1
|
Fréville A, Ressurreição M, van Ooij C. Identification of a non-exported Plasmepsin V substrate that functions in the parasitophorous vacuole of malaria parasites. mBio 2024; 15:e0122323. [PMID: 38078758 PMCID: PMC10790765 DOI: 10.1128/mbio.01223-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/26/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE In the manuscript, the authors investigate the role of the protease Plasmepsin V in the parasite-host interaction. Whereas processing by Plasmepsin V was previously thought to target a protein for export into the host cell, the authors now show that there are proteins cleaved by this protease that are not exported but instead function at the host-parasite interface. This changes the view of this protease, which turns out to have a much broader role than anticipated. The result shows that the protease may have a function much more similar to that of related organisms. The authors also investigate the requirements for protein export by analyzing exported and non-exported proteins and find commonalities between the proteins of each set that further our understanding of the requirements for protein export.
Collapse
Affiliation(s)
- Aline Fréville
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Margarida Ressurreição
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
2
|
Wiser MF. Knobs, Adhesion, and Severe Falciparum Malaria. Trop Med Infect Dis 2023; 8:353. [PMID: 37505649 PMCID: PMC10385726 DOI: 10.3390/tropicalmed8070353] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/29/2023] Open
Abstract
Plasmodium falciparum can cause a severe disease with high mortality. A major factor contributing to the increased virulence of P. falciparum, as compared to other human malarial parasites, is the sequestration of infected erythrocytes in the capillary beds of organs and tissues. This sequestration is due to the cytoadherence of infected erythrocytes to endothelial cells. Cytoadherence is primarily mediated by a parasite protein expressed on the surface of the infected erythrocyte called P. falciparum erythrocyte membrane protein-1 (PfEMP1). PfEMP1 is embedded in electron-dense protuberances on the surface of the infected erythrocytes called knobs. These knobs are assembled on the erythrocyte membrane via exported parasite proteins, and the knobs function as focal points for the cytoadherence of infected erythrocytes to endothelial cells. PfEMP1 is a member of the var gene family, and there are approximately 60 antigenically distinct PfEMP1 alleles per parasite genome. Var gene expression exhibits allelic exclusion, with only a single allele being expressed by an individual parasite. This results in sequential waves of antigenically distinct infected erythrocytes and this antigenic variation allows the parasite to establish long-term chronic infections. A wide range of endothelial cell receptors can bind to the various PfEMP1 alleles, and thus, antigenic variation also results in a change in the cytoadherence phenotype. The cytoadherence phenotype may result in infected erythrocytes sequestering in different tissues and this difference in sequestration may explain the wide range of possible clinical manifestations associated with severe falciparum malaria.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine and Infectious Disease, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Davies HM, Thalassinos K, Osborne AR. Expansion of Lysine-rich Repeats in Plasmodium Proteins Generates Novel Localization Sequences That Target the Periphery of the Host Erythrocyte. J Biol Chem 2016; 291:26188-26207. [PMID: 27777305 PMCID: PMC5207086 DOI: 10.1074/jbc.m116.761213] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Indexed: 01/05/2023] Open
Abstract
Repetitive low complexity sequences, mostly assumed to have no function, are common in proteins that are exported by the malaria parasite into its host erythrocyte. We identify a group of exported proteins containing short lysine-rich tandemly repeated sequences that are sufficient to localize to the erythrocyte periphery, where key virulence-related modifications to the plasma membrane and the underlying cytoskeleton are known to occur. Efficiency of targeting is dependent on repeat number, indicating that novel targeting modules could evolve by expansion of short lysine-rich sequences. Indeed, analysis of fragments of GARP from different species shows that two novel targeting sequences have arisen via the process of repeat expansion in this protein. In the protein Hyp12, the targeting function of a lysine-rich sequence is masked by a neighboring repetitive acidic sequence, further highlighting the importance of repetitive low complexity sequences. We show that sequences capable of targeting the erythrocyte periphery are present in at least nine proteins from Plasmodium falciparum and one from Plasmodium knowlesi. We find these sequences in proteins known to be involved in erythrocyte rigidification and cytoadhesion as well as in previously uncharacterized exported proteins. Together, these data suggest that expansion and contraction of lysine-rich repeats could generate targeting sequences de novo as well as modulate protein targeting efficiency and function in response to selective pressure.
Collapse
Affiliation(s)
- Heledd M Davies
- From the Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck and University College London, London WC1E 6BT, United Kingdom
| | - Konstantinos Thalassinos
- From the Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck and University College London, London WC1E 6BT, United Kingdom
| | - Andrew R Osborne
- From the Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck and University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
4
|
de Koning-Ward TF, Dixon MW, Tilley L, Gilson PR. Plasmodium species: master renovators of their host cells. Nat Rev Microbiol 2016; 14:494-507. [DOI: 10.1038/nrmicro.2016.79] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Gilson PR, Chisholm SA, Crabb BS, de Koning-Ward TF. Host cell remodelling in malaria parasites: a new pool of potential drug targets. Int J Parasitol 2016; 47:119-127. [PMID: 27368610 DOI: 10.1016/j.ijpara.2016.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/02/2016] [Accepted: 06/04/2016] [Indexed: 12/01/2022]
Abstract
When in their human hosts, malaria parasites spend most of their time housed within vacuoles inside erythrocytes and hepatocytes. The parasites extensively modify their host cells to obtain nutrients, prevent host cell breakdown and avoid the immune system. To perform these modifications, malaria parasites export hundreds of effector proteins into their host cells and this process is best understood in the most lethal species to infect humans, Plasmodium falciparum. The effector proteins are synthesized within the parasite and following a proteolytic cleavage event in the endoplasmic reticulum and sorting of mature proteins into the correct vesicular trafficking pathway, they are transported to the parasite surface and released into the vacuole. The effector proteins are then unfolded before extrusion across the vacuole membrane by a unique translocon complex called Plasmodium translocon of exported proteins. After gaining access to the erythrocyte cytoplasm many effector proteins continue their journey to the erythrocyte surface by utilising various membranous structures established by the parasite. This complex trafficking pathway and a large number of the effector proteins are unique to Plasmodium parasites. This pathway could, therefore, be developed as new drug targets given that protein export and the functional role of these proteins are essential for parasite survival. This review explores known and potential drug targetable steps in the protein export pathway and strategies for discovering novel drug targets.
Collapse
Affiliation(s)
- Paul R Gilson
- Burnet Institute, Melbourne, Victoria, Australia; Monash University, Melbourne, Victoria, Australia.
| | | | - Brendan S Crabb
- Burnet Institute, Melbourne, Victoria, Australia; Monash University, Melbourne, Victoria, Australia; University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
6
|
Petersen W, Külzer S, Engels S, Zhang Q, Ingmundson A, Rug M, Maier AG, Przyborski JM. J-dot targeting of an exported HSP40 in Plasmodium falciparum-infected erythrocytes. Int J Parasitol 2016; 46:519-25. [PMID: 27063072 DOI: 10.1016/j.ijpara.2016.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
Abstract
Plasmodium falciparum exports a large number of proteins to its host cell, the mature human erythrocyte, where they are involved in host cell modification. Amongst the proteins trafficked to the host cell, many are heat shock protein (HSP)40 homologues. We previously demonstrated that at least two exported PfHSP40s (referred to as PFE55 and PFA660) localise to mobile structures in the P. falciparum-infected erythrocyte (Kulzer et al., 2010), termed J-dots. The complete molecular content of these structures has not yet been completely resolved, however it is known that they also contain an exported HSP70, PfHSP70x, and are potentially involved in transport of the major cytoadherance ligand, PfEMP1, through the host cell. To understand more about the nature of the association of exported HSP40s with J-dots, here we have studied the signal requirements for recruitment of the proteins to these structures. By expressing various exported GFP chimeras, we can demonstrate that the predicted substrate binding domain is necessary and sufficient for J-dot targeting. This targeting only occurs in human erythrocytes infected with P. falciparum, as it is not conserved when expressing a P. falciparum HSP40 in Plasmodium berghei-infected murine red blood cells, suggesting that J-dots are P. falciparum-specific. This data reveals a new mechanism for targeting of exported proteins to intracellular structures in the P. falciparum-infected erythrocyte.
Collapse
Affiliation(s)
- Wiebke Petersen
- Parasitology, Philipps University Marburg, Karl von Frisch Strasse 8, 35043 Marburg, Germany; Parasitology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany; Molecular Parasitology, Humboldt University, Philippstrasse 13, 10115 Berlin, Germany
| | - Simone Külzer
- Parasitology, Philipps University Marburg, Karl von Frisch Strasse 8, 35043 Marburg, Germany; Research School of Biology, 134 Linnaeus Way, The Australian National University, Canberra, ACT 2601, Australia
| | - Sonja Engels
- Parasitology, Philipps University Marburg, Karl von Frisch Strasse 8, 35043 Marburg, Germany
| | - Qi Zhang
- Parasitology, Philipps University Marburg, Karl von Frisch Strasse 8, 35043 Marburg, Germany
| | - Alyssa Ingmundson
- Parasitology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany; Molecular Parasitology, Humboldt University, Philippstrasse 13, 10115 Berlin, Germany
| | - Melanie Rug
- Centre for Advanced Microscopy, 131 Garran Road, The Australian National University, Canberra, ACT 2601, Australia
| | - Alexander G Maier
- Research School of Biology, 134 Linnaeus Way, The Australian National University, Canberra, ACT 2601, Australia
| | - Jude M Przyborski
- Parasitology, Philipps University Marburg, Karl von Frisch Strasse 8, 35043 Marburg, Germany.
| |
Collapse
|
7
|
Soni R, Sharma D, Bhatt TK. Plasmodium falciparum Secretome in Erythrocyte and Beyond. Front Microbiol 2016; 7:194. [PMID: 26925057 PMCID: PMC4759260 DOI: 10.3389/fmicb.2016.00194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/05/2016] [Indexed: 01/19/2023] Open
Abstract
Plasmodium falciparum is the causative agent of deadly malaria disease. It is an intracellular eukaryote and completes its multi-stage life cycle spanning the two hosts viz, mosquito and human. In order to habituate within host environment, parasite conform several strategies to evade host immune responses such as surface antigen polymorphism or modulation of host immune system and it is mediated by secretion of proteins from parasite to the host erythrocyte and beyond, collectively known as, malaria secretome. In this review, we will discuss about the deployment of parasitic secretory protein in mechanism implicated for immune evasion, protein trafficking, providing virulence, changing permeability and cyto-adherence of infected erythrocyte. We will be covering the possibilities of developing malaria secretome as a drug/vaccine target. This gathered information will be worthwhile in depicting a well-organized picture for host-pathogen interplay during the malaria infection and may also provide some clues for the development of novel anti-malarial therapies.
Collapse
Affiliation(s)
- Rani Soni
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan Rajasthan, India
| | - Drista Sharma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan Rajasthan, India
| | - Tarun K Bhatt
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan Rajasthan, India
| |
Collapse
|
8
|
Malaria Parasite Proteins and Their Role in Alteration of the Structure and Function of Red Blood Cells. ADVANCES IN PARASITOLOGY 2015; 91:1-86. [PMID: 27015947 DOI: 10.1016/bs.apar.2015.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Malaria, caused by Plasmodium spp., continues to be a major threat to human health and a significant cause of socioeconomic hardship in many countries. Almost half of the world's population live in malaria-endemic regions and many of them suffer one or more, often life-threatening episodes of malaria every year, the symptoms of which are attributable to replication of the parasite within red blood cells (RBCs). In the case of Plasmodium falciparum, the species responsible for most malaria-related deaths, parasite replication within RBCs is accompanied by striking alterations to the morphological, biochemical and biophysical properties of the host cell that are essential for the parasites' survival. To achieve this, the parasite establishes a unique and extensive protein export network in the infected RBC, dedicating at least 6% of its genome to the process. Understanding the full gamut of proteins involved in this process and the mechanisms by which P. falciparum alters the structure and function of RBCs is important both for a more complete understanding of the pathogenesis of malaria and for development of new therapeutic strategies to prevent or treat this devastating disease. This review focuses on what is currently known about exported parasite proteins, their interactions with the RBC and their likely pathophysiological consequences.
Collapse
|
9
|
McHugh E, Batinovic S, Hanssen E, McMillan PJ, Kenny S, Griffin MD, Crawford S, Trenholme KR, Gardiner DL, Dixon MWA, Tilley L. A repeat sequence domain of the ring-exported protein-1 of Plasmodium falciparum controls export machinery architecture and virulence protein trafficking. Mol Microbiol 2015; 98:1101-14. [PMID: 26304012 PMCID: PMC4987487 DOI: 10.1111/mmi.13201] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2015] [Indexed: 11/30/2022]
Abstract
The malaria parasite Plasmodium falciparum dramatically remodels its host red blood cell to enhance its own survival, using a secretory membrane system that it establishes outside its own cell. Cisternal organelles, called Maurer's clefts, act as a staging point for the forward trafficking of virulence proteins to the red blood cell (RBC) membrane. The Ring-EXported Protein-1 (REX1) is a Maurer's cleft resident protein. We show that inducible knockdown of REX1 causes stacking of Maurer's cleft cisternae without disrupting the organization of the knob-associated histidine-rich protein at the RBC membrane. Genetic dissection of the REX1 sequence shows that loss of a repeat sequence domain results in the formation of giant Maurer's cleft stacks. The stacked Maurer's clefts are decorated with tether-like structures and retain the ability to dock onto the RBC membrane skeleton. The REX1 mutant parasites show deficient export of the major virulence protein, PfEMP1, to the red blood cell surface and markedly reduced binding to the endothelial cell receptor, CD36. REX1 is predicted to form a largely α-helical structure, with a repetitive charge pattern in the repeat sequence domain, providing potential insights into the role of REX1 in Maurer's cleft sculpting.
Collapse
Affiliation(s)
- Emma McHugh
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Steven Batinovic
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Eric Hanssen
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
- Advanced Microscopy Facility, University of Melbourne, Parkville, VIC 3010, Australia
| | - Paul J. McMillan
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
- Biological Optical Microscopy Platform, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Shannon Kenny
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael D.W. Griffin
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Simon Crawford
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Katharine R. Trenholme
- Infectious Diseases Division, Queensland Institute of Medical Research, 300 Herston Rd, Herston, QLD 4006, Australia
| | - Donald L. Gardiner
- Infectious Diseases Division, Queensland Institute of Medical Research, 300 Herston Rd, Herston, QLD 4006, Australia
| | - Matthew W. A. Dixon
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
10
|
Physicochemical Aspects of the Plasmodium chabaudi-Infected Erythrocyte. BIOMED RESEARCH INTERNATIONAL 2015; 2015:642729. [PMID: 26557685 PMCID: PMC4628737 DOI: 10.1155/2015/642729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/16/2015] [Accepted: 07/21/2015] [Indexed: 11/17/2022]
Abstract
Membrane electrochemical potential is a feature of the molecular profile of the cell membrane and the two-dimensional arrangement of its charge-bearing molecules. Plasmodium species, the causative agents of malaria, are intracellular parasites that remodel host erythrocytes by expressing their own proteins on erythrocyte membranes. Although various aspects of the modifications made to the host erythrocyte membrane have been extensively studied in some human Plasmodium species (such as Plasmodium falciparum), details of the structural and molecular biological modifications made to host erythrocytes by nonhuman Plasmodium parasites have not been studied. We employed zeta potential analysis of erythrocytes parasitized by P. chabaudi, a nonhuman Plasmodium parasite. From these measurements, we found that the surface potential shift was more negative for P. chabaudi-infected erythrocytes than for P. falciparum-infected erythrocytes. However, electron microscopic analysis of the surface of P. chabaudi-infected erythrocytes did not reveal any modifications as compared with nonparasitized erythrocytes. These results suggest that differences in the membrane modifications found herein represent unique attributes related to the pathogenesis profiles of the two different malaria parasite species in different host animals and that these features have been acquired through parasite adaptations acquired over long evolutionary time periods.
Collapse
|
11
|
Tarr SJ, Osborne AR. Experimental determination of the membrane topology of the Plasmodium protease Plasmepsin V. PLoS One 2015; 10:e0121786. [PMID: 25849462 PMCID: PMC4388684 DOI: 10.1371/journal.pone.0121786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 02/07/2015] [Indexed: 11/23/2022] Open
Abstract
The malaria parasite exports hundreds of proteins into its host cell. The majority of exported proteins contain a Host-Targeting motif (also known as a Plasmodium export element) that directs them for export. Prior to export, the Host-Targeting motif is cleaved by the endoplasmic reticulum-resident protease Plasmepsin V and the newly generated N-terminus is N-α-acetylated by an unidentified enzyme. The cleaved, N-α-acetylated protein is trafficked to the parasitophorous vacuole, where it is translocated across the vacuole membrane. It is clear that cleavage and N-α-acetylation of the Host-Targeting motif occur at the endoplasmic reticulum, and it has been proposed that Host-Targeting motif cleavage and N-α-acetylation occur either on the luminal or cytosolic side of the endoplasmic reticulum membrane. Here, we use self-associating ‘split’ fragments of GFP to determine the topology of Plasmepsin V in the endoplasmic reticulum membrane; we show that the catalytic protease domain of Plasmepsin V faces the endoplasmic reticulum lumen. These data support a model in which the Host-Targeting motif is cleaved and N-α-acetylated in the endoplasmic reticulum lumen. Furthermore, these findings suggest that cytosolic N-α-acetyltransferases are unlikely to be candidates for the N-α-acetyltransferase of Host-Targeting motif-containing exported proteins.
Collapse
Affiliation(s)
- Sarah J. Tarr
- Institute of Structural and Molecular Biology, Division of Biosciences, Birkbeck and University College London, London, United Kingdom
| | - Andrew R. Osborne
- Institute of Structural and Molecular Biology, Division of Biosciences, Birkbeck and University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Oberli A, Slater LM, Cutts E, Brand F, Mundwiler-Pachlatko E, Rusch S, Masik MFG, Erat MC, Beck HP, Vakonakis I. A Plasmodium falciparum PHIST protein binds the virulence factor PfEMP1 and comigrates to knobs on the host cell surface. FASEB J 2014; 28:4420-33. [PMID: 24983468 PMCID: PMC4202109 DOI: 10.1096/fj.14-256057] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Uniquely among malaria parasites, Plasmodium falciparum-infected erythrocytes (iRBCs) develop membrane protrusions, known as knobs, where the parasite adhesion receptor P. falciparum erythrocyte membrane protein 1 (PfEMP1) clusters. Knob formation and the associated iRBC adherence to host endothelium are directly linked to the severity of malaria and are functional manifestations of protein export from the parasite to the iRBC. A family of exported proteins featuring Plasmodium helical interspersed subtelomeric (PHIST) domains has attracted attention, with members being implicated in host-parasite protein interactions and differentially regulated in severe disease and among parasite isolates. Here, we show that PHIST member PFE1605w binds the PfEMP1 intracellular segment directly with Kd = 5 ± 0.6 μM, comigrates with PfEMP1 during export, and locates in knobs. PHIST variants that do not locate in knobs (MAL8P1.4) or bind PfEMP1 30 times more weakly (PFI1780w) used as controls did not display the same pattern. We resolved the first crystallographic structure of a PHIST protein and derived a partial model of the PHIST-PfEMP1 interaction from nuclear magnetic resonance. We propose that PFE1605w reinforces the PfEMP1-cytoskeletal connection in knobs and discuss the possible role of PHIST proteins as interaction hubs in the parasite exportome.
Collapse
Affiliation(s)
- Alexander Oberli
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; and
| | - Leanne M Slater
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Erin Cutts
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Françoise Brand
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; and
| | - Esther Mundwiler-Pachlatko
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; and
| | - Sebastian Rusch
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; and
| | | | - Michèle C Erat
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Hans-Peter Beck
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; and
| | | |
Collapse
|
13
|
Abstract
Plasmodium falciparum, the causative agent of malaria, completely remodels the infected human erythrocyte to acquire nutrients and to evade the immune system. For this process, the parasite exports more than 10% of all its proteins into the host cell cytosol, including the major virulence factor PfEMP1 (P. falciparum erythrocyte surface protein 1). This unusual protein trafficking system involves long-known parasite-derived membranous structures in the host cell cytosol, called Maurer's clefts. However, the genesis, role, and function of Maurer's clefts remain elusive. Similarly unclear is how proteins are sorted and how they are transported to and from these structures. Recent years have seen a large increase of knowledge but, as yet, no functional model has been established. In this perspective we review the most important findings and conclude with potential possibilities to shed light into the enigma of Maurer's clefts. Understanding the mechanism and function of these structures, as well as their involvement in protein export in P. falciparum, might lead to innovative control strategies and might give us a handle with which to help to eliminate this deadly parasite.
Collapse
|
14
|
Tarr SJ, Cryar A, Thalassinos K, Haldar K, Osborne AR. The C-terminal portion of the cleaved HT motif is necessary and sufficient to mediate export of proteins from the malaria parasite into its host cell. Mol Microbiol 2013; 87:835-50. [PMID: 23279267 PMCID: PMC3567231 DOI: 10.1111/mmi.12133] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2012] [Indexed: 12/01/2022]
Abstract
The malaria parasite exports proteins across its plasma membrane and a surrounding parasitophorous vacuole membrane, into its host erythrocyte. Most exported proteins contain a Host Targeting motif (HT motif) that targets them for export. In the parasite secretory pathway, the HT motif is cleaved by the protease plasmepsin V, but the role of the newly generated N-terminal sequence in protein export is unclear. Using a model protein that is cleaved by an exogenous viral protease, we show that the new N-terminal sequence, normally generated by plasmepsin V cleavage, is sufficient to target a protein for export, and that cleavage by plasmepsin V is not coupled directly to the transfer of a protein to the next component in the export pathway. Mutation of the fourth and fifth positions of the HT motif, as well as amino acids further downstream, block or affect the efficiency of protein export indicating that this region is necessary for efficient export. We also show that the fifth position of the HT motif is important for plasmepsin V cleavage. Our results indicate that plasmepsin V cleavage is required to generate a new N-terminal sequence that is necessary and sufficient to mediate protein export by the malaria parasite.
Collapse
Affiliation(s)
- Sarah J Tarr
- Institute of Structural and Molecular Biology, Division of Biosciences, Birkbeck and University College London, London, UK
| | | | | | | | | |
Collapse
|
15
|
Deponte M, Hoppe HC, Lee MC, Maier AG, Richard D, Rug M, Spielmann T, Przyborski JM. Wherever I may roam: Protein and membrane trafficking in P. falciparum-infected red blood cells. Mol Biochem Parasitol 2012; 186:95-116. [DOI: 10.1016/j.molbiopara.2012.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 11/27/2022]
|
16
|
Nilsson S, Angeletti D, Wahlgren M, Chen Q, Moll K. Plasmodium falciparum antigen 332 is a resident peripheral membrane protein of Maurer's clefts. PLoS One 2012. [PMID: 23185236 PMCID: PMC3502387 DOI: 10.1371/journal.pone.0046980] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During the intraerythrocytic development of Plasmodium falciparum, the malaria parasite remodels the host cell cytosol by inducing membranous structures termed Maurer's clefts and inserting parasite proteins into the red blood cell cytoskeleton and plasma membrane. Pf332 is the largest known asexual malaria antigen that is exported into the red blood cell cytosol where it associates with Maurer's clefts. In the current work, we have utilized a set of different biochemical assays to analyze the solubility of the endogenous Pf332 molecule during its trafficking from the endoplasmic reticulum within the parasite to the host cell cytosol. Solubilization studies demonstrate that Pf332 is synthesized and trafficked within the parasite as a peripheral membrane protein, which after export into the host cell cytosol associates with the cytoplasmic side of Maurer's clefts in a peripheral manner. By immunofluorescence microscopy and flow cytometry, we show that Pf332 persists in close association with Maurer's clefts throughout trophozoite maturation and schizogony, and does not become exposed at the host cell surface. Our data also indicate that Pf332 interacts with the host cell cytoskeleton, but only in very mature parasite stages. Thus, the present study describes Pf332 as a resident peripheral membrane protein of Maurer's clefts and suggests that the antigen participates in host cytoskeleton modifications at completion of the intraerythrocytic developmental cycle.
Collapse
Affiliation(s)
- Sandra Nilsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (SN); (KM)
| | - Davide Angeletti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Qijun Chen
- Laboratory of Parasitology, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Kirsten Moll
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (SN); (KM)
| |
Collapse
|
17
|
An exported heat shock protein 40 associates with pathogenesis-related knobs in Plasmodium falciparum infected erythrocytes. PLoS One 2012; 7:e44605. [PMID: 22970262 PMCID: PMC3436795 DOI: 10.1371/journal.pone.0044605] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/03/2012] [Indexed: 11/19/2022] Open
Abstract
Cell surface structures termed knobs are one of the most important pathogenesis related protein complexes deployed by the malaria parasite Plasmodium falciparum at the surface of the infected erythrocyte. Despite their relevance to the disease, their structure, mechanisms of traffic and their process of assembly remain poorly understood. In this study, we have explored the possible role of a parasite-encoded Hsp40 class of chaperone, namely PFB0090c/PF3D7_0201800 (KAHsp40) in protein trafficking in the infected erythrocyte. We found the gene coding for PF3D7_0201800 to be located in a chromosomal cluster together with knob components KAHRP and PfEMP3. Like the knob components, KAHsp40 too showed the presence of PEXEL motif required for transport to the erythrocyte compartment. Indeed, sub-cellular fractionation and immunofluorescence analysis (IFA) showed KAHsp40 to be exported in the erythrocyte cytoplasm in a stage dependent manner localizing as punctuate spots in the erythrocyte periphery, distinctly from Maurer’s cleft, in structures which could be the reminiscent of knobs. Double IFA analysis revealed co-localization of PF3D7_0201800 with the markers of knobs (KAHRP, PfEMP1 and PfEMP3) and components of the PEXEL translocon (Hsp101, PTEX150). KAHsp40 was also found to be in a complex with KAHRP, PfEMP3 and Hsp101 as confirmed by co-immunoprecipitation assay. Our results suggest potential involvement of a parasite encoded Hsp40 in chaperoning knob assembly in the erythrocyte compartment.
Collapse
|
18
|
Dixon MWA, Kenny S, McMillan PJ, Hanssen E, Trenholme KR, Gardiner DL, Tilley L. Genetic ablation of a Maurer's cleft protein prevents assembly of the Plasmodium falciparum virulence complex. Mol Microbiol 2011; 81:982-93. [PMID: 21696460 DOI: 10.1111/j.1365-2958.2011.07740.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The malaria parasite Plasmodium falciparum assembles knob structures underneath the erythrocyte membrane that help present the major virulence protein, P. falciparum erythrocyte membrane protein-1 (PfEMP1). Membranous structures called Maurer's clefts are established in the erythrocyte cytoplasm and function as sorting compartments for proteins en route to the RBC membrane, including the knob-associated histidine-rich protein (KAHRP), and PfEMP1. We have generated mutants in which the Maurer's cleft protein, the ring exported protein-1 (REX1) is truncated or deleted. Removal of the C-terminal domain of REX1 compromises Maurer's cleft architecture and PfEMP1-mediated cytoadherance but permits some trafficking of PfEMP1 to the erythrocyte surface. Deletion of the coiled-coil region of REX1 ablates PfEMP1 surface display, trapping PfEMP1 at the Maurer's clefts. Complementation of mutants with REX1 partly restores PfEMP1-mediated binding to the endothelial cell ligand, CD36. Deletion of the coiled-coil region or complete deletion of REX1 is tightly associated with the loss of a subtelomeric region of chromosome 2, encoding KAHRP and other proteins. A KAHRP-green fluorescent protein (GFP) fusion expressed in the REX1-deletion parasites shows defective trafficking. Thus, loss of functional REX1 directly or indirectly ablates the assembly of the P. falciparum virulence complex at the surface of host erythrocytes.
Collapse
Affiliation(s)
- Matthew W A Dixon
- La Trobe Institute for Molecular Science, Department of Biochemistry and Centre of Excellence for Coherent X-ray Science, La Trobe University, Vic. 3086, Australia.
| | | | | | | | | | | | | |
Collapse
|
19
|
Mackinnon MJ, Li J, Mok S, Kortok MM, Marsh K, Preiser PR, Bozdech Z. Comparative transcriptional and genomic analysis of Plasmodium falciparum field isolates. PLoS Pathog 2009; 5:e1000644. [PMID: 19898609 PMCID: PMC2764095 DOI: 10.1371/journal.ppat.1000644] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 10/05/2009] [Indexed: 11/18/2022] Open
Abstract
Mechanisms for differential regulation of gene expression may underlie much of the phenotypic variation and adaptability of malaria parasites. Here we describe transcriptional variation among culture-adapted field isolates of Plasmodium falciparum, the species responsible for most malarial disease. It was found that genes coding for parasite protein export into the red cell cytosol and onto its surface, and genes coding for sexual stage proteins involved in parasite transmission are up-regulated in field isolates compared with long-term laboratory isolates. Much of this variability was associated with the loss of small or large chromosomal segments, or other forms of gene copy number variation that are prevalent in the P. falciparum genome (copy number variants, CNVs). Expression levels of genes inside these segments were correlated to that of genes outside and adjacent to the segment boundaries, and this association declined with distance from the CNV boundary. This observation could not be explained by copy number variation in these adjacent genes. This suggests a local-acting regulatory role for CNVs in transcription of neighboring genes and helps explain the chromosomal clustering that we observed here. Transcriptional co-regulation of physical clusters of adaptive genes may provide a way for the parasite to readily adapt to its highly heterogeneous and strongly selective environment.
Collapse
|
20
|
Sam-Yellowe TY. The role of the Maurer's clefts in protein transport in Plasmodium falciparum. Trends Parasitol 2009; 25:277-84. [PMID: 19442584 DOI: 10.1016/j.pt.2009.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 01/15/2009] [Accepted: 03/20/2009] [Indexed: 10/20/2022]
Abstract
Maurer's clefts (MCs) are membranous structures that are formed by Plasmodium falciparum and used by the parasite for protein sorting and protein export. Virulence proteins, as well as other proteins used to remodel the erythrocyte, are exported. Discontinuity between major membrane compartments within the infected erythrocyte cytoplasm suggests multiple traffic routes for exported proteins. The sequences of the conserved Plasmodium export element seem insufficient for export of all parasite proteins. The parasite displays remarkable versatility in the types of proteins exported to the MCs and in the functions of the proteins within the MCs. In this Review, protein export to the MCs and the role of the MCs in the transport of proteins to the erythrocyte membrane are summarized.
Collapse
Affiliation(s)
- Tobili Y Sam-Yellowe
- Department of Biological Geological and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, SI 219, Cleveland, OH 44115, USA.
| |
Collapse
|
21
|
Maier AG, Cooke BM, Cowman AF, Tilley L. Malaria parasite proteins that remodel the host erythrocyte. Nat Rev Microbiol 2009; 7:341-54. [PMID: 19369950 DOI: 10.1038/nrmicro2110] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exported proteins of the malaria parasite Plasmodium falciparum interact with proteins of the erythrocyte membrane and induce substantial changes in the morphology, physiology and function of the host cell. These changes underlie the pathology that is responsible for the deaths of 1-2 million children every year due to malaria infections. The advent of molecular transfection technology, including the ability to generate deletion mutants and to introduce fluorescent reporter proteins that track the locations and dynamics of parasite proteins, has increased our understanding of the processes and machinery for export of proteins in P. falciparum-infected erythrocytes and has provided us with insights into the functions of the parasite protein exportome. We review these developments, focusing on parasite proteins that interact with the erythrocyte membrane skeleton or that promote delivery of the major virulence protein, PfEMP1, to the erythrocyte membrane.
Collapse
Affiliation(s)
- Alexander G Maier
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
22
|
Natalang O, Bischoff E, Deplaine G, Proux C, Dillies MA, Sismeiro O, Guigon G, Bonnefoy S, Patarapotikul J, Mercereau-Puijalon O, Coppée JY, David PH. Dynamic RNA profiling in Plasmodium falciparum synchronized blood stages exposed to lethal doses of artesunate. BMC Genomics 2008; 9:388. [PMID: 18706115 PMCID: PMC2536677 DOI: 10.1186/1471-2164-9-388] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 08/18/2008] [Indexed: 11/23/2022] Open
Abstract
Background Translation of the genome sequence of Plasmodium sp. into biologically relevant information relies on high through-put genomics technology which includes transcriptome analysis. However, few studies to date have used this powerful approach to explore transcriptome alterations of P. falciparum parasites exposed to antimalarial drugs. Results The rapid action of artesunate allowed us to study dynamic changes of the parasite transcriptome in synchronous parasite cultures exposed to the drug for 90 minutes and 3 hours. Developmentally regulated genes were filtered out, leaving 398 genes which presented altered transcript levels reflecting drug-exposure. Few genes related to metabolic pathways, most encoded chaperones, transporters, kinases, Zn-finger proteins, transcription activating proteins, proteins involved in proteasome degradation, in oxidative stress and in cell cycle regulation. A positive bias was observed for over-expressed genes presenting a subtelomeric location, allelic polymorphism and encoding proteins with potential export sequences, which often belonged to subtelomeric multi-gene families. This pointed to the mobilization of processes shaping the interface between the parasite and its environment. In parallel, pathways were engaged which could lead to parasite death, such as interference with purine/pyrimidine metabolism, the mitochondrial electron transport chain, proteasome-dependent protein degradation or the integrity of the food vacuole. Conclusion The high proportion of over-expressed genes encoding proteins exported from the parasite highlight the importance of extra-parasitic compartments as fields for exploration in drug research which, to date, has mostly focused on the parasite itself rather than on its intra and extra erythrocytic environment. Further work is needed to clarify which transcriptome alterations observed reflect a specific response to overcome artesunate toxicity or more general perturbations on the path to cellular death.
Collapse
Affiliation(s)
- Onguma Natalang
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, CNRS URA 2581, 28 Rue du Docteur Roux, F-75724, Paris, Cedex 15, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Di Girolamo F, Raggi C, Birago C, Pizzi E, Lalle M, Picci L, Pace T, Bachi A, de Jong J, Janse CJ, Waters AP, Sargiacomo M, Ponzi M. Plasmodium lipid rafts contain proteins implicated in vesicular trafficking and signalling as well as members of the PIR superfamily, potentially implicated in host immune system interactions. Proteomics 2008; 8:2500-13. [PMID: 18563749 DOI: 10.1002/pmic.200700763] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Plasmodium parasites, the causal agents of malaria, dramatically modify the infected erythrocyte by exporting parasite proteins into one or multiple erythrocyte compartments, the cytoplasm and the plasma membrane or beyond. Despite advances in defining signals and specific cellular compartments implicated in protein trafficking in Plasmodium-infected erythrocytes, the contribution of lipid-mediated sorting to this cellular process has been poorly investigated. In this study, we examined the proteome of cholesterol-rich membrane microdomains or lipid rafts, purified from erythrocytes infected by the rodent parasite Plasmodium berghei. Besides structural proteins associated with invasive forms, we detected chaperones, proteins implicated in vesicular trafficking, membrane fusion events and signalling. Interestingly, the raft proteome of mixed P. berghei blood stages included proteins encoded by members of a large family (bir) of putative variant antigens potentially implicated in host immune system interactions and targeted to the surface of the host erythrocytes. The generation of transgenic parasites expressing BIR/GFP fusions confirmed the dynamic association of members of this protein family with membrane microdomains. Our results indicated that lipid rafts in Plasmodium-infected erythrocytes might constitute a route to sort and fold parasite proteins directed to various host cell compartments including the cell surface.
Collapse
Affiliation(s)
- Francesco Di Girolamo
- Dipartimento di Malattie Infettive Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Maier AG, Rug M, O'Neill MT, Brown M, Chakravorty S, Szestak T, Chesson J, Wu Y, Hughes K, Coppel RL, Newbold C, Beeson JG, Craig A, Crabb BS, Cowman AF. Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell 2008; 134:48-61. [PMID: 18614010 PMCID: PMC2568870 DOI: 10.1016/j.cell.2008.04.051] [Citation(s) in RCA: 387] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/21/2008] [Accepted: 04/30/2008] [Indexed: 12/23/2022]
Abstract
A major part of virulence for Plasmodium falciparum malaria infection, the most lethal parasitic disease of humans, results from increased rigidity and adhesiveness of infected host red cells. These changes are caused by parasite proteins exported to the erythrocyte using novel trafficking machinery assembled in the host cell. To understand these unique modifications, we used a large-scale gene knockout strategy combined with functional screens to identify proteins exported into parasite-infected erythrocytes and involved in remodeling these cells. Eight genes were identified encoding proteins required for export of the parasite adhesin PfEMP1 and assembly of knobs that function as physical platforms to anchor the adhesin. Additionally, we show that multiple proteins play a role in generating increased rigidity of infected erythrocytes. Collectively these proteins function as a pathogen secretion system, similar to bacteria and may provide targets for antivirulence based therapies to a disease responsible for millions of deaths annually.
Collapse
Affiliation(s)
- Alexander G. Maier
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Australia
| | - Melanie Rug
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Australia
| | - Matthew T. O'Neill
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Australia
| | - Monica Brown
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Australia
| | | | - Tadge Szestak
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Joanne Chesson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Australia
| | - Yang Wu
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Katie Hughes
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Ross L. Coppel
- Monash University, Department of Microbiology, Clayton 3800, Australia
| | - Chris Newbold
- University of Oxford, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - James G. Beeson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Australia
| | - Alister Craig
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Brendan S. Crabb
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Australia
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Australia
| |
Collapse
|
25
|
The Maurer's clefts of Plasmodium falciparum: parasite-induced islands within an intracellular ocean. Trends Parasitol 2008; 24:285-8. [DOI: 10.1016/j.pt.2008.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 04/03/2008] [Accepted: 04/08/2008] [Indexed: 11/22/2022]
|
26
|
Dixon MWA, Hawthorne PL, Spielmann T, Anderson KL, Trenholme KR, Gardiner DL. Targeting of the ring exported protein 1 to the Maurer's clefts is mediated by a two-phase process. Traffic 2008; 9:1316-26. [PMID: 18489703 DOI: 10.1111/j.1600-0854.2008.00768.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Early development of Plasmodium falciparum within the erythrocyte is characterized by the large-scale export of proteins to the host cell. In many cases, export is mediated by a short sequence called the Plasmodium export element (PEXEL) or vacuolar transport signal; however, a number of previously characterized exported proteins do not contain such an element. In this study, we investigated the mechanisms of export of the PEXEL-negative ring exported protein 1 (REX1). This protein localizes to the Maurer's clefts, parasite-induced structures in the host-cell cytosol. Transgenic parasites expressing green fluorescent protein-REX1 chimeras revealed that the single hydrophobic stretch plus an additional 10 amino acids mediate the export of REX1. Biochemical characterization of these chimeras indicated that REX1 was exported as a soluble protein. Inclusion of a sequence containing a predicted coiled-coil motif led to the correct localization of REX1 at the Maurer's clefts, suggesting that association with the clefts occurs at the final stage of protein export only. These results indicate that PEXEL-negative exported proteins can be exported in a soluble state and that sequences without any apparent resemblance to a PEXEL motif can mediate export across the parasitophorous vacuole membrane.
Collapse
Affiliation(s)
- Matthew W A Dixon
- Malaria Biology Laboratory, Queensland Institute of Medical Research, Herston, QLD, Australia
| | | | | | | | | | | |
Collapse
|
27
|
Chang HH, Falick AM, Carlton PM, Sedat JW, DeRisi JL, Marletta MA. N-terminal processing of proteins exported by malaria parasites. Mol Biochem Parasitol 2008; 160:107-15. [PMID: 18534695 DOI: 10.1016/j.molbiopara.2008.04.011] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 04/18/2008] [Accepted: 04/22/2008] [Indexed: 11/24/2022]
Abstract
Malaria parasites utilize a short N-terminal amino acid motif termed the Plasmodium export element (PEXEL) to export an array of proteins to the host erythrocyte during blood stage infection. Using immunoaffinity chromatography and mass spectrometry, insight into this signal-mediated trafficking mechanism was gained by discovering that the PEXEL motif is cleaved and N-acetylated. PfHRPII and PfEMP2 are two soluble proteins exported by Plasmodium falciparum that were demonstrated to undergo PEXEL cleavage and N-acetylation, thus indicating that this N-terminal processing may be general to many exported soluble proteins. It was established that PEXEL processing occurs upstream of the brefeldin A-sensitive trafficking step in the P. falciparum secretory pathway, therefore cleavage and N-acetylation of the PEXEL motif occurs in the endoplasmic reticulum (ER) of the parasite. Furthermore, it was shown that the recognition of the processed N-terminus of exported proteins within the parasitophorous vacuole may be crucial for protein transport to the host erythrocyte. It appears that the PEXEL may be defined as a novel ER peptidase cleavage site and a classical N-acetyltransferase substrate sequence.
Collapse
Affiliation(s)
- Henry H Chang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
28
|
Spycher C, Rug M, Pachlatko E, Hanssen E, Ferguson D, Cowman AF, Tilley L, Beck HP. The Maurer's cleft protein MAHRP1 is essential for trafficking of PfEMP1 to the surface of Plasmodium falciparum-infected erythrocytes. Mol Microbiol 2008; 68:1300-14. [PMID: 18410498 DOI: 10.1111/j.1365-2958.2008.06235.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During the intra-erythrocytic development of Plasmodium falciparum, the parasite modifies the host cell surface by exporting proteins that interact with or insert into the erythrocyte membrane. These proteins include the principal mediator of cytoadherence, P. falciparum erythrocyte membrane protein 1 (PfEMP1). To implement these changes, the parasite establishes a protein-trafficking system beyond its confines. Membrane-bound structures called Maurer's clefts are intermediate trafficking compartments for proteins destined for the host cell membrane. We disrupted the gene for the membrane-associated histidine-rich protein 1 (MAHRP1). MAHRP1 is not essential for parasite viability or Maurer's cleft formation; however, in its absence, these organelles become disorganized in permeabilized cells. Maurer's cleft-resident proteins and transit cargo are exported normally in the absence of MAHRP1; however, the virulence determinant, PfEMP1, accumulates within the parasite, is depleted from the Maurer's clefts and is not presented at the red blood cell surface. Complementation of the mutant parasites with mahrp1 led to the reappearance of PfEMP1 on the infected red blood cell surface, and binding studies show that PfEMP1-mediated binding to CD36 is restored. These data suggest an important role of MAHRP1 in the translocation of PfEMP1 from the parasite to the host cell membrane.
Collapse
Affiliation(s)
- Cornelia Spycher
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Socinstrasse 57, CH 4002 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Black CG, Proellocks NI, Kats LM, Cooke BM, Mohandas N, Coppel RL. In vivo studies support the role of trafficking and cytoskeletal-binding motifs in the interaction of MESA with the membrane skeleton of Plasmodium falciparum-infected red blood cells. Mol Biochem Parasitol 2008; 160:143-7. [PMID: 18482775 DOI: 10.1016/j.molbiopara.2008.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 11/19/2022]
Abstract
In red blood cells (RBCs) infected with the malaria parasite Plasmodium falciparum, a 19-residue region of the mature parasite-infected erythrocyte surface antigen (MESA) associates with RBC cytoskeleton protein 4.1R; an interaction essential for parasite survival. This region in MESA is adjacent to a host targeting motif found in other malaria parasite proteins exported to the membrane skeleton. To demonstrate function of these motifs in vivo, regions of MESA fused to a reporter were expressed in malaria parasites. Immunochemical analyses confirmed the requirement for both motifs in the trafficking and interaction of MESA with the cytoskeleton and demonstrates their function in vivo.
Collapse
Affiliation(s)
- Casilda G Black
- NHMRC Program in Malaria, Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | | | | | | | |
Collapse
|
30
|
Nagao E, Arie T, Dorward DW, Fairhurst RM, Dvorak JA. The avian malaria parasite Plasmodium gallinaceum causes marked structural changes on the surface of its host erythrocyte. J Struct Biol 2008; 162:460-7. [PMID: 18442920 DOI: 10.1016/j.jsb.2008.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 03/11/2008] [Accepted: 03/11/2008] [Indexed: 11/25/2022]
Abstract
Using a combination of atomic force, scanning and transmission electron microscopy, we found that avian erythrocytes infected with the avian malaria parasite Plasmodium gallinaceum develop approximately 60 nm wide and approximately 430 nm long furrow-like structures on the surface. Furrows begin to appear during the early trophozoite stage of the parasite's development. They remain constant in size and density during the course of parasite maturation and are uniformly distributed in random orientations over the erythrocyte surface. In addition, the density of furrows is directly proportional to the number of parasites contained within the erythrocyte. These findings suggest that parasite-induced intraerythrocytic processes are involved in modifying the surface of host erythrocytes. These processes may be analogous to those of the human malaria parasite P. falciparum, which induces knob-like protrusions that mediate the pathogenic adherence of parasitized erythrocytes to microvessels. Although P. gallinaceum-infected erythrocytes do not seem to adhere to microvessels in the host chicken, the furrows might be involved in the pathogenesis of P. gallinaceum infections by some other mechanism involving host-pathogen interactions.
Collapse
Affiliation(s)
- Eriko Nagao
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
31
|
Tilley L, Sougrat R, Lithgow T, Hanssen E. The twists and turns of Maurer's cleft trafficking in P. falciparum-infected erythrocytes. Traffic 2007; 9:187-97. [PMID: 18088325 DOI: 10.1111/j.1600-0854.2007.00684.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The malaria parasite, Plasmodium falciparum, invades the red blood cells (RBCs) of its human host and initiates a series of morphological rearrangements within the host cell cytoplasm. The mature RBC has no endogenous trafficking machinery; therefore, the parasite generates novel structures to mediate protein transport. These include compartments called the Maurer's clefts (MC), which play an important role in the trafficking of parasite proteins to the surface of the host cell. Recent electron tomography studies have revealed MC as convoluted flotillas of flattened discs that are tethered to the RBC membrane, prompting speculation that the MC could, in one respect, represent an extracellular equivalent of the Golgi apparatus. Visualization of both resident and cargo proteins has helped decipher the signals and routes for trafficking of parasite proteins to the MC and beyond.
Collapse
Affiliation(s)
- Leann Tilley
- Department of Biochemistry, La Trobe University, Melbourne, Victoria 3086, Australia
| | | | | | | |
Collapse
|
32
|
Hanssen E, Sougrat R, Frankland S, Deed S, Klonis N, Lippincott-Schwartz J, Tilley L. Electron tomography of the Maurer's cleft organelles of Plasmodium falciparum-infected erythrocytes reveals novel structural features. Mol Microbiol 2007; 67:703-18. [PMID: 18067543 DOI: 10.1111/j.1365-2958.2007.06063.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
During intraerythrocytic development, the human malaria parasite, Plasmodium falciparum, establishes membrane-bound compartments, known as Maurer's clefts, outside the confines of its own plasma membrane. The Maurer's compartments are thought to be a crucial component of the machinery for protein sorting and trafficking; however, their ultrastructure is only partly defined. We have used electron tomography to image Maurer's clefts of 3D7 strain parasites. The compartments are revealed as flattened structures with a translucent lumen and a more electron-dense coat. They display a complex and convoluted morphology, and some regions are modified with surface nodules, each with a circular cross-section of approximately 25 nm. Individual 25 nm vesicle-like structures are also seen in the erythrocyte cytoplasm and associated with the red blood cell membrane. The Maurer's clefts are connected to the red blood cell membrane by regions with extended stalk-like profiles. Immunogold labelling with specific antibodies confirms differential labelling of the Maurer's clefts and the parasitophorous vacuole and erythrocyte membranes. Spot fluorescence photobleaching was used to demonstrate the absence of a lipid continuum between the Maurer's clefts and parasite membranes and the host plasma membrane.
Collapse
Affiliation(s)
- Eric Hanssen
- Department of Biochemistry and Centre of Excellence for Coherent X-ray Science, La Troube University, Melbourne, Victoria 3086, Australia
| | | | | | | | | | | | | |
Collapse
|
33
|
Tilley L, McFadden G, Cowman A, Klonis N. Illuminating Plasmodium falciparum-infected red blood cells. Trends Parasitol 2007; 23:268-77. [PMID: 17434344 DOI: 10.1016/j.pt.2007.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 03/21/2007] [Accepted: 04/04/2007] [Indexed: 11/20/2022]
Abstract
The malaria parasite undergoes a remarkable series of morphological transformations, which underpin its life in both human and mosquito hosts. The advent of molecular transfection technology coupled with the ability to introduce fluorescent reporter proteins that faithfully track and expose the activities of parasite proteins has revolutionized our view of parasite cell biology. The greatest insights have been realized in the erythrocyte stages of Plasmodium falciparum. P. falciparum invades and remodels the human erythrocyte: it feeds on haemoglobin, grows and divides, and subverts the physiology of its hapless host. Fluorescent proteins have been employed to track and dissect each of these processes and have revealed details and exposed new paradigms.
Collapse
Affiliation(s)
- Leann Tilley
- Department of Biochemistry, La Trobe University, Melbourne, Victoria 3086, Australia.
| | | | | | | |
Collapse
|
34
|
Waller KL, Stubberfield LM, Dubljevic V, Nunomura W, An X, Mason AJ, Mohandas N, Cooke BM, Coppel RL. Interactions of Plasmodium falciparum erythrocyte membrane protein 3 with the red blood cell membrane skeleton. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2145-56. [PMID: 17570341 PMCID: PMC4768760 DOI: 10.1016/j.bbamem.2007.04.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 04/17/2007] [Accepted: 04/25/2007] [Indexed: 01/10/2023]
Abstract
Plasmodium falciparum parasites express and traffick numerous proteins into the red blood cell (RBC), where some associate specifically with the membrane skeleton. Importantly, these interactions underlie the major alterations to the modified structural and functional properties of the parasite-infected RBC. P. falciparum Erythrocyte Membrane Protein 3 (PfEMP3) is one such parasite protein that is found in association with the membrane skeleton. Using recombinant PfEMP3 proteins in vitro, we have identified the region of PfEMP3 that binds to the RBC membrane skeleton, specifically to spectrin and actin. Kinetic studies revealed that residues 38-97 of PfEMP3 bound to purified spectrin with moderately high affinity (K(D(kin))=8.5 x 10(-8) M). Subsequent deletion mapping analysis further defined the binding domain to a 14-residue sequence (IFEIRLKRSLAQVL; K(D(kin))=3.8 x 10(-7) M). Interestingly, this same domain also bound to F-actin in a specific and saturable manner. These interactions are of physiological relevance as evidenced by the binding of this region to the membrane skeleton of inside-out RBCs and when introduced into resealed RBCs. Identification of a 14-residue region of PfEMP3 that binds to both spectrin and actin provides insight into the potential function of PfEMP3 in P. falciparum-infected RBCs.
Collapse
Affiliation(s)
- Karena L. Waller
- Department of Microbiology, Monash University, VIC 3800, Australia
| | | | | | - Wataru Nunomura
- Department of Biochemistry, School of Medicine, Tokyo Women’s Medical University, Shinjuku, Tokyo 162-8666, Japan
| | - Xuili An
- New York Blood Center, New York NY 10021, USA
| | | | | | - Brian M. Cooke
- Department of Microbiology, Monash University, VIC 3800, Australia
- Corresponding Authors: Ross L. Coppel, Department of Microbiology, Monash University, VIC 3800, Australia, Tel: +61 3 9905 4822; Fax: +61 3 9905 4811; ; Brian M. Cooke, Department of Microbiology, Monash University, VIC 3800, Australia, Tel: +61 3 9905 4827; Fax: +61 3 9905 4811;
| | - Ross L. Coppel
- Department of Microbiology, Monash University, VIC 3800, Australia
- Corresponding Authors: Ross L. Coppel, Department of Microbiology, Monash University, VIC 3800, Australia, Tel: +61 3 9905 4822; Fax: +61 3 9905 4811; ; Brian M. Cooke, Department of Microbiology, Monash University, VIC 3800, Australia, Tel: +61 3 9905 4827; Fax: +61 3 9905 4811;
| |
Collapse
|
35
|
Maier AG, Rug M, O'Neill MT, Beeson JG, Marti M, Reeder J, Cowman AF. Skeleton-binding protein 1 functions at the parasitophorous vacuole membrane to traffic PfEMP1 to the Plasmodium falciparum-infected erythrocyte surface. Blood 2006; 109:1289-97. [PMID: 17023587 PMCID: PMC1785152 DOI: 10.1182/blood-2006-08-043364] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A key feature of Plasmodium falciparum, the parasite causing the most severe form of malaria in humans, is its ability to export parasite molecules onto the surface of the erythrocyte. The major virulence factor and variant surface protein PfEMP1 (P falciparum erythrocyte membrane protein 1) acts as a ligand to adhere to endothelial receptors avoiding splenic clearance. Because the erythrocyte is devoid of protein transport machinery, the parasite provides infrastructure for trafficking across membranes it traverses. In this study, we show that the P falciparum skeleton-binding protein 1 (PfSBP1) is required for transport of PfEMP1 to the P falciparum-infected erythrocyte surface. We present evidence that PfSBP1 functions at the parasitophorous vacuole membrane to load PfEMP1 into Maurer clefts during formation of these structures. Furthermore, the major reactivity of antibodies from malaria-exposed multigravid women is directed toward PfEMP1 because this is abolished in the absence of PfSBP1.
Collapse
Affiliation(s)
- Alexander G. Maier
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; and
| | - Melanie Rug
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; and
| | - Matthew T. O'Neill
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; and
| | - James G. Beeson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; and
| | - Matthias Marti
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; and
| | - John Reeder
- Papua New Guinea Institute of Medical Research, Goroka, Papua, New Guinea
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; and
- Correspondence: Alan F. Cowman, The Walter and Eliza Hall Institute of Medical Research, 1G, Royal Parade, Parkville, 3050, Melbourne, Australia; e-mail:
| |
Collapse
|
36
|
Tonkin CJ, Pearce JA, McFadden GI, Cowman AF. Protein targeting to destinations of the secretory pathway in the malaria parasite Plasmodium falciparum. Curr Opin Microbiol 2006; 9:381-7. [PMID: 16828333 DOI: 10.1016/j.mib.2006.06.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 06/26/2006] [Indexed: 11/23/2022]
Abstract
The secretory pathway in the malaria parasite Plasmodium falciparum has many unique aspects in terms of protein destinations and trafficking mechanisms. Recently, several exciting insights into protein trafficking within this intracellular parasite have been unveiled: these include signals that are required for targeting of proteins to the red blood cell and the relict plastid (known as the apicoplast); and the elucidation of the pathways of the haemoglobin proteases targeted to the food vacuole. Protein-targeting to the apical organelles in P. falciparum, however, is still not very well understood, but available research offers a tantalising glimpse of the system.
Collapse
Affiliation(s)
- Christopher J Tonkin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, Australia
| | | | | | | |
Collapse
|
37
|
Spielmann T, Hawthorne PL, Dixon MW, Hannemann M, Klotz K, Kemp DJ, Klonis N, Tilley L, Trenholme KR, Gardiner DL. A cluster of ring stage-specific genes linked to a locus implicated in cytoadherence in Plasmodium falciparum codes for PEXEL-negative and PEXEL-positive proteins exported into the host cell. Mol Biol Cell 2006; 17:3613-24. [PMID: 16760427 PMCID: PMC1525250 DOI: 10.1091/mbc.e06-04-0291] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Blood stages of Plasmodium falciparum export proteins into their erythrocyte host, thereby inducing extensive host cell modifications that become apparent after the first half of the asexual development cycle (ring stage). This is responsible for a major part of parasite virulence. Export of many parasite proteins depends on a sequence motif termed Plasmodium export element (PEXEL) or vacuolar transport signal (VTS). This motif has allowed the prediction of the Plasmodium exportome. Using published genome sequence, we redetermined the boundaries of a previously studied region linked to P. falciparum virulence, reducing the number of candidate genes in this region to 13. Among these, we identified a cluster of four ring stage-specific genes, one of which is known to encode an exported protein. We demonstrate that all four genes code for proteins exported into the host cell, although only two genes contain an obvious PEXEL/VTS motif. We propose that the systematic analysis of ring stage-specific genes will reveal a cohort of exported proteins not present in the currently predicted exportome. Moreover, this provides further evidence that host cell remodeling is a major task of this developmental stage. Biochemical and photobleaching studies using these proteins reveal new properties of the parasite-induced membrane compartments in the host cell. This has important implications for the biogenesis and connectivity of these structures.
Collapse
Affiliation(s)
- Tobias Spielmann
- *Infectious Diseases and Immunology Division, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Herston QLD 4029, Australia; and
| | - Paula L. Hawthorne
- *Infectious Diseases and Immunology Division, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Herston QLD 4029, Australia; and
| | - Matthew W.A. Dixon
- *Infectious Diseases and Immunology Division, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Herston QLD 4029, Australia; and
| | - Mandy Hannemann
- *Infectious Diseases and Immunology Division, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Herston QLD 4029, Australia; and
| | - Kathleen Klotz
- *Infectious Diseases and Immunology Division, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Herston QLD 4029, Australia; and
| | - David J. Kemp
- *Infectious Diseases and Immunology Division, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Herston QLD 4029, Australia; and
| | - Nectarios Klonis
- Department of Biochemistry, La Trobe University, Melbourne, VIC 3086, Australia
| | - Leann Tilley
- Department of Biochemistry, La Trobe University, Melbourne, VIC 3086, Australia
| | - Katharine R. Trenholme
- *Infectious Diseases and Immunology Division, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Herston QLD 4029, Australia; and
| | - Donald L. Gardiner
- *Infectious Diseases and Immunology Division, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Herston QLD 4029, Australia; and
| |
Collapse
|
38
|
Spycher C, Rug M, Klonis N, Ferguson DJP, Cowman AF, Beck HP, Tilley L. Genesis of and trafficking to the Maurer's clefts of Plasmodium falciparum-infected erythrocytes. Mol Cell Biol 2006; 26:4074-85. [PMID: 16705161 PMCID: PMC1489082 DOI: 10.1128/mcb.00095-06] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 02/15/2006] [Accepted: 03/04/2006] [Indexed: 11/20/2022] Open
Abstract
Malaria parasites export proteins beyond their own plasma membrane to locations in the red blood cells in which they reside. Maurer's clefts are parasite-derived structures within the host cell cytoplasm that are thought to function as a sorting compartment between the parasite and the erythrocyte membrane. However, the genesis of this compartment and the signals directing proteins to the Maurer's clefts are not known. We have generated Plasmodium falciparum-infected erythrocytes expressing green fluorescent protein (GFP) chimeras of a Maurer's cleft resident protein, the membrane-associated histidine-rich protein 1 (MAHRP1). Chimeras of full-length MAHRP1 or fragments containing part of the N-terminal domain and the transmembrane domain are successfully delivered to Maurer's clefts. Other fragments remain trapped within the parasite. Fluorescence photobleaching and time-lapse imaging techniques indicate that MAHRP1-GFP is initially trafficked to isolated subdomains in the parasitophorous vacuole membrane that appear to represent nascent Maurer's clefts. The data suggest that the Maurer's clefts bud from the parasitophorous vacuole membrane and diffuse within the erythrocyte cytoplasm before taking up residence at the cell periphery.
Collapse
Affiliation(s)
- Cornelia Spycher
- Department of Medical Parasitology and Infection Biology, Swiss Tropical Institute, Socinstrasse 57, CH 4002 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
39
|
Marti M, Baum J, Rug M, Tilley L, Cowman AF. Signal-mediated export of proteins from the malaria parasite to the host erythrocyte. ACTA ACUST UNITED AC 2006; 171:587-92. [PMID: 16301328 PMCID: PMC2171567 DOI: 10.1083/jcb.200508051] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Intracellular parasites from the genus Plasmodium reside and multiply in a variety of cells during their development. After invasion of human erythrocytes, asexual stages from the most virulent malaria parasite, P. falciparum, drastically change their host cell and export remodelling and virulence proteins. Recent data demonstrate that a specific NH2-terminal signal conserved across the genus Plasmodium plays a central role in this export process.
Collapse
Affiliation(s)
- Matthias Marti
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia
| | | | | | | | | |
Collapse
|
40
|
Knuepfer E, Rug M, Klonis N, Tilley L, Cowman AF. Trafficking determinants for PfEMP3 export and assembly under thePlasmodium falciparum-infected red blood cell membrane. Mol Microbiol 2005. [DOI: 10.1111/j.1365-2958.2005.04969.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|