1
|
Philippou H, Stavrou EX. Next generation anticoagulants: a spotlight on the potential role of activated factors XII and XI. Expert Rev Hematol 2023; 16:711-714. [PMID: 37542390 PMCID: PMC11413864 DOI: 10.1080/17474086.2023.2245973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/04/2023] [Indexed: 08/06/2023]
Affiliation(s)
- Helen Philippou
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, West Yorkshire, UK
| | - Evi X Stavrou
- Department of Medicine, Hematology and Oncology Division, CWRU School of Medicine, Cleveland, OH, USA
- Medicine Service, Section of Hematology-Oncology, Louis Stokes Veterans Administration Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Misra T, Tare M, Jha PN. Characterization of functional amyloid curli in biofilm formation of an environmental isolate Enterobacter cloacae SBP-8. Antonie Van Leeuwenhoek 2023:10.1007/s10482-023-01843-y. [PMID: 37243862 DOI: 10.1007/s10482-023-01843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
The biofilm formation by bacteria is a complex process that is strongly mediated by various genetic and environmental factors. Biofilms contribute to disease infestation, especially in chronic infections. It is, therefore important to understand the factors affecting biofilm formation. This study reports the role of a functional amyloid curli in biofilm formation at various abiotic surfaces, including medical devices, by an environmental isolate of Enterobacter cloacae (SBP-8) which has been known for its pathogenic potential. A knockout mutant of csgA, the gene encoding the major structural unit of curli, was created to study the effect of curli on biofilm formation by E. cloacae SBP-8. Our findings confirm the production of curli at 25 °C and 37 °C in the wild-type strain. We further investigated the role of curli in the attachment of E. cloacae SBP-8 to glass, enteral feeding tube, and foley latex catheter. Contrary to the previous studies reporting the curli production below 30 °C in the majority of biofilm-forming bacterial species, we observed its production in E. cloacae SBP-8 at 37 °C. The formation of more intense biofilm in wild-type strain on various surfaces compared to curli-deficient strain (ΔcsgA) at both 25 °C and 37 °C suggested a prominent role of curli in biofilm formation. Further, electron and confocal microscopy studies demonstrated the formation of diffused monolayers of microbial cells on the abiotic surfaces by ΔcsgA strain as compared to the thick biofilm by respective wild-type strain, indicating the involvement of curli in biofilm formation by E. cloacae SBP-8. Overall, our findings provide insight into biofilm formation mediated by curli in E. cloacae SBP-8. Further, we show that it can be expressed at a physiological temperature on all surfaces, thereby indicating the potential role of curli in pathogenesis.
Collapse
Affiliation(s)
- Tripti Misra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| | - Meghana Tare
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India.
| | - Prabhat Nath Jha
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
3
|
Sahoo A, Swain SS, Behera A, Sahoo G, Mahapatra PK, Panda SK. Antimicrobial Peptides Derived From Insects Offer a Novel Therapeutic Option to Combat Biofilm: A Review. Front Microbiol 2021; 12:661195. [PMID: 34248873 PMCID: PMC8265172 DOI: 10.3389/fmicb.2021.661195] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Biofilms form a complex layer with defined structures, that attach on biotic or abiotic surfaces, are tough to eradicate and tend to cause some resistance against most antibiotics. Several studies confirmed that biofilm-producing bacteria exhibit higher resistance compared to the planktonic form of the same species. Antibiotic resistance factors are well understood in planktonic bacteria which is not so in case of biofilm producing forms. This may be due to the lack of available drugs with known resistance mechanisms for biofilms. Existing antibiotics cannot eradicate most biofilms, especially of ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species). Insects produce complex and diverse set of chemicals for survival and defense. Antimicrobial peptides (AMPs), produced by most insects, generally have a broad spectrum of activity and the potential to bypass the resistance mechanisms of classical antibiotics. Besides, AMPs may well act synergistically with classical antibiotics for a double-pronged attack on infections. Thus, AMPs could be promising alternatives to overcome medically important biofilms, decrease the possibility of acquired resistance and treatment of multidrug-resistant pathogens including ESKAPE. The present review focuses on insect-derived AMPs with special reference to anti-biofilm-based strategies. It covers the AMP composition, pathways and mechanisms of action, the formation of biofilms, impact of biofilms on human diseases, current strategies as well as therapeutic options to combat biofilm with antimicrobial peptides from insects. In addition, the review also illustrates the importance of bioinformatics tools and molecular docking studies to boost the importance of select bioactive peptides those can be developed as drugs, as well as suggestions for further basic and clinical research.
Collapse
Affiliation(s)
- Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences, SUM Hospital, Siksha O Anusandhan University, Bhubaneswar, India
| | - Shasank Sekhar Swain
- Division of Microbiology & NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, India
| | - Ayusman Behera
- Department of Zoology, Maharaja Sriram Chandra Bhanja Deo University, Baripada, India
| | - Gunanidhi Sahoo
- Department of Zoology, Utkal University, Vani Vihar, Bhubaneswar, India
| | | | - Sujogya Kumar Panda
- Centre of Environment, Climate Change and Public Health, RUSA 2.0, Utkal University, Vani Vihar, Bhubaneswar, India
| |
Collapse
|
4
|
Ageorges V, Monteiro R, Leroy S, Burgess CM, Pizza M, Chaucheyras-Durand F, Desvaux M. Molecular determinants of surface colonisation in diarrhoeagenic Escherichia coli (DEC): from bacterial adhesion to biofilm formation. FEMS Microbiol Rev 2021; 44:314-350. [PMID: 32239203 DOI: 10.1093/femsre/fuaa008] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Escherichia coli is primarily known as a commensal colonising the gastrointestinal tract of infants very early in life but some strains being responsible for diarrhoea, which can be especially severe in young children. Intestinal pathogenic E. coli include six pathotypes of diarrhoeagenic E. coli (DEC), namely, the (i) enterotoxigenic E. coli, (ii) enteroaggregative E. coli, (iii) enteropathogenic E. coli, (iv) enterohemorragic E. coli, (v) enteroinvasive E. coli and (vi) diffusely adherent E. coli. Prior to human infection, DEC can be found in natural environments, animal reservoirs, food processing environments and contaminated food matrices. From an ecophysiological point of view, DEC thus deal with very different biotopes and biocoenoses all along the food chain. In this context, this review focuses on the wide range of surface molecular determinants acting as surface colonisation factors (SCFs) in DEC. In the first instance, SCFs can be broadly discriminated into (i) extracellular polysaccharides, (ii) extracellular DNA and (iii) surface proteins. Surface proteins constitute the most diverse group of SCFs broadly discriminated into (i) monomeric SCFs, such as autotransporter (AT) adhesins, inverted ATs, heat-resistant agglutinins or some moonlighting proteins, (ii) oligomeric SCFs, namely, the trimeric ATs and (iii) supramolecular SCFs, including flagella and numerous pili, e.g. the injectisome, type 4 pili, curli chaperone-usher pili or conjugative pili. This review also details the gene regulatory network of these numerous SCFs at the various stages as it occurs from pre-transcriptional to post-translocational levels, which remains to be fully elucidated in many cases.
Collapse
Affiliation(s)
- Valentin Ageorges
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Ricardo Monteiro
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Sabine Leroy
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | - Frédérique Chaucheyras-Durand
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,Lallemand Animal Nutrition SAS, F-31702 Blagnac Cedex, France
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| |
Collapse
|
5
|
Köhler J, Maletzki C, Koczan D, Frank M, Springer A, Steffen C, Revenko AS, MacLeod AR, Mikkat S, Kreikemeyer B, Oehmcke-Hecht S. Kininogen supports inflammation and bacterial spreading during Streptococccus Pyogenes Sepsis. EBioMedicine 2020; 58:102908. [PMID: 32707450 PMCID: PMC7381504 DOI: 10.1016/j.ebiom.2020.102908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/24/2020] [Accepted: 07/08/2020] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND High-molecular-weight kininogen is a cofactor of the human contact system, an inflammatory response mechanism that is activated during sepsis. It has been shown that high-molecular-weight kininogen contributes to endotoxemia, but is not critical for local host defense during pneumonia by Gram-negative bacteria. However, some important pathogens, such as Streptococcus pyogenes, can cleave kininogen by contact system activation. Whether kininogen causally affects antibacterial host defense in S. pyogenes infection, remains unknown. METHODS Kininogen concentration was determined in course plasma samples from septic patients. mRNA expression and degradation of kininogen was determined in liver or plasma of septic mice. Kininogen was depleted in mice by treatment with selective kininogen directed antisense oligonucleotides (ASOs) or a scrambled control ASO for 3 weeks prior to infection. 24 h after infection, infection parameters were determined. FINDINGS Data from human and mice samples indicate that kininogen is a positive acute phase protein. Lower kininogen concentration in plasma correlate with a higher APACHE II score in septic patients. We show that ASO-mediated depletion of kininogen in mice indeed restrains streptococcal spreading, reduces levels of proinflammatory cytokines such as IL-1β and IFNγ, but increased intravascular tissue factor and fibrin deposition in kidneys of septic animals. INTERPRETATION Mechanistically, kininogen depletion results in reduced plasma kallikrein levels and, during sepsis, in increased intravascular tissue factor that may reinforce immunothrombosis, and thus reduce streptococcal spreading. These novel findings point to an anticoagulant and profibrinolytic role of kininogens during streptococcal sepsis. FUNDING Full details are provided in the Acknowledgements section.
Collapse
Affiliation(s)
- Juliane Köhler
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Claudia Maletzki
- Department of Internal Medicine, Medical Clinic III - Hematology, Oncology, Palliative Care, Rostock University Medical Center, Rostock, Germany
| | - Dirk Koczan
- Center for Medical Research - Core Facility Micro-Array-Technology, Rostock University Medical Center, Rostock, Germany
| | - Marcus Frank
- Medical Biology and Electron Microscopy Centre, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, Rostock University, Rostock, Germany
| | - Armin Springer
- Medical Biology and Electron Microscopy Centre, Rostock University Medical Center, Rostock, Germany
| | - Carolin Steffen
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Alexey S Revenko
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92008, USA
| | - A Robert MacLeod
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA 92008, USA
| | - Stefan Mikkat
- Core Facility Proteome Analysis, Rostock University Medical Center, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
6
|
Genomic and Proteomic Characterization of the Extended-Spectrum β-Lactamase (ESBL)-Producing Escherichia coli Strain CCUG 73778: A Virulent, Nosocomial Outbreak Strain. Microorganisms 2020; 8:microorganisms8060893. [PMID: 32545759 PMCID: PMC7355845 DOI: 10.3390/microorganisms8060893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/23/2023] Open
Abstract
Escherichia coli strain CCUG 78773 is a virulent extended-spectrum β-lactamase (ESBL)-producing ST131-O25b type strain isolated during an outbreak at a regional university hospital. The complete and closed genome sequence, comprising one chromosome (5,076,638 bp) and six plasmids (1718–161,372 bp), is presented. Characterization of the genomic features detected the presence of 59 potential antibiotic resistance factors, including three prevalent β-lactamases. Several virulence associated elements were determined, mainly related with adherence, invasion, biofilm formation and antiphagocytosis. Twenty-eight putative type II toxin-antitoxin systems were found. The plasmids were characterized, through in silico analyses, confirming the two β-lactamase-encoding plasmids to be conjugative, while the remaining plasmids were mobilizable. BLAST analysis of the plasmid sequences showed high similarity with plasmids in E. coli from around the world. Expression of many of the described virulence and AMR factors was confirmed by proteomic analyses, using bottom-up, liquid chromatography-tandem mass spectrometry (LC-MS/MS). The detailed characterization of E. coli strain CCUG 78773 provides a reference for the relevance of genetic elements, as well as the characterization of antibiotic resistance and the spread of bacteria harboring ESBL genes in the hospital environment.
Collapse
|
7
|
Ding C, Scicluna BP, Stroo I, Yang J, Roelofs JJ, de Boer OJ, de Vos AF, Nürnberg P, Revenko AS, Crosby J, Van't Veer C, van der Poll T. Prekallikrein inhibits innate immune signaling in the lung and impairs host defense during pneumosepsis in mice. J Pathol 2019; 250:95-106. [PMID: 31595971 PMCID: PMC6972537 DOI: 10.1002/path.5354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
Prekallikrein (PKK, also known as Fletcher factor and encoded by the gene KLKB1 in humans) is a component of the contact system. Activation of the contact system has been implicated in lethality in fulminant sepsis models. Pneumonia is the most frequent cause of sepsis. We sought to determine the role of PKK in host defense during pneumosepsis. To this end, mice were infected with the common human pathogen Klebsiella pneumoniae via the airways, causing an initially localized infection of the lungs with subsequent bacterial dissemination and sepsis. Mice were treated with a selective PKK‐directed antisense oligonucleotide (ASO) or a scrambled control ASO for 3 weeks prior to infection. Host response readouts were determined at 12 or 36 h post‐infection, including genome‐wide messenger RNA profiling of lungs, or mice were followed for survival. PKK ASO treatment inhibited constitutive hepatic Klkb1 mRNA expression by >80% and almost completely abolished plasma PKK activity. Klkb1 mRNA could not be detected in lungs. Pneumonia was associated with a progressive decline in PKK expression in mice treated with control ASO. PKK ASO administration was associated with a delayed mortality, reduced bacterial burdens, and diminished distant organ injury. While PKK depletion did not influence lung pathology or neutrophil recruitment, it was associated with an upregulation of multiple innate immune signaling pathways in the lungs already prior to infection. Activation of the contact system could not be detected, either during infection in vivo or at the surface of Klebsiella in vitro. These data suggest that circulating PKK confines pro‐inflammatory signaling in the lung by a mechanism that does not involve contact system activation, which in the case of respiratory tract infection may impede early protective innate immunity. © 2019 Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Chao Ding
- Department of Gastric Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, PR China.,Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Brendon P Scicluna
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ingrid Stroo
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jack Yang
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Joris Jth Roelofs
- Department of Pathology, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Onno J de Boer
- Department of Pathology, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex F de Vos
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | | | - Jeff Crosby
- Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Cornelis Van't Veer
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Qvortrup K, Hultqvist LD, Nilsson M, Jakobsen TH, Jansen CU, Uhd J, Andersen JB, Nielsen TE, Givskov M, Tolker-Nielsen T. Small Molecule Anti-biofilm Agents Developed on the Basis of Mechanistic Understanding of Biofilm Formation. Front Chem 2019; 7:742. [PMID: 31737611 PMCID: PMC6838868 DOI: 10.3389/fchem.2019.00742] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/17/2019] [Indexed: 01/12/2023] Open
Abstract
Microbial biofilms are the cause of persistent infections associated with various medical implants and distinct body sites such as the urinary tract, lungs, and wounds. Compared with their free living counterparts, bacteria in biofilms display a highly increased resistance to immune system activities and antibiotic treatment. Therefore, biofilm infections are difficult or impossible to treat with our current armory of antibiotics. The challenges associated with biofilm infections have urged researchers to pursue a better understanding of the molecular mechanisms that are involved in the formation and dispersal of biofilms, and this has led to the identification of several steps that could be targeted in order to eradicate these challenging infections. Here we describe mechanisms that are involved in the regulation of biofilm development in Pseudomonas aeruginosa, Escherichia coli, and Acinetobacter baumannii, and provide examples of chemical compounds that have been developed to specifically inhibit these processes. These compounds include (i) pilicides and curlicides which inhibit the initial steps of biofilm formation by E. coli; (ii) compounds that interfere with c-di-GMP signaling in P. aeruginosa and E. coli; and (iii) compounds that inhibit quorum-sensing in P. aeruginosa and A. baumannii. In cases where compound series have a defined molecular target, we focus on elucidating structure activity relationship (SAR) trends within the particular compound series.
Collapse
Affiliation(s)
- Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Louise Dahl Hultqvist
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Nilsson
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tim Holm Jakobsen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Jesper Uhd
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Jens Bo Andersen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Nielsen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Michael Givskov
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Tim Tolker-Nielsen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Renné T, Stavrou EX. Roles of Factor XII in Innate Immunity. Front Immunol 2019; 10:2011. [PMID: 31507606 PMCID: PMC6713930 DOI: 10.3389/fimmu.2019.02011] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Factor XII (FXII) is the zymogen of serine protease, factor XIIa (FXIIa). FXIIa enzymatic activities have been extensively studied and FXIIa inhibition is emerging as a promising target to treat or prevent thrombosis without creating a hemostatic defect. FXII and plasma prekallikrein reciprocally activate each other and result in liberation of bradykinin. Due to its unique structure among coagulation factors, FXII exerts mitogenic activity in endothelial and smooth muscle cells, indicating that zymogen FXII has activities independent of its protease function. A growing body of evidence has revealed that both FXII and FXIIa upregulate neutrophil functions, contribute to macrophage polarization and induce T-cell differentiation. In vivo, these signaling activities contribute to host defense against pathogens, mediate the development of neuroinflammation, influence wound repair and may facilitate cancer maintenance and progression. Here, we review the roles of FXII in innate immunity as they relate to non-sterile and sterile immune responses.
Collapse
Affiliation(s)
- Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Evi X Stavrou
- Section of Hematology-Oncology, Department of Medicine, Louis Stokes Cleveland Veterans Administration Medical Center, VA Northeast Ohio Healthcare System, Cleveland, OH, United States.,Hematology and Oncology Division, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
10
|
Andreozzi E, Gunther NW, Reichenberger ER, Rotundo L, Cottrell BJ, Nuñez A, Uhlich GA. Pch Genes Control Biofilm and Cell Adhesion in a Clinical Serotype O157:H7 Isolate. Front Microbiol 2018; 9:2829. [PMID: 30532745 PMCID: PMC6265319 DOI: 10.3389/fmicb.2018.02829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/05/2018] [Indexed: 01/06/2023] Open
Abstract
In a previous study, induction of the Escherichia coli serotype O157:H7 SOS response decreased csgD expression in the clinical isolate PA20 at 30°C but strongly induced genes in the horizontally transferred-DNA regions (HTR), including many known virulence regulators. To determine the role of HTR regulators in the control of csgD and curli, specific regulators were plasmid-expressed in the wild-type and mutant strains of PA20 and its biofilm-forming derivative, 20R2R. At 30°C, plasmid over-expression of the O157:H7 group 3 perC homolog, pchE, strongly repressed PA20 csgD transcription (>7-fold) while the group 1 homologs, pchA and pchB, resulted in smaller reductions (<2.5-fold). However, SOS induction decreased rather than increased pchE expression (>6-fold) making group 1 pch, which are enhanced by the SOS response, the likely SOS-induced csgD repressors. Plasmid-based pchE over-expression also reduced 20R2R biofilm formation (>6-fold) and the curli-dependent, Congo red affinity of both PA20 and 20R2R. However, to properly appreciate the regulatory direction, expression patterns, and environmental consequences of these and other CsgD-controlled functions, a better understanding of natural pchE regulation will be required. The effects of HTR regulators on PA20 and 20R2R adhesion to HEp-2 cell at host temperature were also studied. Under conditions where prophage genes were not induced, curli, rather than espA, contributed to host cell adhesion in strain 20R2R. High levels of pchE expression in trans reduced curli-dependent cell adherence (>2-fold) to both 20R2R and the clinical isolate PA20, providing a host-adapting adhesion control mechanism. Expression of pchE was also repressed by induction of the SOS response at 37°C, providing a mechanism by which curli expression might complement EspA-dependent intimate adhesion initiated by the group1 pch homologs. This study has increased our understanding of the O157 pch genes at both host and environment temperatures, identifying pchE as a strong regulator of csgD and CsgD-dependent properties.
Collapse
Affiliation(s)
- Elisa Andreozzi
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Nereus W Gunther
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Erin R Reichenberger
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Luca Rotundo
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Bryan J Cottrell
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Alberto Nuñez
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| | - Gaylen A Uhlich
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA, United States
| |
Collapse
|
11
|
Berkestedt I, Andersson P, Herwald H, Valik JK, Sörensen O, Bodelsson M. Early depletion of contact system in patients with sepsis: a prospective matched control observational study. APMIS 2018; 126:892-898. [PMID: 30397964 DOI: 10.1111/apm.12898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 09/25/2018] [Indexed: 01/24/2023]
Abstract
Activation of the contact system generates bradykinin from high-molecular-weight kininogen and has been suggested to participate in the pathophysiology of sepsis. To test this, we prospectively measured bradykinin and high-molecular-weight kininogen levels in a cohort of sepsis patients requiring intensive care. From 29 patients meeting criteria for sepsis or septic shock according to Sepsis-3, blood was sampled within 24 h and on the fourth day following admittance to intensive care. Patients planned for neurosurgery served as matched controls. Sequential organ failure assessment score and 90-day mortality was registered. Bradykinin levels (median [interquartile range]) were lower in sepsis patients (79 [62-172] pg/ml) compared to controls (130 [86-255] pg/ml, p < 0.025) and did not correlate with mortality or severity of circulatory derangement. High-molecular-weight kininogen levels were lower in sepsis patients (1.6 [0.8-4.8] densitometry units) compared to controls (4.4 [2.9-7.7] densitometry units, p < 0.001), suggesting previous contact system activation. High-molecular-weight kininogen levels were lower in non-survivors than survivors (p = 0.003) and negatively correlated to severity of circulatory derangement. We conclude that a role for bradykinin in later stages of severe sepsis must be challenged. Low high-molecular-weight kininogen concentrations suggest that the decrease in bradykinin is due to substrate depletion.
Collapse
Affiliation(s)
- Ingrid Berkestedt
- Department of Clinical Sciences Lund, Anaesthesiology and Intensive Care, Lund University, Skane University Hospital, Lund, Sweden
| | - Pia Andersson
- Department ofInfection Medicine, Lund University, Skane University Hospital, Lund, Sweden
| | - Heiko Herwald
- Department ofInfection Medicine, Lund University, Skane University Hospital, Lund, Sweden
| | - John Karlsson Valik
- Infectious Diseases Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Ola Sörensen
- Department of Clinical Sciences Lund, Anaesthesiology and Intensive Care, Lund University, Skane University Hospital, Lund, Sweden
| | - Mikael Bodelsson
- Department of Clinical Sciences Lund, Anaesthesiology and Intensive Care, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
12
|
Curli-Containing Enteric Biofilms Inside and Out: Matrix Composition, Immune Recognition, and Disease Implications. Microbiol Mol Biol Rev 2018; 82:82/4/e00028-18. [PMID: 30305312 DOI: 10.1128/mmbr.00028-18] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Biofilms of enteric bacteria are highly complex, with multiple components that interact to fortify the biofilm matrix. Within biofilms of enteric bacteria such as Escherichia coli and Salmonella species, the main component of the biofilm is amyloid curli. Other constituents include cellulose, extracellular DNA, O antigen, and various surface proteins, including BapA. Only recently, the roles of these components in the formation of the enteric biofilm individually and in consortium have been evaluated. In addition to enhancing the stability and strength of the matrix, the components of the enteric biofilm influence bacterial virulence and transmission. Most notably, certain components of the matrix are recognized as pathogen-associated molecular patterns. Systemic recognition of enteric biofilms leads to the activation of several proinflammatory innate immune receptors, including the Toll-like receptor 2 (TLR2)/TLR1/CD14 heterocomplex, TLR9, and NLRP3. In the model of Salmonella enterica serovar Typhimurium, the immune response to curli is site specific. Although a proinflammatory response is generated upon systemic presentation of curli, oral administration of curli ameliorates the damaged intestinal epithelial barrier and reduces the severity of colitis. Furthermore, curli (and extracellular DNA) of enteric biofilms potentiate the autoimmune disease systemic lupus erythematosus (SLE) and promote the fibrillization of the pathogenic amyloid α-synuclein, which is implicated in Parkinson's disease. Homologues of curli-encoding genes are found in four additional bacterial phyla, suggesting that the biomedical implications involved with enteric biofilms are applicable to numerous bacterial species.
Collapse
|
13
|
Van Gerven N, Van der Verren SE, Reiter DM, Remaut H. The Role of Functional Amyloids in Bacterial Virulence. J Mol Biol 2018; 430:3657-3684. [PMID: 30009771 PMCID: PMC6173799 DOI: 10.1016/j.jmb.2018.07.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
Amyloid fibrils are best known as a product of human and animal protein misfolding disorders, where amyloid formation is associated with cytotoxicity and disease. It is now evident that for some proteins, the amyloid state constitutes the native structure and serves a functional role. These functional amyloids are proving widespread in bacteria and fungi, fulfilling diverse functions as structural components in biofilms or spore coats, as toxins and surface-active fibers, as epigenetic material, peptide reservoirs or adhesins mediating binding to and internalization into host cells. In this review, we will focus on the role of functional amyloids in bacterial pathogenesis. The role of functional amyloids as virulence factor is diverse but mostly indirect. Nevertheless, functional amyloid pathways deserve consideration for the acute and long-term effects of the infectious disease process and may form valid antimicrobial targets. Functional amyloids are widespread in bacteria, pathogenic and non-pathogenic. Bacterial biofilms most commonly function as structural support in the extracellular matrix of biofilms or spore coats, and in cell–cell and cell-surface adherence. The amyloid state can be the sole structured and functional state, or can be facultative, as a secondary state to folded monomeric subunits. Bacterial amyloids can enhance virulence by increasing persistence, cell adherence and invasion, intracellular survival, and pathogen spread by increased environmental survival. Bacterial amyloids may indirectly inflict disease by triggering inflammation, contact phase activation and possibly induce or aggravate human pathological aggregation disorders.
Collapse
Affiliation(s)
- Nani Van Gerven
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Sander E Van der Verren
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Dirk M Reiter
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium.
| |
Collapse
|
14
|
Amyloid by Design: Intrinsic Regulation of Microbial Amyloid Assembly. J Mol Biol 2018; 430:3631-3641. [PMID: 30017921 DOI: 10.1016/j.jmb.2018.07.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
Abstract
The term amyloid has historically been used to describe fibrillar aggregates formed as the result of protein misfolding and that are associated with a range of diseases broadly termed amyloidoses. The discovery of "functional amyloids" expanded the amyloid umbrella to encompass aggregates structurally similar to disease-associated amyloids but that engage in a variety of biologically useful tasks without incurring toxicity. The mechanisms by which functional amyloid systems ensure nontoxic assembly has provided insights into potential therapeutic strategies for treating amyloidoses. Some of the most-studied functional amyloids are ones produced by bacteria. Curli amyloids are extracellular fibers made by enteric bacteria that function to encase and protect bacterial communities during biofilm formation. Here we review recent studies highlighting microbial functional amyloid assembly systems that are tailored to enable the assembly of non-toxic amyloid aggregates.
Collapse
|
15
|
Hovingh ES, de Maat S, Cloherty APM, Johnson S, Pinelli E, Maas C, Jongerius I. Virulence Associated Gene 8 of Bordetella pertussis Enhances Contact System Activity by Inhibiting the Regulatory Function of Complement Regulator C1 Inhibitor. Front Immunol 2018; 9:1172. [PMID: 29915576 PMCID: PMC5994690 DOI: 10.3389/fimmu.2018.01172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022] Open
Abstract
Bordetella pertussis is a Gram-negative bacterium and the causative agent of whooping cough. Whooping cough is currently re-emerging worldwide and, therefore, still poses a continuous global health threat. B. pertussis expresses several virulence factors that play a role in evading the human immune response. One of these virulence factors is virulence associated gene 8 (Vag8). Vag8 is a complement evasion molecule that mediates its effects by binding to the complement regulator C1 inhibitor (C1-INH). This regulatory protein is a fluid phase serine protease that controls proenzyme activation and enzyme activity of not only the complement system but also the contact system. Activation of the contact system results in the generation of bradykinin, a pro-inflammatory peptide. Here, the activation of the contact system by B. pertussis was explored. We demonstrate that recombinant as well as endogenous Vag8 enhanced contact system activity by binding C1-INH and attenuating its inhibitory function. Moreover, we show that B. pertussis itself is able to activate the contact system. This activation was dependent on Vag8 production as a Vag8 knockout B. pertussis strain was unable to activate the contact system. These findings show a previously overlooked interaction between the contact system and the respiratory pathogen B. pertussis. Activation of the contact system by B. pertussis may contribute to its pathogenicity and virulence.
Collapse
Affiliation(s)
- Elise S Hovingh
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Steven de Maat
- Department of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Alexandra P M Cloherty
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Elena Pinelli
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Coen Maas
- Department of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ilse Jongerius
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
16
|
Pathak M, Kaira BG, Slater A, Emsley J. Cell Receptor and Cofactor Interactions of the Contact Activation System and Factor XI. Front Med (Lausanne) 2018; 5:66. [PMID: 29619369 PMCID: PMC5871670 DOI: 10.3389/fmed.2018.00066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/26/2018] [Indexed: 01/02/2023] Open
Abstract
The contact activation system (CAS) or contact pathway is central to the crosstalk between coagulation and inflammation and contributes to diverse disorders affecting the cardiovascular system. CAS initiation contributes to thrombosis but is not required for hemostasis and can trigger plasma coagulation via the intrinsic pathway [through factor XI (FXI)] and inflammation via bradykinin release. Activation of factor XII (FXII) is the principal starting point for the cascade of proteolytic cleavages involving FXI, prekallikrein (PK), and cofactor high molecular weight kininogen (HK) but the precise location and cell receptor interactions controlling these reactions remains unclear. FXII, PK, FXI, and HK utilize key protein domains to mediate binding interactions to cognate cell receptors and diverse ligands, which regulates protease activation. The assembly of contact factors has been demonstrated on the cell membranes of a variety of cell types and microorganisms. The cooperation between the contact factors and endothelial cells, platelets, and leukocytes contributes to pathways driving thrombosis yet the basis of these interactions and the relationship with activation of the contact factors remains undefined. This review focuses on cell receptor interactions of contact proteins and FXI to develop a cell-based model for the regulation of contact activation.
Collapse
Affiliation(s)
- Monika Pathak
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Bubacarr Gibril Kaira
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Alexandre Slater
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Jonas Emsley
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
17
|
Abstract
The name human contact system is related to its mode of action, as "contact" with artificial negatively charged surfaces triggers its activation. Today, it is generally believed that the contact system is an inflammatory response mechanism not only against artificial material but also against misfolded proteins and foreign organisms. Upon activation, the contact system is involved in at least two distinct (patho)physiologic processes:i. the trigger of the intrinsic coagulation via factor XI and ii. the cleavage of high molecular weight kininogen with release of bradykinin and antimicrobial peptides (AMPs). Bradykinin is involved in the regulation of inflammatory processes, vascular permeability, and blood pressure. Due to the release of AMPs, the contact system is regarded as a branch of the innate immune defense against microorganisms. There is an increasing list of pathogens that interact with contact factors, in addition to bacteria also fungi and viruses bind and activate the system. In spite of that, pathogens have developed their own mechanisms to activate the contact system, resulting in manipulation of this host immune response. In this up-to-date review, we summarize present research on the interaction of pathogens with the human contact system, focusing particularly on bacterial and viral mechanisms that trigger inflammation via contact system activation.
Collapse
Affiliation(s)
- Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| | - Juliane Köhler
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
18
|
Jukema BN, de Maat S, Maas C. Processing of Factor XII during Inflammatory Reactions. Front Med (Lausanne) 2016; 3:52. [PMID: 27867935 PMCID: PMC5095611 DOI: 10.3389/fmed.2016.00052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 10/21/2016] [Indexed: 01/18/2023] Open
Abstract
The contact system was originally identified as an obsolete part of the coagulation system, but it has been repeatedly implicated in inflammatory states, such as infection, as well as in allergic- and chronic inflammatory disease. Under these conditions, there is surprisingly little evidence that factor XII (FXII) acts as a coagulation factor, and its activity appears to be mainly directed toward activation of the kallikrein–kinin system. The contact system factors interact with pathogens as well as cells of the (innate) immune system on several levels. Among others, these cells may provide negatively charged surfaces that contribute to contact activation as well as release enzymes that feed into this system. Furthermore, cellular receptors have been identified that bind contact factors at sites of inflammation. Based on the accumulated evidence, we propose a model for enzymatic crosstalk between inflammatory cells and the plasma contact system. During these reactions, FXII is enzymatically cleaved by non-contact system enzymes. This generates unactivated FXII fragments that can subsequently be rapidly activated in the fluid phase. The resulting enzyme lacks procoagulant properties, but retains its pro-inflammatory characteristic as a prekallikrein activator.
Collapse
Affiliation(s)
- Bernard Nico Jukema
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht , Utrecht , Netherlands
| | - Steven de Maat
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht , Utrecht , Netherlands
| | - Coen Maas
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht , Utrecht , Netherlands
| |
Collapse
|
19
|
Shariat-Madar Z, Schmaier AH. Review: The plasma kallikrein/kinin and renin angiotensin systems in blood pressure regulation in sepsis. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519040100010101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The hemodynamics of septic shock after endotoxinemiai s influenced by the plasma kallikrein/kinin and the renin angiotensin systems. In recent years, new information has improved understanding of the protein/biologically active peptide interactions between these two systems. The plasma kallikrein/kinin system, more commonly known as the contact system, has undergone a re-evaluation as to how it assembles on cell membranes for physiological and pathophysiological activation and as to its role in Gram-negative sepsis. It has been proposed that it counterbalances the plasma renin angiotensin system. Furthermore, more knowledge about the renin angiotensin system has become available on how it either opposes the actions of the kallikrein/kinin system or, in some cases, summates with it. Understanding the interactions between these two systems may lead to development of better pharmacological treatments for endotoxin-induced shock.
Collapse
Affiliation(s)
- Zia Shariat-Madar
- Departments of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Alvin H. Schmaier
- Departments of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA, , Department of Pathology, Hematology/Oncology Division, The University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
Deicke C, Chakrakodi B, Pils MC, Dickneite G, Johansson L, Medina E, Loof TG. Local activation of coagulation factor XIII reduces systemic complications and improves the survival of mice after Streptococcus pyogenes M1 skin infection. Int J Med Microbiol 2016; 306:572-579. [PMID: 27338836 DOI: 10.1016/j.ijmm.2016.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 05/31/2016] [Accepted: 06/07/2016] [Indexed: 01/28/2023] Open
Abstract
Coagulation is a mechanism for wound healing after injury. Several recent studies delineate an additional role of the intrinsic pathway of coagulation, also known as the contact system, in the early innate immune response against bacterial infections. In this study, we investigated the role of factor XIII (FXIII), which is activated upon coagulation induction, during Streptococcus pyogenes-mediated skin and soft tissue infections. FXIII has previously been shown to be responsible for the immobilization of bacteria within a fibrin network which may prevent systemic bacterial dissemination. In order to investigate if the FXIII-mediated entrapment of S. pyogenes also influences the disease outcome we used a murine S. pyogenes M1 skin and soft tissue infection model. Here, we demonstrate that a lack of FXIII leads to prolonged clotting times, increased signs of inflammation, and elevated bacterial dissemination. Moreover, FXIII-deficient mice show an impaired survival when compared with wildtype animals. Additionally, local reconstitution of FXIII-deficient mice with a human FXIII-concentrate (Fibrogammin®P) could reduce the systemic complications, suggesting a protective role for FXIII during early S. pyogenes skin infection. FXIII therefore might be a possible therapeutically application to support the early innate immune response during skin infections caused by S. pyogenes.
Collapse
Affiliation(s)
- Christin Deicke
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Bhavya Chakrakodi
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Marina C Pils
- Mouse-pathology, Animal Experimental Unit, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Gerhard Dickneite
- Department of Preclinical Research and Development, CSL Behring GmbH, Emil-von-Behring-Strasse 76, D-35041 Marburg, Germany
| | - Linda Johansson
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Torsten G Loof
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany.
| |
Collapse
|
21
|
Contributions of EspA Filaments and Curli Fimbriae in Cellular Adherence and Biofilm Formation of Enterohemorrhagic Escherichia coli O157:H7. PLoS One 2016; 11:e0149745. [PMID: 26900701 PMCID: PMC4764202 DOI: 10.1371/journal.pone.0149745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/04/2016] [Indexed: 12/14/2022] Open
Abstract
In Escherichia coli O157:H7 (O157), the filamentous structure of the type III secretion system is produced from the polymerization of the EspA protein. EspA filaments are essential for O157 adherence to epithelial cells. In previous studies, we demonstrated that O157 hha deletion mutants showed increased adherence to HEp-2 cells and produced abundant biofilms. Transcriptional analysis revealed increased expression of espA as well as the csgA gene, which encodes curli fimbriae that are essential for biofilm formation. In the present study, we constructed hha espA, hha csgA, and hha csgA espA deletion mutants to determine the relative importance of EspA and CsgA in O157 adherence to HEp-2 cells and biofilm formation. In vitro adherence assays, conducted at 37°C in a tissue culture medium containing 0.1% glucose, showed that HEp-2 cell adherence required EspA because hha espA and hha csgA espA mutants adhered to HEp-2 cells at higher levels only when complemented with an espA-expressing plasmid. Biofilm assays performed at 28°C in a medium lacking glucose showed dependency of biofilm formation on CsgA; however EspA was not produced under these conditions. Despite production of detectable levels of EspA at 37°C in media supplemented with 0.1% glucose, the biofilm formation occurred independent of EspA. These results indicate dependency of O157 adherence to epithelial cells on EspA filaments, while CsgA promoted biofilm formation under conditions mimicking those found in the environment (low temperature with nutrient limitations) and in the digestive tract of an host animal (higher temperature and low levels of glucose).
Collapse
|
22
|
García-Gareta E, Davidson C, Levin A, Coathup MJ, Blunn GW. Biofilm formation in total hip arthroplasty: prevention and treatment. RSC Adv 2016. [DOI: 10.1039/c6ra09583f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This review assesses the current knowledge on treatments, pathogenesis and the prevention of infections associated with orthopaedic implants, with a focus on total hip arthroplasty.
Collapse
Affiliation(s)
| | - Christopher Davidson
- John Scales Centre for Biomedical Engineering
- Institute of Orthopaedics and Musculoskeletal Science
- Division of Surgery and Interventional Science
- University College London
- Royal National Orthopaedic Hospital
| | - Alexandra Levin
- RAFT Institute of Plastic Surgery
- Mount Vernon Hospital
- Northwood HA6 2RN
- UK
| | - Melanie J. Coathup
- John Scales Centre for Biomedical Engineering
- Institute of Orthopaedics and Musculoskeletal Science
- Division of Surgery and Interventional Science
- University College London
- Royal National Orthopaedic Hospital
| | - Gordon W. Blunn
- John Scales Centre for Biomedical Engineering
- Institute of Orthopaedics and Musculoskeletal Science
- Division of Surgery and Interventional Science
- University College London
- Royal National Orthopaedic Hospital
| |
Collapse
|
23
|
Abstract
Proteinaceous, nonflagellar surface appendages constitute a variety of structures, including those known variably as fimbriae or pili. Constructed by distinct assembly pathways resulting in diverse morphologies, fimbriae have been described to mediate functions including adhesion, motility, and DNA transfer. As these structures can represent major diversifying elements among Escherichia and Salmonella isolates, multiple fimbrial classification schemes have been proposed and a number of mechanistic insights into fimbrial assembly and function have been made. Herein we describe the classifications and biochemistry of fimbriae assembled by the chaperone/usher, curli, and type IV pathways.
Collapse
|
24
|
Chahales P, Thanassi DG. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria. Microbiol Spectr 2015; 3:10.1128/microbiolspec.UTI-0018-2013. [PMID: 26542038 PMCID: PMC4638162 DOI: 10.1128/microbiolspec.uti-0018-2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Indexed: 01/02/2023] Open
Abstract
Bacteria assemble a wide range of adhesive proteins, termed adhesins, to mediate binding to receptors and colonization of surfaces. For pathogenic bacteria, adhesins are critical for early stages of infection, allowing the bacteria to initiate contact with host cells, colonize different tissues, and establish a foothold within the host. The adhesins expressed by a pathogen are also critical for bacterial-bacterial interactions and the formation of bacterial communities, including biofilms. The ability to adhere to host tissues is particularly important for bacteria that colonize sites such as the urinary tract, where the flow of urine functions to maintain sterility by washing away non-adherent pathogens. Adhesins vary from monomeric proteins that are directly anchored to the bacterial surface to polymeric, hair-like fibers that extend out from the cell surface. These latter fibers are termed pili or fimbriae, and were among the first identified virulence factors of uropathogenic Escherichia coli. Studies since then have identified a range of both pilus and non-pilus adhesins that contribute to bacterial colonization of the urinary tract, and have revealed molecular details of the structures, assembly pathways, and functions of these adhesive organelles. In this review, we describe the different types of adhesins expressed by both Gram-negative and Gram-positive uropathogens, what is known about their structures, how they are assembled on the bacterial surface, and the functions of specific adhesins in the pathogenesis of urinary tract infections.
Collapse
Affiliation(s)
- Peter Chahales
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| | - David G Thanassi
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
25
|
Chan CXJ, Joseph IG, Huang A, Jackson DN, Lipke PN. Quantitative Analyses of Force-Induced Amyloid Formation in Candida albicans Als5p: Activation by Standard Laboratory Procedures. PLoS One 2015; 10:e0129152. [PMID: 26047318 PMCID: PMC4457901 DOI: 10.1371/journal.pone.0129152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/05/2015] [Indexed: 11/18/2022] Open
Abstract
Candida albicans adhesins have amyloid-forming sequences. In Als5p, these amyloid sequences cluster cell surface adhesins to create high avidity surface adhesion nanodomains. Such nanodomains form after force is applied to the cell surface by atomic force microscopy or laminar flow. Here we report centrifuging and resuspending S. cerevisiae cells expressing Als5p led to 1.7-fold increase in initial rate of adhesion to ligand coated beads. Furthermore, mechanical stress from vortex-mixing of Als5p cells or C. albicans cells also induced additional formation of amyloid nanodomains and consequent activation of adhesion. Vortex-mixing for 60 seconds increased the initial rate of adhesion 1.6-fold. The effects of vortex-mixing were replicated in heat-killed cells as well. Activation was accompanied by increases in thioflavin T cell surface fluorescence measured by flow cytometry or by confocal microscopy. There was no adhesion activation in cells expressing amyloid-impaired Als5pV326N or in cells incubated with inhibitory concentrations of anti-amyloid dyes. Together these results demonstrated the activation of cell surface amyloid nanodomains in yeast expressing Als adhesins, and further delineate the forces that can activate adhesion in vivo. Consequently there is quantitative support for the hypothesis that amyloid forming adhesins act as both force sensors and effectors.
Collapse
Affiliation(s)
- Cho X. J. Chan
- Biology Department, Brooklyn College City University of New York, New York, New York, United States of America
- The Graduate Center, City University of New York, New York, New York, United States of America
- Haskins Laboratories and the Department of Chemistry and Physical Sciences, Pace University, New York, New York, United States of America
| | - Ivor G. Joseph
- Biology Department, Brooklyn College City University of New York, New York, New York, United States of America
| | - Andy Huang
- Biology Department, Brooklyn College City University of New York, New York, New York, United States of America
| | - Desmond N. Jackson
- Biology Department, Brooklyn College City University of New York, New York, New York, United States of America
| | - Peter N. Lipke
- Biology Department, Brooklyn College City University of New York, New York, New York, United States of America
- The Graduate Center, City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Abstract
The contact system, also named as plasma kallikrein-kinin system, consists of three serine proteinases: coagulation factors XII (FXII) and XI (FXI), and plasma prekallikrein (PK), and the nonenzymatic cofactor high molecular weight kininogen (HK). This system has been investigated actively for more than 50 years. The components of this system and their interactions have been elucidated from in vitro experiments, which indicates that this system is prothrombotic by activating intrinsic pathway, and proinflammatory by producing bioactive peptide bradykinin. Although the activation of the contact system have been implicated in various types of human disease, in only a few instances is its role clearly defined. In the last 10 years, our understanding of the contact system, particularly its biology and (patho)physiology has greatly increased through investigations using gene-modified animal models. In this review we will describe a revitalized view of the contact system as a critical (patho)physiologic mediator of coagulation and inflammation.
Collapse
Affiliation(s)
- Yi Wu
- The Sol Sherry Thrombosis Research Center, Temple University School of Medicine, 3420 N. Broad Street, Philadelphia, PA 19140 USA
| |
Collapse
|
27
|
Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev 2015; 39:649-69. [PMID: 25907113 PMCID: PMC4551309 DOI: 10.1093/femsre/fuv015] [Citation(s) in RCA: 344] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2015] [Indexed: 01/24/2023] Open
Abstract
Biofilms are communities of microbial cells that underpin diverse processes including sewage bioremediation, plant growth promotion, chronic infections and industrial biofouling. The cells resident in the biofilm are encased within a self-produced exopolymeric matrix that commonly comprises lipids, proteins that frequently exhibit amyloid-like properties, eDNA and exopolysaccharides. This matrix fulfils a variety of functions for the community, from providing structural rigidity and protection from the external environment to controlling gene regulation and nutrient adsorption. Critical to the development of novel strategies to control biofilm infections, or the capability to capitalize on the power of biofilm formation for industrial and biotechnological uses, is an in-depth knowledge of the biofilm matrix. This is with respect to the structure of the individual components, the nature of the interactions between the molecules and the three-dimensional spatial organization. We highlight recent advances in the understanding of the structural and functional role that carbohydrates and proteins play within the biofilm matrix to provide three-dimensional architectural integrity and functionality to the biofilm community. We highlight, where relevant, experimental techniques that are allowing the boundaries of our understanding of the biofilm matrix to be extended using Escherichia coli, Staphylococcus aureus, Vibrio cholerae, and Bacillus subtilis as exemplars. Examining the structure and function of the biofilm extracellular matrix.
Collapse
Affiliation(s)
- Laura Hobley
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Catriona Harkins
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Cait E MacPhee
- James Clerk Maxwell Building, School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, UK
| | - Nicola R Stanley-Wall
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Polyphosphate (polyP) is an inorganic polymer that has recently been shown to be secreted by activated platelets. It is a potent modulator of the blood clotting and complement systems in hemostasis, thrombosis, and inflammation. RECENT FINDINGS This review focuses on what is currently known about which blood cells secrete polyP, and the roles that polyP plays in modulating the blood clotting and complement systems in health and disease. SUMMARY PolyP is a novel player in normal hemostasis and likely plays roles in thrombotic diseases and also in host responses to pathogens. It is also potentially a drug target, as its contributions to hemostasis appear to be to accelerate blood clotting but are not required for blood clotting to happen.
Collapse
|
29
|
Loof TG, Deicke C, Medina E. The role of coagulation/fibrinolysis during Streptococcus pyogenes infection. Front Cell Infect Microbiol 2014; 4:128. [PMID: 25309880 PMCID: PMC4161043 DOI: 10.3389/fcimb.2014.00128] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/27/2014] [Indexed: 02/02/2023] Open
Abstract
The hemostatic system comprises platelet aggregation, coagulation and fibrinolysis and is a host defense mechanism that protects the integrity of the vascular system after tissue injury. During bacterial infections, the coagulation system cooperates with the inflammatory system to eliminate the invading pathogens. However, pathogenic bacteria have frequently evolved mechanisms to exploit the hemostatic system components for their own benefit. Streptococcus pyogenes, also known as Group A Streptococcus, provides a remarkable example of the extraordinary capacity of pathogens to exploit the host hemostatic system to support microbial survival and dissemination. The coagulation cascade comprises the contact system (also known as the intrinsic pathway) and the tissue factor pathway (also known as the extrinsic pathway), both leading to fibrin formation. During the early phase of S. pyogenes infection, the activation of the contact system eventually leads to bacterial entrapment within a fibrin clot, where S. pyogenes is immobilized and killed. However, entrapped S. pyogenes can circumvent the antimicrobial effect of the clot by sequestering host plasminogen on the bacterial cell surface that, after conversion into its active proteolytic form, plasmin, degrades the fibrin network and facilitates the liberation of S. pyogenes from the clot. Furthermore, the surface-localized fibrinolytic activity also cleaves a variety of extracellular matrix proteins, thereby enabling S. pyogenes to migrate across barriers and disseminate within the host. This review summarizes the knowledge gained during the last two decades on the role of coagulation/fibrinolysis in host defense against S. pyogenes as well as the strategies developed by this pathogen to evade and exploit these host mechanisms for its own benefit.
Collapse
Affiliation(s)
- Torsten G Loof
- Infection Immunology Research Group, Helmholtz Centre for Infection Research Braunschweig, Germany
| | - Christin Deicke
- Infection Immunology Research Group, Helmholtz Centre for Infection Research Braunschweig, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research Braunschweig, Germany
| |
Collapse
|
30
|
Berends ETM, Kuipers A, Ravesloot MM, Urbanus RT, Rooijakkers SHM. Bacteria under stress by complement and coagulation. FEMS Microbiol Rev 2014; 38:1146-71. [PMID: 25065463 DOI: 10.1111/1574-6976.12080] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/23/2014] [Accepted: 07/14/2014] [Indexed: 02/03/2023] Open
Abstract
The complement and coagulation systems are two related protein cascades in plasma that serve important roles in host defense and hemostasis, respectively. Complement activation on bacteria supports cellular immune responses and leads to direct killing of bacteria via assembly of the Membrane Attack Complex (MAC). Recent studies have indicated that the coagulation system also contributes to mammalian innate defense since coagulation factors can entrap bacteria inside clots and generate small antibacterial peptides. In this review, we will provide detailed insights into the molecular interplay between these protein cascades and bacteria. We take a closer look at how these pathways are activated on bacterial surfaces and discuss the mechanisms by which they directly cause stress to bacterial cells. The poorly understood mechanism for bacterial killing by the MAC will be reevaluated in light of recent structural insights. Finally, we highlight the strategies used by pathogenic bacteria to modulate these protein networks. Overall, these insights will contribute to a better understanding of the host defense roles of complement and coagulation against bacteria.
Collapse
Affiliation(s)
- Evelien T M Berends
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
31
|
Vogeleer P, Tremblay YDN, Mafu AA, Jacques M, Harel J. Life on the outside: role of biofilms in environmental persistence of Shiga-toxin producing Escherichia coli. Front Microbiol 2014; 5:317. [PMID: 25071733 PMCID: PMC4076661 DOI: 10.3389/fmicb.2014.00317] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/10/2014] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli is a heterogeneous species that can be part of the normal flora of humans but also include strains of medical importance. Among pathogenic members, Shiga-toxin producing E. coli (STEC) are some of the more prominent pathogenic E. coli within the public sphere. STEC disease outbreaks are typically associated with contaminated beef, contaminated drinking water, and contaminated fresh produce. These water- and food-borne pathogens usually colonize cattle asymptomatically; cows will shed STEC in their feces and the subsequent fecal contamination of the environment and processing plants is a major concern for food and public safety. This is especially important because STEC can survive for prolonged periods of time outside its host in environments such as water, produce, and farm soil. Biofilms are hypothesized to be important for survival in the environment especially on produce, in rivers, and in processing plants. Several factors involved in biofilm formation such as curli, cellulose, poly-N-acetyl glucosamine, and colanic acid are involved in plant colonization and adherence to different surfaces often found in meat processing plants. In food processing plants, contamination of beef carcasses occurs at different stages of processing and this is often caused by the formation of STEC biofilms on the surface of several pieces of equipment associated with slaughtering and processing. Biofilms protect bacteria against several challenges, including biocides used in industrial processes. STEC biofilms are less sensitive than planktonic cells to several chemical sanitizers such as quaternary ammonium compounds, peroxyacetic acid, and chlorine compounds. Increased resistance to sanitizers by STEC growing in a biofilm is likely to be a source of contamination in the processing plant. This review focuses on the role of biofilm formation by STEC as a means of persistence outside their animal host and factors associated with biofilm formation.
Collapse
Affiliation(s)
- Philippe Vogeleer
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Centre de Recherche d'Infectiologie Porcine et Avicole, Université de Montréal St-Hyacinthe, QC, Canada
| | - Yannick D N Tremblay
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Centre de Recherche d'Infectiologie Porcine et Avicole, Université de Montréal St-Hyacinthe, QC, Canada
| | - Akier A Mafu
- Food Research and Development Centre, Agriculture and Agri-Food Canada St-Hyacinthe, QC, Canada
| | - Mario Jacques
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Centre de Recherche d'Infectiologie Porcine et Avicole, Université de Montréal St-Hyacinthe, QC, Canada
| | - Josée Harel
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Centre de Recherche d'Infectiologie Porcine et Avicole, Université de Montréal St-Hyacinthe, QC, Canada
| |
Collapse
|
32
|
Kainulainen V, Korhonen TK. Dancing to another tune-adhesive moonlighting proteins in bacteria. BIOLOGY 2014; 3:178-204. [PMID: 24833341 PMCID: PMC4009768 DOI: 10.3390/biology3010178] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 02/08/2023]
Abstract
Biological moonlighting refers to proteins which express more than one function. Moonlighting proteins occur in pathogenic and commensal as well as in Gram-positive and Gram-negative bacteria. The canonical functions of moonlighting proteins are in essential cellular processes, i.e., glycolysis, protein synthesis, chaperone activity, and nucleic acid stability, and their moonlighting functions include binding to host epithelial and phagocytic cells, subepithelia, cytoskeleton as well as to mucins and circulating proteins of the immune and hemostatic systems. Sequences of the moonlighting proteins do not contain known motifs for surface export or anchoring, and it has remained open whether bacterial moonlighting proteins are actively secreted to the cell wall or whether they are released from traumatized cells and then rebind onto the bacteria. In lactobacilli, ionic interactions with lipoteichoic acids and with cell division sites are important for surface localization of the proteins. Moonlighting proteins represent an abundant class of bacterial adhesins that are part of bacterial interactions with the environment and in responses to environmental changes. Multifunctionality in bacterial surface proteins appears common: the canonical adhesion proteins fimbriae express also nonadhesive functions, whereas the mobility organelles flagella as well as surface proteases express adhesive functions.
Collapse
Affiliation(s)
- Veera Kainulainen
- Department of Veterinary Biosciences, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland.
| | - Timo K Korhonen
- General Microbiology, Department of Biosciences, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland.
| |
Collapse
|
33
|
Abstract
Activation of the plasma contact system triggers several cascade systems such as the kallikrein-kinin system, the intrinsic pathway of coagulation, the classical complement cascade and the fibrinolytic system. Recent studies have shown a critical role of the contact system for arterial and venous thrombus formation and thromboembolic disease. In contrast, the function of the contact system for host-defense reactions and its physiological functions have remained enigmatic. Experimental animal studies and clinical data have linked the contact system to bacterial infections with implications for sepsis disease. The present review summarizes the role of the contact system and its activation for bacterial infections.
Collapse
Affiliation(s)
- Katrin Faye Nickel
- Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | | |
Collapse
|
34
|
Evolutionary Analysis of the Contact System Indicates that Kininogen Evolved Adaptively in Mammals and in Human Populations. Mol Biol Evol 2013; 30:1397-408. [DOI: 10.1093/molbev/mst054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
35
|
Påhlman LI, Mörgelin M, Kasetty G, Olin AI, Schmidtchen A, Herwald H. Antimicrobial activity of fibrinogen and fibrinogen-derived peptides--a novel link between coagulation and innate immunity. Thromb Haemost 2013; 109:930-9. [PMID: 23467586 DOI: 10.1160/th12-10-0739] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/17/2013] [Indexed: 12/21/2022]
Abstract
Fibrinogen is a key player in the blood coagulation system, and is upon activation with thrombin converted into fibrin that subsequently forms a fibrin clot. In the present study, we investigated the role of fibrinogen in the early innate immune response. Here we show that the viability of fibrinogen-binding bacteria is affected in human plasma activated with thrombin. Moreover, we found that the peptide fragment GHR28 released from the β-chain of fibrinogen has antimicrobial activity against bacteria that bind fibrinogen to their surface, whereas non-binding strains are unaffected. Notably, bacterial killing was detected in Group A Streptococcus bacteria entrapped in a fibrin clot, suggesting that fibrinogen and coagulation is involved in the early innate immune system to quickly wall off and neutralise invading pathogens.
Collapse
Affiliation(s)
- L I Påhlman
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, Tornavägen 10, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
36
|
Ridgley DM, Barone JR. Evolution of the amyloid fiber over multiple length scales. ACS NANO 2013; 7:1006-1015. [PMID: 23268732 DOI: 10.1021/nn303489a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The amyloid is a natural self-assembled peptide material comparable in specific stiffness to spider silk and steel. Throughout the literature there are many studies of the nanometer-sized amyloid fibril; however, peptide mixtures are capable of self-assembling beyond the nanometer scale into micrometer-sized fibers. Here, atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to observe the self-assembly of the peptide mixtures in solution for 20 days and the fibers upon drying. Beyond the nanometer scale, self-assembling fibers differentiate into two morphologies, cylindrical or rectangular cross-section, depending on peptide properties. Microscopic observations delineate a four stage self-assembly mechanism: (1) protofibril (2-4 nm high and 15-30 nm wide) formation; (2) protofibril aggregation into fibrils 6-10 nm high and 60-120 nm wide; (3) fibril aggregation into large fibrils and morphological differentiation where large fibrils begin to resemble the final fiber morphology of cylinders (WG peptides) or tapes (Gd:My peptides). WG large fibrils are 50 nm high and 480 nm wide and Gd:My large fibrils are 10 nm high and 150 nm wide; (4) micrometer-sized fiber formation upon drying at 480 h resulting in 18.0 μm diameter cylindrical fibers (WG peptides) and 14.0 μm wide and 6.0 μm thick flat tapes (Gd:My peptides). Evolution of the large fiber morphology can be rationalized on the basis of the peptide properties.
Collapse
Affiliation(s)
- Devin M Ridgley
- Biological Systems Engineering Department, Virginia Tech, 303 Seitz Hall, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
37
|
Dueholm MS, Albertsen M, Otzen D, Nielsen PH. Curli functional amyloid systems are phylogenetically widespread and display large diversity in operon and protein structure. PLoS One 2012; 7:e51274. [PMID: 23251478 PMCID: PMC3521004 DOI: 10.1371/journal.pone.0051274] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/30/2012] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli and a few other members of the Enterobacteriales can produce functional amyloids known as curli. These extracellular fibrils are involved in biofilm formation and studies have shown that they may act as virulence factors during infections. It is not known whether curli fibrils are restricted to the Enterobacteriales or if they are phylogenetically widespread. The growing number of genome-sequenced bacteria spanning many phylogenetic groups allows a reliable bioinformatic investigation of the phylogenetic diversity of the curli system. Here we show that the curli system is phylogenetically much more widespread than initially assumed, spanning at least four phyla. Curli fibrils may consequently be encountered frequently in environmental as well as pathogenic biofilms, which was supported by identification of curli genes in public metagenomes from a diverse range of habitats. Identification and comparison of curli subunit (CsgA/B) homologs show that these proteins allow a high degree of freedom in their primary protein structure, although a modular structure of tightly spaced repeat regions containing conserved glutamine, asparagine and glycine residues has to be preserved. In addition, a high degree of variability within the operon structure of curli subunits between bacterial taxa suggests that the curli fibrils might have evolved to fulfill specific functions. Variations in the genetic organization of curli genes are also seen among different bacterial genera. This suggests that some genera may utilize alternative regulatory pathways for curli expression. Comparison of phylogenetic trees of Csg proteins and the 16S rRNA genes of the corresponding bacteria showed remarkably similar overall topography, suggesting that horizontal gene transfer is a minor player in the spreading of the curli system.
Collapse
Affiliation(s)
- Morten S. Dueholm
- Department of Biotechnology, Chemistry, and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Mads Albertsen
- Department of Biotechnology, Chemistry, and Environmental Engineering, Aalborg University, Aalborg, Denmark
| | - Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Centre for Insoluble Protein Structures (inSPIN), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Per Halkjær Nielsen
- Department of Biotechnology, Chemistry, and Environmental Engineering, Aalborg University, Aalborg, Denmark
- * E-mail:
| |
Collapse
|
38
|
DePas WH, Chapman MR. Microbial manipulation of the amyloid fold. Res Microbiol 2012; 163:592-606. [PMID: 23108148 PMCID: PMC3532741 DOI: 10.1016/j.resmic.2012.10.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/09/2012] [Indexed: 12/19/2022]
Abstract
Microbial biofilms are encased in a protein, DNA, and polysaccharide matrix that protects the community, promotes interactions with the environment, and helps cells adhere together. The protein component of these matrices is often a remarkably stable, β-sheet-rich polymer called amyloid. Amyloids form ordered, self-templating fibers that are highly aggregative, making them a valuable biofilm component. Some eukaryotic proteins inappropriately adopt the amyloid fold, and these misfolded protein aggregates disrupt normal cellular proteostasis, which can cause significant cytotoxicity. Indeed, until recently amyloids were considered solely the result of protein misfolding. However, research over the past decade has revealed how various organisms have capitalized on the amyloid fold by developing sophisticated biogenesis pathways that coordinate gene expression, protein folding, and secretion so that amyloid-related toxicities are minimized. How microbes manipulate amyloids, by augmenting their advantageous properties and by reducing their undesirable properties, will be the subject of this review.
Collapse
Affiliation(s)
- William H. DePas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | - Matthew R. Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan LSA, 830 North University Ave., Ann Arbor, MI, 48109, USA
| |
Collapse
|
39
|
Azzopardi EA, Ferguson EL, Thomas DW. The enhanced permeability retention effect: a new paradigm for drug targeting in infection. J Antimicrob Chemother 2012; 68:257-74. [PMID: 23054997 DOI: 10.1093/jac/dks379] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Multidrug-resistant, Gram-negative infection is a major global determinant of morbidity, mortality and cost of care. The advent of nanomedicine has enabled tailored engineering of macromolecular constructs, permitting increasingly selective targeting, alteration of volume of distribution and activity/toxicity. Macromolecules tend to passively and preferentially accumulate at sites of enhanced vascular permeability and are then retained. This enhanced permeability and retention (EPR) effect, whilst recognized as a major breakthrough in anti-tumoral targeting, has not yet been fully exploited in infection. Shared pathophysiological pathways in both cancer and infection are evident and a number of novel nanomedicines have shown promise in selective, passive, size-mediated targeting to infection. This review describes the similarities and parallels in pathophysiological pathways at molecular, cellular and circulatory levels between inflammation/infection and cancer therapy, where use of this principle has been established.
Collapse
Affiliation(s)
- Ernest A Azzopardi
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, Wales, UK.
| | | | | |
Collapse
|
40
|
Morrissey JH, Choi SH, Smith SA. Polyphosphate: an ancient molecule that links platelets, coagulation, and inflammation. Blood 2012; 119:5972-9. [PMID: 22517894 PMCID: PMC3383012 DOI: 10.1182/blood-2012-03-306605] [Citation(s) in RCA: 266] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inorganic polyphosphate is widespread in biology and exhibits striking prohemostatic, prothrombotic, and proinflammatory effects in vivo. Long-chain polyphosphate (of the size present in infectious microorganisms) is a potent, natural pathophysiologic activator of the contact pathway of blood clotting. Medium-chain polyphosphate (of the size secreted from activated human platelets) accelerates factor V activation, completely abrogates the anticoagulant function of tissue factor pathway inhibitor, enhances fibrin clot structure, and greatly accelerates factor XI activation by thrombin. Polyphosphate may have utility as a hemostatic agent, whereas antagonists of polyphosphate may function as novel antithrombotic/anti-inflammatory agents. The detailed molecular mechanisms by which polyphosphate modulates blood clotting reactions remain to be elucidated.
Collapse
Affiliation(s)
- James H Morrissey
- Biochemistry Department, University of Illinois, 506 S Mathews Ave, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
41
|
Shishido SN, Varahan S, Yuan K, Li X, Fleming SD. Humoral innate immune response and disease. Clin Immunol 2012; 144:142-58. [PMID: 22771788 PMCID: PMC3576926 DOI: 10.1016/j.clim.2012.06.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 06/05/2012] [Accepted: 06/09/2012] [Indexed: 12/27/2022]
Abstract
The humoral innate immune response consists of multiple components, including the naturally occurring antibodies (NAb), pentraxins and the complement and contact cascades. As soluble, plasma components, these innate proteins provide key elements in the prevention and control of disease. However, pathogens and cells with altered self proteins utilize multiple humoral components to evade destruction and promote pathogy. Many studies have examined the relationship between humoral immunity and autoimmune disorders. This review focuses on the interactions between the humoral components and their role in promoting the pathogenesis of bacterial and viral infections and chronic diseases such as atherosclerosis and cancer. Understanding the beneficial and detrimental aspects of the individual components and the interactions between proteins which regulate the innate and adaptive response will provide therapeutic targets for subsequent studies.
Collapse
Affiliation(s)
- Stephanie N Shishido
- Department of Diagnostic Medicine and Pathology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | |
Collapse
|
42
|
Polyphosphate: a link between platelets, coagulation and inflammation. Int J Hematol 2012; 95:346-52. [PMID: 22477540 DOI: 10.1007/s12185-012-1054-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 03/08/2012] [Accepted: 03/08/2012] [Indexed: 10/28/2022]
Abstract
Inorganic polyphosphate (polyP) is abundant in biological organisms. PolyP is a major component of dense granules of human platelets and is secreted upon platelet activation. Studies from our lab and others have shown that polyP is a potent modulator of the blood clotting cascade, acting as a pro-hemostatic, prothrombotic and proinflammatory agent depending on its polymer size and location. PolyP may represent at least one of the long-sought (patho)physiologic activators of the contact pathway of blood clotting, and its actions may also help to explain previously unexplained abilities of activated platelets to enhance plasma clotting reactions. PolyP may have utility as a hemostatic agent to control bleeding, and conversely, polyP antagonists might have utility as antithrombotic/anti-inflammatory agents with reduced bleeding side effects. The detailed molecular mechanisms by which polyP modulates blood clotting reactions still remain to be elucidated.
Collapse
|
43
|
Involvement of curli fimbriae in the biofilm formation of Enterobacter cloacae. J Microbiol 2012; 50:175-8. [DOI: 10.1007/s12275-012-2044-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 02/09/2012] [Indexed: 10/28/2022]
|
44
|
Karkowska-Kuleta J, Kedracka-Krok S, Rapala-Kozik M, Kamysz W, Bielinska S, Karafova A, Kozik A. Molecular determinants of the interaction between human high molecular weight kininogen and Candida albicans cell wall: Identification of kininogen-binding proteins on fungal cell wall and mapping the cell wall-binding regions on kininogen molecule. Peptides 2011; 32:2488-96. [PMID: 22074954 DOI: 10.1016/j.peptides.2011.10.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/23/2011] [Accepted: 10/24/2011] [Indexed: 11/28/2022]
Abstract
An excessive production of vasoactive and proinflammatory bradykinin-related peptides, the kinins, is often involved in the human host defense against microbial infections. Recent studies have shown that a major fungal pathogen to humans, Candida albicans, can bind the proteinaceous kinin precursor, the high molecular weight kininogen (HK) and trigger the kinin-forming cascade on the cell surface. In this work, we preliminarily characterized a molecular mechanism underlying the HK adhesion to the fungal surface by (i) identification of major kininogen-binding constituents on the candidial cell wall and (ii) mapping the cell wall-binding regions on HK molecule. A major fraction of total fungal kininogen-binding capacity was assigned to β-1,3-glucanase-extractable cell wall proteins (CWP). By adsorption of CWP on HK-coupled agarose gel and mass spectrometric analysis of the eluted material, major putative HK receptors were identified, including Als3 adhesin and three glycolytic enzymes, i.e., enolase 1, phosphoglycerate mutase 1 and triosephosphate isomerase 1. Using monoclonal antibodies directed against selected parts of HK molecule and synthetic peptides with sequences matching selected HK fragments, we assigned the major fungal cell wall-binding ability to a short stretch of amino acids in the C-terminal part of domain 3 and a large continuous region involving the C-terminal part of domain 5 and N-terminal part of domain 6 (residues 479-564). The latter characteristics of HK binding to C. albicans surface differ from those reported for bacteria and host cells.
Collapse
Affiliation(s)
- Justyna Karkowska-Kuleta
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Chronic spirochetal infection can cause slowly progressive dementia, cortical atrophy and amyloid deposition in the atrophic form of general paresis. There is a significant association between Alzheimer disease (AD) and various types of spirochete (including the periodontal pathogen Treponemas and Borrelia burgdorferi), and other pathogens such as Chlamydophyla pneumoniae and herpes simplex virus type-1 (HSV-1). Exposure of mammalian neuronal and glial cells and organotypic cultures to spirochetes reproduces the biological and pathological hallmarks of AD. Senile-plaque-like beta amyloid (Aβ) deposits are also observed in mice following inhalation of C. pneumoniae in vivo, and Aβ accumulation and phosphorylation of tau is induced in neurons by HSV-1 in vitro and in vivo. Specific bacterial ligands, and bacterial and viral DNA and RNA all increase the expression of proinflammatory molecules, which activates the innate and adaptive immune systems. Evasion of pathogens from destruction by the host immune reactions leads to persistent infection, chronic inflammation, neuronal destruction and Aβ deposition. Aβ has been shown to be a pore-forming antimicrobial peptide, indicating that Aβ accumulation might be a response to infection. Global attention and action is needed to support this emerging field of research because dementia might be prevented by combined antibiotic, antiviral and anti-inflammatory therapy.
Collapse
|
46
|
Activation of the contact system at the surface of Fusobacterium necrophorum represents a possible virulence mechanism in Lemièrre's syndrome. Infect Immun 2011; 79:3284-90. [PMID: 21646449 DOI: 10.1128/iai.05264-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fusobacterium necrophorum causes Lemièrre's syndrome, a serious disease with septic thrombophlebitis of the internal jugular vein, pulmonary involvement, and systemic inflammation. The contact system is a link between inflammation and coagulation, and contact activation by the bacteria could therefore contribute to the abnormal coagulation and inflammation seen in patients with Lemièrre's syndrome. In this study, F. necrophorum was found to bind radiolabeled high-molecular-weight kininogen (HK), a central component of the contact system. Binding was inhibited by the addition of unlabeled HK and domain D5 of HK but not other components of the contact system, indicating a specific interaction mediated through the D5 region. Binding of HK was significantly reduced after pretreatment of the bacteria with trypsin, suggesting that surface proteins are involved in HK binding. Incubation of the bacteria with human plasma resulted in an HK breakdown pattern suggestive of bradykinin release, and bradykinin was also detected in the supernatant. In addition, we show that factor XI (FXI), another component of the contact system, binds to F. necrophorum and that the bound FXI reconstitutes the activated partial thromboplastin time of FXI-deficient plasma. Thrombin activity was detected at the surface of the bacteria following incubation with plasma, indicating that the intrinsic pathway of coagulation is activated at the surface. This activity was completely blocked by inhibitors of the contact system. The combined results show that the contact system is activated at the surface of F. necrophorum, suggesting a pathogenic role for this system in Lemièrre's syndrome.
Collapse
|
47
|
Murphy EC, Mörgelin M, Cooney JC, Frick IM. Interaction of Bacteroides fragilis and Bacteroides thetaiotaomicron with the kallikrein-kinin system. MICROBIOLOGY-SGM 2011; 157:2094-2105. [PMID: 21527472 PMCID: PMC3167891 DOI: 10.1099/mic.0.046862-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Many bacterial pathogens interfere with the contact system (kallikrein-kinin system) in human plasma. Activation of this system has two consequences: cleavage of high-molecular-mass kininogen (HK) resulting in release of the potent proinflammatory peptide bradykinin, and initiation of the intrinsic pathway of coagulation. In this study, two species of the Gram-negative anaerobic commensal organism Bacteroides, namely Bacteroides fragilis and Bacteroides thetaiotaomicron, were found to bind HK and fibrinogen, the major clotting protein, from human plasma as shown by immunoelectron microscopy and Western blot analysis. In addition, these Bacteroides species were capable of activating the contact system at its surface leading to a significant prolongation of the intrinsic coagulation time and also to the release of bradykinin. Members of the genus Bacteroides have been known to act as opportunistic pathogens outside the gut, with B. fragilis being the most common isolate from clinical infections, such as intra-abdominal abscesses and bacteraemia. The present results thus provide more insight into how Bacteroides species cause infection.
Collapse
Affiliation(s)
- Elizabeth C Murphy
- Department of Life Sciences and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland.,Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden
| | - Matthias Mörgelin
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden
| | - Jakki C Cooney
- Department of Life Sciences and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
| | - Inga-Maria Frick
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
48
|
Adsorption of components of the plasma kinin-forming system on the surface of Porphyromonas gingivalis involves gingipains as the major docking platforms. Infect Immun 2010; 79:797-805. [PMID: 21098107 DOI: 10.1128/iai.00966-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Enhanced production of proinflammatory bradykinin-related peptides, the kinins, has been suggested to contribute to the pathogenesis of periodontitis, a common inflammatory disease of human gingival tissues. In this report, we describe a plausible mechanism of activation of the kinin-generating system, also known as the contact system or kininogen-kallikrein-kinin system, by the adsorption of its plasma-derived components such as high-molecular-mass kininogen (HK), prekallikrein (PK), and Hageman factor (FXII) to the cell surface of periodontal pathogen Porphyromonas gingivalis. The adsorption characteristics of mutant strains deficient in selected proteins of the cell envelope suggested that the surface-associated cysteine proteinases, gingipains, bearing hemagglutinin/adhesin domains (RgpA and Kgp) serve as the major platforms for HK and FXII adhesion. These interactions were confirmed by direct binding tests using microplate-immobilized gingipains and biotinylated contact factors. Other bacterial cell surface components such as fimbriae and lipopolysaccharide were also found to contribute to the binding of contact factors, particularly PK. Analysis of kinin release in plasma upon contact with P. gingivalis showed that the bacterial surface-dependent mechanism is complementary to the previously described kinin generation system dependent on HK and PK proteolytic activation by the gingipains. We also found that several P. gingivalis clinical isolates differed in the relative significance of these two mechanisms of kinin production. Taken together, these data show the importance of this specific type of bacterial surface-host homeostatic system interaction in periodontal infections.
Collapse
|
49
|
Klemm P, Hancock V, Schembri MA. Fimbrial adhesins from extraintestinal Escherichia coli. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:628-640. [PMID: 23766248 DOI: 10.1111/j.1758-2229.2010.00166.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) represent an important subclass of E. coli that cause a wide spectrum of diseases in human and animal hosts. Fimbriae are key virulence factors of ExPEC strains. These long surface located rod-shaped organelles mediate receptor-specific attachment to host tissue surfaces (tissue tropism). Some ExPEC fimbriae have additional functions such as the promotion of biofilm formation, cell aggregation and adherence to abiotic surfaces. Here we review the structure, function and contribution to virulence of fimbriae associated with ExPEC strains.
Collapse
Affiliation(s)
- Per Klemm
- Microbial Adhesion Group, DTU Food, Technical University of Denmark, Lyngby, Denmark. School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | |
Collapse
|
50
|
Åkesson P, Herwald H, Rasmussen M, HÅkansson K, Abrahamson M, Hasan AAK, Schmaier AH, Müller-Esterl W, Björck L. Streptococcal inhibitor of complement-mediated lysis (SIC): an anti-inflammatory virulence determinant. MICROBIOLOGY-SGM 2010; 156:3660-3668. [PMID: 20705662 DOI: 10.1099/mic.0.039578-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Since the late 1980s, a worldwide increase of severe Streptococcus pyogenes infections has been associated with strains of the M1 serotype, strains which all secrete the streptococcal inhibitor of complement-mediated lysis (SIC). Previous work has shown that SIC blocks complement-mediated haemolysis, inhibits the activity of antibacterial peptides and has affinity for the human plasma proteins clusterin and histidine-rich glycoprotein; the latter is a member of the cystatin protein family. The present work demonstrates that SIC binds to cystatin C, high-molecular-mass kininogen (HK) and low-molecular-mass kininogen, which are additional members of this protein family. The binding sites in HK are located in the cystatin-like domain D3 and the endothelial cell-binding domain D5. Immobilization of HK to cellular structures plays a central role in activation of the human contact system. SIC was found to inhibit the binding of HK to endothelial cells, and to reduce contact activation as measured by prolonged blood clotting time and impaired release of bradykinin. These results suggest that SIC modifies host defence systems, which may contribute to the virulence of S. pyogenes strains of the M1 serotype.
Collapse
Affiliation(s)
- Per Åkesson
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, BMC, B14, SE-22184 Lund, Sweden
| | - Heiko Herwald
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, BMC, B14, SE-22184 Lund, Sweden
| | - Magnus Rasmussen
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, BMC, B14, SE-22184 Lund, Sweden
| | - Katarina HÅkansson
- Department of Laboratory Medicine, Division of Clinical Chemistry and Pharmacology, Lund University, University Hospital, SE-22185 Lund, Sweden
| | - Magnus Abrahamson
- Department of Laboratory Medicine, Division of Clinical Chemistry and Pharmacology, Lund University, University Hospital, SE-22185 Lund, Sweden
| | - Ahmed A K Hasan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Alvin H Schmaier
- Department of Medicine, Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Lars Björck
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, BMC, B14, SE-22184 Lund, Sweden
| |
Collapse
|