1
|
Sourice M, Oriol C, Aubert C, Mandin P, Py B. Genetic dissection of the bacterial Fe-S protein biogenesis machineries. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119746. [PMID: 38719030 DOI: 10.1016/j.bbamcr.2024.119746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Iron‑sulfur (Fe-S) clusters are one of the most ancient and versatile inorganic cofactors present in the three domains of life. Fe-S clusters are essential cofactors for the activity of a large variety of metalloproteins that play crucial physiological roles. Fe-S protein biogenesis is a complex process that starts with the acquisition of the elements (iron and sulfur atoms) and their assembly into an Fe-S cluster that is subsequently inserted into the target proteins. The Fe-S protein biogenesis is ensured by multiproteic systems conserved across all domains of life. Here, we provide an overview on how bacterial genetics approaches have permitted to reveal and dissect the Fe-S protein biogenesis process in vivo.
Collapse
Affiliation(s)
- Mathieu Sourice
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Charlotte Oriol
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Corinne Aubert
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Pierre Mandin
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Béatrice Py
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
2
|
Diass K, Merzouki M, Elfazazi K, Azzouzi H, Challioui A, Azzaoui K, Hammouti B, Touzani R, Depeint F, Ayerdi Gotor A, Rhazi L. Essential Oil of Lavandula officinalis: Chemical Composition and Antibacterial Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:1571. [PMID: 37050197 PMCID: PMC10097330 DOI: 10.3390/plants12071571] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
The purpose of this study was to determine the chemical composition of the essential oil of Lavandula officinalis from Morocco using the GC-MS technique and assess the antibacterial effects against seven pathogenic bacteria strains isolated from the food origins of Salmonella infantis, Salmonella kentucky, Salmonella newport, three serotypes of Escherichia coli (O114H8K11, O127K88ac, O127H40K11) and Klebsiella. Tests of sensitivity were carried out on a solid surface using the Disc Diffusion Method. Results showed that E. coli and S.newport were sensitive to Lavandula officinalis essential oil. Minimum inhibitory concentrations (MIC) were determined using the method of agar dilution. The antibacterial results showed that four strains (three serotypes of E. coli, and S. newport) were remarkedly sensitive to Lavandula officinalis essential oil, giving MIC values of 88.7 µg/mL and 177.5 µg/mL. The molecular docking of the main oil products with the E. coli target protein 1VLY, showed that eucalyptol and linalyl acetate bind efficiently with the active site of the target protein. In particular, eucalyptol showed a higher activity than gentamicin used as positive control with a binding energy of -5.72 kcal/mol and -5.55 kcal/mol, respectively.
Collapse
Affiliation(s)
- Khaoula Diass
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco; (K.D.); (R.T.)
| | - Mohammed Merzouki
- Laboratoire de Chimie Appliquée et Environnement-Equipe Chimie Organique Macromoléculaire et Phytochimie, Faculté des Sciences, Université Mohammed Ier, Oujda 60000, Morocco; (M.M.); (A.C.)
| | - Kaoutar Elfazazi
- Agro-Food Technology and Quality Laboratory, Regional Center of Agricultural Research of Tadla, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco; (K.E.); (H.A.)
| | - Hanane Azzouzi
- Agro-Food Technology and Quality Laboratory, Regional Center of Agricultural Research of Tadla, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco; (K.E.); (H.A.)
| | - Allal Challioui
- Laboratoire de Chimie Appliquée et Environnement-Equipe Chimie Organique Macromoléculaire et Phytochimie, Faculté des Sciences, Université Mohammed Ier, Oujda 60000, Morocco; (M.M.); (A.C.)
| | - Khalil Azzaoui
- Laboratory of Engineering, Electrochemistry, Modeling and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, BP 1796, Fez 30050, Morocco;
| | - Belkheir Hammouti
- Laboratory of Industrial Engineering, Energy and The Environment (LI3E) SUPMTI, Rabat 10000, Morocco
| | - Rachid Touzani
- Laboratory of Applied and Environmental Chemistry (LCAE), Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco; (K.D.); (R.T.)
| | - Flore Depeint
- Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, UniLaSalle, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France;
| | - Alicia Ayerdi Gotor
- Institut Polytechnique UniLaSalle, AGHYLE, UP 2018.C101, UniLaSalle, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France;
| | - Larbi Rhazi
- Institut Polytechnique UniLaSalle, Université d’Artois, ULR 7519, UniLaSalle, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais, France;
| |
Collapse
|
3
|
Usui M, Yoshii Y, Thiriet-Rupert S, Ghigo JM, Beloin C. Intermittent antibiotic treatment of bacterial biofilms favors the rapid evolution of resistance. Commun Biol 2023; 6:275. [PMID: 36928386 PMCID: PMC10020551 DOI: 10.1038/s42003-023-04601-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
Bacterial antibiotic resistance is a global health concern of increasing importance and intensive study. Although biofilms are a common source of infections in clinical settings, little is known about the development of antibiotic resistance within biofilms. Here, we use experimental evolution to compare selection of resistance mutations in planktonic and biofilm Escherichia coli populations exposed to clinically relevant cycles of lethal treatment with the aminoglycoside amikacin. Consistently, mutations in sbmA, encoding an inner membrane peptide transporter, and fusA, encoding the essential elongation factor G, are rapidly selected in biofilms, but not in planktonic cells. This is due to a combination of enhanced mutation rate, increased adhesion capacity and protective biofilm-associated tolerance. These results show that the biofilm environment favors rapid evolution of resistance and provide new insights into the dynamic evolution of antibiotic resistance in biofilms.
Collapse
Affiliation(s)
- Masaru Usui
- Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan.
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France.
| | - Yutaka Yoshii
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France
| | - Stanislas Thiriet-Rupert
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France
| | - Jean-Marc Ghigo
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France
| | - Christophe Beloin
- Institut Pasteur, Université de Paris Cité, UMR CNRS 6047, Genetics of Biofilms Laboratory, 75015, Paris, France.
| |
Collapse
|
4
|
Lund T, Kulkova MY, Jersie-Christensen R, Atlung T. Essentiality of the Escherichia coli YgfZ Protein for the In Vivo Thiomethylation of Ribosomal Protein S12 by the RimO Enzyme. Int J Mol Sci 2023; 24:ijms24054728. [PMID: 36902159 PMCID: PMC10002905 DOI: 10.3390/ijms24054728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Enzymes carrying Iron-Sulfur (Fe-S) clusters perform many important cellular functions and their biogenesis require complex protein machinery. In mitochondria, the IBA57 protein is essential and promotes assembly of [4Fe-4S] clusters and their insertion into acceptor proteins. YgfZ is the bacterial homologue of IBA57 but its precise role in Fe-S cluster metabolism is uncharacterized. YgfZ is needed for activity of the radical S-adenosyl methionine [4Fe-4S] cluster enzyme MiaB which thiomethylates some tRNAs. The growth of cells lacking YgfZ is compromised especially at low temperature. The RimO enzyme is homologous to MiaB and thiomethylates a conserved aspartic acid in ribosomal protein S12. To quantitate thiomethylation by RimO, we developed a bottom-up LC-MS2 analysis of total cell extracts. We show here that the in vivo activity of RimO is very low in the absence of YgfZ and independent of growth temperature. We discuss these results in relation to the hypotheses relating to the role of the auxiliary 4Fe-4S cluster in the Radical SAM enzymes that make Carbon-Sulfur bonds.
Collapse
|
5
|
In Silico Prediction and Prioritization of Novel Selective Antimicrobial Drug Targets in Escherichia coli. Antibiotics (Basel) 2021; 10:antibiotics10060632. [PMID: 34070637 PMCID: PMC8229198 DOI: 10.3390/antibiotics10060632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/08/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
Novel antimicrobials interfering with pathogen-specific targets can minimize the risk of perturbations of the gut microbiota (dysbiosis) during therapy. We employed an in silico approach to identify essential proteins in Escherichia coli that are either absent or have low sequence identity in seven beneficial taxa of the gut microbiota: Faecalibacterium, Prevotella, Ruminococcus, Bacteroides, Lactobacillus, Lachnospiraceae and Bifidobacterium. We identified 36 essential proteins that are present in hyper-virulent E. coli ST131 and have low similarity (bitscore < 50 or identity < 30% and alignment length < 25%) to proteins in mammalian hosts and beneficial taxa. Of these, 35 are also present in Klebsiella pneumoniae. None of the proteins are targets of clinically used antibiotics, and 3D structure is available for 23 of them. Four proteins (LptD, LptE, LolB and BamD) are easily accessible as drug targets due to their location in the outer membrane, especially LptD, which contains extracellular domains. Our results indicate that it may be possible to selectively interfere with essential biological processes in Enterobacteriaceae that are absent or mediated by unrelated proteins in beneficial taxa residing in the gut. The identified targets can be used to discover antimicrobial drugs effective against these opportunistic pathogens with a decreased risk of causing dysbiosis.
Collapse
|
6
|
Wang R, Zhao P, Ge X, Tian P. Overview of Alternaria alternata Membrane Proteins. Indian J Microbiol 2020; 60:269-282. [PMID: 32647391 DOI: 10.1007/s12088-020-00873-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/11/2020] [Indexed: 11/29/2022] Open
Abstract
Alternaria species are mainly saprophytic fungi, but some pathotypes of Alternaria alternata infect economically important plants including cereal crops, vegetables and fruits. Specially, A. alternata generates toxins which contaminate food and feed. To date, management of A. alternata relies primarily on fungicides. However, the control efficacy in most cases is below expectation due to ubiquity of A. alternata and resistance to fungicides. To mitigate resistance and develop long-lasting fungicides, uncovering multiple rather than single target is a prerequisite. Membrane proteins are potential targets of fungicides owing to wide participation in myriad biochemical events especially material transport, signal transduction and pathogenicity. However, so far, little is known about the distribution and molecular structure of A. alternata membrane proteins (AAMPs). Herein we summarize AAMPs by data mining and subsequent structure prediction. We also outline the state-of-the-art research advances of AAMPs especially those closely related to pathogenicity. Overall, this review aims to portray a picture of AAMPs and provide valuable insights for future development of highly efficient fungicides towards A. alternata or beyond.
Collapse
Affiliation(s)
- Ruyi Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 People's Republic of China
| | - Peng Zhao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 People's Republic of China
| | - Xizhen Ge
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023 People's Republic of China
| | - Pingfang Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 People's Republic of China
| |
Collapse
|
7
|
Danchin A, Sekowska A, You C. One-carbon metabolism, folate, zinc and translation. Microb Biotechnol 2020; 13:899-925. [PMID: 32153134 PMCID: PMC7264889 DOI: 10.1111/1751-7915.13550] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
The translation process, central to life, is tightly connected to the one-carbon (1-C) metabolism via a plethora of macromolecule modifications and specific effectors. Using manual genome annotations and putting together a variety of experimental studies, we explore here the possible reasons of this critical interaction, likely to have originated during the earliest steps of the birth of the first cells. Methionine, S-adenosylmethionine and tetrahydrofolate dominate this interaction. Yet, 1-C metabolism is unlikely to be a simple frozen accident of primaeval conditions. Reactive 1-C species (ROCS) are buffered by the translation machinery in a way tightly associated with the metabolism of iron-sulfur clusters, zinc and potassium availability, possibly coupling carbon metabolism to nitrogen metabolism. In this process, the highly modified position 34 of tRNA molecules plays a critical role. Overall, this metabolic integration may serve both as a protection against the deleterious formation of excess carbon under various growth transitions or environmental unbalanced conditions and as a regulator of zinc homeostasis, while regulating input of prosthetic groups into nascent proteins. This knowledge should be taken into account in metabolic engineering.
Collapse
Affiliation(s)
- Antoine Danchin
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongS.A.R. Hong KongChina
| | - Agnieszka Sekowska
- AMAbiotics SASInstitut Cochin24 rue du Faubourg Saint‐Jacques75014ParisFrance
| | - Conghui You
- Shenzhen Key Laboratory of Microbial Genetic EngineeringCollege of Life Sciences and OceanologyShenzhen University1066 Xueyuan Rd518055ShenzhenChina
| |
Collapse
|
8
|
Sah PP, Bhattacharya S, Banerjee A, Ray S. Identification of novel therapeutic target and epitopes through proteome mining from essential hypothetical proteins in Salmonella strains: An In silico approach towards antivirulence therapy and vaccine development. INFECTION GENETICS AND EVOLUTION 2020; 83:104315. [PMID: 32276082 DOI: 10.1016/j.meegid.2020.104315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 10/24/2022]
Abstract
Salmonella strains are responsible for a huge mortality rate through foodborne ailment in the world that necessitated the discovery of novel drugs and vaccines. Essential hypothetical proteins (EHPs), whose structures and functions were previously unknown, could serve as potential therapeutic and vaccine targets. Antivirulence therapy shall emerge as a superior therapeutic approach that uses virulence factors as drug targets. This study annotated the biological functions of 96 out of total 106 essential hypothetical proteins in five strains of Salmonella and classified into nine important protein categories. 34 virulence factors were predicted among the EHPs, out of which, 11 were identified to be pathogen specific potential drug targets for antivirulence therapy. These targets were non-homologous to both human and gut microbiota proteome to avoid cross-reactivity with them. Seven identified targets had druggable property, while the rest four targets were novel targets. Four identified targets (DEG10320148, DEG10110027, DEG10110040 and DEG10110142) had antigenic properties and were further classified as: two membrane-bound Lipid-binding transmembrane proteins, a Zinc-binding membrane protein and an extracellular glycosylase. These targets could be potentially used for the development of subunit vaccines. The study further identified 11 highly conserved and exposed epitope sequences from these 4 vaccine targets. The three-dimensional structures of the vaccine targets were also elucidated along with highlighting the conformation of the epitopes. This study identified potential therapeutic targets for antivirulence therapy against Salmonella. It would therefore instigate in novel drug designing as well as provide important leads to new Salmonella vaccine development.
Collapse
Affiliation(s)
| | | | - Arundhati Banerjee
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, Nadia, India
| | - Sujay Ray
- Amity Institute of Biotechnology, Amity University, Kolkata, India.
| |
Collapse
|
9
|
Zhang B, Arcinas AJ, Radle MI, Silakov A, Booker SJ, Krebs C. First Step in Catalysis of the Radical S-Adenosylmethionine Methylthiotransferase MiaB Yields an Intermediate with a [3Fe-4S] 0-Like Auxiliary Cluster. J Am Chem Soc 2020; 142:1911-1924. [PMID: 31899624 PMCID: PMC7008301 DOI: 10.1021/jacs.9b11093] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The enzyme MiaB catalyzes the attachment of a methylthio (-SCH3) group at the C2 position of N6-(isopentenyl)adenosine (i6A) in the final step of the biosynthesis of the hypermodified tRNA nucleotide 2-methythio-N6-(isopentenyl)adenosine (ms2i6A). MiaB belongs to the expanding subgroup of enzymes of the radical S-adenosylmethionine (SAM) superfamily that harbor one or more auxiliary [4Fe-4S] clusters in addition to the [4Fe-4S] cluster that all family members require for the reductive cleavage of SAM to afford the common 5'-deoxyadenosyl 5'-radical (5'-dA•) intermediate. While the role of the radical SAM cluster in generating the 5'-dA• is well understood, the detailed role of the auxiliary cluster, which is essential for MiaB catalysis, remains unclear. It has been proposed that the auxiliary cluster may serve as a coordination site for exogenously derived sulfur destined for attachment to the substrate or that the cluster itself provides the sulfur atom and is sacrificed during turnover. In this work, we report spectroscopic and biochemical evidence that the auxiliary [4Fe-4S]2+ cluster in Bacteroides thetaiotaomicron (Bt) MiaB is converted to a [3Fe-4S]0-like cluster during the methylation step of catalysis. Mössbauer characterization of the MiaB [3Fe-4S]0-like cluster revealed unusual spectroscopic properties compared to those of other well-characterized cuboidal [3Fe-4S]0 clusters. Specifically, the Fe sites of the mixed-valent moiety do not have identical Mössbauer parameters. Our results support a mechanism where the auxiliary [4Fe-4S] cluster is the direct sulfur source during catalysis.
Collapse
|
10
|
Mocali S, Chiellini C, Fabiani A, Decuzzi S, de Pascale D, Parrilli E, Tutino ML, Perrin E, Bosi E, Fondi M, Lo Giudice A, Fani R. Ecology of cold environments: new insights of bacterial metabolic adaptation through an integrated genomic-phenomic approach. Sci Rep 2017; 7:839. [PMID: 28404986 PMCID: PMC5429795 DOI: 10.1038/s41598-017-00876-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/01/2017] [Indexed: 12/26/2022] Open
Abstract
Cold environments dominate Earth's biosphere, hosting complex microbial communities with the ability to thrive at low temperatures. However, the underlying molecular mechanisms and the metabolic pathways involved in bacterial cold-adaptation mechanisms are still not fully understood. Herein, we assessed the metabolic features of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125), a model organism for cold-adaptation, at both 4 °C and 15 °C, by integrating genomic and phenomic (high-throughput phenotyping) data and comparing the obtained results to the taxonomically related Antarctic bacterium Pseudoalteromonas sp. TB41 (PspTB41). Although the genome size of PspTB41 is considerably larger than PhTAC125, the higher number of genes did not reflect any higher metabolic versatility at 4 °C as compared to PhTAC125. Remarkably, protein S-thiolation regulated by glutathione and glutathionylspermidine appeared to be a new possible mechanism for cold adaptation in PhTAC125. More in general, this study represents an example of how 'multi-omic' information might potentially contribute in filling the gap between genotypic and phenotypic features related to cold-adaptation mechanisms in bacteria.
Collapse
Affiliation(s)
- Stefano Mocali
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di Ricerca per l'Agrobiologia e la Pedologia (CREA-ABP), via di Lanciola 12/A, 50125, Firenze, Italy.
| | - Carolina Chiellini
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di Ricerca per l'Agrobiologia e la Pedologia (CREA-ABP), via di Lanciola 12/A, 50125, Firenze, Italy.,Department of Biology, LEMM, Laboratory of Microbial and Molecular Evolution Florence, University of Florence, I-50019, Sesto Fiorentino (FI), Italy
| | - Arturo Fabiani
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di Ricerca per l'Agrobiologia e la Pedologia (CREA-ABP), via di Lanciola 12/A, 50125, Firenze, Italy
| | - Silvia Decuzzi
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria - Centro di Ricerca per l'Agrobiologia e la Pedologia (CREA-ABP), via di Lanciola 12/A, 50125, Firenze, Italy.,Department of Biology, LEMM, Laboratory of Microbial and Molecular Evolution Florence, University of Florence, I-50019, Sesto Fiorentino (FI), Italy
| | - Donatella de Pascale
- Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario, Monte Sant'Angelo, Via Cinthia 4, 80126, Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario, Monte Sant'Angelo, Via Cinthia 4, 80126, Naples, Italy
| | - Elena Perrin
- Department of Biology, LEMM, Laboratory of Microbial and Molecular Evolution Florence, University of Florence, I-50019, Sesto Fiorentino (FI), Italy
| | - Emanuele Bosi
- Department of Biology, LEMM, Laboratory of Microbial and Molecular Evolution Florence, University of Florence, I-50019, Sesto Fiorentino (FI), Italy
| | - Marco Fondi
- Department of Biology, LEMM, Laboratory of Microbial and Molecular Evolution Florence, University of Florence, I-50019, Sesto Fiorentino (FI), Italy
| | - Angelina Lo Giudice
- Institute for the Coastal Marine Environment, National Research Council (IAMC-CNR), Spianata San Raineri 86, 98122, Messina, Italy.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontrès 31, 98166, Messina, Italy
| | - Renato Fani
- Department of Biology, LEMM, Laboratory of Microbial and Molecular Evolution Florence, University of Florence, I-50019, Sesto Fiorentino (FI), Italy
| |
Collapse
|
11
|
Ramiro RS, Costa H, Gordo I. Macrophage adaptation leads to parallel evolution of genetically diverse Escherichia coli small-colony variants with increased fitness in vivo and antibiotic collateral sensitivity. Evol Appl 2016; 9:994-1004. [PMID: 27606007 PMCID: PMC4999529 DOI: 10.1111/eva.12397] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 05/18/2016] [Indexed: 12/20/2022] Open
Abstract
Small-colony variants (SCVs) are commonly observed in evolution experiments and clinical isolates, being associated with antibiotic resistance and persistent infections. We recently observed the repeated emergence of Escherichia coli SCVs during adaptation to the interaction with macrophages. To identify the genetic targets underlying the emergence of this clinically relevant morphotype, we performed whole-genome sequencing of independently evolved SCV clones. We uncovered novel mutational targets, not previously associated with SCVs (e.g. cydA, pepP) and observed widespread functional parallelism. All SCV clones had mutations in genes related to the electron-transport chain. As SCVs emerged during adaptation to macrophages, and often show increased antibiotic resistance, we measured SCV fitness inside macrophages and measured their antibiotic resistance profiles. SCVs had a fitness advantage inside macrophages and showed increased aminoglycoside resistance in vitro, but had collateral sensitivity to other antibiotics (e.g. tetracycline). Importantly, we observed similar results in vivo. SCVs had a fitness advantage upon colonization of the mouse gut, which could be tuned by antibiotic treatment: kanamycin (aminoglycoside) increased SCV fitness, but tetracycline strongly reduced it. Our results highlight the power of using experimental evolution as the basis for identifying the causes and consequences of adaptation during host-microbe interactions.
Collapse
|
12
|
|
13
|
Lanz ND, Booker SJ. Auxiliary iron-sulfur cofactors in radical SAM enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1316-34. [PMID: 25597998 DOI: 10.1016/j.bbamcr.2015.01.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/15/2014] [Accepted: 01/06/2015] [Indexed: 11/19/2022]
Abstract
A vast number of enzymes are now known to belong to a superfamily known as radical SAM, which all contain a [4Fe-4S] cluster ligated by three cysteine residues. The remaining, unligated, iron ion of the cluster binds in contact with the α-amino and α-carboxylate groups of S-adenosyl-l-methionine (SAM). This binding mode facilitates inner-sphere electron transfer from the reduced form of the cluster into the sulfur atom of SAM, resulting in a reductive cleavage of SAM to methionine and a 5'-deoxyadenosyl radical. The 5'-deoxyadenosyl radical then abstracts a target substrate hydrogen atom, initiating a wide variety of radical-based transformations. A subset of radical SAM enzymes contains one or more additional iron-sulfur clusters that are required for the reactions they catalyze. However, outside of a subset of sulfur insertion reactions, very little is known about the roles of these additional clusters. This review will highlight the most recent advances in the identification and characterization of radical SAM enzymes that harbor auxiliary iron-sulfur clusters. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- Nicholas D Lanz
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Squire J Booker
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
14
|
Hori H. Methylated nucleosides in tRNA and tRNA methyltransferases. Front Genet 2014; 5:144. [PMID: 24904644 PMCID: PMC4033218 DOI: 10.3389/fgene.2014.00144] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/04/2014] [Indexed: 12/26/2022] Open
Abstract
To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Applied Chemistry, Graduate School of Science and Engineering, Ehime University Matsuyama, Japan
| |
Collapse
|
15
|
AspC-mediated aspartate metabolism coordinates the Escherichia coli cell cycle. PLoS One 2014; 9:e92229. [PMID: 24670900 PMCID: PMC3966765 DOI: 10.1371/journal.pone.0092229] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/19/2014] [Indexed: 01/08/2023] Open
Abstract
Background The fast-growing bacterial cell cycle consists of at least two independent cycles of chromosome replication and cell division. To ensure proper cell cycles and viability, chromosome replication and cell division must be coordinated. It has been suggested that metabolism could affect the Escherichia coli cell cycle, but the idea is still lacking solid evidences. Methodology/Principle Findings We found that absence of AspC, an aminotransferase that catalyzes synthesis of aspartate, led to generation of small cells with less origins and slow growth. In contrast, excess AspC was found to exert the opposite effect. Further analysis showed that AspC-mediated aspartate metabolism had a specific effect in the cell cycle, as only extra aspartate of the 20 amino acids triggered production of bigger cells with more origins per cell and faster growth. The amount of DnaA protein per cell was found to be changed in response to the availability of AspC. Depletion of (p)ppGpp by ΔrelAΔspoT led to a slight delay in initiation of replication, but did not change the replication pattern found in the ΔaspC mutant. Conclusion/Significances The results suggest that AspC-mediated metabolism of aspartate coordinates the E. coli cell cycle through altering the amount of the initiator protein DnaA per cell and the division signal UDP-glucose. Furthermore, AspC sequence conservation suggests similar functions in other organisms.
Collapse
|
16
|
Armengod ME, Moukadiri I, Prado S, Ruiz-Partida R, Benítez-Páez A, Villarroya M, Lomas R, Garzón MJ, Martínez-Zamora A, Meseguer S, Navarro-González C. Enzymology of tRNA modification in the bacterial MnmEG pathway. Biochimie 2012; 94:1510-20. [PMID: 22386868 DOI: 10.1016/j.biochi.2012.02.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
Among all RNAs, tRNA exhibits the largest number and the widest variety of post-transcriptional modifications. Modifications within the anticodon stem loop, mainly at the wobble position and purine-37, collectively contribute to stabilize the codon-anticodon pairing, maintain the translational reading frame, facilitate the engagement of the ribosomal decoding site and enable translocation of tRNA from the A-site to the P-site of the ribosome. Modifications at the wobble uridine (U34) of tRNAs reading two degenerate codons ending in purine are complex and result from the activity of two multi-enzyme pathways, the IscS-MnmA and MnmEG pathways, which independently work on positions 2 and 5 of the U34 pyrimidine ring, respectively, and from a third pathway, controlled by TrmL (YibK), that modifies the 2'-hydroxyl group of the ribose. MnmEG is the only common pathway to all the mentioned tRNAs, and involves the GTP- and FAD-dependent activity of the MnmEG complex and, in some cases, the activity of the bifunctional enzyme MnmC. The Escherichia coli MnmEG complex catalyzes the incorporation of an aminomethyl group into the C5 atom of U34 using methylene-tetrahydrofolate and glycine or ammonium as donors. The reaction requires GTP hydrolysis, probably to assemble the active site of the enzyme or to carry out substrate recognition. Inactivation of the evolutionarily conserved MnmEG pathway produces a pleiotropic phenotype in bacteria and mitochondrial dysfunction in human cell lines. While the IscS-MnmA pathway and the MnmA-mediated thiouridylation reaction are relatively well understood, we have limited information on the reactions mediated by the MnmEG, MnmC and TrmL enzymes and on the precise role of proteins MnmE and MnmG in the MnmEG complex activity. This review summarizes the present state of knowledge on these pathways and what we still need to know, with special emphasis on the MnmEG pathway.
Collapse
Affiliation(s)
- M-Eugenia Armengod
- Laboratorio de Genética Molecular, Centro de Investigación Príncipe Felipe, Molecular Genetics, Avenida Autopista del Saler, 16-3, 46012-Valencia, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Waller JC, Ellens KW, Alvarez S, Loizeau K, Ravanel S, Hanson AD. Mitochondrial and plastidial COG0354 proteins have folate-dependent functions in iron-sulphur cluster metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:403-11. [PMID: 21984653 PMCID: PMC3245475 DOI: 10.1093/jxb/err286] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/04/2011] [Accepted: 08/12/2011] [Indexed: 05/07/2023]
Abstract
COG0354 proteins have been implicated in synthesis or repair of iron/sulfur (Fe/S) clusters in all domains of life, and those of bacteria, animals, and protists have been shown to require a tetrahydrofolate to function. Two COG0354 proteins were identified in Arabidopsis and many other plants, one (At4g12130) related to those of α-proteobacteria and predicted to be mitochondrial, the other (At1g60990) related to those of cyanobacteria and predicted to be plastidial. Grasses and poplar appear to lack the latter. The predicted subcellular locations of the Arabidopsis proteins were validated by in vitro import assays with purified pea organelles and by targeting assays in Arabidopsis and tobacco protoplasts using green fluorescent protein fusions. The At4g12130 protein was shown to be expressed mainly in flowers, siliques, and seeds, whereas the At1g60990 protein was expressed mainly in young leaves. The folate dependence of both Arabidopsis proteins was established by functional complementation of an Escherichia coli COG0354 (ygfZ) deletant; both plant genes restored in vivo activity of the Fe/S enzyme MiaB but restoration was abrogated when folates were eliminated by deleting folP. Insertional inactivation of At4g12130 was embryo lethal; this phenotype was reversed by genetic complementation of the mutant. These data establish that COG0354 proteins have a folate-dependent function in mitochondria and plastids, and that the mitochondrial protein is essential. That plants retain mitochondrial and plastidial COG0354 proteins with distinct phylogenetic origins emphasizes how deeply the extant Fe/S cluster assembly machinery still reflects the ancient endosymbioses that gave rise to plants.
Collapse
Affiliation(s)
- Jeffrey C. Waller
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Kenneth W. Ellens
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Sophie Alvarez
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Karen Loizeau
- Laboratoire de Physiologie Cellulaire Végétale, CNRS/CEA/INRA/Université Joseph Fourier, CEA-Grenoble, F-38054 Grenoble cedex 9, France
| | - Stéphane Ravanel
- Laboratoire de Physiologie Cellulaire Végétale, CNRS/CEA/INRA/Université Joseph Fourier, CEA-Grenoble, F-38054 Grenoble cedex 9, France
| | - Andrew D. Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
18
|
Yu H, Kim KS. YgfZ contributes to secretion of cytotoxic necrotizing factor 1 into outer-membrane vesicles in Escherichia coli. MICROBIOLOGY-SGM 2011; 158:612-621. [PMID: 22174383 DOI: 10.1099/mic.0.054122-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cytotoxic necrotizing factor 1 (CNF1), a Rho GTPase-activating bacterial toxin, has been shown to contribute to invasion by meningitis-causing Escherichia coli K1 of human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. However, CNF1 is a cytosolic protein and it remains unclear how its secretion occurs, contributing to E. coli invasion of HBMEC. To investigate the genetic requirement for CNF1 secretion in E. coli K1 strain RS218, we performed mini-Tn5 in vitro mutagenesis and constructed a transposon mutant library of strain NBC, in which β-lactamase was fused to the C-terminus of CNF1 in the chromosome of strain RS218. We identified a transposon mutant (NBC-1E6) that exhibited reduced β-lactamase activity in its culture supernatant and had the transposon inserted into the ygfZ gene. When ygfZ was deleted from the genome of strain RS218 (ΔygfZ), the translocation of CNF1 into HBMEC was impaired. Subcellular localization analysis of CNF1 demonstrated that YgfZ, a periplasmic protein, contributes to secretion of CNF1 into outer-membrane vesicles (OMVs). The ΔygfZ mutant was significantly defective in invasion of HBMEC compared to the parent E. coli K1 strain. The defects of the ΔygfZ mutant in CNF1 secretion into OMVs and translocation into HBMEC as well as invasion of HBMEC were abrogated by complementation with ygfZ. Taken together, our findings demonstrate that YgfZ contributes to CNF1 secretion into OMVs in meningitis-causing E. coli K1.
Collapse
Affiliation(s)
- Hao Yu
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, 200 North Wolfe Street, Room 3157, Baltimore, MD 21287, USA
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, 200 North Wolfe Street, Room 3157, Baltimore, MD 21287, USA
| |
Collapse
|
19
|
Decreased transport restores growth of a Salmonella enterica apbC mutant on tricarballylate. J Bacteriol 2011; 194:576-83. [PMID: 22101844 DOI: 10.1128/jb.05988-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutants of Salmonella enterica lacking apbC have nutritional and biochemical properties indicative of defects in iron-sulfur ([Fe-S]) cluster metabolism. An apbC mutant is unable to grow on tricarballylate as a carbon source. Based on the ability of ApbC to transfer an [Fe-S] cluster to an apoprotein, this defect was attributed to poor loading of the [Fe-S] cluster-containing TcuB enzyme. Consistent with these observations, a previous study showed that overexpression of iscU, which encodes an [Fe-S] cluster molecular scaffold, suppressed the tricarballylate growth defect of an apbC mutant (J. M. Boyd, J. A. Lewis, J. C. Escalante-Semerena, and D. M. Downs, J. Bacteriol. 190:4596-4602, 2008). In this study, tcuC mutations that suppress the growth defect of an apbC mutant by decreasing the intracellular concentration of tricarballylate are described. Collectively, the suppressor analyses support a model in which reduced TcuB activity prevents growth on tricarballylate by (i) decreasing catabolism and (ii) allowing levels of tricarballylate that are toxic to the cell to accumulate. The apbC tcuC mutant strains described here reveal that the balance of the metabolic network can be altered by the accumulation of deleterious metabolites.
Collapse
|
20
|
Hasnain G, Waller JC, Alvarez S, Ravilious GE, Jez JM, Hanson AD. Mutational analysis of YgfZ, a folate-dependent protein implicated in iron/sulphur cluster metabolism. FEMS Microbiol Lett 2011; 326:168-72. [DOI: 10.1111/j.1574-6968.2011.02448.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/25/2011] [Accepted: 10/25/2011] [Indexed: 11/27/2022] Open
Affiliation(s)
- Ghulam Hasnain
- Plant Molecular and Cellular Biology Program; University of Florida; Gainesville; FL; USA
| | - Jeffrey C. Waller
- Plant Molecular and Cellular Biology Program; University of Florida; Gainesville; FL; USA
| | - Sophie Alvarez
- Donald Danforth Plant Science Center; St. Louis; MO; USA
| | | | - Joseph M. Jez
- Department of Biology; Washington University; St. Louis; MO; USA
| | - Andrew D. Hanson
- Plant Molecular and Cellular Biology Program; University of Florida; Gainesville; FL; USA
| |
Collapse
|
21
|
Evidence that the folate-dependent proteins YgfZ and MnmEG have opposing effects on growth and on activity of the iron-sulfur enzyme MiaB. J Bacteriol 2011; 194:362-7. [PMID: 22081392 DOI: 10.1128/jb.06226-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The folate-dependent protein YgfZ of Escherichia coli participates in the synthesis and repair of iron-sulfur (Fe-S) clusters; it belongs to a family of enzymes that use folate to capture formaldehyde units. Ablation of ygfZ is known to reduce growth, to increase sensitivity to oxidative stress, and to lower the activities of MiaB and other Fe-S enzymes. It has been reported that the growth phenotype can be suppressed by disrupting the tRNA modification gene mnmE. We first confirmed the latter observation using deletions in a simpler, more defined genetic background. We then showed that deleting mnmE substantially restores MiaB activity in ygfZ deletant cells and that overexpressing MnmE with its partner MnmG exacerbates the growth and MiaB activity phenotypes of the ygfZ deletant. MnmE, with MnmG, normally mediates a folate-dependent transfer of a formaldehyde unit to tRNA, and the MnmEG-mediated effects on the phenotypes of the ΔygfZ mutant apparently require folate, as evidenced by the effect of eliminating all folates by deleting folE. The expression of YgfZ was unaffected by deleting mnmE or overexpressing MnmEG or by folate status. Since formaldehyde transfer is a potential link between MnmEG and YgfZ, we inactivated formaldehyde detoxification by deleting frmA. This deletion had little effect on growth or MiaB activity in the ΔygfZ strain in the presence of formaldehyde, making it unlikely that formaldehyde alone connects the actions of MnmEG and YgfZ. A more plausible explanation is that MnmEG erroneously transfers a folate-bound formaldehyde unit to MiaB and that YgfZ reverses this.
Collapse
|
22
|
Gerdes S, El Yacoubi B, Bailly M, Blaby IK, Blaby-Haas CE, Jeanguenin L, Lara-Núñez A, Pribat A, Waller JC, Wilke A, Overbeek R, Hanson AD, de Crécy-Lagard V. Synergistic use of plant-prokaryote comparative genomics for functional annotations. BMC Genomics 2011; 12 Suppl 1:S2. [PMID: 21810204 PMCID: PMC3223725 DOI: 10.1186/1471-2164-12-s1-s2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identifying functions for all gene products in all sequenced organisms is a central challenge of the post-genomic era. However, at least 30-50% of the proteins encoded by any given genome are of unknown or vaguely known function, and a large number are wrongly annotated. Many of these 'unknown' proteins are common to prokaryotes and plants. We set out to predict and experimentally test the functions of such proteins. Our approach to functional prediction integrates comparative genomics based mainly on microbial genomes with functional genomic data from model microorganisms and post-genomic data from plants. This approach bridges the gap between automated homology-based annotations and the classical gene discovery efforts of experimentalists, and is more powerful than purely computational approaches to identifying gene-function associations. RESULTS Among Arabidopsis genes, we focused on those (2,325 in total) that (i) are unique or belong to families with no more than three members, (ii) occur in prokaryotes, and (iii) have unknown or poorly known functions. Computer-assisted selection of promising targets for deeper analysis was based on homology-independent characteristics associated in the SEED database with the prokaryotic members of each family. In-depth comparative genomic analysis was performed for 360 top candidate families. From this pool, 78 families were connected to general areas of metabolism and, of these families, specific functional predictions were made for 41. Twenty-one predicted functions have been experimentally tested or are currently under investigation by our group in at least one prokaryotic organism (nine of them have been validated, four invalidated, and eight are in progress). Ten additional predictions have been independently validated by other groups. Discovering the function of very widespread but hitherto enigmatic proteins such as the YrdC or YgfZ families illustrates the power of our approach. CONCLUSIONS Our approach correctly predicted functions for 19 uncharacterized protein families from plants and prokaryotes; none of these functions had previously been correctly predicted by computational methods. The resulting annotations could be propagated with confidence to over six thousand homologous proteins encoded in over 900 bacterial, archaeal, and eukaryotic genomes currently available in public databases.
Collapse
Affiliation(s)
- Svetlana Gerdes
- Fellowship for Interpretation of Genomes, Burr Ridge, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Skovgaard O, Bak M, Løbner-Olesen A, Tommerup N. Genome-wide detection of chromosomal rearrangements, indels, and mutations in circular chromosomes by short read sequencing. Genome Res 2011; 21:1388-93. [PMID: 21555365 DOI: 10.1101/gr.117416.110] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Whole-genome sequencing (WGS) with new short-read sequencing technologies has recently been applied for genome-wide identification of mutations. Genomic rearrangements have, however, often remained undetected by WGS, and additional analyses are required for their detection. Here, we have applied a combination of WGS and genome copy number analysis, for the identification of mutations that suppress the growth deficiency imposed by excessive initiations from the Escherichia coli origin of replication, oriC. The E. coli chromosome, like the majority of bacterial chromosomes, is circular, and DNA replication is initiated by assembling two replication complexes at the origin, oriC. These complexes then replicate the chromosome bidirectionally toward the terminus, ter. In a population of growing cells, this results in a copy number gradient, so that origin-proximal sequences are more frequent than origin-distal sequences. Major rearrangements in the chromosome are, therefore, readily identified by changes in copy number, i.e., certain sequences become over- or under-represented. Of the eight mutations analyzed in detail here, six were found to affect a single gene only, one was a large chromosomal inversion, and one was a large chromosomal duplication. The latter two mutations could not be detected solely by WGS, validating the present approach for identification of genomic rearrangements. We further suggest the use of copy number analysis in combination with WGS for validation of newly assembled bacterial chromosomes.
Collapse
Affiliation(s)
- Ole Skovgaard
- Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde, Denmark.
| | | | | | | |
Collapse
|
24
|
Lin CN, Syu WJ, Sun WSW, Chen JW, Chen TH, Don MJ, Wang SH. A role of ygfZ in the Escherichia coli response to plumbagin challenge. J Biomed Sci 2010; 17:84. [PMID: 21059273 PMCID: PMC2989944 DOI: 10.1186/1423-0127-17-84] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Accepted: 11/09/2010] [Indexed: 11/28/2022] Open
Abstract
Plumbagin is found in many herbal plants and inhibits the growth of various bacteria. Escherichia coli strains are relatively resistant to this drug. The mechanism of resistance is not clear. Previous findings showed that plumbagin treatment triggered up-regulation of many genes in E. coli including ahpC, mdaB, nfnB, nfo, sodA, yggX and ygfZ. By analyzing minimal inhibition concentration and inhibition zones of plumbagin in various gene-disruption mutants, ygfZ and sodA were found critical for the bacteria to resist plumbagin toxicity. We also found that the roles of YgfZ and SodA in detoxifying plumbagin are independent of each other. This is because of the fact that ectopically expressed SodA reduced the superoxide stress but not restore the resistance of bacteria when encountering plumbagin at the absence of ygfZ. On the other hand, an ectopically expressed YgfZ was unable to complement and failed to rescue the plumbagin resistance when sodA was perturbed. Furthermore, mutagenesis analysis showed that residue Cys228 within YgfZ fingerprint region was critical for the resistance of E. coli to plumbagin. By solvent extraction and HPLC analysis to follow the fate of the chemical, it was found that plumbagin vanished apparently from the culture of YgfZ-expressing E. coli. A less toxic form, methylated plumbagin, which may represent one of the YgfZ-dependent metabolites, was found in the culture supernatant of the wild type E. coli but not in the ΔygfZ mutant. Our results showed that the presence of ygfZ is not only critical for the E coli resistance to plumbagin but also facilitates the plumbagin degradation.
Collapse
Affiliation(s)
- Ching-Nan Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, 112 Taiwan
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The broad range of cellular activities carried out by Fe-S proteins means that they have a central role in the life of most organisms. At the interface between biology and chemistry, studies of bacterial Fe-S protein biogenesis have taken advantage of the specific approaches of each field and have begun to reveal the molecular mechanisms involved. The multiprotein systems that are required to build Fe-S proteins have been identified, but the in vivo roles of some of the components remain to be clarified. The way in which cellular Fe-S cluster trafficking pathways are organized remains a key issue for future studies.
Collapse
|
26
|
Waller JC, Alvarez S, Naponelli V, Lara-Nuñez A, Blaby IK, Da Silva V, Ziemak MJ, Vickers TJ, Beverley SM, Edison AS, Rocca JR, Gregory JF, de Crécy-Lagard V, Hanson AD. A role for tetrahydrofolates in the metabolism of iron-sulfur clusters in all domains of life. Proc Natl Acad Sci U S A 2010; 107:10412-7. [PMID: 20489182 PMCID: PMC2890791 DOI: 10.1073/pnas.0911586107] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Iron-sulfur (Fe/S) cluster enzymes are crucial to life. Their assembly requires a suite of proteins, some of which are specific for particular subsets of Fe/S enzymes. One such protein is yeast Iba57p, which aconitase and certain radical S-adenosylmethionine enzymes require for activity. Iba57p homologs occur in all domains of life; they belong to the COG0354 protein family and are structurally similar to various folate-dependent enzymes. We therefore investigated the possible relationship between folates and Fe/S cluster enzymes using the Escherichia coli Iba57p homolog, YgfZ. NMR analysis confirmed that purified YgfZ showed stereoselective folate binding. Inactivating ygfZ reduced the activities of the Fe/S tRNA modification enzyme MiaB and certain other Fe/S enzymes, although not aconitase. When successive steps in folate biosynthesis were ablated, folE (lacking pterins and folates) and folP (lacking folates) mutants mimicked the ygfZ mutant in having low MiaB activities, whereas folE thyA mutants supplemented with 5-formyltetrahydrofolate (lacking pterins and depleted in dihydrofolate) and gcvP glyA mutants (lacking one-carbon tetrahydrofolates) had intermediate MiaB activities. These data indicate that YgfZ requires a folate, most probably tetrahydrofolate. Importantly, the ygfZ mutant was hypersensitive to oxidative stress and grew poorly on minimal media. COG0354 genes of bacterial, archaeal, fungal, protistan, animal, or plant origin complemented one or both of these growth phenotypes as well as the MiaB activity phenotype. Comparative genomic analysis indicated widespread functional associations between COG0354 proteins and Fe/S cluster metabolism. Thus COG0354 proteins have an ancient, conserved, folate-dependent function in the activity of certain Fe/S cluster enzymes.
Collapse
Affiliation(s)
| | - Sophie Alvarez
- Donald Danforth Plant Science Center, Saint Louis, MO 63132; and
| | | | | | | | | | | | - Tim J. Vickers
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Arthur S. Edison
- Department of Biochemistry and Molecular Biology and National High Magnetic Field Laboratory, and
| | - James R. Rocca
- McKnight Brain Institute, University of Florida, Gainesville, FL 32611
| | | | | | | |
Collapse
|
27
|
Riber L, Fujimitsu K, Katayama T, Løbner-Olesen A. Loss of Hda activity stimulates replication initiation from I-box, but not R4 mutant origins in Escherichia coli. Mol Microbiol 2008; 71:107-22. [PMID: 19007419 DOI: 10.1111/j.1365-2958.2008.06516.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Initiation of chromosome replication in Escherichia coli is limited by the initiator protein DnaA associated with ATP. Within the replication origin, binding sites for DnaA associated with ATP or ADP (R boxes) and the DnaA(ATP) specific sites (I-boxes, tau-boxes and 6-mer sites) are found. We analysed chromosome replication of cells carrying mutations in conserved regions of oriC. Cells carrying mutations in DnaA-boxes I2, I3, R2, R3 and R5 as well as FIS and IHF binding sites resembled wild-type cells with respect to origin concentration. Initiation of replication in these mutants occurred in synchrony or with slight asynchrony only. Furthermore, lack of Hda stimulated initiation in all these mutants. The DnaA(ATP) containing complex that leads to initiation can therefore be formed in the absence of several of the origin DnaA binding sites including both DnaA(ATP) specific I-boxes. However, competition between I-box mutant and wild-type origins, revealed a positive role of I-boxes on initiation. On the other hand, mutations affecting DnaA-box R4 were found to be compromised for initiation and could not be augmented by an increase in cellular DnaA(ATP)/DnaA(ADP) ratio. Compared with the sites tested here, R4 therefore seems to contribute to initiation most critically.
Collapse
Affiliation(s)
- Leise Riber
- Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde, Denmark
| | | | | | | |
Collapse
|
28
|
Modes of overinitiation, dnaA gene expression, and inhibition of cell division in a novel cold-sensitive hda mutant of Escherichia coli. J Bacteriol 2008; 190:5368-81. [PMID: 18502852 DOI: 10.1128/jb.00044-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chromosomal replication cycle is strictly coordinated with cell cycle progression in Escherichia coli. ATP-DnaA initiates replication, leading to loading of the DNA polymerase III holoenzyme. The DNA-loaded form of the beta clamp subunit of the polymerase binds the Hda protein, which promotes ATP-DnaA hydrolysis, yielding inactive ADP-DnaA. This regulation is required to repress overinitiation. In this study, we have isolated a novel cold-sensitive hda mutant, the hda-185 mutant. The hda-185 mutant caused overinitiation of chromosomal replication at 25 degrees C, which most likely led to blockage of replication fork progress. Consistently, the inhibition of colony formation at 25 degrees C was suppressed by disruption of the diaA gene, an initiation stimulator. Disruption of the seqA gene, an initiation inhibitor, showed synthetic lethality with hda-185 even at 42 degrees C. The cellular ATP-DnaA level was increased in an hda-185-dependent manner. The cellular concentrations of DnaA protein and dnaA mRNA were comparable at 25 degrees C to those in a wild-type hda strain. We also found that multiple copies of the ribonucleotide reductase genes (nrdAB or nrdEF) or dnaB gene repressed overinitiation. The cellular levels of dATP and dCTP were elevated in cells bearing multiple copies of nrdAB. The catalytic site within NrdA was required for multicopy suppression, suggesting the importance of an active form of NrdA or elevated levels of deoxyribonucleotides in inhibition of overinitiation in the hda-185 cells. Cell division in the hda-185 mutant was inhibited at 25 degrees C in a LexA regulon-independent manner, suggesting that overinitiation in the hda-185 mutant induced a unique division inhibition pathway.
Collapse
|
29
|
Mitochondrial Iba57p is required for Fe/S cluster formation on aconitase and activation of radical SAM enzymes. Mol Cell Biol 2007; 28:1851-61. [PMID: 18086897 DOI: 10.1128/mcb.01963-07] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A genome-wide screen for Saccharomyces cerevisiae iron-sulfur (Fe/S) cluster assembly mutants identified the gene IBA57. The encoded protein Iba57p is located in the mitochondrial matrix and is essential for mitochondrial DNA maintenance. The growth phenotypes of an iba57Delta mutant and extensive functional studies in vivo and in vitro indicate a specific role for Iba57p in the maturation of mitochondrial aconitase-type and radical SAM Fe/S proteins (biotin and lipoic acid synthases). Maturation of other Fe/S proteins occurred normally in the absence of Iba57p. These observations identify Iba57p as a novel dedicated maturation factor with specificity for a subset of Fe/S proteins. The Iba57p primary sequence is distinct from any known Fe/S assembly factor but is similar to certain tetrahydrofolate-binding enzymes, adding a surprising new function to this protein family. Iba57p physically interacts with the mitochondrial ISC assembly components Isa1p and Isa2p. Since all three proteins are conserved in eukaryotes and bacteria, the specificity of the Iba57/Isa complex may represent a biosynthetic concept that is universally used in nature. In keeping with this idea, the human IBA57 homolog C1orf69 complements the iba57Delta growth defects, demonstrating its conserved function throughout the eukaryotic kingdom.
Collapse
|
30
|
Natrajan G, Hall DR, Thompson AC, Gutsche I, Terradot L. Structural similarity between the DnaA-binding proteins HobA (HP1230) from Helicobacter pylori and DiaA from Escherichia coli. Mol Microbiol 2007; 65:995-1005. [PMID: 17683397 DOI: 10.1111/j.1365-2958.2007.05843.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In prokaryotes, DNA replication is initiated by the binding of DnaA to the oriC region of the chromosome to load the primosome machinery and start a new replication round. Several proteins control these events in Escherichia coli to ensure that replication is precisely timed during the cell cycle. Here, we report the crystal structure of HobA (HP1230) at 1.7 A, a recently discovered protein that specifically interacts with DnaA protein from Helicobacter pylori (HpDnaA). We found that the closest structural homologue of HobA is a sugar isomerase (SIS) domain containing protein, the phosphoheptose isomerase from Pseudomonas aeruginosa. Remarkably, SIS proteins share strong sequence homology with DiaA from E. coli; yet, HobA and DiaA share no sequence homology. Thus, by solving the structure of HobA, we unexpectedly discovered that HobA is a H. pylori structural homologue of DiaA. By comparing the structure of HobA to a homology model of DiaA, we identified conserved, surface-accessible residues that could be involved in protein-protein interaction. Finally, we show that HobA specifically interacts with the N-terminal part of HpDnaA. The structural homology between DiaA and HobA strongly supports their involvement in the replication process and these proteins could define a new structural family of replication regulators in bacteria.
Collapse
Affiliation(s)
- Ganesh Natrajan
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, B.P. 220, 6 rue Jules Horowitz, F-38043 Grenoble Cedex, France
| | | | | | | | | |
Collapse
|
31
|
Stolz M, Peters-Wendisch P, Etterich H, Gerharz T, Faurie R, Sahm H, Fersterra H, Eggeling L. Reduced folate supply as a key to enhanced L-serine production by Corynebacterium glutamicum. Appl Environ Microbiol 2006; 73:750-5. [PMID: 17142381 PMCID: PMC1800755 DOI: 10.1128/aem.02208-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The amino acid L-serine is required for pharmaceutical purposes, and the availability of a sugar-based microbial process for its production is desirable. However, a number of intracellular utilization routes prevent overproduction of L-serine, with the essential serine hydroxymethyltransferase (SHMT) (glyA) probably occupying a key position. We found that constructs of Corynebacterium glutamicum strains where chromosomal glyA expression is dependent on Ptac and lacIQ are unstable, acquiring mutations in lacIQ, for instance. To overcome the inconvenient glyA expression control, we instead considered controlling SHMT activity by the availability of 5,6,7,8-tetrahydrofolate (THF). The pabAB and pabC genes of THF synthesis were identified and deleted in C. glutamicum, and the resulting strains were shown to require folate or 4-aminobenzoate for growth. Whereas the C. glutamicum DeltasdaA strain (pserACB) accumulates only traces of L-serine, with the C. glutamicum DeltapabABCDeltasdaA strain (pserACB), L-serine accumulation and growth responded in a dose-dependent manner to an external folate supply. At 0.1 mM folate, 81 mM L-serine accumulated. In a 20-liter controlled fed-batch culture, a 345 mM L-serine accumulation was achieved. Thus, an efficient and highly competitive process for microbial l-serine production is available.
Collapse
Affiliation(s)
- Michael Stolz
- Institute of Biotechnology, Research Centre Juelich, D-52425 Juelich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Riber L, Olsson JA, Jensen RB, Skovgaard O, Dasgupta S, Marinus MG, Løbner-Olesen A. Hda-mediated inactivation of the DnaA protein and dnaA gene autoregulation act in concert to ensure homeostatic maintenance of the Escherichia coli chromosome. Genes Dev 2006; 20:2121-34. [PMID: 16882985 PMCID: PMC1536062 DOI: 10.1101/gad.379506] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Initiation of DNA replication in Eschericia coli requires the ATP-bound form of the DnaA protein. The conversion of DnaA-ATP to DnaA-ADP is facilitated by a complex of DnaA, Hda (homologous to DnaA), and DNA-loaded beta-clamp proteins in a process termed RIDA (regulatory inactivation of DnaA). Hda-deficient cells initiate replication at each origin mainly once per cell cycle, and the rare reinitiation events never coincide with the end of the origin sequestration period. Therefore, RIDA is not the predominant mechanism to prevent immediate reinitiation from oriC. The cellular level of Hda correlated directly with dnaA gene expression such that Hda deficiency led to reduced dnaA gene expression, and overproduction of Hda led to DnaA overproduction. Hda-deficient cells were very sensitive to variations in the cellular level of DnaA, and DnaA overproduction led to uncontrolled initiation of replication from oriC, causing severe growth retardation or cell death. Based on these observations, we propose that both RIDA and dnaA gene autoregulation are required as homeostatic mechanisms to ensure that initiation of replication occurs at the same time relative to cell mass in each cell cycle.
Collapse
Affiliation(s)
- Leise Riber
- Department of Life Sciences and Chemistry, Roskilde University, Denmark
| | | | | | | | | | | | | |
Collapse
|
33
|
Ote T, Hashimoto M, Ikeuchi Y, Su’etsugu M, Suzuki T, Katayama T, Kato J. Involvement of the
Escherichia coli
folate‐binding protein YgfZ in RNA modification and regulation of chromosomal replication initiation. Mol Microbiol 2006. [DOI: 10.1111/j.1365-2958.2006.05067.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Tomotake Ote
- Department of Biology, Graduate School of Science, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192‐0397, Japan
| | - Masayuki Hashimoto
- Department of Biology, Graduate School of Science, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192‐0397, Japan
| | - Yoshiho Ikeuchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Hongo, Tokyo 113, Japan
| | - Masayuki Su’etsugu
- Department of Molecular Biology, Kyushu University Graduate School of Pharmaceutical Sciences, 3‐1‐1 Maidashi, Higashi‐ku, Fukuoka 812‐8582, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Hongo, Tokyo 113, Japan
| | - Tsutomu Katayama
- Department of Molecular Biology, Kyushu University Graduate School of Pharmaceutical Sciences, 3‐1‐1 Maidashi, Higashi‐ku, Fukuoka 812‐8582, Japan
| | - Jun‐Ichi Kato
- Department of Biology, Graduate School of Science, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192‐0397, Japan
| |
Collapse
|