1
|
Dodge AG, Thoma CJ, O’Connor MR, Wackett LP. Recombinant Pseudomonas growing on non-natural fluorinated substrates shows stress but overall tolerance to cytoplasmically released fluoride anion. mBio 2024; 15:e0278523. [PMID: 38063407 PMCID: PMC10790756 DOI: 10.1128/mbio.02785-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Society uses thousands of organofluorine compounds, sometimes denoted per- and polyfluoroalkyl substances (PFAS), in hundreds of products, but recent studies have shown some to manifest human and environmental health effects. As a class, they are recalcitrant to biodegradation, partly due to the paucity of fluorinated natural products to which microbes have been exposed. Another limit to PFAS biodegradation is the intracellular toxicity of fluoride anion generated from C-F bond cleavage. The present study identified a broader substrate specificity in an enzyme originally studied for its activity on the natural product fluoroacetate. A recombinant Pseudomonas expressing this enzyme was used here as a model system to better understand the limits and effects of a high level of intracellular fluoride generation. A fluoride stress response has evolved in bacteria and has been described in Pseudomonas spp. The present study is highly relevant to organofluorine compound degradation or engineered biosynthesis in which fluoride anion is a substrate.
Collapse
Affiliation(s)
- Anthony G. Dodge
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, Minnesota, USA
| | - Calvin J. Thoma
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, Minnesota, USA
| | - Madeline R. O’Connor
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, Minnesota, USA
| | - Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, Minnesota, USA
| |
Collapse
|
2
|
Ugwuodo CJ, Colosimo F, Adhikari J, Purvine SO, Eder EK, Hoyt DW, Wright SA, Lipton MS, Mouser PJ. Aromatic amino acid metabolism and active transport regulation are implicated in microbial persistence in fractured shale reservoirs. ISME COMMUNICATIONS 2024; 4:ycae149. [PMID: 39670059 PMCID: PMC11637423 DOI: 10.1093/ismeco/ycae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Hydraulic fracturing has unlocked vast amounts of hydrocarbons trapped within unconventional shale formations. This large-scale engineering approach inadvertently introduces microorganisms into the hydrocarbon reservoir, allowing them to inhabit a new physical space and thrive in the unique biogeochemical resources present in the environment. Advancing our fundamental understanding of microbial growth and physiology in this extreme subsurface environment is critical to improving biofouling control efficacy and maximizing opportunities for beneficial natural resource exploitation. Here, we used metaproteomics and exometabolomics to investigate the biochemical mechanisms underpinning the adaptation of model bacterium Halanaerobium congolense WG10 and mixed microbial consortia enriched from shale-produced fluids to hypersalinity and very low reservoir flow rates (metabolic stress). We also queried the metabolic foundation for biofilm formation in this system, a major impediment to subsurface energy exploration. For the first time, we report that H. congolense WG10 accumulates tyrosine for osmoprotection, an indication of the flexible robustness of stress tolerance that enables its long-term persistence in fractured shale environments. We also identified aromatic amino acid synthesis and cell wall maintenance as critical to biofilm formation. Finally, regulation of transmembrane transport is key to metabolic stress adaptation in shale bacteria under very low well flow rates. These results provide unique insights that enable better management of hydraulically fractured shale systems, for more efficient and sustainable energy extraction.
Collapse
Affiliation(s)
- Chika Jude Ugwuodo
- Natural Resources and Earth Systems Science, University of New Hampshire, Durham, NH 03824, United States
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH 03824, United States
| | | | | | - Samuel O Purvine
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - Elizabeth K Eder
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - David W Hoyt
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - Stephanie A Wright
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - Mary S Lipton
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, United States
| | - Paula J Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH 03824, United States
| |
Collapse
|
3
|
Wang H, Shen J, Ma K, Zhu C, Fang M, Hou X, Zhang S, Wang W, Xue T. Transcriptome analysis revealed the role of capsular polysaccharides in desiccation tolerance of foodborne Staphylococcus aureus. Food Res Int 2022; 159:111602. [DOI: 10.1016/j.foodres.2022.111602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
|
4
|
Yasmin H, Bano A, Wilson NL, Nosheen A, Naz R, Hassan MN, Ilyas N, Saleem MH, Noureldeen A, Ahmad P, Kennedy I. Drought-tolerant Pseudomonas sp. showed differential expression of stress-responsive genes and induced drought tolerance in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2022; 174:e13497. [PMID: 34245030 DOI: 10.1111/ppl.13497] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/01/2021] [Accepted: 07/01/2021] [Indexed: 05/07/2023]
Abstract
The growth and persistence of rhizobacteria in soils are highly impacted by moisture stress. In this study, we report the first transcript analysis of four Pseudomonas strains (PS1, PS2, PS3, and PS4) isolated from the root-soil interface of rice and maize associated with different moisture levels during water deprivation. Filtered Pseudomonas sp. cells incubated at low (RH10%) and high (RH85%) relative humidity showed decreased survival of all Pseudomonas sp. at RH10% when compared with RH85%. RT-PCR showed differential expression of treS (trehalose synthase), rpoS (sigma factor), mucA (alginate regulatory gene), and fliM (flagellar motor switch protein gene) in response to exposure to RH10%. However, molecular fingerprinting and nutrient assimilation profile of Pseudomonas strains demonstrated genetic and physiological variation between the four strains irrespective of water regime and host. In vitro testing of these strains showed ACC deaminase activity and gibberellic acid, abscisic acid, indole acetic acid, and exopolysaccharide production. We determined that 50 μl of 1.2 × 103 CFU ml-1 of these Pseudomonas strains was enough to protect Arabidopsis plants against drought stress in a pot experiment. Inoculated plants increased their root colonization ability and biomass; however, PS2 showed higher survival (95%), relative water content (59%), chlorophyll (30%), glycine betaine (38%), proline (23%), and reduced MDA (43%) in shoots than irrigated control under induced water deprivation. It can be concluded that all Pseudomonas strains were effective in mitigating drought stress, however, PS2 appears to impart more resistance to drought than the other strains by upregulating key defense mechanisms.
Collapse
Affiliation(s)
- Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Asghari Bano
- Department of Biosciences, University of Wah, Wah Cantt, Pakistan
| | - Neil L Wilson
- Department of Agricultural Chemistry and Soil Science, University of Sydney, Sydney, New South Wales, Australia
| | - Asia Nosheen
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Rabia Naz
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | | | - Noshin Ilyas
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Hamzah Saleem
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, S. P. College Srinagar, Jammu and Kashmir, India
| | - Ivan Kennedy
- Department of Agricultural Chemistry and Soil Science, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Zhu J, Jiang X, Guan D, Kang Y, Li L, Cao F, Zhao B, Ma M, Zhao J, Li J. Effects of rehydration on physiological and transcriptional responses of a water-stressed rhizobium. J Microbiol 2022; 60:31-46. [PMID: 34826097 DOI: 10.1007/s12275-022-1325-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023]
Abstract
As a microsymbiont of soybean, Bradyrhizobium japonicum plays an important role in symbiotic nitrogen fixation and sustainable agriculture. However, the survival of B. japonicum cells under water-deplete (e.g., drought) and water-replete (e.g., flood) conditions is a major concern affecting their nitrogen-fixing ability by establishing the symbiotic relationship with the host. In this study, we isolated a water stress tolerant rhizobium from soybean root nodules and tested its survival under water-deplete conditions. The rhizobium was identified as Bradyrhizobium japonicum and named strain 5038. Interestingly, both plate counting and live/dead fluorescence staining assays indicate that a number of viable but non-culturable cells exist in the culture medium upon the rehydration process which could cause dilution stress. Bradyrhizobium japonicum 5038 cells increased production of exopolysaccharide (EPS) and trehalose when dehydrated, suggesting that protective responses were stimulated. As expected, cells reduced their production upon the subsequent rehydration. To examine differential gene expression of B. japonicum 5038 when exposed to water-deplete and subsequent water-replete conditions, whole-genome transcriptional analysis was performed under 10% relative humidity (RH), and subsequent 100% RH, respectively. A total of 462 differentially expressed genes (DEGs, > 2.0-fold) were identified under the 10% RH condition, while 3,776 genes showed differential expression during the subsequent rehydration (100% RH) process. Genes involved in signal transduction, inorganic ion transport, energy production and metabolisms of carbohydrates, amino acids, and lipids were far more up-regulated than down-regulated in the 10% RH condition. Notably, trehalose biosynthetic genes (otsAB, treS, and treYZ), genes ligD, oprB, and a sigma factor rpoH were significantly induced by 10% RH. Under the subsequent 100% RH condition, genes involved in transcription, translation, cell membrane regulation, replication and repair, and protein processing were highly up-regulated. Interestingly, most of 10%-RH inducible genes displayed rehydration-repressed, except three genes encoding heat shock (Hsp20) proteins. Therefore, this study provides molecular evidence for the switch of gene expression of B. japonicum cells when encountered the opposite water availability from water-deplete to water-replete conditions.
Collapse
Affiliation(s)
- Jie Zhu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Xin Jiang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China.
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China.
| | - Dawei Guan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Yaowei Kang
- Life Sciences College of Zhaoqing University, Zhaoqing, 526061, P. R. China
| | - Li Li
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China
| | - Fengming Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China
| | - Baisuo Zhao
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China
| | - Mingchao Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China
| | - Ji Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China.
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China.
| |
Collapse
|
6
|
Woodcock SD, Syson K, Little RH, Ward D, Sifouna D, Brown JKM, Bornemann S, Malone JG. Trehalose and α-glucan mediate distinct abiotic stress responses in Pseudomonas aeruginosa. PLoS Genet 2021; 17:e1009524. [PMID: 33872310 PMCID: PMC8084333 DOI: 10.1371/journal.pgen.1009524] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/29/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
An important prelude to bacterial infection is the ability of a pathogen to survive independently of the host and to withstand environmental stress. The compatible solute trehalose has previously been connected with diverse abiotic stress tolerances, particularly osmotic shock. In this study, we combine molecular biology and biochemistry to dissect the trehalose metabolic network in the opportunistic human pathogen Pseudomonas aeruginosa PAO1 and define its role in abiotic stress protection. We show that trehalose metabolism in PAO1 is integrated with the biosynthesis of branched α-glucan (glycogen), with mutants in either biosynthetic pathway significantly compromised for survival on abiotic surfaces. While both trehalose and α-glucan are important for abiotic stress tolerance, we show they counter distinct stresses. Trehalose is important for the PAO1 osmotic stress response, with trehalose synthesis mutants displaying severely compromised growth in elevated salt conditions. However, trehalose does not contribute directly to the PAO1 desiccation response. Rather, desiccation tolerance is mediated directly by GlgE-derived α-glucan, with deletion of the glgE synthase gene compromising PAO1 survival in low humidity but having little effect on osmotic sensitivity. Desiccation tolerance is independent of trehalose concentration, marking a clear distinction between the roles of these two molecules in mediating responses to abiotic stress. Author summary To survive outside their host, pathogenic bacteria must withstand various environmental stresses. The sugar molecule trehalose is associated with a range of abiotic stress tolerances, particularly osmotic shock. In this study, we analyse the trehalose metabolic network in the human pathogen Pseudomonas aeruginosa PAO1 and define its role in abiotic stress protection. We show that trehalose metabolism in PAO1 is intimately connected to the biosynthesis of branched α-glucan, or glycogen. Disruption of either trehalose or glycogen biosynthesis significantly reduces the ability of PAO1 to survive on steel work surfaces. While both trehalose and glycogen are important for stress tolerance, they counter very different stresses. Trehalose is important for the osmotic stress response, and survival in conditions of elevated salt. On the other hand, glycogen is responsible for desiccation tolerance and survival in low humidity environments. Trehalose does not apparently contribute to desiccation tolerance, marking a clear distinction between the roles of trehalose and glycogen in mediating abiotic stress responses in P. aeruginosa.
Collapse
Affiliation(s)
- Stuart D. Woodcock
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Karl Syson
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Richard H. Little
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Danny Ward
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Despoina Sifouna
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - James K. M. Brown
- Department of Crop Genetics, John Innes Centre, Norwich, United Kingdom
| | - Stephen Bornemann
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Jacob G. Malone
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Kragh ML, Truelstrup Hansen L. Initial Transcriptomic Response and Adaption of Listeria monocytogenes to Desiccation on Food Grade Stainless Steel. Front Microbiol 2020; 10:3132. [PMID: 32038566 PMCID: PMC6987299 DOI: 10.3389/fmicb.2019.03132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes survives exposure to a variety of stresses including desiccation in the food industry. Strand-specific RNA sequencing was applied to analyze changes in the transcriptomes of two strains of L. monocytogenes (Lm 568 and Lm 08-5578) during desiccation [15°C, 43% relative humidity (RH)] on food grade stainless steel surfaces over 48 h to simulate a weekend with no food production. Both strains showed similar survival during desiccation with a 1.8-2 Log CFU/cm2 reduction after 48 h. Analysis of differentially expressed (DE) genes (>twofold, adjusted p-value <0.05) revealed that the initial response to desiccation was established after 6 h and remained constant with few new genes being DE after 12, 24, and 48 h. A core of 81 up- and 73 down-regulated DE genes were identified as a shared, strain independent response to desiccation. Among common upregulated genes were energy and oxidative stress related genes e.g., qoxABCD (cytochrome aa3) pdhABC (pyruvate dehydrogenase complex) and mntABCH (manganese transporter). Common downregulated genes related to anaerobic growth, proteolysis and the two component systems lmo1172/lmo1173 and cheA/cheY, which are involved in cold growth and flagellin production, respectively. Both strains upregulated additional genes involved in combatting oxidative stress and reactive oxygen species (ROS), including sod (superoxide dismutase), kat (catalase), tpx (thiol peroxidase) and several thioredoxins including trxAB, lmo2390 and lmo2830. Osmotic stress related genes were also upregulated in both strains, including gbuABC (glycine betaine transporter) and several chaperones clpC, cspA, and groE. Significant strain differences were also detected with the food outbreak strain Lm 08-5578 differentially expressing 1.9 × more genes (726) compared to Lm 568 (410). Unique to Lm 08-5578 was a significant upregulation of the expression of the alternative transcription factor σB and its regulon. A number of long antisense transcripts (lasRNA) were upregulated during desiccation including anti0605, anti0936, anti1846, and anti0777, with the latter controlling flagellum biosynthesis and possibly the downregulation of motility genes observed in both strains. This exploration of the transcriptomes of desiccated L. monocytogenes provides further understanding of how this bacterium encounters and survives the stress faced when exposed to dry conditions in the food industry.
Collapse
|
8
|
Grinberg M, Orevi T, Steinberg S, Kashtan N. Bacterial survival in microscopic surface wetness. eLife 2019; 8:e48508. [PMID: 31610846 PMCID: PMC6824842 DOI: 10.7554/elife.48508] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/20/2019] [Indexed: 01/06/2023] Open
Abstract
Plant leaves constitute a huge microbial habitat of global importance. How microorganisms survive the dry daytime on leaves and avoid desiccation is not well understood. There is evidence that microscopic surface wetness in the form of thin films and micrometer-sized droplets, invisible to the naked eye, persists on leaves during daytime due to deliquescence - the absorption of water until dissolution - of hygroscopic aerosols. Here, we study how such microscopic wetness affects cell survival. We show that, on surfaces drying under moderate humidity, stable microdroplets form around bacterial aggregates due to capillary pinning and deliquescence. Notably, droplet-size increases with aggregate-size, and cell survival is higher the larger the droplet. This phenomenon was observed for 13 bacterial species, two of which - Pseudomonas fluorescens and P. putida - were studied in depth. Microdroplet formation around aggregates is likely key to bacterial survival in a variety of unsaturated microbial habitats, including leaf surfaces.
Collapse
Affiliation(s)
- Maor Grinberg
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and EnvironmentHebrew UniversityRehovotIsrael
| | - Tomer Orevi
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and EnvironmentHebrew UniversityRehovotIsrael
| | - Shifra Steinberg
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and EnvironmentHebrew UniversityRehovotIsrael
| | - Nadav Kashtan
- Department of Plant Pathology and Microbiology, Robert H. Smith Faculty of Agriculture, Food, and EnvironmentHebrew UniversityRehovotIsrael
| |
Collapse
|
9
|
Bordoloi A, Gapes DJ, Gostomski PA. The impact of environmental parameters on the conversion of toluene to CO 2 and extracellular polymeric substances in a differential soil biofilter. CHEMOSPHERE 2019; 232:304-314. [PMID: 31154192 DOI: 10.1016/j.chemosphere.2019.05.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
The fraction of pollutant converted to CO2 versus biomass in biofiltration influences the process efficacy and the lifetime of the bed due to pressure drop increases. This work determined the relative quantitative importance and potential interactions between three critical environmental parameters: toluene concentration (Tol), matric potential (ψ) and temperature (T) on % CO2, elimination capacity (EC) and the production rate of non-CO2 products. These parameters are the most variable in typical biofilter operation. The data was fit to a non-linear model of the form y=a(Tol)bTcψd. A rigorous carbon balance (100.5 ± 7.0%) tracked the fate of degraded toluene as CO2 and non-CO2 carbon endpoints. The % CO2 mineralization varied from (34-91%) with environmental parameters: temperature (20-40 °C), matric potential, (-10 to -100 cmH2O) and residual toluene, (20-180 ppm). The highest conversion to CO2 was at the wettest conditions (-10 cmH2O) and lowest residual toluene concentration (18 ppm). Matric potential had twice the impact of toluene concentration on % CO2, while temperature had less impact. The elimination capacity varied from 11 to 50 gC⋅m-3h-1 and was highest at 40 °C, the wettest conditions with limited impact by toluene concentrations. Temperature increased the EC and non-CO2 production rates strongly while matric potential and toluene concentration had less influence (4x - 10x less). This study illustrated the quantitative significance and simultaneous interaction between critical environmental parameters on carbon endpoints and biofilter performance. This kind of multivariable parameter study provides valuable insights which can address performance and clogging issues in biofilters.
Collapse
Affiliation(s)
- Achinta Bordoloi
- Department of Chemical & Process Engineering, University of Canterbury, Private Bag 4800, Christchurch 80411, New Zealand; Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, Stellenbosch, South Africa.
| | | | - Peter A Gostomski
- Department of Chemical & Process Engineering, University of Canterbury, Private Bag 4800, Christchurch 80411, New Zealand
| |
Collapse
|
10
|
Drought-induced soil microbial amino acid and polysaccharide change and their implications for C-N cycles in a climate change world. Sci Rep 2019; 9:10968. [PMID: 31358788 PMCID: PMC6662807 DOI: 10.1038/s41598-019-46984-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 06/14/2019] [Indexed: 02/04/2023] Open
Abstract
High microbial carbon (MBC) demand, a proxy for energy demand (cost), during soil microbial response to stressors such as drought are a major gap in understanding global biogeochemical cycling of carbon (C) and nitrogen (N). The dynamics of two dominant microbial pools (amino acids; AA and exopolymeric substances; EPS) in soils exposed to drying and C and N amendment to mimic both low and high nutrient soil habitats were examined. It was hypothesized that dynamics of EPS and AA (osmolytes) would be greater when soil drying was preceded by a pulse of bioavailable C and N. Drying reduced AA content, even as overall soil MBC increased (~35%). The increase in absolute amounts and mol% of certain AA (eg: Taurine, glutamine, tyrosine, phenylalanine) in the driest treatment (−10 MPa) were similar in both soils regardless of amendment suggesting a common mechanism underlying the energy intensive acclimation across soils. MBC and EPS, both increased ~1.5X and ~3X due to drying and especially drying associated with amendment. Overall major pools of C and N based microbial metabolites are dynamic to drying (drought), and thus have implications for earth’s biogeochemical fluxes of C and N, perhaps costing 4–7% of forest fixed photosynthetic C input during a single drying (drought) period.
Collapse
|
11
|
RNA Sequencing-Based Transcriptional Overview of Xerotolerance in Cronobacter sakazakii SP291. Appl Environ Microbiol 2019; 85:AEM.01993-18. [PMID: 30446557 DOI: 10.1128/aem.01993-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/30/2018] [Indexed: 11/20/2022] Open
Abstract
Cronobacter sakazakii is a xerotolerant neonatal pathogen epidemiologically linked to powdered infant food formula, often resulting in high mortality rates. Here, we used transcriptome sequencing (RNA-seq) to provide transcriptional insights into the survival of C. sakazakii in desiccated conditions. Our RNA-seq data show that about 22% of the total C. sakazakii genes were significantly upregulated and 9% were downregulated during desiccation survival. When reverse transcription-quantitative PCR (qRT-PCR) was used to validate the RNA-seq data, we found that the primary desiccation response was gradually downregulated during the tested 4 hours of desiccation, while the secondary response remained constitutively upregulated. The 4-hour desiccation tolerance of C. sakazakii was dependent on the immediate microenvironment surrounding the bacterial cell. The removal of Trypticase soy broth (TSB) salts and the introduction of sterile infant formula residues in the microenvironment enhanced the desiccation survival of C. sakazakii SP291. The trehalose biosynthetic pathway encoded by otsA and otsB, a prominent secondary bacterial desiccation response, was highly upregulated in desiccated C. sakazakii C. sakazakii SP291 ΔotsAB was significantly inhibited compared with the isogenic wild type in an 8-hour desiccation survival assay, confirming the physiological importance of trehalose in desiccation survival. Overall, we provide a comprehensive RNA-seq-based transcriptional overview along with confirmation of the phenotypic importance of trehalose metabolism in Cronobacter sakazakii during desiccation.IMPORTANCE Cronobacter sakazakii is a pathogen of importance to neonatal health and is known to persist in dry food matrices, such as powdered infant formula (PIF) and its associated production environment. When infections are reported in neonates, mortality rates can be high. The success of this bacterium in surviving these low-moisture environments suggests that Cronobacter species can respond to a variety of environmental signals. Therefore, understanding those signals that aid the persistence of this pathogen in these ecological niches is an important step toward the development of strategies to reduce the risk of contamination of PIF. This research led to the identification of candidate genes that play a role in the persistence of this pathogen in desiccated conditions and, thereby, serve as a model target to design future strategies to mitigate PIF-associated survival of C. sakazakii.
Collapse
|
12
|
Bordoloi A, Gostomski PA. Fate of degraded pollutants in waste gas biofiltration: An overview of carbon end-points. Biotechnol Adv 2018; 37:579-588. [PMID: 30308222 DOI: 10.1016/j.biotechadv.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
The fate of the carbon from degraded pollutants in biofiltration is not well understood. The issue of missing carbon needs to be addressed quantitatively to better understand and model biofilter performance. Elucidating the various carbon end-points in various phases should contribute to the fundamental understanding of the degradation kinetics and metabolic pathways as a function of various environmental parameters. This article reviews the implications of key environmental parameters on the carbon end-points. Various studies are evaluated reporting carbon recovery over a multitude of parameters and operational conditions with respect to the analytical measurements and reported distribution of the carbon end-points.
Collapse
Affiliation(s)
- Achinta Bordoloi
- Department of Chemical and Process Engineering, University of Canterbury, New Zealand
| | - Peter A Gostomski
- Department of Chemical and Process Engineering, University of Canterbury, New Zealand.
| |
Collapse
|
13
|
Svenningsen NB, Martínez-García E, Nicolaisen MH, de Lorenzo V, Nybroe O. The biofilm matrix polysaccharides cellulose and alginate both protect Pseudomonas putida mt-2 against reactive oxygen species generated under matric stress and copper exposure. Microbiology (Reading) 2018; 164:883-888. [DOI: 10.1099/mic.0.000667] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Nanna B. Svenningsen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Mette H. Nicolaisen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Victor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ole Nybroe
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
14
|
Esbelin J, Santos T, Hébraud M. Desiccation: An environmental and food industry stress that bacteria commonly face. Food Microbiol 2018; 69:82-88. [DOI: 10.1016/j.fm.2017.07.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/09/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023]
|
15
|
Frösler J, Panitz C, Wingender J, Flemming HC, Rettberg P. Survival of Deinococcus geothermalis in Biofilms under Desiccation and Simulated Space and Martian Conditions. ASTROBIOLOGY 2017; 17:431-447. [PMID: 28520474 DOI: 10.1089/ast.2015.1431] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biofilm formation represents a successful survival strategy for bacteria. In biofilms, cells are embedded in a matrix of extracellular polymeric substances (EPS). As they are often more stress-tolerant than single cells, biofilm cells might survive the conditions present in space and on Mars. To investigate this topic, the bacterium Deinococcus geothermalis was chosen as a model organism due to its tolerance toward desiccation and radiation. Biofilms cultivated on membranes and, for comparison, planktonically grown cells deposited on membranes were air-dried and exposed to individual stressors that included prolonged desiccation, extreme temperatures, vacuum, simulated martian atmosphere, and UV irradiation, and they were exposed to combinations of stressors that simulate space (desiccation + vacuum + UV) or martian (desiccation + Mars atmosphere + UV) conditions. The effect of sulfatic Mars regolith simulant on cell viability during stress was investigated separately. The EPS produced by the biofilm cells contained mainly polysaccharides and proteins. To detect viable but nonculturable (VBNC) cells, cultivation-independent viability indicators (membrane integrity, ATP, 16S rRNA) were determined in addition to colony counts. Desiccation for 2 months resulted in a decrease of culturability with minor changes of membrane integrity in biofilm cells and major loss of membrane integrity in planktonic bacteria. Temperatures between -25°C and +60°C, vacuum, and Mars atmosphere affected neither culturability nor membrane integrity in both phenotypes. Monochromatic (254 nm; ≥1 kJ m-2) and polychromatic (200-400 nm; >5.5 MJ m-2 for planktonic cells and >270 MJ m-2 for biofilms) UV irradiation significantly reduced the culturability of D. geothermalis but did not affect cultivation-independent viability markers, indicating the induction of a VBNC state in UV-irradiated cells. In conclusion, a substantial proportion of the D. geothermalis population remained viable under all stress conditions tested, and in most cases the biofilm form proved advantageous for surviving space and Mars-like conditions. Key Words: Biofilms-Desiccation-UV radiation-Mars-Lithopanspermia. Astrobiology 17, 431-447.
Collapse
Affiliation(s)
- Jan Frösler
- 1 Biofilm Centre, University of Duisburg-Essen , Essen, Germany
| | - Corinna Panitz
- 2 Uniklinik/RWTH Aachen, Institute of Pharmacology and Toxicology , Aachen, Germany
| | - Jost Wingender
- 1 Biofilm Centre, University of Duisburg-Essen , Essen, Germany
| | | | - Petra Rettberg
- 3 DLR (Deutsches Zentrum für Luft- und Raumfahrt e.V.), Institute of Aerospace Medicine , Radiation Biology Department, Research Group Astrobiology, Cologne, Germany
| |
Collapse
|
16
|
Velmourougane K, Prasanna R, Saxena AK. Agriculturally important microbial biofilms: Present status and future prospects. J Basic Microbiol 2017; 57:548-573. [PMID: 28407275 DOI: 10.1002/jobm.201700046] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 11/07/2022]
Abstract
Microbial biofilms are a fascinating subject, due to their significant roles in the environment, industry, and health. Advances in biochemical and molecular techniques have helped in enhancing our understanding of biofilm structure and development. In the past, research on biofilms primarily focussed on health and industrial sectors; however, lately, biofilms in agriculture are gaining attention due to their immense potential in crop production, protection, and improvement. Biofilms play an important role in colonization of surfaces - soil, roots, or shoots of plants and enable proliferation in the desired niche, besides enhancing soil fertility. Although reports are available on microbial biofilms in general; scanty information is published on biofilm formation by agriculturally important microorganisms (bacteria, fungi, bacterial-fungal) and their interactions in the ecosystem. Better understanding of agriculturally important bacterial-fungal communities and their interactions can have several implications on climate change, soil quality, plant nutrition, plant protection, bioremediation, etc. Understanding the factors and genes involved in biofilm formation will help to develop more effective strategies for sustainable and environment-friendly agriculture. The present review brings together fundamental aspects of biofilms, in relation to their formation, regulatory mechanisms, genes involved, and their application in different fields, with special emphasis on agriculturally important microbial biofilms.
Collapse
Affiliation(s)
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau Nath Bhanjan, Uttar Pradesh, India
| |
Collapse
|
17
|
Lebre PH, De Maayer P, Cowan DA. Xerotolerant bacteria: surviving through a dry spell. Nat Rev Microbiol 2017; 15:285-296. [DOI: 10.1038/nrmicro.2017.16] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
López-Sánchez A, Leal-Morales A, Jiménez-Díaz L, Platero AI, Bardallo-Pérez J, Díaz-Romero A, Acemel RD, Illán JM, Jiménez-López J, Govantes F. Biofilm formation-defective mutants in Pseudomonas putida. FEMS Microbiol Lett 2016; 363:fnw127. [PMID: 27190143 DOI: 10.1093/femsle/fnw127] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 02/07/2023] Open
Abstract
Out of 8000 candidates from a genetic screening for Pseudomonas putida KT2442 mutants showing defects in biofilm formation, 40 independent mutants with diminished levels of biofilm were analyzed. Most of these mutants carried insertions in genes of the lap cluster, whose products are responsible for synthesis, export and degradation of the adhesin LapA. All mutants in this class were strongly defective in biofilm formation. Mutants in the flagellar regulatory genes fleQ and flhF showed similar defects to that of the lap mutants. On the contrary, transposon insertions in the flagellar structural genes fliP and flgG, that also impair flagellar motility, had a modest defect in biofilm formation. A mutation in gacS, encoding the sensor element of the GacS/GacA two-component system, also had a moderate effect on biofilm formation. Additional insertions targeted genes involved in cell envelope function: PP3222, encoding the permease element of an ABC-type transporter and tolB, encoding the periplasmic component of the Tol-OprL system required for outer membrane stability. Our results underscore the central role of LapA, suggest cross-regulation between motility and adhesion functions and provide insights on the role of cell envelope trafficking and maintenance for biofilm development in P. putida.
Collapse
Affiliation(s)
- Aroa López-Sánchez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide
| | - Antonio Leal-Morales
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide
| | - Lorena Jiménez-Díaz
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide
| | - Ana I Platero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide
| | - Juan Bardallo-Pérez
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide
| | - Alberto Díaz-Romero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide
| | - Rafael D Acemel
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide
| | - Juan M Illán
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide
| | - Julia Jiménez-López
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide
| | - Fernando Govantes
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/Consejo Superior de Investigaciones Científicas/Junta de Andalucía, and Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide
| |
Collapse
|
19
|
Abstract
Bacteria have traditionally been studied as single-cell organisms. In laboratory settings, aerobic bacteria are usually cultured in aerated flasks, where the cells are considered essentially homogenous. However, in many natural environments, bacteria and other microorganisms grow in mixed communities, often associated with surfaces. Biofilms are comprised of surface-associated microorganisms, their extracellular matrix material, and environmental chemicals that have adsorbed to the bacteria or their matrix material. While this definition of a biofilm is fairly simple, biofilms are complex and dynamic. Our understanding of the activities of individual biofilm cells and whole biofilm systems has developed rapidly, due in part to advances in molecular, analytical, and imaging tools and the miniaturization of tools designed to characterize biofilms at the enzyme level, cellular level, and systems level.
Collapse
|
20
|
Moreno-Forero SK, Rojas E, Beggah S, van der Meer JR. Comparison of differential gene expression to water stress among bacteria with relevant pollutant-degradation properties. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:91-102. [PMID: 26616826 DOI: 10.1111/1758-2229.12356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 11/15/2015] [Accepted: 11/15/2015] [Indexed: 06/05/2023]
Abstract
Resistance to semi-dry environments has been considered a crucial trait for superior growth and survival of strains used for bioaugmentation in contaminated soils. In order to compare water stress programmes, we analyse differential gene expression among three phylogenetically different strains capable of aromatic compound degradation: Arthrobacter chlorophenolicus A6, Sphingomonas wittichii RW1 and Pseudomonas veronii 1YdBTEX2. Standardized laboratory-induced water stress was imposed by shock exposure of liquid cultures to water potential decrease, induced either by addition of solutes (NaCl, solute stress) or by addition of polyethylene glycol (matric stress), both at absolute similar stress magnitudes and at those causing approximately similar decrease of growth rates. Genome-wide differential gene expression was recorded by micro-array hybridizations. Growth of P. veronii 1YdBTEX2 was the most sensitive to water potential decrease, followed by S. wittichii RW1 and A. chlorophenolicus A6. The number of genes differentially expressed under decreasing water potential was lowest for A. chlorophenolicus A6, increasing with increasing magnitude of the stress, followed by S. wittichii RW1 and P. veronii 1YdBTEX2. Gene inspection and gene ontology analysis under stress conditions causing similar growth rate reduction indicated that common reactions among the three strains included diminished expression of flagellar motility and increased expression of compatible solutes (which were strain-specific). Furthermore, a set of common genes with ill-defined function was found between all strains, including ABC transporters and aldehyde dehydrogenases, which may constitute a core conserved response to water stress. The data further suggest that stronger reduction of growth rate of P. veronii 1YdBTEX2 under water stress may be an indirect result of the response demanding heavy NADPH investment, rather than the presence or absence of a suitable stress defence mechanism per se.
Collapse
Affiliation(s)
- Silvia K Moreno-Forero
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, Lausanne, 1015, Switzerland
| | - Edward Rojas
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, Lausanne, 1015, Switzerland
| | - Siham Beggah
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, Lausanne, 1015, Switzerland
| | - Jan R van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, Lausanne, 1015, Switzerland
| |
Collapse
|
21
|
Svenningsen NB, Pérez-Pantoja D, Nikel PI, Nicolaisen MH, de Lorenzo V, Nybroe O. Pseudomonas putida mt-2 tolerates reactive oxygen species generated during matric stress by inducing a major oxidative defense response. BMC Microbiol 2015; 15:202. [PMID: 26445482 PMCID: PMC4595014 DOI: 10.1186/s12866-015-0542-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/02/2015] [Indexed: 01/09/2023] Open
Abstract
Background Soil bacteria typically thrive in water-limited habitats that cause an inherent matric stress to the cognate cells. Matric stress gives rise to accumulation of intracellular reactive oxygen species (ROS), which in turn may induce oxidative stress, and even promote mutagenesis. However, little is known about the impact of ROS induced by water limitation on bacteria performing important processes as pollutant biodegradation in the environment. We have rigorously examined the physiological consequences of the rise of intracellular ROS caused by matric stress for the toluene- and xylene-degrading soil bacterium Pseudomonas putida mt-2. Methods For the current experiments, controlled matric potential stress was delivered to P. putida cells by addition of polyethylene glycol to liquid cultures, and ROS formation in individual cells monitored by a specific dye. The physiological response to ROS was then quantified by both RT-qPCR of RNA transcripts from genes accredited as proxies of oxidative stress and the SOS response along with cognate transcriptional GFP fusions to the promoters of the same genes. Results Extensive matric stress at −1.5 MPa clearly increased intracellular accumulation of ROS. The expression of the two major oxidative defense genes katA and ahpC, as well as the hydroperoxide resistance gene osmC, was induced under matric stress. Different induction profiles of the reporters were related to the severity of the stress. To determine if matric stress lead to induction of the SOS-response, we constructed a DNA damage-inducible bioreporter based on the LexA-controlled phage promoter PPP3901. According to bioreporter analysis, this gene was expressed during extensive matric stress. Despite this DNA-damage mediated gene induction, we observed no increase in the mutation frequency as monitored by emergence of rifampicin-resistant colonies. Conclusions Under conditions of extensive matric stress, we observed a direct link between matric stress, ROS formation, induction of ROS-detoxifying functions and (partial) activation of the SOS system. However, such a stress-response regime did not translate into a general DNA mutagenesis status. Taken together, the data suggest that P. putida mt-2 can cope with this archetypal environmental stress while preserving genome stability, a quality that strengthens the status of this bacterium for biotechnological purposes.
Collapse
Affiliation(s)
- Nanna B Svenningsen
- Department of Plant and Environmental Sciences, Section of Genetics and Microbiology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - Danilo Pérez-Pantoja
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), C/ Darwin 3, 28049, Madrid, Spain.
| | - Pablo I Nikel
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), C/ Darwin 3, 28049, Madrid, Spain.
| | - Mette H Nicolaisen
- Department of Plant and Environmental Sciences, Section of Genetics and Microbiology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), C/ Darwin 3, 28049, Madrid, Spain.
| | - Ole Nybroe
- Department of Plant and Environmental Sciences, Section of Genetics and Microbiology, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
22
|
Genes Associated with Desiccation and Osmotic Stress in Listeria monocytogenes as Revealed by Insertional Mutagenesis. Appl Environ Microbiol 2015; 81:5350-62. [PMID: 26025900 DOI: 10.1128/aem.01134-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/22/2015] [Indexed: 12/29/2022] Open
Abstract
Listeria monocytogenes is a foodborne pathogen whose survival in food processing environments may be associated with its tolerance to desiccation. To probe the molecular mechanisms used by this bacterium to adapt to desiccation stress, a transposon library of 11,700 L. monocytogenes mutants was screened, using a microplate assay, for strains displaying increased or decreased desiccation survival (43% relative humidity, 15°C) in tryptic soy broth (TSB). The desiccation phenotypes of selected mutants were subsequently assessed on food-grade stainless steel (SS) coupons in TSB plus 1% glucose (TSB-glu). Single transposon insertions in mutants exhibiting a change in desiccation survival of >0.5 log CFU/cm(2) relative to that of the wild type were determined by sequencing arbitrary PCR products. Strain morphology, motility, and osmotic stress survival (in TSB-glu plus 20% NaCl) were also analyzed. The initial screen selected 129 desiccation-sensitive (DS) and 61 desiccation-tolerant (DT) mutants, out of which secondary screening on SS confirmed 15 DT and 15 DS mutants. Among the DT mutants, seven immotile and flagellum-less strains contained transposons in genes involved in flagellum biosynthesis (fliP, flhB, flgD, flgL) and motor control (motB, fliM, fliY), while others harbored transposons in genes involved in membrane lipid biosynthesis, energy production, potassium uptake, and virulence. The genes that were interrupted in the 15 DS mutants included those involved in energy production, membrane transport, protein metabolism, lipid biosynthesis, oxidative damage control, and putative virulence. Five DT and 14 DS mutants also demonstrated similar significantly (P < 0.05) different survival relative to that of the wild type when exposed to osmotic stress, demonstrating that some genes likely have similar roles in allowing the organism to survive the two water stresses.
Collapse
|
23
|
Otter J, Vickery K, Walker J, deLancey Pulcini E, Stoodley P, Goldenberg S, Salkeld J, Chewins J, Yezli S, Edgeworth J. Surface-attached cells, biofilms and biocide susceptibility: implications for hospital cleaning and disinfection. J Hosp Infect 2015; 89:16-27. [DOI: 10.1016/j.jhin.2014.09.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
|
24
|
Genome-wide analysis of Sphingomonas wittichii RW1 behaviour during inoculation and growth in contaminated sand. ISME JOURNAL 2014; 9:150-65. [PMID: 24936762 PMCID: PMC4274413 DOI: 10.1038/ismej.2014.101] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 05/07/2014] [Accepted: 05/12/2014] [Indexed: 11/08/2022]
Abstract
The efficacy of inoculation of single pure bacterial cultures into complex microbiomes, for example, in order to achieve increased pollutant degradation rates in contaminated material (that is, bioaugmentation), has been frustrated by insufficient knowledge on the behaviour of the inoculated bacteria under the specific abiotic and biotic boundary conditions. Here we present a comprehensive analysis of genome-wide gene expression of the bacterium Sphingomonas wittichii RW1 in contaminated non-sterile sand, compared with regular suspended batch growth in liquid culture. RW1 is a well-known bacterium capable of mineralizing dibenzodioxins and dibenzofurans. We tested the reactions of the cells both during the immediate transition phase from liquid culture to sand with or without dibenzofuran, as well as during growth and stationary phase in sand. Cells during transition show stationary phase characteristics, evidence for stress and for nutrient scavenging, and adjust their primary metabolism if they were not precultured on the same contaminant as found in the soil. Cells growing and surviving in sand degrade dibenzofuran but display a very different transcriptome signature as in liquid or in liquid culture exposed to chemicals inducing drought stress, and we obtain evidence for numerous 'soil-specific' expressed genes. Studies focusing on inoculation efficacy should test behaviour under conditions as closely as possible mimicking the intended microbiome conditions.
Collapse
|
25
|
Gulez G, Altıntaş A, Fazli M, Dechesne A, Workman CT, Tolker-Nielsen T, Smets BF. Colony morphology and transcriptome profiling of Pseudomonas putida KT2440 and its mutants deficient in alginate or all EPS synthesis under controlled matric potentials. Microbiologyopen 2014; 3:457-69. [PMID: 24912454 PMCID: PMC4287175 DOI: 10.1002/mbo3.180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/23/2014] [Accepted: 05/05/2014] [Indexed: 12/04/2022] Open
Abstract
Pseudomonas putida is a versatile bacterial species adapted to soil and its fluctuations. Like many other species living in soil, P. putida often faces water limitation. Alginate, an exopolysaccharide (EPS) produced by P. putida, is known to create hydrated environments and alleviate the effect of water limitation. In addition to alginate, P. putida is capable of producing cellulose (bcs), putida exopolysaccharide a (pea), and putida exopolysaccharide b (peb). However, unlike alginate, not much is known about their roles under water limitation. Hence, in this study we examined the role of different EPS components under mild water limitation. To create environmentally realistic water limited conditions as observed in soil, we used the Pressurized Porous Surface Model. Our main hypothesis was that under water limitation and in the absence of alginate other exopolysaccharides would be more active to maintain homeostasis. To test our hypothesis, we investigated colony morphologies and whole genome transcriptomes of P. putida KT2440 wild type and its mutants deficient in synthesis of either alginate or all known EPS. Overall our results support that alginate is an important exopolysaccharide under water limitation and in the absence of alginate other tolerance mechanisms are activated.
Collapse
Affiliation(s)
- Gamze Gulez
- Department of Environmental Engineering, Technical University of DenmarkBuilding 113, Kongens Lyngby, Denmark
| | - Ali Altıntaş
- Center for Biological Sequencing, Department of Systems Biology, Technical University of DenmarkBuilding 208, Kongens Lyngby, Denmark
| | - Mustafa Fazli
- Faculty of Science, Department of Biology, University of CopenhagenOle Maaløes Vej 5, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of International Health, Immunology, and Microbiology, University of CopenhagenBlegdamsvej 3C, Copenhagen, Denmark
| | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of DenmarkBuilding 113, Kongens Lyngby, Denmark
| | - Christopher T Workman
- Center for Biological Sequencing, Department of Systems Biology, Technical University of DenmarkBuilding 208, Kongens Lyngby, Denmark
| | - Tim Tolker-Nielsen
- Faculty of Health and Medical Sciences, Department of International Health, Immunology, and Microbiology, University of CopenhagenBlegdamsvej 3C, Copenhagen, Denmark
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of DenmarkBuilding 113, Kongens Lyngby, Denmark
- Correspondence Barth F. Smets, Department of Environmental Engineering, Technical University of Denmark, Building 113, Kongens Lyngby, Denmark. Tel: +45 45 25 22 30; Fax: +45 45 93 28 50;, E-mail:
| |
Collapse
|
26
|
Identification of opsA, a gene involved in solute stress mitigation and survival in soil, in the polycyclic aromatic hydrocarbon-degrading bacterium Novosphingobium sp. strain LH128. Appl Environ Microbiol 2014; 80:3350-61. [PMID: 24657861 DOI: 10.1128/aem.00306-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to identify genes involved in solute and matric stress mitigation in the polycyclic aromatic hydrocarbon (PAH)-degrading Novosphingobium sp. strain LH128. The genes were identified using plasposon mutagenesis and by selection of mutants that showed impaired growth in a medium containing 450 mM NaCl as a solute stress or 10% (wt/vol) polyethylene glycol (PEG) 6000 as a matric stress. Eleven and 14 mutants showed growth impairment when exposed to solute and matric stresses, respectively. The disrupted sequences were mapped on a draft genome sequence of strain LH128, and the corresponding gene functions were predicted. None of them were shared between solute and matric stress-impacted mutants. One NaCl-affected mutant (i.e., NA7E1) with a disruption in a gene encoding a putative outer membrane protein (OpsA) was susceptible to lower NaCl concentrations than the other mutants. The growth of NA7E1 was impacted by other ions and nonionic solutes and by sodium dodecyl sulfate (SDS), suggesting that opsA is involved in osmotic stress mitigation and/or outer membrane stability in strain LH128. NA7E1 was also the only mutant that showed reduced growth and less-efficient phenanthrene degradation in soil compared to the wild type. Moreover, the survival of NA7E1 in soil decreased significantly when the moisture content was decreased but was unaffected when soluble solutes from sandy soil were removed by washing. opsA appears to be important for the survival of strain LH128 in soil, especially in the case of reduced moisture content, probably by mitigating the effects of solute stress and retaining membrane stability.
Collapse
|
27
|
Vos M, Wolf AB, Jennings SJ, Kowalchuk GA. Micro-scale determinants of bacterial diversity in soil. FEMS Microbiol Rev 2013; 37:936-54. [DOI: 10.1111/1574-6976.12023] [Citation(s) in RCA: 338] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 03/08/2013] [Accepted: 03/15/2013] [Indexed: 11/29/2022] Open
|
28
|
Physiological and transcriptional responses to osmotic stress of two Pseudomonas syringae strains that differ in epiphytic fitness and osmotolerance. J Bacteriol 2013; 195:4742-52. [PMID: 23955010 DOI: 10.1128/jb.00787-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The foliar pathogen Pseudomonas syringae is a useful model for understanding the role of stress adaptation in leaf colonization. We investigated the mechanistic basis of differences in the osmotolerance of two P. syringae strains, B728a and DC3000. Consistent with its higher survival rates following inoculation onto leaves, B728a exhibited superior osmotolerance over DC3000 and higher rates of uptake of plant-derived osmoprotective compounds. A global transcriptome analysis of B728a and DC3000 following an osmotic upshift demonstrated markedly distinct responses between the strains; B728a showed primarily upregulation of genes, including components of the type VI secretion system (T6SS) and alginate biosynthetic pathways, whereas DC3000 showed no change or repression of orthologous genes, including downregulation of the T3SS. DC3000 uniquely exhibited improved growth upon deletion of the biosynthetic genes for the compatible solute N-acetylglutaminylglutamine amide (NAGGN) in a minimal medium, due possibly to NAGGN synthesis depleting the cellular glutamine pool. Both strains showed osmoreduction of glnA1 expression, suggesting that decreased glutamine synthetase activity contributes to glutamate accumulation as a compatible solute, and both strains showed osmoinduction of 5 of 12 predicted hydrophilins. Collectively, our results demonstrate that the superior epiphytic competence of B728a is consistent with its strong osmotolerance, a proactive response to an osmotic upshift, osmoinduction of alginate synthesis and the T6SS, and resiliency of the T3SS to water limitation, suggesting sustained T3SS expression under the water-limited conditions encountered during leaf colonization.
Collapse
|
29
|
Bogino PC, de las Mercedes Oliva M, Sorroche FG, Giordano W. The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 2013; 14:15838-59. [PMID: 23903045 PMCID: PMC3759889 DOI: 10.3390/ijms140815838] [Citation(s) in RCA: 229] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/18/2013] [Accepted: 06/28/2013] [Indexed: 01/09/2023] Open
Abstract
The role of bacterial surface components in combination with bacterial functional signals in the process of biofilm formation has been increasingly studied in recent years. Plants support a diverse array of bacteria on or in their roots, transport vessels, stems, and leaves. These plant-associated bacteria have important effects on plant health and productivity. Biofilm formation on plants is associated with symbiotic and pathogenic responses, but how plants regulate such associations is unclear. Certain bacteria in biofilm matrices have been found to induce plant growth and to protect plants from phytopathogens (a process termed biocontrol), whereas others are involved in pathogenesis. In this review, we systematically describe the various components and mechanisms involved in bacterial biofilm formation and attachment to plant surfaces and the relationships of these mechanisms to bacterial activity and survival.
Collapse
Affiliation(s)
- Pablo C. Bogino
- Department of Molecular Biology, National University of Río Cuarto, Ruta 36 Km 601, Río Cuarto, Córdoba X5804BYA, Argentina; E-Mails: (P.C.B.); (F.G.S.)
| | - María de las Mercedes Oliva
- Department of Microbiology and Immunology, National University of Río Cuarto, Ruta 36 Km 601, Córdoba X5804BYA, Argentina; E-Mail:
| | - Fernando G. Sorroche
- Department of Molecular Biology, National University of Río Cuarto, Ruta 36 Km 601, Río Cuarto, Córdoba X5804BYA, Argentina; E-Mails: (P.C.B.); (F.G.S.)
| | - Walter Giordano
- Department of Molecular Biology, National University of Río Cuarto, Ruta 36 Km 601, Río Cuarto, Córdoba X5804BYA, Argentina; E-Mails: (P.C.B.); (F.G.S.)
| |
Collapse
|
30
|
Diverse microhabitats experienced by Halomonas variabilis on salt-secreting leaves. Appl Environ Microbiol 2012; 79:845-52. [PMID: 23160133 DOI: 10.1128/aem.02791-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The leaf surfaces of the salt-excreting tree Tamarix aphylla harbor a wide diversity of halophilic microorganisms, including Halomonas sp., but little is known of the factors that shape community composition in this extreme habitat. We isolated a strain of Halomonas variabilis from the leaf surface of T. aphylla and used it to determine the heterogeneity of salt concentrations experienced by bacteria in this environment. This halophilic strain was transformed with a proU::gfp reporter gene fusion, the fluorescence of which was responsive to NaCl concentrations up to 200 g liter(-1). These bioreporting cells were applied to T. aphylla leaves and were subsequently recovered from dew droplets adhering to the leaf surface. Although cells from within a given dew droplet exhibited similar green fluorescent protein fluorescence, the fluorescence intensity varied between droplets and was correlated with the salt concentration measured in each drop. Growth of H. variabilis was observed in all droplets, regardless of the salt concentration. However, cells found in desiccated microniches between dew drops were low in abundance and generally dead. Other bacteria recovered from T. aphylla displayed higher desiccation tolerance than H. variabilis, both in culture and on inoculated plants, despite having lower osmotic tolerance. Thus, the Tamarix leaf surface can be described as a salty desert with occasional oases where water droplets form under humid conditions. While halotolerant bacteria such as Halomonas grow in high concentrations of salt in such wet microniches, other organisms are better suited to survive desiccation in sites that are not wetted.
Collapse
|
31
|
Yeom J, Lee Y, Park W. Effects of non-ionic solute stresses on biofilm formation and lipopolysaccharide production in Escherichia coli O157:H7. Res Microbiol 2012; 163:258-67. [DOI: 10.1016/j.resmic.2012.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/30/2012] [Indexed: 10/14/2022]
|
32
|
Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 colonizes three types of plants in different patterns. J Microbiol 2012; 50:38-44. [DOI: 10.1007/s12275-012-1439-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/14/2011] [Indexed: 10/28/2022]
|
33
|
Transcriptome dynamics of Pseudomonas putida KT2440 under water stress. Appl Environ Microbiol 2011; 78:676-83. [PMID: 22138988 DOI: 10.1128/aem.06150-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Water deprivation can be a major stressor to microbial life in surface and subsurface soil. In unsaturated soils, the matric potential (Ψ(m)) is often the main component of the water potential, which measures the thermodynamic availability of water. A low matric potential usually translates into water forming thin liquid films in the soil pores. Little is known of how bacteria respond to such conditions, where, in addition to facing water deprivation that might impair their metabolism, they have to adapt their dispersal strategy as swimming motility may be compromised. Using the pressurized porous surface model (PPSM), which allows creation of thin liquid films by controlling Ψ(m), we examined the transcriptome dynamics of Pseudomonas putida KT2440. We identified the differentially expressed genes in cells exposed to a mild matric stress (-0.4 MPa) for 4, 24, or 72 h. The major response was detected at 4 h before gradually disappearing. Upregulation of alginate genes was notable in this early response. Flagellar genes were not downregulated, and the microarray data even suggested increasing expression as the stress prolonged. Moreover, we tested the effect of polyethylene glycol 8000 (PEG 8000), a nonpermeating solute often used to simulate Ψ(m), on the gene expression profile and detected a different profile than that observed by directly imposing Ψ(m). This study is the first transcriptome profiling of KT2440 under directly controlled Ψ(m) and also the first to show the difference in gene expression profiles between a PEG 8000-simulated and a directly controlled Ψ(m).
Collapse
|
34
|
Johnson DR, Coronado E, Moreno-Forero SK, Heipieper HJ, van der Meer JR. Transcriptome and membrane fatty acid analyses reveal different strategies for responding to permeating and non-permeating solutes in the bacterium Sphingomonas wittichii. BMC Microbiol 2011; 11:250. [PMID: 22082453 PMCID: PMC3238334 DOI: 10.1186/1471-2180-11-250] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/14/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sphingomonas wittichii strain RW1 can completely oxidize dibenzo-p-dioxins and dibenzofurans, which are persistent contaminants of soils and sediments. For successful application in soil bioremediation systems, strain RW1 must cope with fluctuations in water availability, or water potential. Thus far, however, little is known about the adaptive strategies used by Sphingomonas bacteria to respond to changes in water potential. To improve our understanding, strain RW1 was perturbed with either the cell-permeating solute sodium chloride or the non-permeating solute polyethylene glycol with a molecular weight of 8000 (PEG8000). These solutes are assumed to simulate the solute and matric components of the total water potential, respectively. The responses to these perturbations were then assessed and compared using a combination of growth assays, transcriptome profiling, and membrane fatty acid analyses. RESULTS Under conditions producing a similar decrease in water potential but without effect on growth rate, there was only a limited shared response to perturbation with sodium chloride or PEG8000. This shared response included the increased expression of genes involved with trehalose and exopolysaccharide biosynthesis and the reduced expression of genes involved with flagella biosynthesis. Mostly, the responses to perturbation with sodium chloride or PEG8000 were very different. Only sodium chloride triggered the increased expression of two ECF-type RNA polymerase sigma factors and the differential expression of many genes involved with outer membrane and amino acid metabolism. In contrast, only PEG8000 triggered the increased expression of a heat shock-type RNA polymerase sigma factor along with many genes involved with protein turnover and repair. Membrane fatty acid analyses further corroborated these differences. The degree of saturation of membrane fatty acids increased after perturbation with sodium chloride but had the opposite effect and decreased after perturbation with PEG8000. CONCLUSIONS A combination of growth assays, transcriptome profiling, and membrane fatty acid analyses revealed that permeating and non-permeating solutes trigger different adaptive responses in strain RW1, suggesting these solutes affect cells in fundamentally different ways. Future work is now needed that connects these responses with the responses observed in more realistic scenarios of soil desiccation.
Collapse
Affiliation(s)
- David R Johnson
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
35
|
Nielsen L, Li X, Halverson LJ. Cell-cell and cell-surface interactions mediated by cellulose and a novel exopolysaccharide contribute to Pseudomonas putida biofilm formation and fitness under water-limiting conditions. Environ Microbiol 2011; 13:1342-56. [PMID: 21507177 DOI: 10.1111/j.1462-2920.2011.02432.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The composition of the exopolysaccharide matrix of Pseudomonas putida mt2 biofilms is relatively undefined as well as the contributions of each polymer to ecological fitness. Here, we describe the role of two putative exopolysaccharide gene clusters, putida exopolysaccharide A (pea) and bacterial cellulose (bcs) in biofilm formation and stability, rhizosphere colonization and matrix hydration under water-limiting conditions. Our findings suggest that pea is involved in the production of a novel glucose, galactose, and mannose-rich polymer that contributes to cell-cell interactions necessary for pellicle and biofilm formation and stability. In contrast, Bcs plays a minor role in biofilm formation and stability, although it does contribute to rhizosphere colonization based on a competition assay. We show that pea expression is highly induced transiently under water-limiting conditions but only slightly by high osmolarity, as determined by qRT-PCR. In contrast, both forms of water stress highly induced bcs expression. Cells deficient in making one or more exopolysaccharide experienced greater dehydration-mediated cell-envelope stress, leading to increased alginate promoter activity. However, this did not lead to increased exopolysaccharide production, except in bcs or pea mutants unable to produce alginate, indicating that P. putida compensates by producing, presumably more Pea or Bcs exopolysaccharides, to facilitate biofilm hydration. Collectively, the data suggest that Pea and Bcs contribute to biofilm formation and in turn their presence contributes to fitness under water-limiting conditions, but not to the extent of alginate.
Collapse
Affiliation(s)
- Lindsey Nielsen
- Interdepartmental Graduate Program in Microbiology Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
36
|
Chaibenjawong P, Foster SJ. Desiccation tolerance in Staphylococcus aureus. Arch Microbiol 2010; 193:125-35. [PMID: 21088825 DOI: 10.1007/s00203-010-0653-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/22/2010] [Accepted: 11/05/2010] [Indexed: 12/20/2022]
Abstract
Staphylococcus aureus is a multidrug-resistant pathogen that not only causes a diverse array of human diseases, but also is able to survive in potentially dry and stressful environments, such as the human nose, on skin and on inanimate surfaces such as clothing and surfaces. This study investigated parameters governing desiccation tolerance of S. aureus and identified several components involved in the process. Initially, the role of environmental parameters such as temperature, growth phase, cell density, desiccation time and protectants in desiccation tolerance were determined. This established a robust model of desiccation tolerance in which S. aureus has the ability to survive on dry plastic surfaces for more than 1,097 days. Using a combination of a random screen and defined mutants, clpX, sigB and yjbH were identified as being required for desiccation tolerance. ClpX is a part of the ATP-dependent ClpXP protease, important for protein turnover, and YjbH has a proposed linked function. SigB is an accessory sigma factor with a role in generalized stress resistance. Understanding the molecular mechanisms that govern desiccation tolerance may determine the break points to be exploited to prevent the spread of this dangerous pathogen in hospitals and communities.
Collapse
Affiliation(s)
- Plykaeow Chaibenjawong
- Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Sheffield S10 2TN, UK
| | | |
Collapse
|
37
|
Gülez G, Dechesne A, Smets BF. The Pressurized Porous Surface Model: an improved tool to study bacterial behavior under a wide range of environmentally relevant matric potentials. J Microbiol Methods 2010; 82:324-6. [PMID: 20599568 DOI: 10.1016/j.mimet.2010.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/17/2010] [Accepted: 06/20/2010] [Indexed: 11/30/2022]
Abstract
To study bacterial behavior under varying hydration conditions similar to surface soil, we have developed a system called the Pressurized Porous Surface Model (PPSM). Thin liquid films created by imposing a matric potential of -0.4 MPa impact gene expression and colony development in Pseudomonas putida.
Collapse
Affiliation(s)
- Gamze Gülez
- Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, DK-2800 Kgs. Lyngby, Denmark
| | | | | |
Collapse
|
38
|
Gustavs L, Eggert A, Michalik D, Karsten U. Physiological and biochemical responses of green microalgae from different habitats to osmotic and matric stress. PROTOPLASMA 2010; 243:3-14. [PMID: 19585217 DOI: 10.1007/s00709-009-0060-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 06/10/2009] [Indexed: 05/27/2023]
Abstract
Growth of five aeroterrestrial green algal strains (Trebouxiophyceae) in response to changing water availabilities-caused by osmotic (ionic) and matric (desiccation) stresses-was investigated in comparison with a freshwater and a marine strain. All investigated algae displayed good growth under brackish conditions while four out of the five aeroterrestrial strains even grew well under full marine conditions (28-40 psu). The comparison between growth responses in liquid medium, on solid agarose, and on glass fiber filters at 100% air humidity indicated a broad growth tolerance of aeroterrestrial algae towards diminished water availability. While two aeroterrestrial strains even grew better on solid medium which mimics natural biofilm conditions, the aquatic strains showed significant growth inhibition under matric stress. Except Stichococcus sp., which contained the C6-polyol sorbitol, all other aeroterrestrial green algae investigated synthesized and accumulated the C5-polyol ribitol in response to osmotic stress. Using (13)C NMR spectroscopy and HPLC, it could be verified that ribitol functions as an osmotically regulated organic solute. This is the first proof of ribitol in free-living aeroterrestrial green algae. The biochemical capability to synthesize polyols under environmental stress conditions seems to support algal life outside aquatic habitats.
Collapse
Affiliation(s)
- Lydia Gustavs
- Department of Biological Sciences, Applied Ecology, University of Rostock, Albert-Einstein-Strasse 3, 18051 Rostock, Germany.
| | | | | | | |
Collapse
|
39
|
Genome-driven investigation of compatible solute biosynthesis pathways of Pseudomonas syringae pv. syringae and their contribution to water stress tolerance. Appl Environ Microbiol 2010; 76:5452-62. [PMID: 20581190 DOI: 10.1128/aem.00686-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The foliar pathogen Pseudomonas syringae pv. syringae exhibits an exceptional ability to survive on asymptomatic plants as an epiphyte. Intermittent wetting events on plants lead to osmotic and matric stresses which must be tolerated for survival as an epiphyte. In this study, we have applied bioinformatic, genetic, and biochemical approaches to address water stress tolerance in P. syringae pv. syringae strain B728a, for which a complete genome sequence is available. P. syringae pv. syringae B728a is able to produce the compatible solutes betaine, ectoine, N-acetylglutaminylglutamine amide (NAGGN), and trehalose. Analysis of osmolyte profiles of P. syringae pv. syringae B728a under a variety of in vitro and in planta conditions reveals that the osmolytes differentially contribute to water stress tolerance in this species and that they interact at the level of transcription to yield a hierarchy of expression. While the interruption of a putative gene cluster coding for NAGGN biosynthesis provided the first experimental evidence of the NAGGN biosynthetic pathway, application of this knockout strain and also a gfp reporter gene fusion strain demonstrated the small contribution of NAGGN to cell survival and desiccation tolerance of P. syringae pv. syringae B728a under in planta conditions. Additionally, detailed investigation of ectC, an orphan of the ectoine cluster (lacking the ectA and ectB homologs), revealed its functionality and that ectoine production could be detected in NaCl-amended cultures of P. syringae pv. syringae B728a to which sterilized leaves of Syringa vulgaris had been added.
Collapse
|
40
|
Li X, Nielsen L, Nolan C, Halverson LJ. Transient alginate gene expression by Pseudomonas putida biofilm residents under water-limiting conditions reflects adaptation to the local environment. Environ Microbiol 2010; 12:1578-90. [PMID: 20236161 DOI: 10.1111/j.1462-2920.2010.02186.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Under water-limiting conditions Pseudomonas putida produces the exopolysaccharide alginate, which influences biofilm development and facilitates maintaining a hydrated microenvironment. Since alginate is a minor biofilm matrix component it is important to determine whether alginate production occurs by all or a subset of residents, and when and to what extent cells contribute to alginate production. To address these questions we employed stable and unstable fluorescent reporters to measure alginate biosynthesis (algD) operon expression and metabolic activity in vivo quantitatively by flow cytometry and visually by microscopy. Here we report that during growth under water-limiting conditions and when biofilms become dehydrated most residents transiently express the alginate biosynthesis genes leading to distinct spatial patterns as the biofilm ages. Transient alginate gene expression was not a consequence of decreased metabolic activity, since metabolic reporters were still expressed, nor was it likely due to transient cytosolic availability of the alternative sigma factor AlgT, based on qRT-PCR. Our findings also indicate that one or more biofilm attribute, other than alginate, provides protection from desiccation stress. Collectively, our findings suggest that differentiated cells dedicated to alginate production are not part of the P. putida biofilm lifestyle under water-limiting conditions. Alternatively, P. putida biofilm cells may be responding to their own local environment, producing alginate because of the fitness advantage it confers under those particular conditions.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Plant Pathology, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
41
|
Vanderlinde EM, Harrison JJ, Muszyński A, Carlson RW, Turner RJ, Yost CK. Identification of a novel ABC transporter required for desiccation tolerance, and biofilm formation in Rhizobium leguminosarum bv. viciae 3841. FEMS Microbiol Ecol 2010; 71:327-40. [PMID: 20030718 PMCID: PMC2868943 DOI: 10.1111/j.1574-6941.2009.00824.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Rhizobium leguminosarum is a soil bacterium with the ability to form nitrogen-fixing nodules on the roots of leguminous plants. Soil-dwelling, free-living R. leguminosarum often encounters desiccation stress, which impacts its survival within the soil. The mechanisms by which soil bacteria resist the effects of desiccation stress have been described. However, the role of the cell envelope in the desiccation tolerance mechanisms of rhizobia is relatively uncharacterized. Using a transposon mutagenesis approach, a mutant of R. leguminosarum bv. viciae was isolated that was highly sensitive to desiccation. The mutation is located in the ATP-binding protein of an uncharacterized ATP-binding cassette transporter operon (RL2975-RL2977). Exopolysaccharide accumulation was significantly lower in the mutant and the decrease in desiccation tolerance was attributed to the decreased accumulation of exopolysaccharide. In addition to desiccation sensitivity, the mutant was severely impaired in biofilm formation, an important adaptation used by soil bacteria for survival. This work has identified a novel transporter required for physiological traits that are important for the survival of R. leguminosarum in the rhizosphere environment.
Collapse
Affiliation(s)
| | - Joe J. Harrison
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Russell W. Carlson
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Raymond J. Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
42
|
Chang WS, Li X, Halverson LJ. Influence of water limitation on endogenous oxidative stress and cell death within unsaturatedPseudomonas putidabiofilms. Environ Microbiol 2009; 11:1482-92. [DOI: 10.1111/j.1462-2920.2009.01876.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
|
44
|
Abstract
Plants support a diverse array of bacteria, including parasites, mutualists, and commensals on and around their roots, in the vasculature, and on aerial tissues. These microbes have a profound influence on plant health and productivity. Bacteria physically interact with surfaces to form complex multicellular and often multispecies assemblies, including biofilms and smaller aggregates. There is growing appreciation that the intensity, duration, and outcome of plant-microbe interactions are significantly influenced by the conformation of adherent microbial populations. Biofilms on different tissues have unique properties, reflecting the prevailing conditions at those sites. Attachment is required for biofilm formation, and bacteria interact with plant tissues through adhesins including polysaccharides and surface proteins, with initial contact often mediated by active motility. Recognition between lectins and their cognate carbohydrates is a common means of specificity. Biofilm development and the resulting intimate interactions with plants often require cell-cell communication between colonizing bacteria.
Collapse
Affiliation(s)
- Thomas Danhorn
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
45
|
Affiliation(s)
- Robert J Palmer
- Oral Biofilm Communication Unit, Oral Infections and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bldg. 30, Room 310, 30 Convent Drive, Bethesda, MD 20892, USA.
| | | |
Collapse
|
46
|
Cytryn EJ, Sangurdekar DP, Streeter JG, Franck WL, Chang WS, Stacey G, Emerich DW, Joshi T, Xu D, Sadowsky MJ. Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress. J Bacteriol 2007; 189:6751-62. [PMID: 17660288 PMCID: PMC2045231 DOI: 10.1128/jb.00533-07] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The growth and persistence of rhizobia and bradyrhizobia in soils are negatively impacted by drought conditions. In this study, we used genome-wide transcriptional analyses to obtain a comprehensive understanding of the response of Bradyrhizobium japonicum to drought. Desiccation of cells resulted in the differential expression of 15 to 20% of the 8,453 [corrected] B. japonicum open reading frames, with considerable differentiation between early (after 4 h) and late (after 24 and 72 h) expressed genes. While 225 genes were universally up-regulated at all three incubation times in response to desiccation, an additional 43 and 403 up-regulated genes were common to the 4/24- and 24/72-h incubation times, respectively. Desiccating conditions resulted in the significant induction (>2.0-fold) of the trehalose-6-phosphate synthetase (otsA), trehalose-6-phosphate phosphatase (otsB), and trehalose synthase (treS) genes, which encode two of the three trehalose synthesis pathways found in B. japonicum. Gene induction was correlated with an elevated intracellular concentration of trehalose and increased activity of trehalose-6-phosphate synthetase, collectively supporting the hypothesis that this disaccharide plays a prominent and important role in promoting desiccation tolerance in B. japonicum. Microarray data also indicated that sigma(54)- and sigma(24)-associated transcriptional regulators and genes encoding isocitrate lyase, oxidative stress responses, the synthesis and transport of exopolysaccharides, heat shock response proteins, enzymes for the modification and repair of nucleic acids, and the synthesis of pili and flagella are also involved in the response of B. japonicum to desiccation. Polyethylene glycol-generated osmotic stress induced significantly fewer genes than those transcriptionally activated by desiccation. However, 67 genes were commonly induced under both conditions. Taken together, these results suggest that B. japonicum directly responds to desiccation by adapting to changes imparted by reduced water activity, such as the synthesis of trehalose and polysaccharides and, secondarily, by the induction of a wide variety of proteins involved in protection of the cell membrane, repair of DNA damage, stability and integrity of proteins, and oxidative stress responses.
Collapse
Affiliation(s)
- Eddie J Cytryn
- Department of Soil, Water, and Climate, BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA [corrected]
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chang WS, van de Mortel M, Nielsen L, Nino de Guzman G, Li X, Halverson LJ. Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J Bacteriol 2007; 189:8290-9. [PMID: 17601783 PMCID: PMC2168710 DOI: 10.1128/jb.00727-07] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms exist in a variety of habitats that are routinely or periodically not saturated with water, and residents must integrate cues on water abundance (matric stress) or osmolarity (solute stress) into lifestyle strategies. Here we examine this hypothesis by assessing the extent to which alginate production by Pseudomonas putida strain mt-2 and by other fluorescent pseudomonads occurs in response to water limitations and how the presence of alginate in turn influences biofilm development and stress tolerance. Total exopolysaccharide (EPS) and alginate production increased with increasing matric, but not solute, stress severity, and alginate was a significant component, but not the major component, of EPS. Alginate influenced biofilm architecture, resulting in biofilms that were taller, covered less surface area, and had a thicker EPS layer at the air interface than those formed by an mt-2 algD mutant under water-limiting conditions, properties that could contribute to less evaporative water loss. We examined this possibility and show that alginate reduces the extent of water loss from biofilm residents by using a biosensor to quantify the water potential of individual cells and by measuring the extent of dehydration-mediated changes in fatty acid composition following a matric or solute stress shock. Alginate deficiency decreased survival of desiccation not only by P. putida but also by Pseudomonas aeruginosa PAO1 and Pseudomonas syringae pv. syringae B728a. Our findings suggest that in response to water-limiting conditions, pseudomonads produce alginate, which influences biofilm development and EPS physiochemical properties. Collectively these responses may facilitate the maintenance of a hydrated microenvironment, protecting residents from desiccation stress and increasing survival.
Collapse
Affiliation(s)
- Woo-Suk Chang
- Graduate Program in Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | | | |
Collapse
|
48
|
Gilbert KB, Vanderlinde EM, Yost CK. Mutagenesis of the carboxy terminal protease CtpA decreases desiccation tolerance in Rhizobium leguminosarum. FEMS Microbiol Lett 2007; 272:65-74. [PMID: 17456188 DOI: 10.1111/j.1574-6968.2007.00735.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To better understand the role of proteases in Rhizobium leguminosarum biovar viciae, a gene with homology to the carboxy-terminal protease (CtpA), which belongs to a novel group of serine proteases, was studied. The ctpA gene was cloned and mutated using allelic exchange and a gusA reporter gene was used to study ctpA expression. Mutational analysis shows that ctpA is critical for the viability of R. leguminosarum when cells are grown on complex semi-solid media but is dispensable when cells are grown in complex liquid media and that this is likely due to an increase in susceptibility to desiccation on semi-solid media. The ctpA mutant also displayed an increased sensitivity to detergents, indicating an alteration in the permeability of the cell envelope. This is the first characterization of a ctpA gene within the Rhizobiaceae and the first report of a ctpA mutant that exhibits an increased sensitivity to desiccation.
Collapse
|
49
|
Gjermansen M, Ragas P, Tolker-Nielsen T. Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal. FEMS Microbiol Lett 2006; 265:215-24. [PMID: 17054717 DOI: 10.1111/j.1574-6968.2006.00493.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Microbial biofilm formation often causes problems in medical and industrial settings, and knowledge about the factors that are involved in biofilm development and dispersion is useful for creating strategies to control the processes. In this report, we present evidence that proteins with GGDEF and EAL domains are involved in the regulation of biofilm formation and biofilm dispersion in Pseudomonas putida. Overexpression in P. putida of the Escherichia coli YedQ protein, which contains a GGDEF domain, resulted in increased biofilm formation. Overexpression in P. putida of the E. coli YhjH protein, which contains an EAL domain, strongly inhibited biofilm formation. Induction of YhjH expression in P. putida cells situated in established biofilms led to rapid dispersion of the biofilms. These results support the emerging theme that GGDEF-domain and EAL-domain proteins are involved in regulating the transition of bacteria between a roaming lifestyle and a sessile biofilm lifestyle.
Collapse
Affiliation(s)
- Morten Gjermansen
- Centre for Biomedical Microbiology, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark, UK
| | | | | |
Collapse
|
50
|
Nanavati DM, Thirangoon K, Noll KM. Several archaeal homologs of putative oligopeptide-binding proteins encoded by Thermotoga maritima bind sugars. Appl Environ Microbiol 2006; 72:1336-45. [PMID: 16461685 PMCID: PMC1392961 DOI: 10.1128/aem.72.2.1336-1345.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hyperthermophilic bacterium Thermotoga maritima has shared many genes with archaea through horizontal gene transfer. Several of these encode putative oligopeptide ATP binding cassette (ABC) transporters. We sought to test the hypothesis that these transporters actually transport sugars by measuring the substrate affinities of their encoded substrate-binding proteins (SBPs). This information will increase our understanding of the selective pressures that allowed this organism to retain these archaeal homologs. By measuring changes in intrinsic fluorescence of these SBPs in response to exposure to various sugars, we found that five of the eight proteins examined bind to sugars. We could not identify the ligands of the SBPs TM0460, TM1150, and TM1199. The ligands for the archaeal SBPs are TM0031 (BglE), the beta-glucosides cellobiose and laminaribiose; TM0071 (XloE), xylobiose and xylotriose; TM0300 (GloE), large glucose oligosaccharides represented by xyloglucans; TM1223 (ManE), beta-1,4-mannobiose; and TM1226 (ManD), beta-1,4-mannobiose, beta-1,4-mannotriose, beta-1,4-mannotetraose, beta-1,4-galactosyl mannobiose, and cellobiose. For comparison, seven bacterial putative sugar-binding proteins were examined and ligands for three (TM0595, TM0810, and TM1855) were not identified. The ligands for these bacterial SBPs are TM0114 (XylE), xylose; TM0418 (InoE), myo-inositol; TM0432 (AguE), alpha-1,4-digalactouronic acid; and TM0958 (RbsB), ribose. We found that T. maritima does not grow on several complex polypeptide mixtures as sole sources of carbon and nitrogen, so it is unlikely that these archaeal ABC transporters are used primarily for oligopeptide transport. Since these SBPs bind oligosaccharides with micromolar to nanomolar affinities, we propose that they are used primarily for oligosaccharide transport.
Collapse
Affiliation(s)
- Dhaval M Nanavati
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | | | | |
Collapse
|