1
|
The AraC/XylS Protein MxiE and Its Coregulator IpgC Control a Negative Feedback Loop in the Transcriptional Cascade That Regulates Type III Secretion in Shigella flexneri. J Bacteriol 2022; 204:e0013722. [PMID: 35703565 DOI: 10.1128/jb.00137-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the AraC family of transcriptional regulators (AFTRs) control the expression of many genes important to cellular processes, including virulence. In Shigella species, the type III secretion system (T3SS), a key determinant for host cell invasion, is regulated by the three-tiered VirF/VirB/MxiE transcriptional cascade. Both VirF and MxiE belong to the AFTRs and are characterized as positive transcriptional regulators. Here, we identify a novel regulatory activity for MxiE and its coregulator IpgC, which manifests as a negative feedback loop in the VirF/VirB/MxiE transcriptional cascade. Our findings show that MxiE and IpgC downregulate the virB promoter and, hence, VirB protein production, thus decreasing VirB-dependent promoter activity at ospD1, one of the nearly 50 VirB-dependent genes. At the virB promoter, regions required for negative MxiE- and IpgC-dependent regulation were mapped and found to be coincident with regions required for positive VirF-dependent regulation. In tandem, negative MxiE- and IpgC-dependent regulation of the virB promoter only occurred in the presence of VirF, suggesting that MxiE and IpgC can function to counter VirF activation of the virB promoter. Lastly, MxiE and IpgC do not downregulate another VirF-activated promoter, icsA, demonstrating that this negative feedback loop targets the virB promoter. Our study provides insight into a mechanism that may reprogram Shigella virulence gene expression following type III secretion and provides the impetus to examine if MxiE and IpgC homologs in other important bacterial pathogens, such as Burkholderia pseudomallei and Salmonella enterica serovars Typhimurium and Typhi, coordinate similar negative feedback loops. IMPORTANCE The large AraC family of transcriptional regulators (AFTRs) control virulence gene expression in many bacterial pathogens. In Shigella species, the AraC/XylS protein MxiE and its coregulator IpgC positively regulate the expression of type III secretion system genes within the three-tiered VirF/VirB/MxiE transcriptional cascade. Our findings suggest a negative feedback loop in the VirF/VirB/MxiE cascade, in which MxiE and IpgC counter VirF-dependent activation of the virB promoter, thus making this the first characterization of negative MxiE- and IpgC-dependent regulation. Our study provides insight into a mechanism that likely reprograms Shigella virulence gene expression following type III secretion, which has implications for other important bacterial pathogens with functional homologs of MxiE and IpgC.
Collapse
|
2
|
Translation of Plant RNA Viruses. Viruses 2021; 13:v13122499. [PMID: 34960768 PMCID: PMC8708638 DOI: 10.3390/v13122499] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Plant RNA viruses encode essential viral proteins that depend on the host translation machinery for their expression. However, genomic RNAs of most plant RNA viruses lack the classical characteristics of eukaryotic cellular mRNAs, such as mono-cistron, 5′ cap structure, and 3′ polyadenylation. To adapt and utilize the eukaryotic translation machinery, plant RNA viruses have evolved a variety of translation strategies such as cap-independent translation, translation recoding on initiation and termination sites, and post-translation processes. This review focuses on advances in cap-independent translation and translation recoding in plant viruses.
Collapse
|
3
|
Bajunaid W, Haidar-Ahmad N, Kottarampatel AH, Ourida Manigat F, Silué N, F. Tchagang C, Tomaro K, Campbell-Valois FX. The T3SS of Shigella: Expression, Structure, Function, and Role in Vacuole Escape. Microorganisms 2020; 8:microorganisms8121933. [PMID: 33291504 PMCID: PMC7762205 DOI: 10.3390/microorganisms8121933] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
Shigella spp. are one of the leading causes of infectious diarrheal diseases. They are Escherichia coli pathovars that are characterized by the harboring of a large plasmid that encodes most virulence genes, including a type III secretion system (T3SS). The archetypal element of the T3SS is the injectisome, a syringe-like nanomachine composed of approximately 20 proteins, spanning both bacterial membranes and the cell wall, and topped with a needle. Upon contact of the tip of the needle with the plasma membrane, the injectisome secretes its protein substrates into host cells. Some of these substrates act as translocators or effectors whose functions are key to the invasion of the cytosol and the cell-to-cell spread characterizing the lifestyle of Shigella spp. Here, we review the structure, assembly, function, and methods to measure the activity of the injectisome with a focus on Shigella, but complemented with data from other T3SS if required. We also present the regulatory cascade that controls the expression of T3SS genes in Shigella. Finally, we describe the function of translocators and effectors during cell-to-cell spread, particularly during escape from the vacuole, a key element of Shigella’s pathogenesis that has yet to reveal all of its secrets.
Collapse
Affiliation(s)
- Waad Bajunaid
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Nathaline Haidar-Ahmad
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Anwer Hasil Kottarampatel
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - France Ourida Manigat
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Navoun Silué
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Caetanie F. Tchagang
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kyle Tomaro
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - François-Xavier Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Correspondence:
| |
Collapse
|
4
|
Koscielniak D, Wons E, Wilkowska K, Sektas M. Non-programmed transcriptional frameshifting is common and highly RNA polymerase type-dependent. Microb Cell Fact 2018; 17:184. [PMID: 30474557 PMCID: PMC6260861 DOI: 10.1186/s12934-018-1034-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
Background The viral or host systems for a gene expression assume repeatability of the process and high quality of the protein product. Since level and fidelity of transcription primarily determines the overall efficiency, all factors contributing to their decrease should be identified and optimized. Among many observed processes, non-programmed insertion/deletion (indel) of nucleotide during transcription (slippage) occurring at homopolymeric A/T sequences within a gene can considerably impact its expression. To date, no comparative study of the most utilized Escherichia coli and T7 bacteriophage RNA polymerases (RNAP) propensity for this type of erroneous mRNA synthesis has been reported. To address this issue we evaluated the influence of shift-prone A/T sequences by assessing indel-dependent phenotypic changes. RNAP-specific expression profile was examined using two of the most potent promoters, ParaBAD of E. coli and φ10 of phage T7. Results Here we report on the first systematic study on requirements for efficient transcriptional slippage by T7 phage and cellular RNAPs considering three parameters: homopolymer length, template type, and frameshift directionality preferences. Using a series of out-of-frame gfp reporter genes fused to a variety of A/T homopolymeric sequences we show that T7 RNAP has an exceptional potential for generating frameshifts and is capable of slipping on as few as three adenine or four thymidine residues in a row, in a flanking sequence-dependent manner. In contrast, bacterial RNAP exhibits a relatively low ability to baypass indel mutations and requires a run of at least 7 tymidine and even more adenine residues. This difference comes from involvement of various intrinsic proofreading properties. Our studies demonstrate distinct preference towards a specific homopolymer in slippage induction. Whereas insertion slippage performed by T7 RNAP (but not deletion) occurs tendentiously on poly(A) rather than on poly(T) runs, strong bias towards poly(T) for the host RNAP is observed. Conclusions Intrinsic RNAP slippage properties involve trade-offs between accuracy, speed and processivity of transcription. Viral T7 RNAP manifests far greater inclinations to the transcriptional slippage than E. coli RNAP. This possibly plays an important role in driving bacteriophage adaptation and therefore could be considered as beneficial. However, from biotechnological and experimental viewpoint, this might create some problems, and strongly argues for employing bacterial expression systems, stocked with proofreading mechanisms. Electronic supplementary material The online version of this article (10.1186/s12934-018-1034-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dawid Koscielniak
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Ewa Wons
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Karolina Wilkowska
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland
| | - Marian Sektas
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| |
Collapse
|
5
|
Dorman MJ, Dorman CJ. Regulatory Hierarchies Controlling Virulence Gene Expression in Shigella flexneri and Vibrio cholerae. Front Microbiol 2018; 9:2686. [PMID: 30473684 PMCID: PMC6237886 DOI: 10.3389/fmicb.2018.02686] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Gram-negative enteropathogenic bacteria use a variety of strategies to cause disease in the human host and gene regulation in some form is typically a part of the strategy. This article will compare the toxin-based infection strategy used by the non-invasive pathogen Vibrio cholerae, the etiological agent in human cholera, with the invasive approach used by Shigella flexneri, the cause of bacillary dysentery. Despite the differences in the mechanisms by which the two pathogens cause disease, they use environmentally-responsive regulatory hierarchies to control the expression of genes that have some features, and even some components, in common. The involvement of AraC-like transcription factors, the integration host factor, the Factor for inversion stimulation, small regulatory RNAs, the RNA chaperone Hfq, horizontal gene transfer, variable DNA topology and the need to overcome the pervasive silencing of transcription by H-NS of horizontally acquired genes are all shared features. A comparison of the regulatory hierarchies in these two pathogens illustrates some striking cross-species similarities and differences among mechanisms coordinating virulence gene expression. S. flexneri, with its low infectious dose, appears to use a strategy that is centered on the individual bacterial cell, whereas V. cholerae, with a community-based, quorum-dependent approach and an infectious dose that is several orders of magnitude higher, seems to rely more on the actions of a bacterial collective.
Collapse
Affiliation(s)
- Matthew J Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Penno C, Kumari R, Baranov PV, van Sinderen D, Atkins JF. Stimulation of reverse transcriptase generated cDNAs with specific indels by template RNA structure: retrotransposon, dNTP balance, RT-reagent usage. Nucleic Acids Res 2017; 45:10143-10155. [PMID: 28973469 PMCID: PMC5737552 DOI: 10.1093/nar/gkx689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/24/2017] [Indexed: 01/03/2023] Open
Abstract
RNA dependent DNA-polymerases, reverse transcriptases, are key enzymes for retroviruses and retroelements. Their fidelity, including indel generation, is significant for their use as reagents including for deep sequencing. Here, we report that certain RNA template structures and G-rich sequences, ahead of diverse reverse transcriptases can be strong stimulators for slippage at slippage-prone template motif sequence 3′ of such ‘slippage-stimulatory’ structures. Where slippage is stimulated, the resulting products have one or more additional base(s) compared to the corresponding template motif. Such structures also inhibit slippage-mediated base omission which can be more frequent in the absence of a relevant stem–loop. Slippage directionality, base insertion and omission, is sensitive to the relative concentration ratio of dNTPs specified by the RNA template slippage-prone sequence and its 5′ adjacent base. The retrotransposon-derived enzyme TGIRT exhibits more slippage in vitro than the retroviral enzymes tested including that from HIV. Structure-mediated slippage may be exhibited by other polymerases and enrich gene expression. A cassette from Drosophila retrotransposon Dme1_chrX_2630566, a candidate for utilizing slippage for its GagPol synthesis, exhibits strong slippage in vitro. Given the widespread occurrence and importance of retrotransposons, systematic studies to reveal the extent of their functional utilization of RT slippage are merited.
Collapse
Affiliation(s)
- Christophe Penno
- School of Biochemistry, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Romika Kumari
- School of Biochemistry, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - John F Atkins
- School of Biochemistry, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
7
|
Penno C, Kumari R, Baranov PV, van Sinderen D, Atkins JF. Specific reverse transcriptase slippage at the HIV ribosomal frameshift sequence: potential implications for modulation of GagPol synthesis. Nucleic Acids Res 2017; 45:10156-10167. [PMID: 28973470 PMCID: PMC5737442 DOI: 10.1093/nar/gkx690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/24/2017] [Indexed: 12/28/2022] Open
Abstract
Synthesis of HIV GagPol involves a proportion of ribosomes translating a U6A shift site at the distal end of the gag gene performing a programmed -1 ribosomal frameshift event to enter the overlapping pol gene. In vitro studies here show that at the same shift motif HIV reverse transcriptase generates -1 and +1 indels with their ratio being sensitive to the relative concentration ratio of dNTPs specified by the RNA template slippage-prone sequence and its 5' adjacent base. The GGG sequence 3' adjacent to the U6A shift/slippage site, which is important for ribosomal frameshifting, is shown here to limit reverse transcriptase base substitution and indel 'errors' in the run of A's in the product. The indels characterized here have either 1 more or less A, than the corresponding number of template U's. cDNA with 5 A's may yield novel Gag product(s), while cDNA with an extra base, 7 A's, may only be a minor contributor to GagPol polyprotein. Synthesis of a proportion of non-ribosomal frameshift derived GagPol would be relevant in efforts to identify therapeutically useful compounds that perturb the ratio of GagPol to Gag, and pertinent to the extent in which specific polymerase slippage is utilized in gene expression.
Collapse
Affiliation(s)
- Christophe Penno
- School of Biochemistry, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Romika Kumari
- School of Biochemistry, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - John F Atkins
- School of Biochemistry, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
8
|
Pinaud L, Ferrari ML, Friedman R, Jehmlich N, von Bergen M, Phalipon A, Sansonetti PJ, Campbell-Valois FX. Identification of novel substrates of Shigella T3SA through analysis of its virulence plasmid-encoded secretome. PLoS One 2017; 12:e0186920. [PMID: 29073283 PMCID: PMC5658099 DOI: 10.1371/journal.pone.0186920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 10/10/2017] [Indexed: 11/19/2022] Open
Abstract
Many human Gram-negative bacterial pathogens express a Type Three Secretion Apparatus (T3SA), including among the most notorious Shigella spp., Salmonella enterica, Yersinia enterocolitica and enteropathogenic Escherichia coli (EPEC). These bacteria express on their surface multiple copies of the T3SA that mediate the delivery into host cells of specific protein substrates critical to pathogenesis. Shigella spp. are Gram-negative bacterial pathogens responsible for human bacillary dysentery. The effector function of several Shigella T3SA substrates has largely been studied but their potential cellular targets are far from having been comprehensively delineated. In addition, it is likely that some T3SA substrates have escaped scrutiny as yet. Indeed, sequencing of the virulence plasmid of Shigella flexneri has revealed numerous open reading frames with unknown functions that could encode additional T3SA substrates. Taking advantage of label-free mass spectrometry detection of proteins secreted by a constitutively secreting strain of S. flexneri, we identified five novel substrates of the T3SA. We further confirmed their secretion through the T3SA and translocation into host cells using β-lactamase assays. The coding sequences of two of these novel T3SA substrates (Orf13 and Orf131a) have a guanine-cytosine content comparable to those of T3SA components and effectors. The three other T3SA substrates identified (Orf48, Orf86 and Orf176) have significant homology with antitoxin moieties of type II Toxin-Antitoxin systems usually implicated in the maintenance of low copy plasmids. While Orf13 and Orf131a might constitute new virulence effectors contributing to S. flexneri pathogenicity, potential roles for the translocation into host cells of antitoxins or antitoxin-like proteins during Shigella infection are discussed.
Collapse
Affiliation(s)
- Laurie Pinaud
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- U1202, INSERM, Paris, France
| | - Mariana L. Ferrari
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- U1202, INSERM, Paris, France
| | - Robin Friedman
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- U1202, INSERM, Paris, France
- Laboratoire de Biologie Systémique & Centre de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur, Paris, France
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
- Institute of Biochemistry, University of Leipzig, Faculty of Biosciences, Pharmacy and Psychology, Leipzig, Germany
| | - Armelle Phalipon
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- U1202, INSERM, Paris, France
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- U1202, INSERM, Paris, France
- Chaire de Microbiologie et Maladies Infectieuses, Collège de France, Paris, France
| | - François-Xavier Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, Centre for Chemical and Synthetic Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
9
|
One Gene and Two Proteins: a Leaderless mRNA Supports the Translation of a Shorter Form of the Shigella VirF Regulator. mBio 2016; 7:mBio.01860-16. [PMID: 27834204 PMCID: PMC5101355 DOI: 10.1128/mbio.01860-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
VirF, an AraC-like activator, is required to trigger a regulatory cascade that initiates the invasive program of Shigella spp., the etiological agents of bacillary dysentery in humans. VirF expression is activated upon entry into the host and depends on many environmental signals. Here, we show that the virF mRNA is translated into two proteins, the major form, VirF30 (30 kDa), and the shorter VirF21 (21 kDa), lacking the N-terminal segment. By site-specific mutagenesis and toeprint analysis, we identified the translation start sites of VirF30 and VirF21 and showed that the two different forms of VirF arise from differential translation. Interestingly, in vitro and in vivo translation experiments showed that VirF21 is also translated from a leaderless mRNA (llmRNA) whose 5′ end is at position +309/+310, only 1 or 2 nucleotides upstream of the ATG84 start codon of VirF21. The llmRNA is transcribed from a gene-internal promoter, which we identified here. Functional analysis revealed that while VirF30 is responsible for activation of the virulence system, VirF21 negatively autoregulates virF expression itself. Since VirF21 modulates the intracellular VirF levels, this suggests that transcription of the llmRNA might occur when the onset of the virulence program is not required. We speculate that environmental cues, like stress conditions, may promote changes in virF mRNA transcription and preferential translation of llmRNA. Shigella spp. are a major cause of dysentery in humans. In bacteria of this genus, the activation of the invasive program involves a multitude of signals that act on all layers of the gene regulatory hierarchy. By controlling the essential genes for host cell invasion, VirF is the key regulator of the switch from the noninvasive to the invasive phenotype. Here, we show that the Shigella virF gene encodes two proteins of different sizes, VirF30 and VirF21, that are functionally distinct. The major form, VirF30, activates the genes necessary for virulence, whereas the minor VirF21, which shares the C-terminal two-thirds of VirF30, negatively autoregulates virF expression itself. VirF21 is transcribed from a newly identified gene-internal promoter and, moreover, is translated from an unusual leaderless mRNA. The identification of a new player in regulation adds complexity to the regulation of the Shigella invasive process and may help development of new therapies for shigellosis.
Collapse
|
10
|
Olspert A, Carr JP, Firth AE. Mutational analysis of the Potyviridae transcriptional slippage site utilized for expression of the P3N-PIPO and P1N-PISPO proteins. Nucleic Acids Res 2016; 44:7618-29. [PMID: 27185887 PMCID: PMC5027478 DOI: 10.1093/nar/gkw441] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 12/02/2022] Open
Abstract
The Potyviridae comprise the largest and most important family of RNA plant viruses. An essential overlapping ORF, termed pipo, resides in an internal region of the main polyprotein ORF. Recently, expression of pipo was shown to depend on programmed transcriptional slippage at a conserved GAAAAAA sequence, resulting in the insertion of an extra A into a proportion of viral transcripts, fusing the pipo ORF in frame with the 5' third of the polyprotein ORF. However, the sequence features that mediate slippage have not been characterized. Using a duplicate copy of the pipo slip site region fused into a different genomic location where it can be freely mutated, we investigated the sequence requirements for transcriptional slippage. We find that the leading G is not strictly required, but increased flanking sequence GC content correlates with higher insertion rates. A homopolymeric hexamer is optimal for producing mainly single-nucleotide insertions. We also identify an overabundance of G to A substitutions immediately 3'-adjacent to GAAAAAA in insertion-free transcripts, which we infer to result from a 'to-fro' form of slippage during positive-strand synthesis. Analysis of wild-type and reverse complement sequences suggests that slippage occurs preferentially during synthesis of poly(A) and therefore occurs mainly during positive-strand synthesis.
Collapse
Affiliation(s)
- Allan Olspert
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
11
|
Extensive Mitochondrial mRNA Editing and Unusual Mitochondrial Genome Organization in Calcaronean Sponges. Curr Biol 2015; 26:86-92. [PMID: 26725199 DOI: 10.1016/j.cub.2015.11.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
Abstract
One of the unusual features of DNA-containing organelles in general and mitochondria in particular is the frequent occurrence of RNA editing [1]. The term "RNA editing" refers to a variety of mechanistically unrelated biochemical processes that alter RNA sequence during or after transcription [2]. The editing can be insertional, deletional, or substitutional and has been found in all major types of RNAs [3, 4]. Although mitochondrial mRNA editing is widespread in some eukaryotic lineages [5-7], it is rare in animals, with reported cases limited both in their scope and in phylogenetic distribution [8-11] (see also [12]). While analyzing genomic data from calcaronean sponges Sycon ciliatum and Leucosolenia complicata, we were perplexed by the lack of recognizable mitochondrial coding sequences. Comparison of genomic and transcriptomic data from these species revealed the presence of mitochondrial cryptogenes whose transcripts undergo extensive editing. This editing consisted of single or double uridylate (U) insertions in pre-existing short poly(U) tracts. Subsequent analysis revealed the presence of similar editing in Sycon coactum and the loss of editing in Petrobiona massiliana, a hypercalcified calcaronean sponge. In addition, mitochondrial genomes of at least some calcaronean sponges were found to have a highly unusual architecture, with nearly all genes located on individual and likely linear chromosomes. Phylogenetic analysis of mitochondrial coding sequences revealed accelerated rates of sequence evolution in this group. The latter observation presents a challenge for the mutational-hazard hypothesis [13], which posits that mRNA editing should not occur in lineages with an elevated mutation rate.
Collapse
|
12
|
Olspert A, Chung BYW, Atkins JF, Carr JP, Firth AE. Transcriptional slippage in the positive-sense RNA virus family Potyviridae. EMBO Rep 2015; 16:995-1004. [PMID: 26113364 PMCID: PMC4552492 DOI: 10.15252/embr.201540509] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 11/15/2022] Open
Abstract
The family Potyviridae encompasses ~30% of plant viruses and is responsible for significant economic losses worldwide. Recently, a small overlapping coding sequence, termed pipo, was found to be conserved in the genomes of all potyvirids. PIPO is expressed as part of a frameshift protein, P3N-PIPO, which is essential for virus cell-to-cell movement. However, the frameshift expression mechanism has hitherto remained unknown. Here, we demonstrate that transcriptional slippage, specific to the viral RNA polymerase, results in a population of transcripts with an additional "A" inserted within a highly conserved GAAAAAA sequence, thus enabling expression of P3N-PIPO. The slippage efficiency is ~2% in Turnip mosaic virus and slippage is inhibited by mutations in the GAAAAAA sequence. While utilization of transcriptional slippage is well known in negative-sense RNA viruses such as Ebola, mumps and measles, to our knowledge this is the first report of its widespread utilization for gene expression in positive-sense RNA viruses.
Collapse
Affiliation(s)
- Allan Olspert
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Betty Y-W Chung
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - John F Atkins
- Schools of Biochemistry and Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Andrew E Firth
- Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
13
|
Productive mRNA stem loop-mediated transcriptional slippage: Crucial features in common with intrinsic terminators. Proc Natl Acad Sci U S A 2015; 112:E1984-93. [PMID: 25848054 DOI: 10.1073/pnas.1418384112] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli and yeast DNA-dependent RNA polymerases are shown to mediate efficient nascent transcript stem loop formation-dependent RNA-DNA hybrid realignment. The realignment was discovered on the heteropolymeric sequence T5C5 and yields transcripts lacking a C residue within a corresponding U5C4. The sequence studied is derived from a Roseiflexus insertion sequence (IS) element where the resulting transcriptional slippage is required for transposase synthesis. The stability of the RNA structure, the proximity of the stem loop to the slippage site, the length and composition of the slippage site motif, and the identity of its 3' adjacent nucleotides (nt) are crucial for transcripts lacking a single C. In many respects, the RNA structure requirements for this slippage resemble those for hairpin-dependent transcription termination. In a purified in vitro system, the slippage efficiency ranges from 5% to 75% depending on the concentration ratios of the nucleotides specified by the slippage sequence and the 3' nt context. The only previous proposal of stem loop mediated slippage, which was in Ebola virus expression, was based on incorrect data interpretation. We propose a mechanical slippage model involving the RNAP translocation state as the main motor in slippage directionality and efficiency. It is distinct from previously described models, including the one proposed for paramyxovirus, where following random movement efficiency is mainly dependent on the stability of the new realigned hybrid. In broadening the scope for utilization of transcription slippage for gene expression, the stimulatory structure provides parallels with programmed ribosomal frameshifting at the translation level.
Collapse
|
14
|
Gueguen E, Wills NM, Atkins JF, Cascales E. Transcriptional frameshifting rescues Citrobacter rodentium type VI secretion by the production of two length variants from the prematurely interrupted tssM gene. PLoS Genet 2014; 10:e1004869. [PMID: 25474156 PMCID: PMC4256274 DOI: 10.1371/journal.pgen.1004869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 11/03/2014] [Indexed: 11/30/2022] Open
Abstract
The Type VI secretion system (T6SS) mediates toxin delivery into both eukaryotic and prokaryotic cells. It is composed of a cytoplasmic structure resembling the tail of contractile bacteriophages anchored to the cell envelope through a membrane complex composed of the TssL and TssM inner membrane proteins and of the TssJ outer membrane lipoprotein. The C-terminal domain of TssM is required for its interaction with TssJ, and for the function of the T6SS. In Citrobacter rodentium, the tssM1 gene does not encode the C-terminal domain. However, the stop codon is preceded by a run of 11 consecutive adenosines. In this study, we demonstrate that this poly-A tract is a transcriptional slippery site that induces the incorporation of additional adenosines, leading to frameshifting, and hence the production of two TssM1 variants, including a full-length canonical protein. We show that both forms of TssM1, and the ratio between these two forms, are required for the function of the T6SS in C. rodentium. Finally, we demonstrate that the tssM gene associated with the Yersinia pseudotuberculosis T6SS-3 gene cluster is also subjected to transcriptional frameshifting. Nonstandard decoding mechanisms lead to the synthesis of different protein variants from a single DNA sequence. These mechanisms are particularly important when the genome length has to be limited such as viral genomes, limited by the available space in the capsid, or to synthesize two different polypeptides that have distinct functional properties. Here, we report that tssM, a gene encoded within the Citrobacter rodentium Type VI secretion (T6S) gene cluster, is interrupted by a premature stop codon; however, the stop codon is preceded by a slippery site constituted by 11 consecutive adenosines. Reiterative transcription leads to the incorporation of additional nucleotides in the mRNA and therefore restores the original framing. As a consequence, two different TssM variants are created by transcriptional frameshifting, including a full-length 130-kDa protein and an 88-kDa truncated variant. We further show that both forms, and the ratio between these two forms, are required for the function of the transport apparatus. Interestingly, a similar mechanism regulates the synthesis of two TssM variants in Yersinia pseudotuberculosis.
Collapse
Affiliation(s)
- Erwan Gueguen
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée, CNRS – Aix-Marseille Université, UMR 7255, Marseille, France
- * E-mail: (EG); (EC)
| | - Norma M. Wills
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - John F. Atkins
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
- Departments of Biochemistry and Microbiology, University College Cork, Cork, Ireland
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée, CNRS – Aix-Marseille Université, UMR 7255, Marseille, France
- * E-mail: (EG); (EC)
| |
Collapse
|
15
|
Antonov I, Coakley A, Atkins JF, Baranov PV, Borodovsky M. Identification of the nature of reading frame transitions observed in prokaryotic genomes. Nucleic Acids Res 2013; 41:6514-30. [PMID: 23649834 PMCID: PMC3711429 DOI: 10.1093/nar/gkt274] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our goal was to identify evolutionary conserved frame transitions in protein coding regions and to uncover an underlying functional role of these structural aberrations. We used the ab initio frameshift prediction program, GeneTack, to detect reading frame transitions in 206 991 genes (fs-genes) from 1106 complete prokaryotic genomes. We grouped 102 731 fs-genes into 19 430 clusters based on sequence similarity between protein products (fs-proteins) as well as conservation of predicted position of the frameshift and its direction. We identified 4010 pseudogene clusters and 146 clusters of fs-genes apparently using recoding (local deviation from using standard genetic code) due to possessing specific sequence motifs near frameshift positions. Particularly interesting was finding of a novel type of organization of the dnaX gene, where recoding is required for synthesis of the longer subunit, τ. We selected 20 clusters of predicted recoding candidates and designed a series of genetic constructs with a reporter gene or affinity tag whose expression would require a frameshift event. Expression of the constructs in Escherichia coli demonstrated enrichment of the set of candidates with sequences that trigger genuine programmed ribosomal frameshifting; we have experimentally confirmed four new families of programmed frameshifts.
Collapse
Affiliation(s)
- Ivan Antonov
- School of Computational Science and Engineering at Georgia Tech, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
16
|
Zhou YN, Lubkowska L, Hui M, Court C, Chen S, Court DL, Strathern J, Jin DJ, Kashlev M. Isolation and characterization of RNA polymerase rpoB mutations that alter transcription slippage during elongation in Escherichia coli. J Biol Chem 2013; 288:2700-10. [PMID: 23223236 PMCID: PMC3554936 DOI: 10.1074/jbc.m112.429464] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Indexed: 01/05/2023] Open
Abstract
Transcription fidelity is critical for maintaining the accurate flow of genetic information. The study of transcription fidelity has been limited because the intrinsic error rate of transcription is obscured by the higher error rate of translation, making identification of phenotypes associated with transcription infidelity challenging. Slippage of elongating RNA polymerase (RNAP) on homopolymeric A/T tracts in DNA represents a special type of transcription error leading to disruption of open reading frames in Escherichia coli mRNA. However, the regions in RNAP involved in elongation slippage and its molecular mechanism are unknown. We constructed an A/T tract that is out of frame relative to a downstream lacZ gene on the chromosome to examine transcriptional slippage during elongation. Further, we developed a genetic system that enabled us for the first time to isolate and characterize E. coli RNAP mutants with altered transcriptional slippage in vivo. We identified several amino acid residues in the β subunit of RNAP that affect slippage in vivo and in vitro. Interestingly, these highly clustered residues are located near the RNA strand of the RNA-DNA hybrid in the elongation complex. Our E. coli study complements an accompanying study of slippage by yeast RNAP II and provides the basis for future studies on the mechanism of transcription fidelity.
Collapse
Affiliation(s)
- Yan Ning Zhou
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Lucyna Lubkowska
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Monica Hui
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Carolyn Court
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Shuo Chen
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Donald L. Court
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Jeffrey Strathern
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Ding Jun Jin
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Mikhail Kashlev
- From the Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| |
Collapse
|
17
|
Bongrand C, Sansonetti PJ, Parsot C. Characterization of the promoter, MxiE box and 5' UTR of genes controlled by the activity of the type III secretion apparatus in Shigella flexneri. PLoS One 2012; 7:e32862. [PMID: 22427898 PMCID: PMC3299695 DOI: 10.1371/journal.pone.0032862] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/01/2012] [Indexed: 11/21/2022] Open
Abstract
Activation of the type III secretion apparatus (T3SA) of Shigella flexneri, upon contact of the bacteria with host cells, and its deregulation, as in ipaB mutants, specifically increases transcription of a set of effector-encoding genes controlled by MxiE, an activator of the AraC family, and IpgC, the chaperone of the IpaB and IpaC translocators. Thirteen genes carried by the virulence plasmid (ospB, ospC1, ospD2, ospD3, ospE1, ospE2, ospF, ospG, virA, ipaH1.4, ipaH4.5, ipaH7.8 and ipaH9.8) and five genes carried by the chromosome (ipaHa-e) are regulated by the T3SA activity. A conserved 17-bp MxiE box is present 5' of most of these genes. To characterize the promoter activity of these MxiE box-containing regions, similar ∼67-bp DNA fragments encompassing the MxiE box of 14 MxiE-regulated genes were cloned 5' of lacZ in a promoter probe plasmid; β-galactosidase activity detected in wild-type and ipaB strains harboring these plasmids indicated that most MxiE box-carrying regions contain a promoter regulated by the T3SA activity and that the relative strengths of these promoters cover an eight-fold range. The various MxiE boxes exhibiting up to three differences as compared to the MxiE box consensus sequence were introduced into the ipaH9.8 promoter without affecting its activity, suggesting that they are equally efficient in promoter activation. In contrast, all nucleotides conserved among MxiE boxes were found to be involved in MxiE-dependent promoter activity. In addition, we present evidence that the 5' UTRs of four MxiE-regulated genes enhance expression of the downstream gene, presumably by preventing degradation of the mRNA, and the 5' UTRs of two other genes carry an ancillary promoter.
Collapse
Affiliation(s)
- Clotilde Bongrand
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM U786, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité (Cellule Pasteur), Paris, France
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM U786, Paris, France
| | - Claude Parsot
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- INSERM U786, Paris, France
| |
Collapse
|
18
|
Sharma V, Firth AE, Antonov I, Fayet O, Atkins JF, Borodovsky M, Baranov PV. A pilot study of bacterial genes with disrupted ORFs reveals a surprising profusion of protein sequence recoding mediated by ribosomal frameshifting and transcriptional realignment. Mol Biol Evol 2011; 28:3195-211. [PMID: 21673094 DOI: 10.1093/molbev/msr155] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bacterial genome annotations contain a number of coding sequences (CDSs) that, in spite of reading frame disruptions, encode a single continuous polypeptide. Such disruptions have different origins: sequencing errors, frameshift, or stop codon mutations, as well as instances of utilization of nontriplet decoding. We have extracted over 1,000 CDSs with annotated disruptions and found that about 75% of them can be clustered into 64 groups based on sequence similarity. Analysis of the clusters revealed deep phylogenetic conservation of open reading frame organization as well as the presence of conserved sequence patterns that indicate likely utilization of the nonstandard decoding mechanisms: programmed ribosomal frameshifting (PRF) and programmed transcriptional realignment (PTR). Further enrichment of these clusters with additional homologous nucleotide sequences revealed over 6,000 candidate genes utilizing PRF or PTR. Analysis of the patterns of conservation apparently associated with nontriplet decoding revealed the presence of both previously characterized frameshift-prone sequences and a few novel ones. Since the starting point of our analysis was a set of genes with already annotated disruptions, it is highly plausible that in this study, we have identified only a fraction of all bacterial genes that utilize PRF or PTR. In addition to the identification of a large number of recoded genes, a surprising observation is that nearly half of them are expressed via PTR-a mechanism that, in contrast to PRF, has not yet received substantial attention.
Collapse
Affiliation(s)
- Virag Sharma
- Department of Biochemistry, University College Cork, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
19
|
Lokareddy RK, Lunelli M, Eilers B, Wolter V, Kolbe M. Combination of two separate binding domains defines stoichiometry between type III secretion system chaperone IpgC and translocator protein IpaB. J Biol Chem 2010; 285:39965-75. [PMID: 20937829 DOI: 10.1074/jbc.m110.135616] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Type III secretion systems (TTSSs) utilized by enteropathogenic bacteria require the presence of small, acidic virulence-associated chaperones for effective host cell infection. We adopted a combination of biochemical and cellular techniques to define the chaperone binding domains (CBDs) in the translocators IpaB and IpaC associated with the chaperone IpgC from Shigella flexneri. We identified a novel CBD in IpaB and furthermore precisely mapped the boundaries of the CBDs in both translocator proteins. In IpaC a single binding domain associates with IpgC. In IpaB, we show that the binding of the newly characterized CBD is essential in maintaining the ternary arrangement of chaperone-translocator complex. This hitherto unknown function is reflected in the co-crystal structure as well, with an IpgC dimer bound to an IpaB fragment comprising both CBDs. Moreover, in the absence of this novel CBD the IpaB/IpgC complex aggregates. This dual-recognition of a domain in the protein by the chaperone in facilitating the correct chaperone-substrate organization describes a new function for the TTSS associated chaperone-substrate complexes.
Collapse
Affiliation(s)
- Ravi Kumar Lokareddy
- Department of Cellular Microbiology, Max-Planck-Institute for Infection Biology, 10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
20
|
Timms AR, Cambray-Young J, Scott AE, Petty NK, Connerton PL, Clarke L, Seeger K, Quail M, Cummings N, Maskell DJ, Thomson NR, Connerton IF. Evidence for a lineage of virulent bacteriophages that target Campylobacter. BMC Genomics 2010; 11:214. [PMID: 20353581 PMCID: PMC2853527 DOI: 10.1186/1471-2164-11-214] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 03/30/2010] [Indexed: 11/17/2022] Open
Abstract
Background Our understanding of the dynamics of genome stability versus gene flux within bacteriophage lineages is limited. Recently, there has been a renewed interest in the use of bacteriophages as 'therapeutic' agents; a prerequisite for their use in such therapies is a thorough understanding of their genetic complement, genome stability and their ecology to avoid the dissemination or mobilisation of phage or bacterial virulence and toxin genes. Campylobacter, a food-borne pathogen, is one of the organisms for which the use of bacteriophage is being considered to reduce human exposure to this organism. Results Sequencing and genome analysis was performed for two Campylobacter bacteriophages. The genomes were extremely similar at the nucleotide level (≥ 96%) with most differences accounted for by novel insertion sequences, DNA methylases and an approximately 10 kb contiguous region of metabolic genes that were dissimilar at the sequence level but similar in gene function between the two phages. Both bacteriophages contained a large number of radical S-adenosylmethionine (SAM) genes, presumably involved in boosting host metabolism during infection, as well as evidence that many genes had been acquired from a wide range of bacterial species. Further bacteriophages, from the UK Campylobacter typing set, were screened for the presence of bacteriophage structural genes, DNA methylases, mobile genetic elements and regulatory genes identified from the genome sequences. The results indicate that many of these bacteriophages are related, with 10 out of 15 showing some relationship to the sequenced genomes. Conclusions Two large virulent Campylobacter bacteriophages were found to show very high levels of sequence conservation despite separation in time and place of isolation. The bacteriophages show adaptations to their host and possess genes that may enhance Campylobacter metabolism, potentially advantaging both the bacteriophage and its host. Genetic conservation has been shown to extend to other Campylobacter bacteriophages, forming a highly conserved lineage of bacteriophages that predate upon campylobacters and indicating that highly adapted bacteriophage genomes can be stable over prolonged periods of time.
Collapse
Affiliation(s)
- Andrew R Timms
- Division of Food Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Transcript Slippage and Recoding. RECODING: EXPANSION OF DECODING RULES ENRICHES GENE EXPRESSION 2010. [DOI: 10.1007/978-0-387-89382-2_19] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
The Citrobacter rodentium genome sequence reveals convergent evolution with human pathogenic Escherichia coli. J Bacteriol 2009; 192:525-38. [PMID: 19897651 DOI: 10.1128/jb.01144-09] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Citrobacter rodentium (formally Citrobacter freundii biotype 4280) is a highly infectious pathogen that causes colitis and transmissible colonic hyperplasia in mice. In common with enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively), C. rodentium exploits a type III secretion system (T3SS) to induce attaching and effacing (A/E) lesions that are essential for virulence. Here, we report the fully annotated genome sequence of the 5.3-Mb chromosome and four plasmids harbored by C. rodentium strain ICC168. The genome sequence revealed key information about the phylogeny of C. rodentium and identified 1,585 C. rodentium-specific (without orthologues in EPEC or EHEC) coding sequences, 10 prophage-like regions, and 17 genomic islands, including the locus for enterocyte effacement (LEE) region, which encodes a T3SS and effector proteins. Among the 29 T3SS effectors found in C. rodentium are all 22 of the core effectors of EPEC strain E2348/69. In addition, we identified a novel C. rodentium effector, named EspS. C. rodentium harbors two type VI secretion systems (T6SS) (CTS1 and CTS2), while EHEC contains only one T6SS (EHS). Our analysis suggests that C. rodentium and EPEC/EHEC have converged on a common host infection strategy through access to a common pool of mobile DNA and that C. rodentium has lost gene functions associated with a previous pathogenic niche.
Collapse
|
23
|
Louvel H, Kanai T, Atomi H, Reeve JN. The Fur iron regulator-like protein is cryptic in the hyperthermophilic archaeon Thermococcus kodakaraensis. FEMS Microbiol Lett 2009; 295:117-28. [PMID: 19484827 DOI: 10.1111/j.1574-6968.2009.01594.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Archaea, which regroup organisms with extreme living conditions, possess many predicted iron-containing proteins that may be metabolically critical; however, their need for iron remains poorly documented. In this report, iron acquisition mechanisms were investigated in the hyperthermophilic archaeon Thermococcus kodakaraensis. Thermococcus kodakaraensis requires iron for its growth and possesses many putative iron uptake systems, including several ATP-binding cassette-like transporters and two FeoAB-like receptors, showing that this organism shares similar features with bacteria. One homolog of the major bacterial iron regulator, ferric uptake regulator (Fur), with about 50% similarity to Escherichia coli Fur was also identified. Thermococcus kodakaraensis Fur was found to be able to specifically bind to a Fur-binding site consensus-like sequence of its own gene promoter. However, its expression has been hindered by a -1 frameshift mutation and the chromosomal repair of this mutation did not affect T. kodakaraensis in vivo phenotypes. Microarrays analyses helped to further characterize T. kodakaraensis iron-dependent growth and revealed no role for the Fur homolog in the global regulatory response of the cells to iron. In contrast, additional evidences indicated that the T. kodakaraensis diphtheria toxin regulator (DtxR) homolog may control the expression of the major iron acquisition effectors, while its inactivation enabled higher resistance to iron deficiency.
Collapse
Affiliation(s)
- Hélène Louvel
- Department of Microbiology, Ohio State University, Columbus, OH, USA.
| | | | | | | |
Collapse
|
24
|
Parsot C. Shigella type III secretion effectors: how, where, when, for what purposes? Curr Opin Microbiol 2009; 12:110-6. [PMID: 19157960 DOI: 10.1016/j.mib.2008.12.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 12/01/2008] [Accepted: 12/03/2008] [Indexed: 01/23/2023]
Abstract
Bacteria of Shigella spp., the causative agents of shigellosis in humans, possess a repertoire of approximately 25-30 effectors injected into host cells by a type III secretion apparatus (T3SA). The T3SA activity is activated upon contact of bacteria with cells and controls expression of some effectors. Recent structural and functional studies suggest that two different sets of effectors are involved in inducing actin cytoskeleton reorganization to promote entry of bacteria into epithelial cells and in modulating cell signaling pathways to dampen innate immune responses induced upon infection, respectively. Schematically, effectors involved in entry are produced independently of the T3SA activity, whereas effectors involved in controlling the cell responses are produced upon activation of the T3SA.
Collapse
Affiliation(s)
- Claude Parsot
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
25
|
Botteaux A, Sory MP, Biskri L, Parsot C, Allaoui A. MxiC is secreted by and controls the substrate specificity of the Shigella flexneri type III secretion apparatus. Mol Microbiol 2008; 71:449-60. [PMID: 19017268 DOI: 10.1111/j.1365-2958.2008.06537.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many gram-negative pathogenic bacteria use a type III secretion (T3S) system to interact with cells of their hosts. Mechanisms controlling the hierarchical addressing of needle subunits, translocators and effectors to the T3S apparatus (T3SA) are still poorly understood. We investigated the function of MxiC, the member of the YopN/InvE/SepL family in the Shigella flexneri T3S system. Inactivation of mxiC led specifically to a deregulated secretion of effectors (including IpaA, IpgD, IcsB, IpgB2, OspD1 and IpaHs), but not of translocators (IpaB and IpaC) and proteins controlling the T3SA structure or activity (Spa32 and IpaD). Expression of effector-encoding genes controlled by the activity of the T3SA and the transcription activator MxiE was increased in the mxiC mutant, as a consequence of the increased secretion of the MxiE anti-activator OspD1. MxiC is a T3SA substrate and its ability to be secreted is required for its function. By using co-purification assays, we found that MxiC can associate with the Spa47 ATPase, which suggests that MxiC might prevent secretion of effectors by blocking the T3SA from the inside. Although with a 10-fold reduced efficiency compared with the wild-type strain, the mxiC mutant was still able to enter epithelial cells.
Collapse
Affiliation(s)
- Anne Botteaux
- Laboratoire de Bactériologie Moléculaire, Faculté de Médecine, Université Libre de Bruxelles, Route de Lennik, 808, CP: 614b, 1070, Brussels, Belgium
| | | | | | | | | |
Collapse
|
26
|
Nicoletti M, Santino I, Petrucca A, Del Chierico F, Cannavacciuolo S, Casalino M, Sessa R, Cipriani P. Evaluation by Real-Time PCR of the Expression of S. Flexneri Virulence-Associated Genes ospB and phoN2 under Different Genetical Backgrounds. Int J Immunopathol Pharmacol 2008; 21:707-14. [DOI: 10.1177/039463200802100325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Under conditions of activated type III secretion Shigella flexneri up-regulates the expression of numerous genes, including the virulence plasmid (pINV)-encoded ospB and phoN2 genes. ospB and phoN2 are virulence-associated genes which are part of a bicistronic transcriptional unit encoding OspB, a protein (effector) of unknown function secreted by the type III secretion (TTS) apparatus, and PhoN2 (apyrase or ATP-diphosphohydrolase), a periplasmic protein involved in polar IcsA localization on the surface of S. flexneri. In this work we used real-time PCR to measure transcription of ospB and phoN2 of wild-type S. flexneri strain M90T as well as of derivative mutants impaired in definite virulence traits. The results obtained confirmed and extended previous reports indicating that the expression of ospB and phoN2 genes is modulated in a virB-dependent, mxiE-independent manner under conditions of non-activated secretion, while their expression is considerably induced in a mxiE-dependent manner under conditions of activated secretion. That the expression of the ospB-phoN2 operon is up-regulated in condition of activated secretion, indicates that probably the expression of these two genes might be important, especially during the later stages of infection of S. flexneri.
Collapse
Affiliation(s)
- M. Nicoletti
- Dipartimento di Scienze Biomediche, University “G. d'Annunzio”, Chieti
| | - I. Santino
- Dipartimento di Scienze di Sanità Pubblica, “Sapienza” Università di Roma, Rome
| | - A. Petrucca
- Dipartimento di Scienze Biomediche, University “G. d'Annunzio”, Chieti
- Laboratorio di Microbiologia Clinica, II Facoltà di Medicina e Chirurgia, Ospedale “Sant'Andrea”, Rome
| | - F. Del Chierico
- Dipartimento di Scienze Biomediche, University “G. d'Annunzio”, Chieti
| | - S. Cannavacciuolo
- Dipartimento di Scienze di Sanità Pubblica, “Sapienza” Università di Roma, Rome
| | - M. Casalino
- Dipartimento di Biologia, Università di “Roma Tre”, Rome, Italy
| | - R. Sessa
- Dipartimento di Scienze di Sanità Pubblica, “Sapienza” Università di Roma, Rome
| | - P. Cipriani
- Dipartimento di Scienze di Sanità Pubblica, “Sapienza” Università di Roma, Rome
- Laboratorio di Microbiologia Clinica, II Facoltà di Medicina e Chirurgia, Ospedale “Sant'Andrea”, Rome
| |
Collapse
|
27
|
Rohde JR, Breitkreutz A, Chenal A, Sansonetti PJ, Parsot C. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 2008; 1:77-83. [PMID: 18005683 DOI: 10.1016/j.chom.2007.02.002] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 01/22/2007] [Accepted: 02/08/2007] [Indexed: 11/30/2022]
Abstract
Many bacteria pathogenic for plants or animals, including Shigella spp., which is responsible for shigellosis in humans, use a type III secretion apparatus to inject effector proteins into host cells. Effectors alter cell signaling and host responses induced upon infection; however, their precise biochemical activities have been elucidated in very few cases. Utilizing Saccharomyces cerevisiae as a surrogate host, we show that the Shigella effector IpaH9.8 interrupts pheromone response signaling by promoting the proteasome-dependent destruction of the MAPKK Ste7. In vitro, IpaH9.8 displayed ubiquitin ligase activity toward ubiquitin and Ste7. Replacement of a Cys residue that is invariant among IpaH homologs of plant and animal pathogens abolished the ubiquitin ligase activity of IpaH9.8. We also present evidence that the IpaH homolog SspH1 from Salmonella enterica can ubiquitinate ubiquitin and PKN1, a previously identified SspH1 interaction partner. This study assigns a function for IpaH family members as E3 ubiquitin ligases.
Collapse
Affiliation(s)
- John R Rohde
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 rue du Dr. Roux, F-75724 Paris, Cédex 15, France
| | | | | | | | | |
Collapse
|
28
|
Abstract
The expression of a subset of Shigella flexneri virulence genes is dependent upon a cytoplasmic chaperone, IpgC, and an activator from the AraC/XylS family, MxiE. In this paper, we report that the chaperone forms a specific and stable heteromer with MxiE.
Collapse
|
29
|
Economou A, Christie PJ, Fernandez RC, Palmer T, Plano GV, Pugsley AP. Secretion by numbers: Protein traffic in prokaryotes. Mol Microbiol 2007; 62:308-19. [PMID: 17020575 PMCID: PMC3873778 DOI: 10.1111/j.1365-2958.2006.05377.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Almost all aspects of protein traffic in bacteria were covered at the ASM-FEMS meeting on the topic in Iraklio, Crete in May 2006. The studies presented ranged from mechanistic analysis of specific events leading proteins to their final destinations to the physiological roles of the targeted proteins. Among the highlights from the meeting that are reviewed here are the molecular dynamics of SecA protein, membrane protein insertion, type III secretion needles and chaperones, type IV secretion, the two partner and autosecretion systems, the 'secretion competent state', and the recently discovered type VI secretion system.
Collapse
Affiliation(s)
- Anastasias Economou
- Institute of Molecular Biology and Biotechnology, F.O.R.T.H and University of Crete, PO Box 1527, GR-711 10 Iraklio, Crete, Greece
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas-Houston, Medical School, Houston, TX 77030, USA
| | - Rachel C. Fernandez
- Department of Microbiology and Immunology, University of British Columbia, 2559-2350 Health Sciences Mall, 300-6174 University Blvd., Vancouver, BC, V6T 1Z3, Canada
| | - Tracy Palmer
- Department of Molecular Microbiology, John Innes Centre, Conley Lane, Norwich, NR4 7UH, UK
| | - Greg V. Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, PO Box 016960 (R-138), Miami, FL 33101, USA
| | - Anthony P. Pugsley
- Molecular Genetics Unit and CNRS URA2172, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris CEDEX 15, France
- For correspondence. ; Tel. (+33) 145688494; Fax (+33) 145688960
| |
Collapse
|
30
|
Penno C, Hachani A, Biskri L, Sansonetti P, Allaoui A, Parsot C. Transcriptional slippage controls production of type III secretion apparatus components in Shigella flexneri. Mol Microbiol 2006; 62:1460-8. [PMID: 17059566 DOI: 10.1111/j.1365-2958.2006.05456.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During transcription, series of approximately 9 As or Ts can direct RNA polymerase to incorporate into the mRNA nucleotides not encoded by the DNA, changing the reading frame downstream from the slippage site. We detected series of 9 or 10 As in spa13, spa33 and mxiA encoding type III secretion apparatus components. Analysis of cDNAs indicated that transcriptional slippage occurs in spa13, mxiA and spa33. Changes in the reading frame were confirmed by using plasmids carrying slippage sites in the 5' part of lacZ. Slippage is required for production of Spa13 from two overlapping reading frames and should lead to production of truncated MxiA and Spa33 proteins. Complementation of spa13 and mxiA mutants with plasmids carrying altered sites indicated that slippage in spa13 is required for assembly of the secretion apparatus and that slippage sites in spa13 and mxiA have not been selected to encode Lys residues or to produce two proteins endowed with different activities. The presence of slippage sites decreases production of Spa13 by 70%, of MxiA and Spa33 by 15% and of Spa32 (encoded downstream from spa13) by 50%. These results suggest that transcriptional slippage controls protein production by reducing the proportion of mRNA translated into functional proteins.
Collapse
Affiliation(s)
- Christophe Penno
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 25 rue du Dr Roux, F-75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
31
|
Fernandez A, Borges F, Gintz B, Decaris B, Leblond-Bourget N. The rggC locus, with a frameshift mutation, is involved in oxidative stress response by Streptococcus thermophilus. Arch Microbiol 2006; 186:161-9. [PMID: 16847652 DOI: 10.1007/s00203-006-0130-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 05/22/2006] [Accepted: 05/24/2006] [Indexed: 10/24/2022]
Abstract
In Streptococcus thermophilus, the locus rggC contains a frameshift mutation and thus consists of two open reading frames (ORFs), rggC (1) and rggC (2), which encode proteins exhibiting similarity with the Rgg transcriptional regulator family. In this work, mutants showing a partial deletion of rggC (1) and rggC (2 )were constructed and their response to menadione, a superoxide-generating compound, was analysed. These mutants exhibited different behaviour to this oxidative stress compared with the wild-type strain. Analysis of this locus among 21 strains of S. thermophilus showed a polythymine tract length variability and a strain-dependant adenine residue could be found upstream of this repeat. This interstrain polymorphism supports evidence for the hypothesis that the rggC locus is phase variable.
Collapse
Affiliation(s)
- Annabelle Fernandez
- Laboratoire de Génétique et Microbiologie, UMR INRA 1128, IFR 110, Faculté des Sciences et Techniques de l'Université Henri Poincaré, Campus de Grignard, BP239, 54506 Vanoeuvre-lès-Nancy, France
| | | | | | | | | |
Collapse
|
32
|
Penno C, Parsot C. Transcriptional slippage in mxiE controls transcription and translation of the downstream mxiD gene, which encodes a component of the Shigella flexneri type III secretion apparatus. J Bacteriol 2006; 188:1196-8. [PMID: 16428428 PMCID: PMC1347353 DOI: 10.1128/jb.188.3.1196-1198.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Shigella flexneri transcription activator MxiE is produced by transcriptional slippage from two overlapping open reading frames. By using plasmids encoding a mxiD-lacZ translational fusion, we showed that transcriptional slippage in mxiE influences both transcription and translation of the downstream mxiD gene encoding an essential component of the type III secretion apparatus.
Collapse
Affiliation(s)
- Christophe Penno
- Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
33
|
Santapaola D, Del Chierico F, Petrucca A, Uzzau S, Casalino M, Colonna B, Sessa R, Berlutti F, Nicoletti M. Apyrase, the product of the virulence plasmid-encoded phoN2 (apy) gene of Shigella flexneri, is necessary for proper unipolar IcsA localization and for efficient intercellular spread. J Bacteriol 2006; 188:1620-7. [PMID: 16452446 PMCID: PMC1367242 DOI: 10.1128/jb.188.4.1620-1627.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role in virulence of the Shigella flexneri ospB-phoN2 operon has been evaluated. Here we confirm that OspB is an effector and show that apyrase, the product of phoN2, may be a virulence factor, since it is required for efficient intercellular spreading. Apyrase may be important in a deoxynucleoside triphosphate-hydrolyzing activity-independent manner, suggesting that it may act as an interaction partner in the process of IcsA localization.
Collapse
Affiliation(s)
- D Santapaola
- Dipartimento di Scienze Biomediche, Università G. D'Annunzio, Via dei Vestini, 31, 66100 Chieti, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Parsot C. Shigellaspp. and enteroinvasiveEscherichia colipathogenicity factors. FEMS Microbiol Lett 2005; 252:11-8. [PMID: 16182469 DOI: 10.1016/j.femsle.2005.08.046] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 08/17/2005] [Indexed: 10/25/2022] Open
Abstract
Bacteria of Shigella spp. (S. boydii, S. dysenteriae, S. flexneri and S. sonnei) and enteroinvasive Escherichia coli (EIEC) are responsible for shigellosis in humans, a disease characterized by the destruction of the colonic mucosa that is induced upon bacterial invasion. Shigella spp. and EIEC strains contain a virulence plasmid of approximately 220 kb that encodes determinants for entry into epithelial cells and dissemination from cell to cell. This review presents the current model on mechanisms of invasion of the colonic epithelium by these bacteria and focuses on their pathogenicity factors, particularly the virulence plasmid-encoded type III secretion system.
Collapse
Affiliation(s)
- Claude Parsot
- Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
35
|
Parsot C, Ageron E, Penno C, Mavris M, Jamoussi K, d'Hauteville H, Sansonetti P, Demers B. A secreted anti-activator, OspD1, and its chaperone, Spa15, are involved in the control of transcription by the type III secretion apparatus activity in Shigella flexneri. Mol Microbiol 2005; 56:1627-35. [PMID: 15916611 DOI: 10.1111/j.1365-2958.2005.04645.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacteria of Shigella spp. are responsible for shigellosis in humans and use a type III secretion (TTS) system to enter epithelial cells and trigger apoptosis in macrophages. Transit of translocator and effector proteins through the TTS apparatus is activated upon contact of bacteria with host cells. Transcription of approximately 15 genes encoding effectors is regulated by the TTS apparatus activity and controlled by MxiE, an AraC family activator, and its coactivator IpgC, the chaperone of IpaB and IpaC translocators. Using a genetic screen, we identified ospD1 as a gene whose product negatively controls expression of genes regulated by secretion activity. OspD1 associates with the chaperone Spa15 and the activator MxiE and acts as an anti-activator until it is secreted. The mechanism regulating transcription in response to secretion activity involves an activator (MxiE), an anti-activator (OspD1), a co-anti-activator (Spa15), a coactivator (IpgC) and two anti-coactivators (IpaB and IpaC) whose alternative and mutually exclusive interactions are controlled by the duration of the TTS apparatus activity.
Collapse
Affiliation(s)
- Claude Parsot
- Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Baranov PV, Hammer AW, Zhou J, Gesteland RF, Atkins JF. Transcriptional slippage in bacteria: distribution in sequenced genomes and utilization in IS element gene expression. Genome Biol 2005; 6:R25. [PMID: 15774026 PMCID: PMC1088944 DOI: 10.1186/gb-2005-6-3-r25] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 12/16/2004] [Accepted: 01/25/2005] [Indexed: 11/13/2022] Open
Abstract
To find a length of slippage-prone sequences at which selection against transcriptional slippage is evident, the transcription of repetitive runs of A and T of different lengths in 108 bacterial genomes was analyzed. IS element genes were found to exploit transcriptional slippage for regulation of gene expression. Background Transcription slippage occurs on certain patterns of repeat mononucleotides, resulting in synthesis of a heterogeneous population of mRNAs. Individual mRNA molecules within this population differ in the number of nucleotides they contain that are not specified by the template. When transcriptional slippage occurs in a coding sequence, translation of the resulting mRNAs yields more than one protein product. Except where the products of the resulting mRNAs have distinct functions, transcription slippage occurring in a coding region is expected to be disadvantageous. This probably leads to selection against most slippage-prone sequences in coding regions. Results To find a length at which such selection is evident, we analyzed the distribution of repetitive runs of A and T of different lengths in 108 bacterial genomes. This length varies significantly among different bacteria, but in a large proportion of available genomes corresponds to nine nucleotides. Comparative sequence analysis of these genomes was used to identify occurrences of 9A and 9T transcriptional slippage-prone sequences used for gene expression. Conclusions IS element genes are the largest group found to exploit this phenomenon. A number of genes with disrupted open reading frames (ORFs) have slippage-prone sequences at which transcriptional slippage would result in uninterrupted ORF restoration at the mRNA level. The ability of such genes to encode functional full-length protein products brings into question their annotation as pseudogenes and in these cases is pertinent to the significance of the term 'authentic frameshift' frequently assigned to such genes.
Collapse
Affiliation(s)
- Pavel V Baranov
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
- Bioscience Institute, University College Cork, Cork, Ireland
| | - Andrew W Hammer
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - Jiadong Zhou
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
- Current address: Gene Technology Division, Nitto Denko Technical Corporation, 401 Jones Road, Oceanside, CA 92054, USA
| | - Raymond F Gesteland
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | - John F Atkins
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
- Bioscience Institute, University College Cork, Cork, Ireland
| |
Collapse
|