1
|
Senuma W, Hayashi K, Tsuzuki M, Takemura C, Terazawa Y, Kiba A, Ohnishi K, Kai K, Hikichi Y. Contribution of the Sensor Histidine Kinases PhcS and VsrA to the Quorum Sensing of Ralstonia pseudosolanacearum Strain OE1-1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:688-697. [PMID: 39295141 DOI: 10.1094/mpmi-05-24-0049-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The soilborne Gram-negative phytopathogenic beta-proteobacterium Ralstonia pseudosolanacearum strain OE1-1 produces methyl 3-hydroxymyristate (3-OH MAME) as the quorum sensing (QS) signal by the methyltransferase PhcB and senses the chemical, activating the LysR family transcriptional regulator PhcA, which regulates the QS-dependent genes responsible for QS-dependent phenotypes including virulence. The sensor histidine kinases PhcS and VsrA are reportedly involved in the regulation of QS-dependent genes. To elucidate the function of PhcS and VsrA in the active QS, we generated the phcS-deletion and vsrA-deletion mutants, which exhibited weak changes to their QS-dependent phenotypes including virulence. The phcS and vsrA-deletion mutant (ΔphcS/vsrA) had significant changes in its QS-dependent phenotypes and was nonvirulent, similar to the phcA-deletion mutant. The mutant (PhcS-H230Q) with a substitution of histidine to glutamine at amino acid position 230 in PhcS but not the mutant (VsrA-H256Q) with a substitution of histidine to glutamine at amino acid position 256 in VsrA exhibited significant changes in QS-dependent phenotypes and lost virulence. The transcriptome analysis with RNA-sequencing revealed significant alterations to the expression of QS-dependent genes in the ΔphcS/vsrA and PhcS-H230Q but not VsrA-H256Q, similar to the phcA-deletion mutant. The exogenous 3-OH MAME application led to a significantly enhanced QS-inducible major exopolysaccharide EPS I production of the strain OE1-1 and phcB-deletion mutant but not ΔphcS/vsrA and PhcS-H230Q. Collectively, results of the present genetic study suggested that PhcS contributes to QS along with VsrA and that histidine at amino acid position 230 of PhcS is required for 3-OH MAME sensing, thereby influencing QS-dependent phenotypes including virulence of the strain OE1-1. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.
Collapse
Affiliation(s)
- Wakana Senuma
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Kazusa Hayashi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Masayuki Tsuzuki
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Chika Takemura
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Yuki Terazawa
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Akinori Kiba
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| | - Kenji Kai
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Japan
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Japan
| |
Collapse
|
2
|
Mohammed YHI, Shamkh IM, Shntaif AH, Sufyan M, Rehman MT, AlAjmi MF, Shahwan M, Alghamdi S, Abd El-Lateef AE, Khidir EB, Abouzied AS, Khalifa NE, A Khojali WM, Huwaimel B, Al Farraj DA, Almutairi SM. Synthesis and evaluation of pyridine-3-carboxamide analogs as effective agents against bacterial wilt in tomatoes. Sci Rep 2024; 14:11118. [PMID: 38750062 PMCID: PMC11096348 DOI: 10.1038/s41598-024-59609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
This study focused on developing novel pyridine-3-carboxamide analogs to treat bacterial wilt in tomatoes caused by Ralstonia solanacearum. The analogs were synthesized through a multistep process and their structures confirmed using spectroscopy. Molecular docking studies identified the most potent analog from the series. A specific analog, compound 4a, was found to significantly enhance disease resistance in tomato plants infected with R. solanacearum. The structure-activity relationship analysis showed the positions and types of substituents on the aromatic rings of compounds 4a-i strongly influenced their biological activity. Compound 4a, with a chloro group at the para position on ring C and hydroxyl group at the ortho position on ring A, was exceptionally effective against R. solanacearum. When used to treat seeds, the analogs displayed remarkable efficacy, especially compound 4a which had specific activity against bacterial wilt pathogens. Compound 4a also promoted vegetative and reproductive growth of tomato plants, increasing seed germination and seedling vigor. In plants mechanically infected with bacteria, compound 4a substantially reduced the percentage of infection, pathogen quantity in young tissue, and disease progression. The analogs were highly potent due to their amide linkage. Molecular docking identified the best compounds with strong binding affinities. Overall, the strategic design and synthesis of these pyridine-3-carboxamide analogs offers an effective approach to targeting and controlling R. solanacearum and bacterial wilt in tomatoes.
Collapse
Affiliation(s)
- Yasser Hussein Issa Mohammed
- Department of Biochemistry, Faculty of Applied Science, University of Hajjah, Hajjah, Yemen.
- Department of Pharmacy, Faculty of Medicine and Medical Science, University of Al-Razi, Al-Razi, Yemen.
| | - Israa M Shamkh
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
- Chemo and Bioinformatics Lab, Bio Search Research Institution, BSRI, Giza, Egypt
| | - Ahmed Hassen Shntaif
- Department of Chemistry, College of Science for Women, University of Babylon, Alhilla, 51002, Iraq
| | - Muhammad Sufyan
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Moayad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Saad Alghamdi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Elshiekh B Khidir
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amr S Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza, 12553, Egypt
| | - Nasrin E Khalifa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Weam M A Khojali
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omdurman Islamic University, Omdurman, Sudan
| | - Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, 81442, Hail, Saudi Arabia
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Huang M, He P, He P, Wu Y, Munir S, He Y. Novel Virulence Factors Deciphering Klebsiella pneumoniae KpC4 Infect Maize as a Crossing-Kingdom Pathogen: An Emerging Environmental Threat. Int J Mol Sci 2022; 23:ijms232416005. [PMID: 36555647 PMCID: PMC9785288 DOI: 10.3390/ijms232416005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Klebsiella pneumoniae is not only a human and animal opportunistic pathogen, but a food-borne pathogen. Cross-kingdom infection has been focused on since K. pneumoniae was identified as the pathogen of maize, banana, and pomegranate. Although the pathogenicity of K. pneumoniae strains (from ditch water, maize, and human) on plant and mice has been confirmed, there are no reports to explain the molecular mechanisms of the pathogen. This study uncovered the K. pneumoniae KpC4 isolated from maize top rot for the determination of various virulence genes and resistance genes. At least thirteen plant disease-causing genes are found to be involved in the disruption of plant defense. Among them, rcsB is responsible for causing disease in both plants and animals. The novel sequence types provide solid evidence that the pathogen invades plant and has robust ecological adaptability. It is imperative to perform further studies on the verification of these KpC4 genes’ functions to understand the molecular mechanisms involved in plant−pathogen interactions.
Collapse
Affiliation(s)
- Min Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- College of Agronomy and Life Sciences and Engineering Research Center for Urban Modern Agriculture of Higher Education in Yunnan Province, Kunming University, Kunming 650214, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (S.M.); (Y.H.)
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (S.M.); (Y.H.)
| |
Collapse
|
4
|
Nakajima M. β-1,2-Glucans and associated enzymes. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01205-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Interrelation between Stress Management and Secretion Systems of Ralstonia solanacearum: An In Silico Assessment. Pathogens 2022; 11:pathogens11070730. [PMID: 35889976 PMCID: PMC9325324 DOI: 10.3390/pathogens11070730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/18/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Ralstonia solanacearum (Rs), the causative agent of devastating wilt disease in several major and minor economic crops, is considered one of the most destructive bacterial plant pathogens. However, the mechanism(s) by which Rs counteracts host-associated environmental stress is still not clearly elucidated. To investigate possible stress management mechanisms, orthologs of stress-responsive genes in the Rs genome were searched using a reference set of known genes. The genome BLAST approach was used to find the distributions of these orthologs within different Rs strains. BLAST results were first confirmed from the KEGG Genome database and then reconfirmed at the protein level from the UniProt database. The distribution pattern of these stress-responsive factors was explored through multivariate analysis and STRING analysis. STRING analysis of stress-responsive genes in connection with different secretion systems of Rs was also performed. Initially, a total of 28 stress-responsive genes of Rs were confirmed in this study. STRING analysis revealed an additional 7 stress-responsive factors of Rs, leading to the discovery of a total of 35 stress-responsive genes. The segregation pattern of these 35 genes across 110 Rs genomes was found to be almost homogeneous. Increasing interactions of Rs stress factors were observed in six distinct clusters, suggesting six different types of stress responses: membrane stress response (MSR), osmotic stress response (OSR), oxidative stress response (OxSR), nitrosative stress response (NxSR), and DNA damage stress response (DdSR). Moreover, a strong network of these stress responses was observed with type 3 secretion system (T3SS), general secretory proteins (GSPs), and different types of pili (T4P, Tad, and Tat). To the best of our knowledge, this is the first report on overall stress response management by Rs and the potential connection with secretion systems.
Collapse
|
6
|
Hussain A, Khan MI, Albaqami M, Mahpara S, Noorka IR, Ahmed MAA, Aljuaid BS, El-Shehawi AM, Liu Z, Farooq S, Zuan ATK. CaWRKY30 Positively Regulates Pepper Immunity by Targeting CaWRKY40 against Ralstonia solanacearum Inoculation through Modulating Defense-Related Genes. Int J Mol Sci 2021; 22:ijms222112091. [PMID: 34769521 PMCID: PMC8584995 DOI: 10.3390/ijms222112091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
The WRKY transcription factors (TFs) network is composed of WRKY TFs’ subset, which performs a critical role in immunity regulation of plants. However, functions of WRKY TFs’ network remain unclear, particularly in non-model plants such as pepper (Capsicum annuum L.). This study functionally characterized CaWRKY30—a member of group III Pepper WRKY protein—for immunity of pepper against Ralstonia solanacearum infection. The CaWRKY30 was detected in nucleus, and its transcriptional expression levels were significantly upregulated by R. solanacearum inoculation (RSI), and foliar application ethylene (ET), abscisic acid (ABA), and salicylic acid (SA). Virus induced gene silencing (VIGS) of CaWRKY30 amplified pepper’s vulnerability to RSI. Additionally, the silencing of CaWRKY30 by VIGS compromised HR-like cell death triggered by RSI and downregulated defense-associated marker genes, like CaPR1, CaNPR1, CaDEF1, CaABR1, CaHIR1, and CaWRKY40. Conversely, transient over-expression of CaWRKY30 in pepper leaves instigated HR-like cell death and upregulated defense-related maker genes. Furthermore, transient over-expression of CaWRKY30 upregulated transcriptional levels of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. On the other hand, transient over-expression of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40 upregulated transcriptional expression levels of CaWRKY30. The results recommend that newly characterized CaWRKY30 positively regulates pepper’s immunity against Ralstonia attack, which is governed by synergistically mediated signaling by phytohormones like ET, ABA, and SA, and transcriptionally assimilating into WRKY TFs networks, consisting of CaWRKY6, CaWRKY22, CaWRKY27, and CaWRKY40. Collectively, our data will facilitate to explicate the underlying mechanism of crosstalk between pepper’s immunity and response to RSI.
Collapse
Affiliation(s)
- Ansar Hussain
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (A.H.); (M.I.K.); (S.M.); (I.R.N.)
| | - Muhammad Ifnan Khan
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (A.H.); (M.I.K.); (S.M.); (I.R.N.)
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Shahzadi Mahpara
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (A.H.); (M.I.K.); (S.M.); (I.R.N.)
| | - Ijaz Rasool Noorka
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan; (A.H.); (M.I.K.); (S.M.); (I.R.N.)
| | - Mohamed A. A. Ahmed
- Plant Production Department (Horticulture—Medicinal and Aromatic Plants), Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Bandar S. Aljuaid
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (B.S.A.); (A.M.E.-S.)
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (B.S.A.); (A.M.E.-S.)
| | - Zhiqin Liu
- College of Crop Sciences, Fujian Agriculture and Forestry University, Fuzhou 350001, China
- Correspondence: (Z.L.); (A.T.K.Z.)
| | - Shahid Farooq
- Department of Plant Protection, Faculty of Agriculture, Harran University, Şanlıurfa 63050, Turkey;
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (Z.L.); (A.T.K.Z.)
| |
Collapse
|
7
|
Genome-Wide Identification of Tomato Xylem Sap Fitness Factors for Three Plant-Pathogenic Ralstonia Species. mSystems 2021; 6:e0122921. [PMID: 34726495 PMCID: PMC8562481 DOI: 10.1128/msystems.01229-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Plant-pathogenic Ralstonia spp. colonize plant xylem and cause wilt diseases on a broad range of host plants. To identify genes that promote growth of diverse Ralstonia strains in xylem sap from tomato plants, we performed genome-scale genetic screens (random barcoded transposon mutant sequencing screens [RB-TnSeq]) in three strains spanning the genetic, geographical, and physiological range of plant-pathogenic Ralstonia: Ralstonia solanacearum IBSBF1503, Ralstonia pseudosolanacearum GMI1000, and Ralstonia syzygii PSI07. Contrasting mutant fitness phenotypes in culture media versus in xylem sap suggest that Ralstonia strains are adapted to ex vivo xylem sap and that culture media impose foreign selective pressures. Although wild-type Ralstonia grew in sap and in rich medium with similar doubling times and to a similar carrying capacity, more genes were essential for growth in sap than in rich medium. Each strain required many genes associated with envelope remodeling and repair processes for full fitness in xylem sap. These genes were associated with peptidoglycan peptide formation (murI), secretion of periplasmic proteins (tatC), periplasmic protein folding (dsbA), synthesis of osmoregulated periplasmic glucans (mdoGH), and lipopolysaccharide (LPS) biosynthesis. Mutant strains with mutations in four genes had strong, sap-specific fitness defects in all strain backgrounds: murI, thiC, purU, and a lipoprotein (RSc2007). Many amino acid biosynthesis genes were required for fitness in both minimal medium and xylem sap. Multiple mutants with insertions in virulence regulators had gains of fitness in culture media and neutral fitness in sap. Our genome-scale genetic screen identified Ralstonia fitness factors that promote growth in xylem sap, an ecologically relevant condition. IMPORTANCE Traditional transposon mutagenesis genetic screens pioneered molecular plant pathology and identified core virulence traits like the type III secretion system. TnSeq approaches that leverage next-generation sequencing to rapidly quantify transposon mutant phenotypes are ushering in a new wave of biological discovery. Here, we have adapted a genome-scale approach, random barcoded transposon mutant sequencing (RB-TnSeq), to discover fitness factors that promote growth of three related bacterial strains in a common niche, tomato xylem sap. Fitness of the wild type and mutants show that Ralstonia spp. are adapted to grow well in xylem sap from their natural host plant, tomato. Our screen identified multiple sap-specific fitness factors with roles in maintaining the bacterial envelope. These factors include putative adaptations to resist plant defenses that may include antimicrobial proteins and specialized metabolites that damage bacterial membranes.
Collapse
|
8
|
Su Y, Xu Y, Liang H, Yuan G, Wu X, Zheng D. Genome-Wide Identification of Ralstonia solanacearum Genes Required for Survival in Tomato Plants. mSystems 2021; 6:e0083821. [PMID: 34636662 PMCID: PMC8510521 DOI: 10.1128/msystems.00838-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/24/2021] [Indexed: 01/22/2023] Open
Abstract
Ralstonia solanacearum is an extremely destructive phytopathogenic bacterium for which there is no effective control method. Though many pathogenic factors have been identified, the survival strategies of R. solanacearum in host plants remain unclear. Transposon insertion sequencing (Tn-seq) is a high-throughput genetic screening technology. This study conducted a Tn-seq analysis using the in planta environment as selective pressure to identify R. solanacearum genes required for survival in tomato plants. One hundred thirty genes were identified as putative genes required for survival in tomato plants. Sixty-three of these genes were classified into four Clusters of Orthologous Groups categories. The absence of genes that encode the outer membrane lipoprotein LolB (RS_RS01965) or the membrane protein RS_RS04475 severely decreased the in planta fitness of R. solanacearum. RS_RS09970 and RS_RS04490 are involved in tryptophan and serine biosynthesis, respectively. Mutants that lack RS_RS09970 or RS_RS04490 did not cause any wilt symptoms in susceptible tomato plants. These results confirmed the importance of genes related to "cell wall/membrane/envelope biogenesis" and "amino acid transport and metabolism" for survival in plants. The gene encoding NADH-quinone oxidoreductase subunit B (RS_RS10340) is one of the 13 identified genes involved in "energy production and conversion," and the Clp protease gene (RS_RS08645) is one of the 11 identified genes assigned to "posttranslational modification, protein turnover, and chaperones." Both genes were confirmed to be required for survival in plants. In conclusion, this study globally identified and validated R. solanacearum genes required for survival in tomato plants and provided essential information for a more complete view of the pathogenic mechanism of R. solanacearum. IMPORTANCE Tomato plant xylem is a nutritionally limiting and dynamically changing habitat. Studies on how R. solanacearum survives in this hostile environment are important for our full understanding of the pathogenic mechanism of this bacterium. Though many omics approaches have been employed to study in planta survival strategies, the direct genome-wide identification of R. solanacearum genes required for survival in plants is still lacking. This study performed a Tn-seq analysis in R. solanacearum and revealed that genes in the categories "cell wall/membrane/envelope biogenesis," "amino acid transport and metabolism," "energy production and conversion," "posttranslational modification, protein turnover, chaperones" and others play important roles in the survival of R. solanacearum in tomato plants.
Collapse
Affiliation(s)
- Yaxing Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning, People’s Republic of China
| | - Yanan Xu
- Pharmaceutical College, Guangxi Medical University, Nanning, People’s Republic of China
| | - Hailing Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning, People’s Republic of China
| | - Gaoqing Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning, People’s Republic of China
| | - Xiaogang Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning, People’s Republic of China
| | - Dehong Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning, People’s Republic of China
| |
Collapse
|
9
|
Wang B, He T, Zheng X, Song B, Chen H. Proteomic Analysis of Potato Responding to the Invasion of Ralstonia solanacearum UW551 and Its Type III Secretion System Mutant. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:337-350. [PMID: 33332146 DOI: 10.1094/mpmi-06-20-0144-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The infection of potato with Ralstonia solanacearum UW551 gives rise to bacterial wilt disease via colonization of roots. The type III secretion system (T3SS) is a determinant factor for the pathogenicity of R. solanacearum. To fully understand perturbations in potato by R. solanacearum type III effectors(T3Es), we used proteomics to measure differences in potato root protein abundance after inoculation with R. solanacearum UW551 and the T3SS mutant (UW551△HrcV). We identified 21 differentially accumulated proteins. Compared with inoculation with UW551△HrcV, 10 proteins showed significantly lower abundance in potato roots after inoculation with UW551, indicating that those proteins were significantly downregulated by T3Es during the invasion. To identify their functions in immunity, we silenced those genes in Nicotiana benthamiana and tested the resistance of the silenced plants to the pathogen. Results showed that miraculin, HBP2, and TOM20 contribute to immunity to R. solanacearum. In contrast, PP1 contributes to susceptibility. Notably, none of four downregulated proteins (HBP2, PP1, HSP22, and TOM20) were downregulated at the transcriptional level, suggesting that they were significantly downregulated at the posttranscriptional level. We further coexpressed those four proteins with 33 core T3Es. To our surprise, multiple effectors were able to significantly decrease the studied protein abundances. In conclusion, our data showed that T3Es of R. solanacearum could subvert potato root immune-related proteins in a redundant manner.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Bingsen Wang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tianjiu He
- Guizhou Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guizhou Province, Guiyang 550006, China
| | - Xueao Zheng
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Botao Song
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huilan Chen
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
10
|
Suresh P, Varathraju G, Shanmugaiah V, Almaary KS, Elbadawi YB, Mubarak A. Partial purification and characterization of 2, 4-diacetylphloroglucinol producing Pseudomonas fluorescens VSMKU3054 against bacterial wilt disease of tomato. Saudi J Biol Sci 2021; 28:2155-2167. [PMID: 33911932 PMCID: PMC8071909 DOI: 10.1016/j.sjbs.2021.02.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 11/27/2022] Open
Abstract
We find out the antimicrobial potential of partially purified 2,4-diacetylphloroglucinol (DAPG) against Ralstonia solanacearum and fungal plant pathogens isolated from tomato rhizobacterium Pseudomonas fluorescens VSMKU3054. The present study is mainly focused on the control of wilt disease of tomato by our isolate VSMKU3054 and DAPG. The cell free culture filtrate of P. fluorescens VSMKU3054 was significantly arrested the growth of R. solanacearum and fungal pathogens such as Rhizoctonia solani, Sclerotium rolfsii, Macrophomina phaseolina and Fusarium oxysporum compared to control. The existence of DAPG from the crude metabolites of P. fluorescens VSMKU3054 was confirmed on TLC with Rf value 0.34, which is coincide with that of authentic phloroglucinol. The partially purified DAPG exhibited much higher activity against R. solanacearum at 30 µg/ml than the fungal plant pathogens compared to control. The antimicrobial partially purified compound was identified as DAPG by UV, FT-IR and GC-MS analysis. The percentage of live cells of R. solanacearum when supplemented with DAPG at 30 µg/ml, significantly controlled the living nature of R. solanacearum up to 68% compared to tetracycline and universal control observed under high content screening analysis. The selected isolate P. fluorescens VSMKU3054 and DAPG significantly controlled wilt disease of tomato up to 59.5% and 42.12% on 3rd and 7th days compared to positive and negative control by detached leaf assay. Further, in silico analysis revealed that high interaction of DAPG encoding protease with lectin which is associated with R. solanacearum. Based on our findings, we confirmed that P. fluorescens VSMKU3054 and DAPG could be used a potential bio inoculants for the management of bacterial wilt disease of tomato.
Collapse
Affiliation(s)
- Perumal Suresh
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Govintharaj Varathraju
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Vellasamy Shanmugaiah
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Khalid S Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Yahya B Elbadawi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Rajamma SB, Raj A, Kalampalath V, Eapen SJ. Elucidation of antibacterial effect of calcium chloride against Ralstonia pseudosolanacearum race 4 biovar 3 infecting ginger (Zingiber officinale Rosc.). Arch Microbiol 2021; 203:663-671. [PMID: 33029663 DOI: 10.1007/s00203-020-02052-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/25/2020] [Accepted: 09/15/2020] [Indexed: 11/25/2022]
Abstract
Bacterial wilt incited by Ralstonia pseudosolanacearum (Rps) race 4 biovar 3 is a serious threat to ginger (Zingiber officinale Rosc.) cultivation throughout the ginger growing tracts and warrants effective remedial measures since most of the strategies failed at field level implementation. After a series of experiments, calcium chloride was found to be effective against Rps both in vitro and in planta and its prophylactic effect has been successfully demonstrated under field conditions. CaCl2 at a concentration of > 2% significantly inhibited Rps under in vitro conditions. Calcium is an important nutritional element imparts a major role in plant disease resistance, and numerous studies have demonstrated the mitigating effect of calcium for disease management. CaCl2 being inhibitory to Rps, the mechanism of inhibition by CaCl2 against Rps was elucidated by a series of in vitro assays including swarming motility and biofilm formation. Direct inhibition was also studied using Scanning Electron Microscopy (SEM). The minimum bactericidal concentration and minimum inhibitory concentration were found to be around 3% while the EC 90 value was found to be 2.25%. The SEM analysis revealed the destruction of cell structure by making perforations on the cell surface. CaCl2 at the targeted concentrations inhibited biofilm formation as well as swarming motility of Rps. These findings suggest that CaCl2 exhibits strong antibacterial activity against Rps and has the potential to be used as an effective bactericide for Rps in managing bacterial wilt in ginger.
Collapse
Affiliation(s)
- Suseela Bhai Rajamma
- ICAR-Indian Institute of Spices Research, Marikunnu P O, Kozhikode, Kerala, 673012, India.
| | - Ammu Raj
- ICAR-Indian Institute of Spices Research, Marikunnu P O, Kozhikode, Kerala, 673012, India
| | - Vincy Kalampalath
- ICAR-Indian Institute of Spices Research, Marikunnu P O, Kozhikode, Kerala, 673012, India
| | - Santhosh J Eapen
- ICAR-Indian Institute of Spices Research, Marikunnu P O, Kozhikode, Kerala, 673012, India
| |
Collapse
|
12
|
Sivapragasam S, Ghosh A, Kumar S, Johnson DT, Grove A. Similar solutions to a common challenge: regulation of genes encoding Ralstonia solanacearum xanthine dehydrogenase. FEMS Microbiol Lett 2021; 368:6147036. [PMID: 33620442 DOI: 10.1093/femsle/fnab022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
The stringent response involves accumulation of (p)ppGpp, and it ensures that survival is prioritized. Production of (p)ppGpp requires purine synthesis, and upregulation of an operon that encodes the purine salvage enzyme xanthine dehydrogenase (Xdh) has been observed during stringent response in some bacterial species, where direct binding of ppGpp to a TetR-family transcription factor is responsible for increased xdh gene expression. We show here that the plant pathogen Ralstonia solanacearum has a regulatory system in which the LysR-family transcription factor XanR controls expression of the xan operon; this operon encodes Xdh as well as other enzymes involved in purine salvage, which favor accumulation of xanthine. XanR bound upstream of the xan operon, a binding that was attenuated on addition of either ppGpp or cyclic di-guanosine monophosphate (c-di-GMP). Using a reporter in which enhanced green fluorescent protein (EGFP) is expressed under control of a modified xan promoter, XanR was shown to repress EGFP production. Our data suggest that R. solanacearum features a regulatory mechanism in which expression of genes encoding purine salvage enzymes is controlled by a transcription factor that belongs to a different protein family, yet performs similar regulatory functions.
Collapse
Affiliation(s)
- Smitha Sivapragasam
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Arpita Ghosh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Sanjay Kumar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Danté T Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
13
|
Shen F, Yin W, Song S, Zhang Z, Ye P, Zhang Y, Zhou J, He F, Li P, Deng Y. Ralstonia solanacearum promotes pathogenicity by utilizing l-glutamic acid from host plants. MOLECULAR PLANT PATHOLOGY 2020; 21:1099-1110. [PMID: 32599676 PMCID: PMC7368120 DOI: 10.1111/mpp.12963] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/20/2020] [Indexed: 05/22/2023]
Abstract
Ralstonia solanacearum is an important bacterial pathogen that can infect a broad range of plants worldwide. A previous study showed that R. solanacearum could respond to exogenous organic acids or amino acids to modulate cell motility. However, it was unclear whether R. solanacearum uses these compounds to control infection. In this study, we found that R. solanacearum GMI1000 uses host plant metabolites to enhance the biosynthesis of virulence factors. We demonstrated that l-glutamic acid from host plants is the key active component associated with increased extracellular polysaccharide production, cellulase activity, swimming motility, and biofilm formation in R. solanacearum GMI1000. In addition, l-glutamic acid also promoted colonization of R. solanacearum cells in the roots and stems of tomato plants and accelerated disease incidence. Furthermore, genetic screening and biochemical analysis suggested that RS01577, a hybrid sensor histidine kinase/response regulator, is involved in l-glutamic acid signalling in R. solanacearum. Mutations in RS01577 and exogenous addition of l-glutamic acid to the GMI1000 wild-type strain had overlapping effects on both the transcriptome and biological functions of R. solanacearum, including on motility, biofilm formation, and virulence. Thus, our results have established a new interaction mechanism between R. solanacearum and host plants that highlights the complexity of the virulence regulation mechanism and may provide new insight into disease control.
Collapse
Affiliation(s)
- Fangfang Shen
- College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Wenfang Yin
- College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Shihao Song
- College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Zhihan Zhang
- College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Peiyi Ye
- College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Yong Zhang
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
| | - Jianuan Zhou
- College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Fei He
- College of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Peng Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan ProvinceCollege of Life SciencesHainan Normal UniversityHaikouChina
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
14
|
Tondo ML, de Pedro-Jové R, Vandecaveye A, Piskulic L, Orellano EG, Valls M. KatE From the Bacterial Plant Pathogen Ralstonia solanacearum Is a Monofunctional Catalase Controlled by HrpG That Plays a Major Role in Bacterial Survival to Hydrogen Peroxide. FRONTIERS IN PLANT SCIENCE 2020; 11:1156. [PMID: 32849714 PMCID: PMC7412880 DOI: 10.3389/fpls.2020.01156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/16/2020] [Indexed: 05/31/2023]
Abstract
Ralstonia solanacearum is the causative agent of bacterial wilt disease on a wide range of plant species. Besides the numerous bacterial activities required for host invasion, those involved in the adaptation to the plant environment are key for the success of infection. R. solanacearum ability to cope with the oxidative burst produced by the plant is likely one of the activities required to grow parasitically. Among the multiple reactive oxygen species (ROS)-scavenging enzymes predicted in the R. solanacearum GMI1000 genome, a single monofunctional catalase (KatE) and two KatG bifunctional catalases were identified. In this work, we show that these catalase activities are active in bacterial protein extracts and demonstrate by gene disruption and mutant complementation that the monofunctional catalase activity is encoded by katE. Different strategies were used to evaluate the role of KatE in bacterial physiology and during the infection process that causes bacterial wilt. We show that the activity of the enzyme is maximal during exponential growth in vitro and this growth-phase regulation occurs at the transcriptional level. Our studies also demonstrate that katE expression is transcriptionally activated by HrpG, a central regulator of R. solanacearum induced upon contact with the plant cells. In addition, we reveal that even though both KatE and KatG catalase activities are induced upon hydrogen peroxide treatment, KatE has a major effect on bacterial survival under oxidative stress conditions and especially in the adaptive response of R. solanacearum to this oxidant. The katE mutant strain also exhibited differences in the structural characteristics of the biofilms developed on an abiotic surface in comparison to wild-type cells, but not in the overall amount of biofilm production. The role of catalase KatE during the interaction with its host plant tomato is also studied, revealing that disruption of this gene has no effect on R. solanacearum virulence or bacterial growth in leave tissues, which suggests a minor role for this catalase in bacterial fitness in planta. Our work provides the first characterization of the R. solanacearum catalases and identifies KatE as a bona fide monofunctional catalase with an important role in bacterial protection against oxidative stress.
Collapse
Affiliation(s)
- María Laura Tondo
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina
| | - Roger de Pedro-Jové
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Catalonia, Spain
- Department of Genetics, University of Barcelona, Barcelona, Spain
| | - Agustina Vandecaveye
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina
| | - Laura Piskulic
- Área Estadística y Procesamiento de Datos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Elena G. Orellano
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rosario, Argentina
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Catalonia, Spain
- Department of Genetics, University of Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Elsayed TR, Jacquiod S, Nour EH, Sørensen SJ, Smalla K. Biocontrol of Bacterial Wilt Disease Through Complex Interaction Between Tomato Plant, Antagonists, the Indigenous Rhizosphere Microbiota, and Ralstonia solanacearum. Front Microbiol 2020; 10:2835. [PMID: 31998244 PMCID: PMC6967407 DOI: 10.3389/fmicb.2019.02835] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/22/2019] [Indexed: 11/25/2022] Open
Abstract
Ralstonia solanacearum (biovar2, race3) is the causal agent of bacterial wilt and this quarantine phytopathogen is responsible for massive losses in several commercially important crops. Biological control of this pathogen might become a suitable plant protection measure in areas where R. solanacearum is endemic. Two bacterial strains, Bacillus velezensis (B63) and Pseudomonas fluorescens (P142) with in vitro antagonistic activity toward R. solanacearum (B3B) were tested for rhizosphere competence, efficient biological control of wilt symptoms on greenhouse-grown tomato, and effects on the indigenous rhizosphere prokaryotic communities. The population densities of B3B and the antagonists were estimated in rhizosphere community DNA by selective plating, real-time quantitative PCR, and R. solanacearum-specific fliC PCR-Southern blot hybridization. Moreover, we investigated how the pathogen and/or the antagonists altered the composition of the tomato rhizosphere prokaryotic community by 16S rRNA gene amplicon sequencing. B. velezensis (B63) and P. fluorescens (P142)-inoculated plants showed drastically reduced wilt disease symptoms, accompanied by significantly lower abundance of the B3B population compared to the non-inoculated pathogen control. Pronounced shifts in prokaryotic community compositions were observed in response to the inoculation of B63 or P142 in the presence or absence of the pathogen B3B and numerous dynamic taxa were identified. Confocal laser scanning microscopy (CLSM) visualization of the gfp-tagged antagonist P142 revealed heterogeneous colonization patterns and P142 was detected in lateral roots, root hairs, epidermal cells, and within xylem vessels. Although competitive niche exclusion cannot be excluded, it is more likely that the inoculation of P142 or B63 and the corresponding microbiome shifts primed the plant defense against the pathogen B3B. Both inoculants are promising biological agents for efficient control of R. solanacearum under field conditions.
Collapse
Affiliation(s)
- Tarek R Elsayed
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany.,Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Samuel Jacquiod
- Marine Microbiological Section, Department of Biology, Faculty of Natural and Life Sciences, University of Copenhagen, Copenhagen, Denmark.,Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France
| | - Eman H Nour
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Søren J Sørensen
- Marine Microbiological Section, Department of Biology, Faculty of Natural and Life Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| |
Collapse
|
16
|
Khokhani D, Tran TM, Lowe-Power TM, Allen C. Plant Assays for Quantifying Ralstonia solanacearum Virulence. Bio Protoc 2018; 8:e3028. [PMID: 34395814 DOI: 10.21769/bioprotoc.3028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022] Open
Abstract
Virulence assays are powerful tools to study microbial pathogenesis in vivo. Good assays track disease development and, coupled with targeted mutagenesis, can identify pathogen virulence factors. Disease development in plants is extremely sensitive to environmental factors such as temperature, atmospheric humidity, and soil water level, so it can be challenging to standardize conditions to achieve consistent results. Here, we present optimized and validated experimental conditions and analysis methods for nine assays that measure specific aspects of virulence in the phytopathogenic bacterium Ralstonia solanacearum, using tomato as the model host plant.
Collapse
Affiliation(s)
- Devanshi Khokhani
- Department of Bacteriology, University of Wisconsin-Madison, Madison, USA
| | - Tuan Minh Tran
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, USA
| |
Collapse
|
17
|
Cohen SP, Jacobs JM, Leach JE. In Planta Bacterial Transcriptomics Predict Plant Disease Outcomes. TRENDS IN PLANT SCIENCE 2018; 23:751-753. [PMID: 30149853 DOI: 10.1016/j.tplants.2018.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/14/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
Plants are colonized by pathogenic and beneficial microbes. When pathogenic bacteria contact plant cells, bacterial gene expression changes, influencing disease development. The impact of host plant immunity on bacterial gene expression remains largely unexplored. Recent studies show how in planta bacterial transcriptomics methods can better define mechanisms of plant-microbe interactions.
Collapse
Affiliation(s)
- Stephen P Cohen
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA; Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Jonathan M Jacobs
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| | - Jan E Leach
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA; http://leachlab.agsci.colostate.edu/.
| |
Collapse
|
18
|
Lowe-Power TM, Khokhani D, Allen C. How Ralstonia solanacearum Exploits and Thrives in the Flowing Plant Xylem Environment. Trends Microbiol 2018; 26:929-942. [PMID: 29941188 DOI: 10.1016/j.tim.2018.06.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/24/2018] [Accepted: 06/04/2018] [Indexed: 10/28/2022]
Abstract
The plant wilt pathogen Ralstonia solanacearum thrives in the water-transporting xylem vessels of its host plants. Xylem is a relatively nutrient-poor, high-flow environment but R. solanacearum succeeds there by tuning its own metabolism and altering xylem sap biochemistry. Flow influences many traits that the bacterium requires for pathogenesis. Most notably, a quorum sensing system mediates the pathogen's major transition from a rapidly dividing early phase that voraciously consumes diverse food sources and avidly adheres to plant surfaces to a slower-growing late phase that can use fewer nutrients but produces virulence factors and disperses effectively. This review discusses recent findings about R. solanacearum pathogenesis in the context of its flowing in planta niche, with emphasis on R. solanacearum metabolism in plants.
Collapse
Affiliation(s)
- Tiffany M Lowe-Power
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA; Current address: Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Devanshi Khokhani
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA; Current address: Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
19
|
Lowe-Power TM, Hendrich CG, von Roepenack-Lahaye E, Li B, Wu D, Mitra R, Dalsing BL, Ricca P, Naidoo J, Cook D, Jancewicz A, Masson P, Thomma B, Lahaye T, Michael AJ, Allen C. Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Environ Microbiol 2017; 20:1330-1349. [PMID: 29215193 DOI: 10.1111/1462-2920.14020] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 12/20/2022]
Abstract
Ralstonia solanacearum thrives in plant xylem vessels and causes bacterial wilt disease despite the low nutrient content of xylem sap. We found that R. solanacearum manipulates its host to increase nutrients in tomato xylem sap, enabling it to grow better in sap from infected plants than in sap from healthy plants. Untargeted GC/MS metabolomics identified 22 metabolites enriched in R. solanacearum-infected sap. Eight of these could serve as sole carbon or nitrogen sources for R. solanacearum. Putrescine, a polyamine that is not a sole carbon or nitrogen source for R. solanacearum, was enriched 76-fold to 37 µM in R. solanacearum-infected sap. R. solanacearum synthesized putrescine via a SpeC ornithine decarboxylase. A ΔspeC mutant required ≥ 15 µM exogenous putrescine to grow and could not grow alone in xylem even when plants were treated with putrescine. However, co-inoculation with wildtype rescued ΔspeC growth, indicating R. solanacearum produced and exported putrescine to xylem sap. Intriguingly, treating plants with putrescine before inoculation accelerated wilt symptom development and R. solanacearum growth and systemic spread. Xylem putrescine concentration was unchanged in putrescine-treated plants, so the exogenous putrescine likely accelerated disease indirectly by affecting host physiology. These results indicate that putrescine is a pathogen-produced virulence metabolite.
Collapse
Affiliation(s)
- Tiffany M Lowe-Power
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Connor G Hendrich
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Edda von Roepenack-Lahaye
- Leibniz Institute of Plant Biochemistry, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Universität Tübingen, Tübingen, Germany
| | - Bin Li
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dousheng Wu
- Leibniz Institute of Plant Biochemistry, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Universität Tübingen, Tübingen, Germany
| | - Raka Mitra
- Department of Biology, Carleton College, Northfield, MN 55057, USA
| | - Beth L Dalsing
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Patrizia Ricca
- Leibniz Institute of Plant Biochemistry, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Universität Tübingen, Tübingen, Germany
| | - Jacinth Naidoo
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David Cook
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Amy Jancewicz
- Department of Genetics, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Patrick Masson
- Department of Genetics, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Bart Thomma
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Thomas Lahaye
- Leibniz Institute of Plant Biochemistry, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Universität Tübingen, Tübingen, Germany
| | - Anthony J Michael
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI 53706, USA
| |
Collapse
|
20
|
A Single Regulator Mediates Strategic Switching between Attachment/Spread and Growth/Virulence in the Plant Pathogen Ralstonia solanacearum. mBio 2017; 8:mBio.00895-17. [PMID: 28951474 PMCID: PMC5615195 DOI: 10.1128/mbio.00895-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The PhcA virulence regulator in the vascular wilt pathogen Ralstonia solanacearum responds to cell density via quorum sensing. To understand the timing of traits that enable R. solanacearum to establish itself inside host plants, we created a ΔphcA mutant that is genetically locked in a low-cell-density condition. Comparing levels of gene expression of wild-type R. solanacearum and the ΔphcA mutant during tomato colonization revealed that the PhcA transcriptome includes an impressive 620 genes (>2-fold differentially expressed; false-discovery rate [FDR], ≤0.005). Many core metabolic pathways and nutrient transporters were upregulated in the ΔphcA mutant, which grew faster than the wild-type strain in tomato xylem sap and on dozens of specific metabolites, including 36 found in xylem. This suggests that PhcA helps R. solanacearum to survive in nutrient-poor environmental habitats and to grow rapidly during early pathogenesis. However, after R. solanacearum reaches high cell densities in planta, PhcA mediates a trade-off from maximizing growth to producing costly virulence factors. R. solanacearum infects through roots, and low-cell-density-mode-mimicking ΔphcA cells attached to tomato roots better than the wild-type cells, consistent with their increased expression of several adhesins. Inside xylem vessels, ΔphcA cells formed aberrantly dense mats. Possibly as a result, the mutant could not spread up or down tomato stems as well as the wild type. This suggests that aggregating improves R. solanacearum survival in soil and facilitates infection and that it reduces pathogenic fitness later in disease. Thus, PhcA mediates a second strategic switch between initial pathogen attachment and subsequent dispersal inside the host. PhcA helps R. solanacearum optimally invest resources and correctly sequence multiple steps in the bacterial wilt disease cycle. Ralstonia solanacearum is a destructive soilborne crop pathogen that wilts plants by colonizing their water-transporting xylem vessels. It produces its costly virulence factors only after it has grown to a high population density inside a host. To identify traits that this pathogen needs in other life stages, we studied a mutant that mimics the low-cell-density condition. This mutant (the ΔphcA mutant) cannot sense its own population density. It grew faster than and used many nutrients not available to the wild-type bacterium, including metabolites present in tomato xylem sap. The mutant also attached much better to tomato roots, and yet it failed to spread once it was inside plants because it was trapped in dense mats. Thus, PhcA helps R. solanacearum succeed over the course of its complex life cycle by ensuring avid attachment to plant surfaces and rapid growth early in disease, followed by high virulence and effective dispersal later in disease.
Collapse
|
21
|
Abstract
Among all the systems developed by enterobacteria to face osmotic stress, only osmoregulated periplasmic glucans (OPGs) were found to be modulated during osmotic fluxes. First detected in 1973 by E.P. Kennedy's group in a study of phospholipid turnover in Escherichia coli, OPGs have been shown across alpha, beta, and gamma subdivisions of the proteobacteria. Discovery of OPG-like compounds in the epsilon subdivision strongly suggested that the presence of periplasmic glucans is essential for almost all proteobacteria. This article offers an overview of the different classes of OPGs. Then, the biosynthesis of OPGs and their regulation in E. coli and other species are discussed. Finally, the biological role of OPGs is developed. Beyond structural function, OPGs are involved in pathogenicity, in particular, by playing a role in signal transduction pathways. Recently, OPG synthesis proteins have been suggested to control cell division and growth rate.
Collapse
Affiliation(s)
- Sébastien Bontemps-Gallo
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Jean-Pierre Bohin
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Jean-Marie Lacroix
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| |
Collapse
|
22
|
Alagarasan G, Aswathy KS, Madhaiyan M. Shoot the Message, Not the Messenger-Combating Pathogenic Virulence in Plants by Inhibiting Quorum Sensing Mediated Signaling Molecules. FRONTIERS IN PLANT SCIENCE 2017; 8:556. [PMID: 28446917 PMCID: PMC5388769 DOI: 10.3389/fpls.2017.00556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
Immunity, virulence, biofilm formation, and survival in the host environment are regulated by the versatile nature of density dependent microbial cell signaling, also called quorum sensing (QS). The QS molecules can associate with host plant tissues and, at times, cause a change in its gene expression at the downstream level through inter-kingdom cross talking. Progress in controlling QS through fungicide/bactericide in pathogenic microscopic organisms has lead to a rise of antibiotic resistance pathogens. Here, we review the application of selective quorum quenching (QQ) endophytes to control phytopathogens that are shared by most, if not all, terrestrial plant species as well as aquatic plants. Allowing the plants to posses endophytic colonies through biotization will be an additional and a sustainable encompassing methodology resulting in attenuated virulence rather than killing the pathogens. Furthermore, the introduced endophytes could serve as a potential biofertilizer and bioprotection agent, which in turn increases the PAMP- triggered immunity and hormonal systemic acquired resistance (SAR) in plants through SA-JA-ET signaling systems. This paper discusses major challenges imposed by QS and QQ application in biotechnology.
Collapse
Affiliation(s)
- Ganesh Alagarasan
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Krishi VishwavidyalayaRaipur, India
| | - Kumar S. Aswathy
- Department of Agricultural Microbiology, Tamilnadu Agricultural UniversityCoimbatore, India
| | - Munusamy Madhaiyan
- Biomaterials and Biocatalyst, Temasek Lifesciences Laboratory, National University of SingaporeSingapore, Singapore
| |
Collapse
|
23
|
Puigvert M, Guarischi-Sousa R, Zuluaga P, Coll NS, Macho AP, Setubal JC, Valls M. Transcriptomes of Ralstonia solanacearum during Root Colonization of Solanum commersonii. FRONTIERS IN PLANT SCIENCE 2017; 8:370. [PMID: 28373879 PMCID: PMC5357869 DOI: 10.3389/fpls.2017.00370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/02/2017] [Indexed: 05/03/2023]
Abstract
Bacterial wilt of potatoes-also called brown rot-is a devastating disease caused by the vascular pathogen Ralstonia solanacearum that leads to significant yield loss. As in other plant-pathogen interactions, the first contacts established between the bacterium and the plant largely condition the disease outcome. Here, we studied the transcriptome of R. solanacearum UY031 early after infection in two accessions of the wild potato Solanum commersonii showing contrasting resistance to bacterial wilt. Total RNAs obtained from asymptomatic infected roots were deep sequenced and for 4,609 out of the 4,778 annotated genes in strain UY031 were recovered. Only 2 genes were differentially-expressed between the resistant and the susceptible plant accessions, suggesting that the bacterial component plays a minor role in the establishment of disease. On the contrary, 422 genes were differentially expressed (DE) in planta compared to growth on a synthetic rich medium. Only 73 of these genes had been previously identified as DE in a transcriptome of R. solanacearum extracted from infected tomato xylem vessels. Virulence determinants such as the Type Three Secretion System (T3SS) and its effector proteins, motility structures, and reactive oxygen species (ROS) detoxifying enzymes were induced during infection of S. commersonii. On the contrary, metabolic activities were mostly repressed during early root colonization, with the notable exception of nitrogen metabolism, sulfate reduction and phosphate uptake. Several of the R. solanacearum genes identified as significantly up-regulated during infection had not been previously described as virulence factors. This is the first report describing the R. solanacearum transcriptome directly obtained from infected tissue and also the first to analyze bacterial gene expression in the roots, where plant infection takes place. We also demonstrate that the bacterial transcriptome in planta can be studied when pathogen numbers are low by sequencing transcripts from infected tissue avoiding prokaryotic RNA enrichment.
Collapse
Affiliation(s)
- Marina Puigvert
- Department of Genetics, University of BarcelonaBarcelona, Spain
- Centre for Research in Agricultural Genomics CSIC-IRTA, Autonomous University of BarcelonaBellaterra, Spain
| | | | - Paola Zuluaga
- Department of Genetics, University of BarcelonaBarcelona, Spain
- Centre for Research in Agricultural Genomics CSIC-IRTA, Autonomous University of BarcelonaBellaterra, Spain
| | - Núria S. Coll
- Centre for Research in Agricultural Genomics CSIC-IRTA, Autonomous University of BarcelonaBellaterra, Spain
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences (CAS)Shanghai, China
| | - João C. Setubal
- Department of Biochemistry, University of São PauloSão Paulo, Brazil
| | - Marc Valls
- Department of Genetics, University of BarcelonaBarcelona, Spain
- Centre for Research in Agricultural Genomics CSIC-IRTA, Autonomous University of BarcelonaBellaterra, Spain
| |
Collapse
|
24
|
Leonard S, Hommais F, Nasser W, Reverchon S. Plant-phytopathogen interactions: bacterial responses to environmental and plant stimuli. Environ Microbiol 2017; 19:1689-1716. [DOI: 10.1111/1462-2920.13611] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Simon Leonard
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - Florence Hommais
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - William Nasser
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| | - Sylvie Reverchon
- University of Lyon, Université Claude Bernard Lyon 1; INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, 10 rue Raphaël Dubois Villeurbanne F-69622 France
| |
Collapse
|
25
|
Butcher BG, Chakravarthy S, D'Amico K, Stoos KB, Filiatrault MJ. Disruption of the carA gene in Pseudomonas syringae results in reduced fitness and alters motility. BMC Microbiol 2016; 16:194. [PMID: 27558694 PMCID: PMC4997734 DOI: 10.1186/s12866-016-0819-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 08/19/2016] [Indexed: 02/05/2023] Open
Abstract
Background Pseudomonas syringae infects diverse plant species and is widely used in the study of effector function and the molecular basis of disease. Although the relationship between bacterial metabolism, nutrient acquisition and virulence has attracted increasing attention in bacterial pathology, there is limited knowledge regarding these studies in Pseudomonas syringae. The aim of this study was to investigate the function of the carA gene and the small RNA P32, and characterize the regulation of these transcripts. Results Disruption of the carA gene (ΔcarA) which encodes the predicted small chain of carbamoylphosphate synthetase, resulted in arginine and pyrimidine auxotrophy in Pseudomonas syringae pv. tomato DC3000. Complementation with the wild type carA gene was able to restore growth to wild-type levels in minimal medium. Deletion of the small RNA P32, which resides immediately upstream of carA, did not result in arginine or pyrimidine auxotrophy. The expression of carA was influenced by the concentrations of both arginine and uracil in the medium. When tested for pathogenicity, ΔcarA showed reduced fitness in tomato as well as Arabidopsis when compared to the wild-type strain. In contrast, mutation of the region encoding P32 had minimal effect in planta. ΔcarA also exhibited reduced motility and increased biofilm formation, whereas disruption of P32 had no impact on motility or biofilm formation. Conclusions Our data show that carA plays an important role in providing arginine and uracil for growth of the bacteria and also influences other factors that are potentially important for growth and survival during infection. Although we find that the small RNA P32 and carA are co-transcribed, P32 does not play a role in the phenotypes that carA is required for, such as motility, cell attachment, and virulence. Additionally, our data suggests that pyrimidines may be limited in the apoplastic space of the plant host tomato. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0819-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bronwyn G Butcher
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA.,Present Address: Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Rd, Ithaca, NY, USA
| | - Suma Chakravarthy
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | - Katherine D'Amico
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA.,Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY, USA
| | - Kari Brossard Stoos
- Department of Health Promotion and Physical Education, School of Health Sciences and Human Performance, Ithaca College, Ithaca, NY, USA
| | - Melanie J Filiatrault
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA. .,Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, NY, USA.
| |
Collapse
|
26
|
Chatnaparat T, Prathuangwong S, Lindow SE. Global Pattern of Gene Expression of Xanthomonas axonopodis pv. glycines Within Soybean Leaves. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:508-22. [PMID: 27003800 DOI: 10.1094/mpmi-01-16-0007-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
To better understand the behavior of Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean within its host, its global transcriptome within soybean leaves was compared with that in a minimal medium in vitro, using deep sequencing of mRNA. Of 5,062 genes predicted from a draft genome of X. axonopodis pv. glycines, 534 were up-regulated in the plant, while 289 were down-regulated. Genes encoding YapH, a cell-surface adhesin, as well as several others encoding cell-surface proteins, were down-regulated in soybean. Many genes encoding the type III secretion system and effector proteins, cell wall-degrading enzymes and phosphate transporter proteins were strongly expressed at early stages of infection. Several genes encoding RND multidrug efflux pumps were induced in planta and by isoflavonoids in vitro and were required for full virulence of X. axonopodis pv. glycines, as well as resistance to soybean phytoalexins. Genes encoding consumption of malonate, a compound abundant in soybean, were induced in planta and by malonate in vitro. Disruption of the malonate decarboxylase operon blocked growth in minimal media with malonate as the sole carbon source but did not significantly alter growth in soybean, apparently because genes for sucrose and fructose uptake were also induced in planta. Many genes involved in phosphate metabolism and uptake were induced in planta. While disruption of genes encoding high-affinity phosphate transport did not alter growth in media varying in phosphate concentration, the mutants were severely attenuated for growth in soybean. This global transcriptional profiling has provided insight into both the intercellular environment of this soybean pathogen and traits used by X. axonopodis pv. glycines to promote disease.
Collapse
Affiliation(s)
- Tiyakhon Chatnaparat
- 1 Department of Plant Pathology, Kasetsart University, Thailand
- 2 Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok, Thailand; and
| | - Sutruedee Prathuangwong
- 1 Department of Plant Pathology, Kasetsart University, Thailand
- 2 Center for Advanced Studies in Tropical Natural Resources, Kasetsart University, Bangkok, Thailand; and
| | - Steven E Lindow
- 3 Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| |
Collapse
|
27
|
Chapelle E, Alunni B, Malfatti P, Solier L, Pédron J, Kraepiel Y, Van Gijsegem F. A straightforward and reliable method for bacterial in planta transcriptomics: application to the Dickeya dadantii/Arabidopsis thaliana pathosystem. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:352-62. [PMID: 25740271 DOI: 10.1111/tpj.12812] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 02/16/2015] [Accepted: 02/23/2015] [Indexed: 05/02/2023]
Abstract
Transcriptome analysis of bacterial pathogens is a powerful approach to identify and study the expression patterns of genes during host infection. However, analysis of the early stages of bacterial virulence at the genome scale is lacking with respect to understanding of plant-pathogen interactions and diseases, especially during foliar infection. This is mainly due to both the low ratio of bacterial cells to plant material at the beginning of infection, and the high contamination by chloroplastic material. Here we describe a reliable and straightforward method for bacterial cell purification from infected leaf tissues, effective even if only a small amount of bacteria is present relative to plant material. The efficiency of this method for transcriptomic analysis was validated by analysing the expression profiles of the phytopathogenic enterobacterium Dickeya dadantii, a soft rot disease-causing agent, during the first hours of infection of the model host plant Arabidopsis thaliana. Transcriptome profiles of epiphytic bacteria and bacteria colonizing host tissues were compared, allowing identification of approximately 100 differentially expressed genes. Requiring no specific equipment, cost-friendly and easily transferable to other pathosystems, this method should be of great interest for many other plant-bacteria interaction studies.
Collapse
Affiliation(s)
- Emilie Chapelle
- Institut National de la Recherche Agronomique, Universite Pierre et Marie Curie/Universite Paris 06, AgroParisTech, UMR217, Interactions Plantes-Pathogènes, F-75005, Paris, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Acquisition of Iron Is Required for Growth of Salmonella spp. in Tomato Fruit. Appl Environ Microbiol 2015; 81:3663-70. [PMID: 25795672 DOI: 10.1128/aem.04257-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/14/2015] [Indexed: 11/20/2022] Open
Abstract
Salmonella remains a leading cause of bacterial food-borne disease, sickening millions each year. Although outbreaks of salmonellosis have traditionally been associated with contaminated meat products, recent years have seen numerous disease cases caused by the consumption of produce. Tomatoes have been specifically implicated, due to the ability of Salmonella spp. to enter the tomato fruit and proliferate within, making the decontamination of the raw product impossible. To investigate the genetic means by which Salmonella is able to survive and proliferate within tomatoes, we conducted a screen for bacterial genes of Salmonella enterica serovar Montevideo specifically induced after inoculation into ripe tomato fruit. Among these genes, we found 17 members of the previously described anaerobic Fur (ferric uptake regulator) regulon. Fur is a transcriptional and posttranscriptional regulator known to sense iron, suggesting the importance of this mineral to Salmonella within tomatoes. To test whether iron acquisition is essential for Salmonella growth in tomatoes, we tested a ΔfepDGC mutant, which lacks the ability to import iron-associated siderophores. This mutant grew significantly more poorly within tomatoes than did the wild type, but the growth defect of the mutant was fully reversed by the addition of exogenous iron, demonstrating the need for bacterial iron scavenging. Further, dependence upon iron was not apparent for Salmonella growing in filtered tomato juice, implicating the cellular fraction of the fruit as an important mediator of iron acquisition by the bacteria.
Collapse
|
29
|
Kai K, Ohnishi H, Mori Y, Kiba A, Ohnishi K, Hikichi Y. Involvement of Ralfuranone Production in the Virulence ofRalstonia solanacearumOE1-1. Chembiochem 2014; 15:2590-7. [DOI: 10.1002/cbic.201402404] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Indexed: 12/18/2022]
|
30
|
Siri MI, Sanabria A, Boucher C, Pianzzola MJ. New type IV pili-related genes involved in early stages of Ralstonia solanacearum potato infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:712-24. [PMID: 24625029 DOI: 10.1094/mpmi-07-13-0210-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This study provides insights into the pathogenesis of Ralstonia solanacearum, in particular with regards to strains belonging to phylotype IIB, sequevar 1 (IIB-1) and their interaction with potato, its natural host. We performed a comparative genomic analysis among IIB-1 R. solanacearum strains with different levels of virulence in order to identify candidate virulence genes. With this approach, we identified a 33.7-kb deletion in a strain showing reduced virulence on potato. This region contains a cluster of six genes putatively involved in type IV pili (Tfp) biogenesis. Functional analysis suggests that these proteins contribute to several Tfp-related functions such as twitching motility and biofilm formation. In addition, this genetic cluster was found to contribute to early bacterial wilt pathogenesis and colonization fitness of potato roots.
Collapse
|
31
|
Dugé de Bernonville T, Noël LD, SanCristobal M, Danoun S, Becker A, Soreau P, Arlat M, Lauber E. Transcriptional reprogramming and phenotypical changes associated with growth ofXanthomonas campestrispv.campestrisin cabbage xylem sap. FEMS Microbiol Ecol 2014; 89:527-41. [DOI: 10.1111/1574-6941.12345] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 11/27/2022] Open
Affiliation(s)
- Thomas Dugé de Bernonville
- Laboratoire des Interactions Plantes Micro-organismes (LIPM); UMR 441; INRA; Castanet-Tolosan France
- Laboratoire des Interactions Plantes Micro-organismes (LIPM); UMR 2594; CNRS; Castanet-Tolosan France
| | - Laurent D. Noël
- Laboratoire des Interactions Plantes Micro-organismes (LIPM); UMR 441; INRA; Castanet-Tolosan France
- Laboratoire des Interactions Plantes Micro-organismes (LIPM); UMR 2594; CNRS; Castanet-Tolosan France
| | - Magali SanCristobal
- UMR 1388 Génétique, Physiologie et Systèmes d'Elevage; INRA; Castanet-Tolosan France
- UMR 1388 Génétique, Physiologie et Systèmes d'Elevage; Université de Toulouse INPT ENSAT; Castanet-Tolosan France
- UMR 1388 Génétique, Physiologie et Systèmes d'Elevage; Université de Toulouse INPT ENVT; Toulouse France
| | - Saida Danoun
- Laboratoire de Recherches en Sciences Végétales (LRSV); UMR 5546; Université de Toulouse, UPS; Castanet-Tolosan France
- Laboratoire de Recherches en Sciences Végétales (LRSV); UMR 5546; CNRS; Castanet-Tolosan France
| | - Anke Becker
- Loewe Center for Synthetic Microbiology and Department of Biology; Philipps-Universität Marburg; Marburg Germany
| | - Paul Soreau
- CEA Cadarache; IBEB-SBVME; Research Group in Applied Phytotechnics; UMR 6191 CNRS-CEA; Aix-Marseille University; Saint-Paul-lez-Durance Cedex France
| | - Matthieu Arlat
- Laboratoire des Interactions Plantes Micro-organismes (LIPM); UMR 441; INRA; Castanet-Tolosan France
- Laboratoire des Interactions Plantes Micro-organismes (LIPM); UMR 2594; CNRS; Castanet-Tolosan France
- Université de Toulouse, UPS; Toulouse France
| | - Emmanuelle Lauber
- Laboratoire des Interactions Plantes Micro-organismes (LIPM); UMR 441; INRA; Castanet-Tolosan France
- Laboratoire des Interactions Plantes Micro-organismes (LIPM); UMR 2594; CNRS; Castanet-Tolosan France
| |
Collapse
|
32
|
Hong JK, Kang SR, Kim YH, Yoon DJ, Kim DH, Kim HJ, Sung CH, Kang HS, Choi CW, Kim SH, Kim YS. Hydrogen Peroxide- and Nitric Oxide-mediated Disease Control of Bacterial Wilt in Tomato Plants. THE PLANT PATHOLOGY JOURNAL 2013; 29:386-96. [PMID: 25288967 PMCID: PMC4174819 DOI: 10.5423/ppj.oa.04.2013.0043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/21/2013] [Accepted: 08/23/2013] [Indexed: 05/10/2023]
Abstract
Reactive oxygen species (ROS) generation in tomato plants by Ralstonia solanacearum infection and the role of hydrogen peroxide (H2O2) and nitric oxide in tomato bacterial wilt control were demonstrated. During disease development of tomato bacterial wilt, accumulation of superoxide anion (O2 (-)) and H2O2 was observed and lipid peroxidation also occurred in the tomato leaf tissues. High doses of H2O2and sodium nitroprusside (SNP) nitric oxide donor showed phytotoxicity to detached tomato leaves 1 day after petiole feeding showing reduced fresh weight. Both H2O2and SNP have in vitro antibacterial activities against R. solanacearum in a dose-dependent manner, as well as plant protection in detached tomato leaves against bacterial wilt by 10(6) and 10(7) cfu/ml of R. solanacearum. H2O2- and SNP-mediated protection was also evaluated in pots using soil-drench treatment with the bacterial inoculation, and relative 'area under the disease progressive curve (AUDPC)' was calculated to compare disease protection by H2O2 and/or SNP with untreated control. Neither H2O2 nor SNP protect the tomato seedlings from the bacterial wilt, but H2O2+ SNP mixture significantly decreased disease severity with reduced relative AUDPC. These results suggest that H2O2 and SNP could be used together to control bacterial wilt in tomato plants as bactericidal agents.
Collapse
Affiliation(s)
- Jeum Kyu Hong
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 660-758, Korea
| | - Su Ran Kang
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 660-758, Korea
| | - Yeon Hwa Kim
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 660-758, Korea
| | - Dong June Yoon
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 660-758, Korea
| | - Do Hoon Kim
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 660-758, Korea
| | - Hyeon Ji Kim
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 660-758, Korea
| | - Chang Hyun Sung
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 660-758, Korea
| | - Han Sol Kang
- Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech), Jinju 660-758, Korea
| | - Chang Won Choi
- Department of Biology and Medical Science, Paichai University, Daejeon 302-735, Korea
| | - Seong Hwan Kim
- Department of Microbiology and Institute of Basic Sciences, Dankook University, Cheonan 330-714, Korea
| | - Young Shik Kim
- Department of Plant Science and Food Biotechnology, Sangmyung University, Cheonan 330-720, Korea
| |
Collapse
|
33
|
Pauly J, Spiteller D, Linz J, Jacobs J, Allen C, Nett M, Hoffmeister D. Ralfuranone Thioether Production by the Plant PathogenRalstonia solanacearum. Chembiochem 2013; 14:2169-78. [DOI: 10.1002/cbic.201300364] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Indexed: 12/18/2022]
|
34
|
Peeters N, Guidot A, Vailleau F, Valls M. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. MOLECULAR PLANT PATHOLOGY 2013; 14:651-62. [PMID: 23718203 PMCID: PMC6638647 DOI: 10.1111/mpp.12038] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
UNLABELLED Ralstonia solanacearum is a soil-borne bacterium causing the widespread disease known as bacterial wilt. Ralstonia solanacearum is also the causal agent of Moko disease of banana and brown rot of potato. Since the last R. solanacearum pathogen profile was published 10 years ago, studies concerning this plant pathogen have taken a genomic and post-genomic direction. This was pioneered by the first sequenced and annotated genome for a major plant bacterial pathogen and followed by many more genomes in subsequent years. All molecular features studied now have a genomic flavour. In the future, this will help in connecting the classical field of pathology and diversity studies with the gene content of specific strains. In this review, we summarize the recent research on this bacterial pathogen, including strain classification, host range, pathogenicity determinants, regulation of virulence genes, type III effector repertoire, effector-triggered immunity, plant signalling in response to R. solanacearum, as well as a review of different new pathosystems. TAXONOMY Bacteria; Proteobacteria; β subdivision; Ralstonia group; genus Ralstonia. DISEASE SYMPTOMS Ralstonia solanacearum is the agent of bacterial wilt of plants, characterized by a sudden wilt of the whole plant. Typically, stem cross-sections will ooze a slimy bacterial exudate. In the case of Moko disease of banana and brown rot of potato, there is also visible bacterial colonization of banana fruit and potato tuber. DISEASE CONTROL As a soil-borne pathogen, infected fields can rarely be reused, even after rotation with nonhost plants. The disease is controlled by the use of resistant and tolerant plant cultivars. The prevention of spread of the disease has been achieved, in some instances, by the application of strict prophylactic sanitation practices. USEFUL WEBSITES Stock centre: International Centre for Microbial Resources-French Collection for Plant-associated Bacteria CIRM-CFBP, IRHS UMR 1345 INRA-ACO-UA, 42 rue Georges Morel, 49070 Beaucouzé Cedex, France, http://www.angers-nantes.inra.fr/cfbp/. Ralstonia Genome browser: https://iant.toulouse.inra.fr/R.solanacearum. GMI1000 insertion mutant library: https://iant.toulouse.inra.fr/R.solanacearumGMI1000/GenomicResources. MaGe Genome Browser: https://www.genoscope.cns.fr/agc/microscope/mage/viewer.php?
Collapse
Affiliation(s)
- Nemo Peeters
- INRA UMR441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), 24 chemin de Borde Rouge-Auzeville CS 52627, 31326, Castanet Tolosan Cedex, France
| | | | | | | |
Collapse
|
35
|
Gurtler JB, Smelser AM, Niemira BA, Jin TZ, Yan X, Geveke DJ. Inactivation of Salmonella enterica on tomato stem scars by antimicrobial solutions and vacuum perfusion. Int J Food Microbiol 2012; 159:84-92. [DOI: 10.1016/j.ijfoodmicro.2012.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 12/29/2022]
|
36
|
The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato. mBio 2012; 3:mBio.00114-12. [PMID: 22807564 PMCID: PMC3413399 DOI: 10.1128/mbio.00114-12] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plant xylem fluid is considered a nutrient-poor environment, but the bacterial wilt pathogen Ralstonia solanacearum is well adapted to it, growing to 108 to 109 CFU/g tomato stem. To better understand how R. solanacearum succeeds in this habitat, we analyzed the transcriptomes of two phylogenetically distinct R. solanacearum strains that both wilt tomato, strains UW551 (phylotype II) and GMI1000 (phylotype I). We profiled bacterial gene expression at ~6 × 108 CFU/ml in culture or in plant xylem during early tomato bacterial wilt pathogenesis. Despite phylogenetic differences, these two strains expressed their 3,477 common orthologous genes in generally similar patterns, with about 12% of their transcriptomes significantly altered in planta versus in rich medium. Several primary metabolic pathways were highly expressed during pathogenesis. These pathways included sucrose uptake and catabolism, and components of these pathways were encoded by genes in the scrABY cluster. A UW551 scrA mutant was significantly reduced in virulence on resistant and susceptible tomato as well as on potato and the epidemiologically important weed host Solanum dulcamara. Functional scrA contributed to pathogen competitive fitness during colonization of tomato xylem, which contained ~300 µM sucrose. scrA expression was induced by sucrose, but to a much greater degree by growth in planta. Unexpectedly, 45% of the genes directly regulated by HrpB, the transcriptional activator of the type 3 secretion system (T3SS), were upregulated in planta at high cell densities. This result modifies a regulatory model based on bacterial behavior in culture, where this key virulence factor is repressed at high cell densities. The active transcription of these genes in wilting plants suggests that T3SS has a biological role throughout the disease cycle. Ralstonia solanacearum is a widespread plant pathogen that causes bacterial wilt disease. It inflicts serious crop losses on tropical farmers, with major economic and human consequences. It is also a model for the many destructive microbes that colonize the water-conducting plant xylem tissue, which is low in nutrients and oxygen. We extracted bacteria from infected tomato plants and globally identified the biological functions that R. solanacearum expresses during plant pathogenesis. This revealed the unexpected presence of sucrose in tomato xylem fluid and the pathogen’s dependence on host sucrose for virulence on tomato, potato, and the common weed bittersweet nightshade. Further, R. solanacearum was highly responsive to the plant environment, expressing several metabolic and virulence functions quite differently in the plant than in pure culture. These results reinforce the utility of studying pathogens in interaction with hosts and suggest that selecting for reduced sucrose levels could generate wilt-resistant crops.
Collapse
|
37
|
Nishiyama E, Ohtsubo Y, Yamamoto Y, Nagata Y, Tsuda M. Pivotal role of anthranilate dioxygenase genes in the adaptation of Burkholderia multivorans ATCC 17616 in soil. FEMS Microbiol Lett 2012; 330:46-55. [PMID: 22360670 DOI: 10.1111/j.1574-6968.2012.02532.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/09/2012] [Accepted: 02/20/2012] [Indexed: 01/21/2023] Open
Abstract
In our recent screen for soil-induced genes, the expression of andA operon (andAcAdAbAa) for anthranilate catabolism in Burkholderia multivorans ATCC 17616 was found to increase dramatically in a soil sample (Nishiyama et al., Environ Microbiol 12: 2539, 2010). The operon was preceded by andR encoding a putative transcriptional regulator for the andA operon. In this study, the andA promoter was induced by tryptophan and anthranilate in an andR-dependent manner. The andA promoter in a deletion mutant lacking tryptophan dioxygenase (one of enzymes for the catabolism of tryptophan to anthranilate) did not respond to tryptophan, indicating that not tryptophan but anthranilate is the effector of AndR. Although both anthranilate and tryptophan were under the detection levels in the soil sample, andA promoter showed higher activity in the soil sample than in a laboratory medium. Such induction required andR and was moderately dependent on the ferric uptake regulator (Fur). The proliferation ability of andAc mutant in the sterile soil was low compared with the co-incubated wild-type cells. These findings suggested that in the soil environment, anthranilate dioxygenase genes are induced by AndR and Fur, and play a pivotal role in the proliferation in the soil environment.
Collapse
Affiliation(s)
- Eri Nishiyama
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
38
|
Functional genomics studies shed light on the nutrition and gene expression of non-typhoidal Salmonella and enterovirulent E. coli in produce. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Bocsanczy AM, Achenbach UCM, Mangravita-Novo A, Yuen JMF, Norman DJ. Comparative effect of low temperature on virulence and twitching motility of Ralstonia solanacearum strains present in Florida. PHYTOPATHOLOGY 2012; 102:185-194. [PMID: 21936660 DOI: 10.1094/phyto-05-11-0145] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Ralstonia solanacearum causes bacterial wilt on a wide range of plant hosts. Most strains of R. solanacearum are nonpathogenic below 20°C; however, Race 3 Biovar 2 (R3B2) strains are classified as quarantine pathogens because of their ability to infect crops, cause disease, and survive in temperate climates. We have identified race 1 biovar 1 Phylotype IIB Sequevar 4 strains present in Florida which were able to infect and produce wilt symptoms on potato and tomato at 18°C. Moreover they infected tomato plants at rates similar to strains belonging to R3B2. We determined that strains naturally nonpathogenic at 18°C were able to multiply, move in planta, and cause partial wilt when inoculated directly into the stem, suggesting that low temperature affects virulence of strains differently at early stages of infection. Bacterial growth in vitro was delayed at low temperatures, however it was not attenuated. Twitching motility observed on growing colonies was attenuated in nonpathogenic strains at 18°C, while not affected in the cool virulent ones. Using pilQ as a marker to evaluate the relative expression of the twitching activity of R. solanacearum strains, we confirmed that cool virulent strains maintained a similar level of pilQ expression at both temperatures, while in nonpathogenic strains pilQ was downregulated at 18°C.
Collapse
Affiliation(s)
- Ana M Bocsanczy
- Department of Plant Pathology, University of Florida, Apopka, FL 32703, USA
| | | | | | | | | |
Collapse
|
40
|
Genin S, Denny TP. Pathogenomics of the Ralstonia solanacearum species complex. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:67-89. [PMID: 22559068 DOI: 10.1146/annurev-phyto-081211-173000] [Citation(s) in RCA: 343] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ralstonia solanacearum is a major phytopathogen that attacks many crops and other plants over a broad geographical range. The extensive genetic diversity of strains responsible for the various bacterial wilt diseases has in recent years led to the concept of an R. solanacearum species complex. Genome sequencing of more than 10 strains representative of the main phylogenetic groups has broadened our knowledge of the evolution and speciation of this pathogen and led to the identification of novel virulence-associated functions. Comparative genomic analyses are now opening the way for refined functional studies. The many molecular determinants involved in pathogenicity and host-range specificity are described, and we also summarize current understanding of their roles in pathogenesis and how their expression is tightly controlled by an intricate virulence regulatory network.
Collapse
Affiliation(s)
- Stéphane Genin
- INRA, Laboratoire des Interactions Plantes-Microorganismes, UMR441, F-31326 Castanet-Tolosan, France.
| | | |
Collapse
|
41
|
Remenant B, de Cambiaire JC, Cellier G, Jacobs JM, Mangenot S, Barbe V, Lajus A, Vallenet D, Medigue C, Fegan M, Allen C, Prior P. Ralstonia syzygii, the Blood Disease Bacterium and some Asian R. solanacearum strains form a single genomic species despite divergent lifestyles. PLoS One 2011; 6:e24356. [PMID: 21931687 PMCID: PMC3169583 DOI: 10.1371/journal.pone.0024356] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 08/06/2011] [Indexed: 12/19/2022] Open
Abstract
The Ralstonia solanacearum species complex includes R. solanacearum, R. syzygii, and the Blood Disease Bacterium (BDB). All colonize plant xylem vessels and cause wilt diseases, but with significant biological differences. R. solanacearum is a soilborne bacterium that infects the roots of a broad range of plants. R. syzygii causes Sumatra disease of clove trees and is actively transmitted by cercopoid insects. BDB is also pathogenic to a single host, banana, and is transmitted by pollinating insects. Sequencing and DNA-DNA hybridization studies indicated that despite their phenotypic differences, these three plant pathogens are actually very closely related, falling into the Phylotype IV subgroup of the R. solanacearum species complex. To better understand the relationships among these bacteria, we sequenced and annotated the genomes of R. syzygii strain R24 and BDB strain R229. These genomes were compared to strain PSI07, a closely related Phylotype IV tomato isolate of R. solanacearum, and to five additional R. solanacearum genomes. Whole-genome comparisons confirmed previous phylogenetic results: the three phylotype IV strains share more and larger syntenic regions with each other than with other R. solanacearum strains. Furthermore, the genetic distances between strains, assessed by an in-silico equivalent of DNA-DNA hybridization, unambiguously showed that phylotype IV strains of BDB, R. syzygii and R. solanacearum form one genomic species. Based on these comprehensive data we propose a revision of the taxonomy of the R. solanacearum species complex. The BDB and R. syzygii genomes encoded no obvious unique metabolic capacities and contained no evidence of horizontal gene transfer from bacteria occupying similar niches. Genes specific to R. syzygii and BDB were almost all of unknown function or extrachromosomal origin. Thus, the pathogenic life-styles of these organisms are more probably due to ecological adaptation and genomic convergence during vertical evolution than to the acquisition of DNA by horizontal transfer.
Collapse
Affiliation(s)
- Benoît Remenant
- Peuplements Végétaux et Bioagresseurs en Milieu Tropical (UMR PVBMT), INRA-CIRAD, Saint Pierre, La Réunion, France
| | - Jean-Charles de Cambiaire
- Peuplements Végétaux et Bioagresseurs en Milieu Tropical (UMR PVBMT), CIRAD, Saint Pierre, La Réunion, France
| | - Gilles Cellier
- Peuplements Végétaux et Bioagresseurs en Milieu Tropical (UMR PVBMT), CIRAD, Saint Pierre, La Réunion, France
- Unité Ravageurs et Agents Pathogènes Tropicaux, Agence Nationale de Sécurité Sanitaire, Laboratoire de la Santé des Végétaux, Saint Pierre, La Réunion, France
| | - Jonathan M. Jacobs
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sophie Mangenot
- Institut de Génomique, Genoscope, Commissariat à l'Energie Atomique (CEA) Direction des Sciences du Vivant, Evry, France
| | - Valérie Barbe
- Institut de Génomique, Genoscope, Commissariat à l'Energie Atomique (CEA) Direction des Sciences du Vivant, Evry, France
| | - Aurélie Lajus
- Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, CNRS-UMR 8030, Evry, France
- Institut de Génomique, Genoscope, Commissariat à l'Energie Atomique (CEA) Direction des Sciences du Vivant, Evry, France
| | - David Vallenet
- Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, CNRS-UMR 8030, Evry, France
- Institut de Génomique, Genoscope, Commissariat à l'Energie Atomique (CEA) Direction des Sciences du Vivant, Evry, France
| | - Claudine Medigue
- Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme, CNRS-UMR 8030, Evry, France
- Institut de Génomique, Genoscope, Commissariat à l'Energie Atomique (CEA) Direction des Sciences du Vivant, Evry, France
| | - Mark Fegan
- Department of Primary Industries, Biosciences Research Division, Attwood, Victoria, Australia
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Philippe Prior
- Peuplements Végétaux et Bioagresseurs en Milieu Tropical (UMR PVBMT), INRA-CIRAD, Saint Pierre, La Réunion, France
- * E-mail:
| |
Collapse
|
42
|
Flores-Cruz Z, Allen C. Necessity of OxyR for the hydrogen peroxide stress response and full virulence in Ralstonia solanacearum. Appl Environ Microbiol 2011; 77:6426-32. [PMID: 21803891 PMCID: PMC3187169 DOI: 10.1128/aem.05813-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 07/21/2011] [Indexed: 01/10/2023] Open
Abstract
The plant pathogen Ralstonia solanacearum, which causes bacterial wilt disease, is exposed to reactive oxygen species (ROS) during tomato infection and expresses diverse oxidative stress response (OSR) genes during midstage disease on tomato. The R. solanacearum genome predicts that the bacterium produces multiple and redundant ROS-scavenging enzymes but only one known oxidative stress response regulator, OxyR. An R. solanacearum oxyR mutant had no detectable catalase activity, did not grow in the presence of 250 μM hydrogen peroxide, and grew poorly in the oxidative environment of solid rich media. This phenotype was rescued by the addition of exogenous catalase, suggesting that oxyR is essential for the hydrogen peroxide stress response. Unexpectedly, the oxyR mutant strain grew better than the wild type in the presence of the superoxide generator paraquat. Gene expression studies indicated that katE, kaG, ahpC1, grxC, and oxyR itself were each differentially expressed in the oxyR mutant background and in response to hydrogen peroxide, suggesting that oxyR is necessary for hydrogen peroxide-inducible gene expression. Additional OSR genes were differentially regulated in response to hydrogen peroxide alone. The virulence of the oxyR mutant strain was significantly reduced in both tomato and tobacco host plants, demonstrating that R. solanacearum is exposed to inhibitory concentrations of ROS in planta and that OxyR-mediated responses to ROS during plant pathogenesis are important for R. solanacearum host adaptation and virulence.
Collapse
Affiliation(s)
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, Wisconsin 53706
| |
Collapse
|
43
|
A MotN mutant of Ralstonia solanacearum is hypermotile and has reduced virulence. J Bacteriol 2011; 193:2477-86. [PMID: 21421761 DOI: 10.1128/jb.01360-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ralstonia solanacearum is a soil-borne plant pathogen that causes bacterial wilt disease on many plant species. We previously showed that swimming motility contributes to virulence of this bacterium in the early stages of host invasion and colonization. In this study we identified a new negative regulator of motility, named motN, that is located in a cluster of motility-related genes. A motN mutant was hypermotile both on 0.3% agar motility plates and in rich and minimal medium broth. However, like its wild-type parent, it was largely nonmotile inside plants. The motN mutant cells appeared hyperflagellated, and sheared cell protein preparations from motN contained more flagellin than preparations from wild-type cells. The motN strain was significantly reduced in virulence in a naturalistic soil soak assay on tomato plants. However, the motN mutant had wild-type virulence when it was inoculated directly into the plant vascular system. This suggests that motN makes its contribution to virulence early in disease development. The motN mutant formed weaker biofilms than the wild type, but it attached normally to tomato roots and colonized tomato stems as well as its wild-type parent. Phenotypic analysis and gene expression studies indicated that MotN directly or indirectly represses transcription of the major motility regulator FlhDC. MotN was also connected with other known motility and virulence regulators, PehSR, VsrBC, and VsrAD, via uncertain mechanisms. Together, these results demonstrate the importance of precise regulation of flagellum-mediated motility in R. solanacearum.
Collapse
|
44
|
Wackler B, Schneider P, Jacobs J, Pauly J, Allen C, Nett M, Hoffmeister D. Ralfuranone Biosynthesis in Ralstonia solanacearum Suggests Functional Divergence in the Quinone Synthetase Family of Enzymes. ACTA ACUST UNITED AC 2011; 18:354-60. [DOI: 10.1016/j.chembiol.2011.01.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 12/31/2010] [Accepted: 01/07/2011] [Indexed: 11/16/2022]
|
45
|
Mandal S, Das RK, Mishra S. Differential occurrence of oxidative burst and antioxidative mechanism in compatible and incompatible interactions of Solanum lycopersicum and Ralstonia solanacearum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:117-23. [PMID: 21093281 DOI: 10.1016/j.plaphy.2010.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 10/13/2010] [Indexed: 05/04/2023]
Abstract
Striking increase in reactive oxygen species (ROS) such as hydrogen peroxide (H(2)O(2)) has been demonstrated to occur in plants in response to pathogen attack. The aim of this study was to investigate the biochemical aspects of ROS generation, antioxidative mechanism and cell wall reinforcement as responses of tomato cultivars Arka Meghali (AM; susceptible) and BT-10 (BT; resistant) against Ralstonia solanacearum (Ralsol). While the oxidative burst was characterized by a single phase ROS increase in AM, there was a clear bi-phasic ROS generation in BT. The first significant increase of H(2)O(2) production was noticed at 12 h post-inoculation (hpi) followed by a sharp increase in H(2)O(2) generation after 36 hpi. Lipid peroxidation was more in roots of AM than that of BT after pathogen inoculation. Superoxide dismutase and catalase activities were continuously at very high level in Ralsol-inoculated BT plants, whereas activities of the enzymes were observed to decrease at later stage in Ralsol-inoculated AM plants. Guaiacol peroxidase activity was high in Ralsol-inoculated roots of both cultivars, but BT recorded much higher activity than AM. Higher activity of ascorbate peroxidase in inoculated BT might be an indication of better scavenging activity of the enzyme. Total phenolic content and lignin deposition were significantly higher in Ralsol-inoculated BT compared to inoculated AM. Our results indicate that increased level of ROS production coupled with more efficient antioxidative system, lower rate of lipid peroxidation and high lignin deposition in cell wall may contribute to the resistance of tomato plants to Ralsol.
Collapse
Affiliation(s)
- Sudhamoy Mandal
- Plant Pathology Laboratory, Central Horticultural Experiment Station (ICAR), Aiginia, Bhubaneswar 751019, India
| | | | | |
Collapse
|
46
|
Tamir-Ariel D, Rosenberg T, Burdman S. The Xanthomonas campestris pv. vesicatoria citH gene is expressed early in the infection process of tomato and is positively regulated by the TctDE two-component regulatory system. MOLECULAR PLANT PATHOLOGY 2011; 12:57-71. [PMID: 21118349 PMCID: PMC6640381 DOI: 10.1111/j.1364-3703.2010.00652.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Xanthomonas campestris pv. vesicatoria (Xcv) is the causal agent of bacterial spot disease of tomato and pepper. Previously, we have reported the adaptation of a recombinase- or resolvase-based in vivo expression technology (RIVET) approach to identify Xcv genes that are specifically induced during its interaction with tomato. Analysis of some of these genes revealed that a citH (citrate transporter) homologous gene contributes to Xcv virulence on tomato. Here, we demonstrate that the citH product indeed facilitates citrate uptake by showing the following: citH is specifically needed for Xcv growth in citrate, but not in other carbon sources; the citH promoter is specifically induced by citrate; and the concentration of citrate from tomato leaf apoplast is considerably reduced following growth of the wild-type and a citH-complemented strain, but not the citH mutant. We also show that, in the Xcv-tomato interaction, the promoter activity of the citH gene is induced as early as 2.5h after Xcv is syringe infiltrated into tomato leaves, and continues to be active for at least 96h after inoculation. We identified an operon containing a two-component regulatory system homologous to tctD/tctE influencing citH expression in Xcv, as well as its heterologous expression in Escherichia coli. The expression of hrp genes does not seem to be affected in the citH mutant, and this mutant cannot be complemented for growth in planta when co-inoculated with the wild-type strain, indicating that citrate uptake in the apoplast is important for the virulence of Xcv.
Collapse
Affiliation(s)
- Dafna Tamir-Ariel
- Department of Plant Pathology and Microbiology and The Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | |
Collapse
|
47
|
Scherf JM, Milling A, Allen C. Moderate temperature fluctuations rapidly reduce the viability of Ralstonia solanacearum race 3, biovar 2, in infected geranium, tomato, and potato plants. Appl Environ Microbiol 2010; 76:7061-7. [PMID: 20851983 PMCID: PMC2976264 DOI: 10.1128/aem.01580-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 09/06/2010] [Indexed: 11/20/2022] Open
Abstract
Most Ralstonia solanacearum strains are tropical plant pathogens, but race 3, biovar 2 (R3bv2), strains can cause bacterial wilt in temperate zones or tropical highlands where other strains cannot. R3bv2 is a quarantine pathogen in North America and Europe because of its potential to damage the potato industry in cooler climates. However, R3bv2 will not become established if it cannot survive temperate winters. Previous experiments showed that in water at 4°C, R3bv2 does not survive as long as native U.S. strains, but R3bv2 remains viable longer than U.S. strains in potato tubers at 4°C. To further investigate the effects of temperature on this high-concern pathogen, we assessed the ability of R3bv2 and a native U.S. strain to survive typical temperate winter temperature cycles of 2 days at 5°C followed by 2 days at -10°C. We measured pathogen survival in infected tomato and geranium plants, in infected potato tubers, and in sterile water. The population sizes of both strains declined rapidly under these conditions in all three plant hosts and in sterile water, and no culturable R. solanacearum cells were detected after five to seven temperature cycles in plant tissue. The fluctuations played a critical role in loss of bacterial viability, since at a constant temperature of -20°C, both strains could survive in infected geranium tissue for at least 6 months. These results suggest that even when sheltered in infected plant tissue, R3bv2 is unlikely to survive the temperature fluctuations typical of a northern temperate winter.
Collapse
Affiliation(s)
- Jacob M. Scherf
- University of Wisconsin—Madison Department of Plant Pathology, 1630 Linden Dr., Madison, Wisconsin 53706
| | - Annett Milling
- University of Wisconsin—Madison Department of Plant Pathology, 1630 Linden Dr., Madison, Wisconsin 53706
| | - Caitilyn Allen
- University of Wisconsin—Madison Department of Plant Pathology, 1630 Linden Dr., Madison, Wisconsin 53706
| |
Collapse
|
48
|
Colburn-Clifford JM, Scherf JM, Allen C. Ralstonia solanacearum Dps contributes to oxidative stress tolerance and to colonization of and virulence on tomato plants. Appl Environ Microbiol 2010; 76:7392-9. [PMID: 20870795 PMCID: PMC2976212 DOI: 10.1128/aem.01742-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 09/14/2010] [Indexed: 02/06/2023] Open
Abstract
Ralstonia solanacearum, an economically important soilborne plant pathogen, infects host roots to cause bacterial wilt disease. However, little is known about this pathogen's behavior in the rhizosphere and early in pathogenesis. In response to root exudates from tomato, R. solanacearum strain UW551 upregulated a gene resembling Dps, a nonspecific DNA binding protein from starved cells that is critical for stress survival in other bacteria. An R. solanacearum dps mutant had increased hydrogen peroxide sensitivity and mutation rate under starvation. Furthermore, dps expression was positively regulated by the oxidative stress response regulator OxyR. These functional results are consistent with a Dps annotation. The dps mutant caused slightly delayed bacterial wilt disease in tomato after a naturalistic soil soak inoculation. However, the dps mutant had a more pronounced reduction in virulence when bacteria were inoculated directly into host stems, suggesting that Dps helps R. solanacearum adapt to conditions inside plants. Passage through a tomato plant conferred transient increased hydrogen peroxide tolerance on both wild-type and dps mutant strains, demonstrating that R. solanacearum acquires Dps-independent oxidative stress tolerance during adaptation to the host environment. The dps mutant strain was also reduced in adhesion to tomato roots and tomato stem colonization. These results indicate that Dps is important when cells are starved or in stationary phase and that Dps contributes quantitatively to host plant colonization and bacterial wilt virulence. They further suggest that R. solanacearum must overcome oxidative stress during the bacterial wilt disease cycle.
Collapse
Affiliation(s)
| | - Jacob M. Scherf
- University of Wisconsin—Madison Department of Plant Pathology, 1630 Linden Drive, Madison, Wisconsin 53706
| | - Caitilyn Allen
- University of Wisconsin—Madison Department of Plant Pathology, 1630 Linden Drive, Madison, Wisconsin 53706
| |
Collapse
|
49
|
Genin S. Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum. THE NEW PHYTOLOGIST 2010; 187:920-928. [PMID: 20673287 DOI: 10.1111/j.1469-8137.2010.03397.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Ralstonia solanacearum is regarded as one of the world's most important bacterial plant pathogens because of its aggressiveness, large host range, broad geographical distribution and long persistence in soil and water environments. This root pathogen is an attractive model to investigate the question of host adaptation as it exhibits a remarkably broad host range, being able to infect numerous plant species belonging to different botanical families. Several effector proteins transiting through the type III secretion system have been shown to restrict or extend specifically the host range of the bacterium. Recent investigations on the mechanisms that coordinate changes in gene expression during the passage between saprophytism and life within host tissues have allowed the identification of other molecular determinants implicated in the adaptation of R. solanacearum to its hosts and pathogenesis. Among these determinants are genes involved in chemotaxis, secondary metabolic pathways and the detoxification of various antimicrobial compounds, and genes directing the biosynthesis of phytohormones or adherence factors. The regulation of many of these genes is coordinated by the master pathogenicity regulator HrpG. These hrpG-dependent genes control major steps during the interaction with plant cells, and probably determine the ecological behaviour of the microorganism, being required for the establishment of pathogenesis or mutualism.
Collapse
Affiliation(s)
- Stéphane Genin
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS-INRA 2594/441, F-31326 Castanet Tolosan, France.
| |
Collapse
|
50
|
Noel JT, Arrach N, Alagely A, McClelland M, Teplitski M. Specific responses of Salmonella enterica to tomato varieties and fruit ripeness identified by in vivo expression technology. PLoS One 2010; 5:e12406. [PMID: 20824208 PMCID: PMC2930847 DOI: 10.1371/journal.pone.0012406] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Accepted: 07/26/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Recent outbreaks of vegetable-associated gastroenteritis suggest that enteric pathogens colonize, multiply and persist in plants for extended periods of time, eventually infecting people. Genetic and physiological pathways, by which enterics colonize plants, are still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS To better understand interactions between Salmonella enterica sv. Typhimurium and tomatoes, a gfp-tagged Salmonella promoter library was screened inside red ripe fruits. Fifty-one unique constructs that were potentially differentially regulated in tomato relative to in vitro growth were identified. The expression of a subset of these promoters was tested in planta using recombinase-based in vivo expression technology (RIVET) and fitness of the corresponding mutants was tested. Gene expression in Salmonella was affected by fruit maturity and tomato cultivar. A putative fadH promoter was upregulated most strongly in immature tomatoes. Expression of the fadH construct depended on the presence of linoleic acid, which is consistent with the reduced accumulation of this compound in mature tomato fruits. The cysB construct was activated in the fruit of cv. Hawaii 7997 (resistant to a race of Ralstonia solanacearum) more strongly than in the universally susceptible tomato cv. Bonny Best. Known Salmonella motility and animal virulence genes (hilA, flhDC, fliF and those encoded on the pSLT virulence plasmid) did not contribute significantly to fitness of the bacteria inside tomatoes, even though deletions of sirA and motA modestly increased fitness of Salmonella inside tomatoes. CONCLUSIONS/SIGNIFICANCE This study reveals the genetic basis of the interactions of Salmonella with plant hosts. Salmonella relies on a distinct set of metabolic and regulatory genes, which are differentially regulated in planta in response to host genotype and fruit maturity. This enteric pathogen colonizes tissues of tomatoes differently than plant pathogens, and relies little on its animal virulence genes for persistence within the fruit.
Collapse
Affiliation(s)
- Jason T. Noel
- Soil and Water Science Department, Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Nabil Arrach
- Vaccine Research Institute of San Diego, La Jolla, California, United States of America
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Ali Alagely
- Soil and Water Science Department, Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Michael McClelland
- Vaccine Research Institute of San Diego, La Jolla, California, United States of America
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, United States of America
| | - Max Teplitski
- Soil and Water Science Department, Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|