or by the truncation of the spxB gene, resulted in a significant enhancement in fatty acid unsaturation, mainly cis-vaccenic acid. Moreover, reducing the level of OH(.) by growing the bacteria at acidic pH, or in the presence of an OH(.) scavenger (salicylate), resulted in increased fatty acid unsaturation, similar to that obtained under anaerobic conditions. RT-PCR results demonstrated that this change does not originate from a change in mRNA expression level of the fatty acid synthase II genes. We suggest that endogenous ROS play an important regulatory role in membrane adaptation, allowing the survival of this anaerobic organism at aerobic environments of the host.
Collapse
Affiliation(s)
- Stella Pesakhov
- Pediatric Infectious Disease Unit, Soroka University Medical Center, Faculty of Health Sciences P.O. Box 151, Beer Sheva 84101, Israel
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The minimum time (E) required for a new pair of replication origins (oriCs) produced upon initiating a round of replication to be ready to initiate the next round after one cell mass doubling, the 'eclipse', is explained in terms of a minimal distance (l(min)) that the replication forks must move away from oriC before oriCs can 'fire' again. In conditions demanding a scheduled initiation event before the relative distance l(min)/L(0.5) (L being the total chromosome length) is reached, initiation is presumably delayed. Under such circumstances, cell mass at the next initiation would be greater than the usual, constant Mi (cell mass per copy number of oriC) prevailing in steady state of exponential growth. This model can be tested experimentally by extending the replication time C using thymine limitation at short doubling times tau in rich media to reach a relative eclipse E/C < l(min)/L(0.5). It is consistent with results obtained in experiments in which the number of replication 'positions'n (= C/tau) is increased beyond the natural maximum, causing the mean cell size to rise continuously, first by widening, then by lengthening, and finally by splitting its poles. The consequent branching is associated with casting off a small proportion of normal-sized cells and lysing DNA-less cells. Whether or how these phenomena are related to peptidoglycan composition and synthesis are moot questions.
Collapse
Affiliation(s)
- Arieh Zaritsky
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel.
| | | | | |
Collapse
|
46
|
den Blaauwen T, Aarsman MEG, Wheeler LJ, Nanninga N. Pre‐replication assembly ofE. colireplisome components. Mol Microbiol 2006; 62:695-708. [PMID: 16999830 DOI: 10.1111/j.1365-2958.2006.05417.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The localization of SeqA, thymidylate synthase, DnaB (helicase) and the DNA polymerase components alpha and tau, has been studied by immunofluorescence microscopy. The origin has been labelled through GFP-LacI bound near oriC. SeqA was located in the cell centre for one replication factory (RF) and at 1/4 and 3/4 positions in pre-divisional cells harbouring two RFs. The transition of central to 1/4 and 3/4 positions of SeqA appeared abrupt. Labelled thymidylate synthetase was found all over the cell, thus not supporting the notion of a dNTP-synthesizing complex exclusively localized near the RF. More DnaB, alpha and tau foci were found than expected. We have hypothesized that extra foci arise at pre-replication assembly sites, where the number of sites equals the number of origins, i.e. the number of future RFs. A reasonable agreement was found between predicted and found foci. In the case of multifork replication the number of foci appeared consistent with the assumption that three RFs are grouped into a higher-order structure. The RF is probably separate from the foci containing SeqA and the hemi-methylated SeqA binding sites because these foci did not coincide significantly with DnaB as marker of the RF. Co-labelling of DnaB and oriC revealed limited colocalization, indicating that DnaB did not yet become associated with oriC at a pre-replication assembly site. DnaB and tau co-labelled in the cell centre, though not at presumed pre-replication assembly sites. By contrast, alpha and tau co-labelled consistently suggesting that they are already associated before replication starts.
Collapse
Affiliation(s)
- Tanneke den Blaauwen
- Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 316, 1098 SM Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
47
|
Bertsche U, Kast T, Wolf B, Fraipont C, Aarsman MEG, Kannenberg K, von Rechenberg M, Nguyen-Distèche M, den Blaauwen T, Höltje JV, Vollmer W. Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Escherichia coli. Mol Microbiol 2006; 61:675-90. [PMID: 16803586 DOI: 10.1111/j.1365-2958.2006.05280.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The murein (peptidoglycan) sacculus is an essential polymer embedded in the bacterial envelope. The Escherichia coli class B penicillin-binding protein (PBP) 3 is a murein transpeptidase and essential for cell division. In an affinity chromatography experiment, the bifunctional transglycosylase-transpeptidase murein synthase PBP1B was retained by PBP3-sepharose when a membrane fraction of E. coli was applied. The direct protein-protein interaction between purified PBP3 and PBP1B was characterized in vitro by surface plasmon resonance. The interaction was confirmed in vivo employing two different methods: by a bacterial two-hybrid system, and by cross-linking/co-immunoprecipitation. In the bacterial two-hybrid system, a truncated PBP3 comprising the N-terminal 56 amino acids interacted with PBP1B. Both synthases could be cross-linked in vivo in wild-type cells and in cells lacking FtsW or FtsN. PBP1B localized diffusely and in foci at the septation site and also at the side wall. Statistical analysis of the immunofluorescence signals revealed that the localization of PBP1B at the septation site depended on the physical presence of PBP3, but not on the activity of PBP3. These studies have demonstrated, for the first time, a direct interaction between a class B PBP (PBP3) and a class A PBP (PBP1B) in vitro and in vivo, indicating that different murein synthases might act in concert to enlarge the murein sacculus during cell division.
Collapse
Affiliation(s)
- Ute Bertsche
- Mikrobielle Genetik, Universität Tübingen, D-72076 Tübingen, Auf der Morgenstelle 28, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zaritsky A, Woldringh CL, Einav M, Alexeeva S. Use of thymine limitation and thymine starvation to study bacterial physiology and cytology. J Bacteriol 2006; 188:1667-79. [PMID: 16484178 PMCID: PMC1426543 DOI: 10.1128/jb.188.5.1667-1679.2006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Arieh Zaritsky
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva 84105, Israel.
| | | | | | | |
Collapse
|
49
|
Aarsman MEG, Piette A, Fraipont C, Vinkenvleugel TMF, Nguyen-Distèche M, den Blaauwen T. Maturation of the Escherichia coli divisome occurs in two steps. Mol Microbiol 2005; 55:1631-45. [PMID: 15752189 DOI: 10.1111/j.1365-2958.2005.04502.x] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell division proteins FtsZ (FtsA, ZipA, ZapA), FtsE/X, FtsK, FtsQ, FtsL/B, FtsW, PBP3, FtsN and AmiC localize at mid cell in Escherichia coli in an interdependent order as listed. To investigate whether this reflects a time dependent maturation of the divisome, the average cell age at which FtsZ, FtsQ, FtsW, PBP3 and FtsN arrive at their destination was determined by immuno- and GFP-fluorescence microscopy of steady state grown cells at a variety of growth rates. Consistently, a time delay of 14-21 min, depending on the growth rate, between Z-ring formation and the mid cell recruitment of proteins down stream of FtsK was found. We suggest a two-step model for bacterial division in which the Z-ring is involved in the switch from cylindrical to polar peptidoglycan synthesis, whereas the much later localizing cell division proteins are responsible for the modification of the envelope shape into that of two new poles.
Collapse
Affiliation(s)
- Mirjam E G Aarsman
- Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 316, 1098 SM Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
Koppelman CM, Aarsman MEG, Postmus J, Pas E, Muijsers AO, Scheffers DJ, Nanninga N, den Blaauwen T. R174 of Escherichia coli FtsZ is involved in membrane interaction and protofilament bundling, and is essential for cell division. Mol Microbiol 2004; 51:645-57. [PMID: 14731269 DOI: 10.1046/j.1365-2958.2003.03876.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the interaction between FtsZ and the cytoplasmic membrane using inside-out vesicles. Comparison of the trypsin accessibility of purified FtsZ and cytoplasmic membrane-bound FtsZ revealed that the protruding loop between helix 6 and helix 7 is protected from trypsin digestion in the latter. This hydrophobic loop contains an arginine residue at position 174. To investigate the role of R174, this residue was replaced by an aspartic acid, and FtsZ-R174D was fused to green fluorescent protein (GFP). FtsZ-R174D-GFP could localize in an FtsZ and in an FtsZ84(Ts) background at both the permissive and the non-permissive temperature, and it had a reduced affinity for the cytoplasmic membrane compared with wild-type FtsZ. FtsZ-R174D could also localize in an FtsZ depletion strain. However, in contrast to wild-type FtsZ, FtsZ-R174D was not able to complement the ftsZ84 mutation or the depletion strain and induced filamentation. In vitro polymerization experiments showed that FtsZ-R174D is able to polymerize, but that these polymers cannot form bundles in the presence of 10 mM CaCl2. This is the first description of an FtsZ mutant that has reduced affinity for the cytoplasmic membrane and does not support cell division, but is still able to localize. The mutant is able to form protofilaments in vitro but fails to bundle. It suggests that neither membrane interaction nor bundling is a requirement for initiation of cell division.
Collapse
Affiliation(s)
- Cecile-Marie Koppelman
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, Molecular Cytology, University of Amsterdam, Kruislaan 316, 1098 SM Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|