1
|
Somfalvi-Tóth K, Jócsák I, Pál-Fám F. Verification study on how macrofungal fruitbody formation can be predicted by artificial neural network. Sci Rep 2024; 14:278. [PMID: 38168546 PMCID: PMC10761683 DOI: 10.1038/s41598-023-50638-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
The occurrence and regularity of macrofungal fruitbody formation are influenced by meteorological conditions; however, there is a scarcity of data about the use of machine-learning techniques to estimate their occurrence based on meteorological indicators. Therefore, we employed an artificial neural network (ANN) to forecast fruitbody occurrence in mycorrhizal species of Russula and Amanita, utilizing meteorological factors and validating the accuracy of the forecast of fruitbody formation. Fungal data were collected from two locations in Western Hungary between 2015 and 2020. The ANN was the commonly used algorithm for classification problems: feed-forward multilayer perceptrons with a backpropagation algorithm to estimate the binary (Yes/No) classification of fruitbody appearance in natural and undisturbed forests. The verification indices resulted in two outcomes: however, development is most often studied by genus level, we established a more successful, new model per species. Furthermore, the algorithm is able to successfully estimate fruitbody formations with medium to high accuracy (60-80%). Therefore, this work was the first to reliably utilise the ANN approach of estimating fruitbody occurrence based on meteorological parameters of mycorrhizal specified with an extended vegetation period. These findings can assist in field mycological investigations that utilize sporocarp occurrences to ascertain species abundance.
Collapse
Affiliation(s)
- Katalin Somfalvi-Tóth
- Department of Agronomy, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 40 Guba S. Str., Kaposvár, 7400, Hungary.
| | - Ildikó Jócsák
- Department of Agronomy, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 40 Guba S. Str., Kaposvár, 7400, Hungary
| | - Ferenc Pál-Fám
- Department of Agronomy, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 40 Guba S. Str., Kaposvár, 7400, Hungary
| |
Collapse
|
2
|
Zhang C, Chen L, Chen M, Xu Z. First report on the regulation and function of carbon metabolism during large sclerotia formation in medicinal fungus Wolfiporia cocos. Fungal Genet Biol 2023; 166:103793. [PMID: 37120905 DOI: 10.1016/j.fgb.2023.103793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023]
Abstract
The medicinal fungus Wolfiporia cocos colonizes and then grows on the wood of Pinus species, and utilizes a variety of Carbohydrate Active Enzymes (CAZymes) to degrades wood for the development of large sclerotia that is mostly built up of beta-glucans. Some differentially expressed CAZymes were revealed by comparisons between the mycelia cultured on potato dextrose agar (PDA) and sclerotia formed on pine logs in previous studies. Here, different profile of expressed CAZymes were revealed by comparisons between the mycelia colonization on pine logs (Myc.) and sclerotia (Scl.b). To further explore the regulation and function of carbon metabolism in the conversion of carbohydrates from Pine species by W. cocos, the transcript profile of core carbon metabolism was firstly analyzed, and it was characterized by the up-regulated expression of genes in the glycolysis pathway (EMP) and pentose phosphate pathway (PPP) in Scl.b, as well as high expression of genes in the tricarboxylic acid cycle (TCA) in both Myc. and Scl.b stages. The conversion between glucose and glycogen and between glucose and β-glucan was firstly identified as the main carbon flow in the differentiation process of W. cocos sclerotia, with a gradual increase in the content of β-glucan, trehalose and polysaccharide during this process. Additionally, gene functional analysis revealed that the two key genes (PGM and UGP1) may mediate the formation and development of W. cocos sclerotia possibly by regulating β-glucan synthesis and hyphal branching. This study has shed light on the regulation and function of carbon metabolism during large W. cocos sclerotium formation and may facilitate its commercial production.
Collapse
Affiliation(s)
- Cong Zhang
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Lianfu Chen
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Mengting Chen
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Zhangyi Xu
- Institute of Applied Mycology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
3
|
Nagel JH, Wingfield MJ, Slippers B. Next-generation sequencing provides important insights into the biology and evolution of the Botryosphaeriaceae. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Liu L, Sasse C, Dirnberger B, Valerius O, Fekete-Szücs E, Harting R, Nordzieke DE, Pöggeler S, Karlovsky P, Gerke J, Braus GH. Secondary metabolites of Hülle cells mediate protection of fungal reproductive and overwintering structures against fungivorous animals. eLife 2021; 10:68058. [PMID: 34635205 PMCID: PMC8510581 DOI: 10.7554/elife.68058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022] Open
Abstract
Fungal Hülle cells with nuclear storage and developmental backup functions are reminiscent of multipotent stem cells. In the soil, Hülle cells nurse the overwintering fruiting bodies of Aspergillus nidulans. The genome of A. nidulans harbors genes for the biosynthesis of xanthones. We show that enzymes and metabolites of this biosynthetic pathway accumulate in Hülle cells under the control of the regulatory velvet complex, which coordinates development and secondary metabolism. Deletion strains blocked in the conversion of anthraquinones to xanthones accumulate emodins and are delayed in maturation and growth of fruiting bodies. Emodin represses fruiting body and resting structure formation in other fungi. Xanthones are not required for sexual development but exert antifeedant effects on fungivorous animals such as springtails and woodlice. Our findings reveal a novel role of Hülle cells in establishing secure niches for A. nidulans by accumulating metabolites with antifeedant activity that protect reproductive structures from animal predators.
Collapse
Affiliation(s)
- Li Liu
- University of Göttingen, Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Christoph Sasse
- University of Göttingen, Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Benedict Dirnberger
- University of Göttingen, Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Oliver Valerius
- University of Göttingen, Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Enikő Fekete-Szücs
- University of Göttingen, Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Rebekka Harting
- University of Göttingen, Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Daniela E Nordzieke
- University of Göttingen, Genetics of Eukaryotic Microorganisms and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Stefanie Pöggeler
- University of Göttingen, Genetics of Eukaryotic Microorganisms and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Petr Karlovsky
- University of Göttingen, Molecular Phytopathology and Mycotoxin Research, Göttingen, Germany
| | - Jennifer Gerke
- University of Göttingen, Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| | - Gerhard H Braus
- University of Göttingen, Molecular Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), Göttingen, Germany
| |
Collapse
|
5
|
Xie Y, Chang J, Kwan HS. Carbon metabolism and transcriptome in developmental paths differentiation of a homokaryotic Coprinopsis cinerea strain. Fungal Genet Biol 2020; 143:103432. [PMID: 32681999 DOI: 10.1016/j.fgb.2020.103432] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/01/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023]
Abstract
The balance and interplay between sexual and asexual reproduction is one of the most intriguing mysteries in the study of fungi. The choice of developmental strategy reflects the ability of fungi to adapt to the changing environment. However, the evolution of developmental paths and the metabolic regulation during differentiation and morphogenesis are poorly understood. Here, an analysis was performed of carbohydrate metabolism and gene expression regulation during the early differentiation process from the vegetative mycelium, to the differentiated structures, fruiting body, oidia and sclerotia, of a homokaryotic fruiting Coprinopsis cinerea strain A43mutB43mut pab1-1 #326. Changes during morphogenesis and the evolution of developmental strategies were followed. Conversion between glucose and glycogen and between glucose and beta-glucan were the main carbon flows in the differentiation processes. Genes related to carbohydrate transport and metabolism were significantly differentially expressed among paths. Sclerotia displayed a set of specifically up-regulated genes that were enriched in the carbon metabolism and energy production and conversion processes. Evolutionary transcriptomic analysis of four developmental paths showed that all transcriptomes were under the purifying selection, and the more stressful the environment, the younger the transcriptome age. Oidiation has the lowest value of transcriptome age index (TAI) and transcriptome divergence index (TDI), while the fruiting process has the highest of both indexes. These findings provide new insights into the regulations of carbon metabolism and gene expressions during the early stages of fungal developmental paths differentiation, and improve our understanding of the evolutionary process of life history and reproductive strategy in fungi.
Collapse
Affiliation(s)
- Yichun Xie
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Jinhui Chang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region.
| |
Collapse
|
6
|
Gene expression in the smut fungus Ustilago esculenta governs swollen gall metamorphosis in Zizania latifolia. Microb Pathog 2020; 143:104107. [PMID: 32120003 DOI: 10.1016/j.micpath.2020.104107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 01/02/2023]
Abstract
Ustilago esculenta, a smut fungus, can induce the formation of culm galls in Zizania latifolia, a vegetable consumed in many Asian countries. Specifically, the mycelia-teliospore (M-T) strain of U. esculenta induces the Jiaobai (JB) type of gall, while the teliospore (T) strain induces the Huijiao (HJ) type. The underlying molecular mechanism responsible for the formation of the two distinct types of gall remains unclear. Our results showed that most differentially expressed genes relevant to effector proteins were up-regulated in the T strain compared to those in the M-T strain during gall formation, and the expression of teliospore formation-related genes was higher in the T strain than the M-T strain. Melanin biosynthesis was also clearly induced in the T strain. The T strain exhibited stronger pathogenicity and greater teliospore production than the M-T strain. We evaluated the implications of the gene regulatory networks in the development of these two type of culm gall in Z. latifolia infected with U. esculenta and suggested potential targets for genetic manipulation to modify the gall type for this crop.
Collapse
|
7
|
Integration of ATAC-Seq and RNA-Seq Identifies Key Genes in Light-Induced Primordia Formation of Sparassis latifolia. Int J Mol Sci 2019; 21:ijms21010185. [PMID: 31888059 PMCID: PMC6981827 DOI: 10.3390/ijms21010185] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 01/01/2023] Open
Abstract
Light is an essential environmental factor for Sparassis latifolia primordia formation, but the molecular mechanism is still unclear. In this study, differential expression profiling of light-induced primordia formation (LIPF) was established by integrating the assay for transposase accessible chromatin by sequencing (ATAC-seq) and RNA-seq technology. The integrated results from the ATAC-seq and RNA-seq showed 13 down-regulated genes and 17 up-regulated genes in both the L vs. D and P vs. D groups, for both methods. According to the gene ontology (GO) annotation of these differentially expressed genes (DEGs), the top three biological process categories were cysteine biosynthetic process via cystathionine, vitamin B6 catabolic, and glycine metabolic; the top three molecular function categories were 5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase activity, glycine binding, and pyridoxal phosphate binding; cellular component categories were significantly enriched in the glycine cleavage complex. The KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis revealed that these genes were associated with vitamin B6 metabolism; selenocompound metabolism; cysteine and methionine metabolism; glycine, serine, and threonine metabolism; and glyoxylate and dicarboxylate metabolism pathways. The expression of most of the DEGs was validated by qRT-PCR. To the best of our knowledge, this study is the first integrative analysis of ATAC-seq and RNA-seq for macro-fungi. These results provided a new perspective on the understanding of key pathways and hub genes in LIPF in S. latifolia. It will be helpful in understanding the primary environmental response, and provides new information to the existing models of primordia formation in edible and medicinal fungi.
Collapse
|
8
|
Martínez-Soto D, Velez-Haro JM, León-Ramírez CG, Galán-Vásquez E, Chávez-Munguía B, Ruiz-Herrera J. Multicellular growth of the Basidiomycota phytopathogen fungus Sporisorium reilianum induced by acid conditions. Folia Microbiol (Praha) 2019; 65:511-521. [PMID: 31721091 DOI: 10.1007/s12223-019-00755-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
Abstract
Fungi are considered model organisms for the analysis of important phenomena of eukaryotes. For example, some of them have been described as models to understand the phenomenon of multicellularity acquisition by different unicellular organisms phylogenetically distant. Interestingly, in this work, we describe the multicellular development in the model fungus S. reilianum. We observed that Sporisorium reilianum, a Basidiomycota cereal pathogen that at neutral pH grows with a yeast-like morphology during its saprophytic haploid stage, when incubated at acid pH grew in the form of multicellular clusters. The multicellularity observed in S. reilianum was of clonal type, where buds of "stem" cells growing as yeasts remain joined by their cell wall septa, after cytokinesis. The elaboration and analysis of a regulatory network of S. reilianum showed that the putative zinc finger transcription factor CBQ73544.1 regulates a number of genes involved in cell cycle, cellular division, signal transduction pathways, and biogenesis of cell wall. Interestingly, homologous of these genes have been found to be regulated during Saccharomyces cerevisiae multicellular growth. In adddition, some of these genes were found to be negatively regulated during multicellularity of S. reilianum. With these data, we suggest that S. reilianum is an interesting model for the study of multicellular development.
Collapse
Affiliation(s)
- Domingo Martínez-Soto
- Ingeniería en Innovación Agrícola Sustentable, Instituto Tecnológico Superior de Los Reyes, Los Reyes, Michoacán, México. .,Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México. .,Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA. .,Ingeniería en Innovación Agrícola Sustentable, Instituto Tecnológico Superior de Los Reyes, Carretera Los Reyes-Jacona, Libertad, 60300, Los Reyes Michoacán, México.
| | - John Martin Velez-Haro
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México.,Departamento de Ingeniería Bioquímica, Instituto Tecnológico de Celaya, Guanajuato, México
| | - Claudia Geraldine León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Edgardo Galán-Vásquez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, San Pedro Zacatenco, Cd. de México, México
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| |
Collapse
|
9
|
Almási É, Sahu N, Krizsán K, Bálint B, Kovács GM, Kiss B, Cseklye J, Drula E, Henrissat B, Nagy I, Chovatia M, Adam C, LaButti K, Lipzen A, Riley R, Grigoriev IV, Nagy LG. Comparative genomics reveals unique wood-decay strategies and fruiting body development in the Schizophyllaceae. THE NEW PHYTOLOGIST 2019; 224:902-915. [PMID: 31257601 DOI: 10.1111/nph.16032] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Agaricomycetes are fruiting body-forming fungi that produce some of the most efficient enzyme systems to degrade wood. Despite decades-long interest in their biology, the evolution and functional diversity of both wood-decay and fruiting body formation are incompletely known. We performed comparative genomic and transcriptomic analyses of wood-decay and fruiting body development in Auriculariopsis ampla and Schizophyllum commune (Schizophyllaceae), species with secondarily simplified morphologies, an enigmatic wood-decay strategy and weak pathogenicity to woody plants. The plant cell wall-degrading enzyme repertoires of Schizophyllaceae are transitional between those of white rot species and less efficient wood-degraders such as brown rot or mycorrhizal fungi. Rich repertoires of suberinase and tannase genes were found in both species, with tannases restricted to Agaricomycetes that preferentially colonize bark-covered wood, suggesting potential complementation of their weaker wood-decaying abilities and adaptations to wood colonization through the bark. Fruiting body transcriptomes revealed a high rate of divergence in developmental gene expression, but also several genes with conserved expression patterns, including novel transcription factors and small-secreted proteins, some of the latter which might represent fruiting body effectors. Taken together, our analyses highlighted novel aspects of wood-decay and fruiting body development in an important family of mushroom-forming fungi.
Collapse
Affiliation(s)
- Éva Almási
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| | - Neha Sahu
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| | - Krisztina Krizsán
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| | - Gábor M Kovács
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, 1022, Hungary
| | - Brigitta Kiss
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| | | | - Elodie Drula
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288, Marseille, France
- INRA, USC 1408 AFMB, 13288, Marseille, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Université Aix-Marseille, 163 Avenue de Luminy, 13288, Marseille, France
- INRA, USC 1408 AFMB, 13288, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - István Nagy
- Seqomics Ltd. Mórahalom, Mórahalom, 6782, Hungary
| | - Mansi Chovatia
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Catherine Adam
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Robert Riley
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, HAS, Szeged, 6726, Hungary
| |
Collapse
|
10
|
Integration of Fungus-Specific CandA-C1 into a Trimeric CandA Complex Allowed Splitting of the Gene for the Conserved Receptor Exchange Factor of CullinA E3 Ubiquitin Ligases in Aspergilli. mBio 2019; 10:mBio.01094-19. [PMID: 31213557 PMCID: PMC6581859 DOI: 10.1128/mbio.01094-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aspergillus species are important for biotechnological applications, like the production of citric acid or antibacterial agents. Aspergilli can cause food contamination or invasive aspergillosis to immunocompromised humans or animals. Specific treatment is difficult due to limited drug targets and emerging resistances. The CandA complex regulates, as a receptor exchange factor, the activity and substrate variability of the ubiquitin labeling machinery for 26S proteasome-mediated protein degradation. Only Aspergillus species encode at least two proteins that form a CandA complex. This study shows that Aspergillus species had to integrate a third component into the CandA receptor exchange factor complex that is unique to aspergilli and required for vegetative growth, sexual reproduction, and activation of the ubiquitin labeling machinery. These features have interesting implications for the evolution of protein complexes and could make CandA-C1 an interesting candidate for target-specific drug design to control fungal growth without affecting the human ubiquitin-proteasome system. E3 cullin-RING ubiquitin ligase (CRL) complexes recognize specific substrates and are activated by covalent modification with ubiquitin-like Nedd8. Deneddylation inactivates CRLs and allows Cand1/A to bind and exchange substrate recognition subunits. Human as well as most fungi possess a single gene for the receptor exchange factor Cand1, which is split and rearranged in aspergilli into two genes for separate proteins. Aspergillus nidulans CandA-N blocks the neddylation site, and CandA-C inhibits the interaction to the adaptor/substrate receptor subunits similar to the respective N-terminal and C-terminal parts of single Cand1. The pathogen Aspergillus fumigatus and related species express a CandA-C with a 190-amino-acid N-terminal extension domain encoded by an additional exon. This extension corresponds in most aspergilli, including A. nidulans, to a gene directly upstream of candA-C encoding a 20-kDa protein without human counterpart. This protein was named CandA-C1, because it is also required for the cellular deneddylation/neddylation cycle and can form a trimeric nuclear complex with CandA-C and CandA-N. CandA-C and CandA-N are required for asexual and sexual development and control a distinct secondary metabolism. CandA-C1 and the corresponding domain of A. fumigatus control spore germination, vegetative growth, and the repression of additional secondary metabolites. This suggests that the dissection of the conserved Cand1-encoding gene within the genome of aspergilli was possible because it allowed the integration of a fungus-specific protein required for growth into the CandA complex in two different gene set versions, which might provide an advantage in evolution.
Collapse
|
11
|
COP9 Signalosome Interaction with UspA/Usp15 Deubiquitinase Controls VeA-Mediated Fungal Multicellular Development. Biomolecules 2019; 9:biom9060238. [PMID: 31216760 PMCID: PMC6627422 DOI: 10.3390/biom9060238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/02/2019] [Accepted: 06/16/2019] [Indexed: 12/26/2022] Open
Abstract
COP9 signalosome (CSN) and Den1/A deneddylases physically interact and promote multicellular development in fungi. CSN recognizes Skp1/cullin-1/Fbx E3 cullin-RING ligases (CRLs) without substrate and removes their posttranslational Nedd8 modification from the cullin scaffold. This results in CRL complex disassembly and allows Skp1 adaptor/Fbx receptor exchange for altered substrate specificity. We characterized the novel ubiquitin-specific protease UspA of the mold Aspergillusnidulans, which corresponds to CSN-associated human Usp15 and interacts with six CSN subunits. UspA reduces amounts of ubiquitinated proteins during fungal development, and the uspA gene expression is repressed by an intact CSN. UspA is localized in proximity to nuclei and recruits proteins related to nuclear transport and transcriptional processing, suggesting functions in nuclear entry control. UspA accelerates the formation of asexual conidiospores, sexual development, and supports the repression of secondary metabolite clusters as the derivative of benzaldehyde (dba) genes. UspA reduces protein levels of the fungal NF-kappa B-like velvet domain protein VeA, which coordinates differentiation and secondary metabolism. VeA stability depends on the Fbx23 receptor, which is required for light controlled development. Our data suggest that the interplay between CSN deneddylase, UspA deubiquitinase, and SCF-Fbx23 ensures accurate levels of VeA to support fungal development and an appropriate secondary metabolism.
Collapse
|
12
|
Sakamoto Y. Influences of environmental factors on fruiting body induction, development and maturation in mushroom-forming fungi. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2018.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Song HY, Kim DH, Kim JM. Comparative transcriptome analysis of dikaryotic mycelia and mature fruiting bodies in the edible mushroom Lentinula edodes. Sci Rep 2018; 8:8983. [PMID: 29895888 PMCID: PMC5997629 DOI: 10.1038/s41598-018-27318-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/31/2018] [Indexed: 02/08/2023] Open
Abstract
Lentinula edodes is a popular cultivated edible mushroom with high nutritional and medicinal value. To understand the regulation of gene expression in the dikaryotic mycelium and mature fruiting body in the commercially important Korean L. edodes strain, we first performed comparative transcriptomic analysis, using Illumina HiSeq platform. De novo assembly of these sequences revealed 11,675 representative transcripts in two different stages of L. edodes. A total of 9,092 unigenes were annotated and subjected to Gene Ontology, EuKaryotic Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Gene expression analysis revealed that 2,080 genes were differentially expressed, with 1,503 and 577 upregulated in the mycelium and a mature fruiting body, respectively. Analysis of 18 KEGG categories indicated that fruiting body-specific transcripts were significantly enriched in ‘replication and repair’ and ‘transcription’ pathways, which are important for premeiotic replication, karyogamy, and meiosis during maturation. We also searched for fruiting body-specific proteins such as aspartic protease, gamma-glutamyl transpeptidase, and cyclohexanone monooxygenase, which are involved in fruiting body maturation and isolation of functional substances. These transcriptomes will be useful in elucidating the molecular mechanisms of mature fruiting body development and beneficial properties, and contribute to the characterization of novel genes in L. edodes.
Collapse
Affiliation(s)
- Ha-Yeon Song
- Department of Bio-Environmental Chemistry, Institute of Life Science and Natural Resources, Wonkwang University, Iksan, Chonbuk, 54538, Korea
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Chonbuk, 54896, Korea
| | - Jung-Mi Kim
- Department of Bio-Environmental Chemistry, Institute of Life Science and Natural Resources, Wonkwang University, Iksan, Chonbuk, 54538, Korea.
| |
Collapse
|
14
|
Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N, Fischer R. Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiol Mol Biol Rev 2018; 82:e00068-17. [PMID: 29643171 PMCID: PMC5968459 DOI: 10.1128/mmbr.00068-17] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Jesús Aguirre
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Salomon Bartnicki-García
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Ursula Fleig
- Institute for Functional Genomics of Microorganisms, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Wilhelm Hansberg
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Jörg Kämper
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ulrich Kück
- Ruhr University Bochum, Lehrstuhl für Allgemeine und Molekulare Botanik, Bochum, Germany
| | - Rosa R Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Norio Takeshita
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | - Reinhard Fischer
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
15
|
Nagy LG, Kovács GM, Krizsán K. Complex multicellularity in fungi: evolutionary convergence, single origin, or both? Biol Rev Camb Philos Soc 2018; 93:1778-1794. [DOI: 10.1111/brv.12418] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 12/22/2022]
Affiliation(s)
- László G. Nagy
- Synthetic and Systems Biology Unit; Institute of Biochemistry, BRC-HAS, 62 Temesvári krt; 6726 Szeged Hungary
| | - Gábor M. Kovács
- Department of Plant Anatomy; Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C; H-1117 Budapest Hungary
- Plant Protection Institute, Centre for Agricultural Research; Hungarian Academy of Sciences (MTA-ATK); PO Box 102, H-1525 Budapest Hungary
| | - Krisztina Krizsán
- Synthetic and Systems Biology Unit; Institute of Biochemistry, BRC-HAS, 62 Temesvári krt; 6726 Szeged Hungary
| |
Collapse
|
16
|
Feng K, Wang LY, Liao DJ, Lu XP, Hu DJ, Liang X, Zhao J, Mo ZY, Li SP. Potential molecular mechanisms for fruiting body formation of Cordyceps illustrated in the case of Cordyceps sinensis. Mycology 2017; 8:231-258. [PMID: 30123644 PMCID: PMC6059060 DOI: 10.1080/21501203.2017.1365314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/04/2017] [Indexed: 11/30/2022] Open
Abstract
The fruiting body formation mechanisms of Cordyceps sinensis are still unclear. To explore the mechanisms, proteins potentially related to the fruiting body formation, proteins from fruiting bodies, and mycelia of Cordyceps species were assessed by using two-dimensional fluorescence difference gel electrophoresis, and the differential expression proteins were identified by matrix-assisted laser desorption/ionisation tandem time of flight mass spectrometry. The results showed that 198 differential expression proteins (252 protein spots) were identified during the fruiting body formation of Cordyceps species, and 24 of them involved in fruiting body development in both C. sinensis and other microorganisms. Especially, enolase and malate dehydrogenase were first found to play an important role in fruiting body development in macro-fungus. The results implied that cAMP signal pathway involved in fruiting body development of C. sinensis, meanwhile glycometabolism, protein metabolism, energy metabolism, and cell reconstruction were more active during fruiting body development. It has become evident that fruiting body formation of C. sinensis is a highly complex differentiation process and requires precise integration of a number of fundamental biological processes. Although the fruiting body formation mechanisms for all these activities remain to be further elucidated, the possible mechanism provides insights into the culture of C. sinensis.
Collapse
Affiliation(s)
- Kun Feng
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Lan-Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China.,Department of Chemistry and Pharmacy, Zhuhai College of Jilin University, Zhuhai, China
| | - Dong-Jiang Liao
- The State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Xin-Peng Lu
- The State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - De-Jun Hu
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | | | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zi-Yao Mo
- The State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Shao-Ping Li
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
17
|
León-Ramírez CG, Cabrera-Ponce JL, Martínez-Soto D, Sánchez-Arreguin A, Aréchiga-Carvajal ET, Ruiz-Herrera J. Transcriptomic analysis of basidiocarp development in Ustilago maydis (DC) Cda. Fungal Genet Biol 2017; 101:34-45. [PMID: 28285895 DOI: 10.1016/j.fgb.2017.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/07/2017] [Accepted: 02/28/2017] [Indexed: 01/20/2023]
Abstract
Previously, we demonstrated that when Ustilago maydis (DC) Cda., a phytopathogenic basidiomycete and the causal agent of corn smut, is grown in the vicinity of maize embryogenic calli in a medium supplemented with the herbicide Dicamba, it developed gastroid-like basidiocarps. To elucidate the molecular mechanisms involved in the basidiocarp development by the fungus, we proceeded to analyze the transcriptome of the process, identifying a total of 2002 and 1064 differentially expressed genes at two developmental stages, young and mature basidiocarps, respectively. Function of these genes was analyzed with the use of different databases. MIPS analysis revealed that in the stage of young basidiocarp, among the ca. two thousand differentially expressed genes, there were some previously described for basidiocarp development in other fungal species. Additional elements that operated at this stage included, among others, genes encoding the transcription factors FOXO3, MIG3, PRO1, TEC1, copper and MFS transporters, and cytochromes P450. During mature basidiocarp development, important up-regulated genes included those encoding hydrophobins, laccases, and ferric reductase (FRE/NOX). The demonstration that a mapkk mutant was unable to form basidiocarps, indicated the importance of the MAPK signaling pathway in this developmental process.
Collapse
Affiliation(s)
- C G León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36825 Irapuato, Guanajuato, Mexico
| | - J L Cabrera-Ponce
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36825 Irapuato, Guanajuato, Mexico.
| | - D Martínez-Soto
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36825 Irapuato, Guanajuato, Mexico
| | - A Sánchez-Arreguin
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36825 Irapuato, Guanajuato, Mexico; Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, Nuevo León, Mexico
| | - E T Aréchiga-Carvajal
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, Nuevo León, Mexico
| | - J Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36825 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
18
|
Halbwachs H, Simmel J, Bässler C. Tales and mysteries of fungal fruiting: How morphological and physiological traits affect a pileate lifestyle. FUNGAL BIOL REV 2016. [DOI: 10.1016/j.fbr.2016.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Lehr NA, Wang Z, Li N, Hewitt DA, López-Giráldez F, Trail F, Townsend JP. Gene expression differences among three Neurospora species reveal genes required for sexual reproduction in Neurospora crassa. PLoS One 2014; 9:e110398. [PMID: 25329823 PMCID: PMC4203796 DOI: 10.1371/journal.pone.0110398] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/16/2014] [Indexed: 12/23/2022] Open
Abstract
Many fungi form complex three-dimensional fruiting bodies, within which the meiotic machinery for sexual spore production has been considered to be largely conserved over evolutionary time. Indeed, much of what we know about meiosis in plant and animal taxa has been deeply informed by studies of meiosis in Saccharomyces and Neurospora. Nevertheless, the genetic basis of fruiting body development and its regulation in relation to meiosis in fungi is barely known, even within the best studied multicellular fungal model Neurospora crassa. We characterized morphological development and genome-wide transcriptomics in the closely related species Neurospora crassa, Neurospora tetrasperma, and Neurospora discreta, across eight stages of sexual development. Despite diverse life histories within the genus, all three species produce vase-shaped perithecia. Transcriptome sequencing provided gene expression levels of orthologous genes among all three species. Expression of key meiosis genes and sporulation genes corresponded to known phenotypic and developmental differences among these Neurospora species during sexual development. We assembled a list of genes putatively relevant to the recent evolution of fruiting body development by sorting genes whose relative expression across developmental stages increased more in N. crassa relative to the other species. Then, in N. crassa, we characterized the phenotypes of fruiting bodies arising from crosses of homozygous knockout strains of the top genes. Eight N. crassa genes were found to be critical for the successful formation of perithecia. The absence of these genes in these crosses resulted in either no perithecium formation or in arrested development at an early stage. Our results provide insight into the genetic basis of Neurospora sexual reproduction, which is also of great importance with regard to other multicellular ascomycetes, including perithecium-forming pathogens, such as Claviceps purpurea, Ophiostoma ulmi, and Glomerella graminicola.
Collapse
Affiliation(s)
- Nina A. Lehr
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Zheng Wang
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Department of Biostatistics, Yale University, New Haven, Connecticut, United States of America
| | - Ning Li
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - David A. Hewitt
- Department of Botany, Academy of Natural Sciences, Philadelphia, Pennsylvania, United States of America
- Wagner Free Institute of Science, Philadelphia, Pennsylvania, United States of America
| | - Francesc López-Giráldez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
| | - Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, United States of America
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
| | - Jeffrey P. Townsend
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Department of Biostatistics, Yale University, New Haven, Connecticut, United States of America
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Program in Microbiology, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
20
|
Noble LM, Andrianopoulos A. Fungal genes in context: genome architecture reflects regulatory complexity and function. Genome Biol Evol 2013; 5:1336-52. [PMID: 23699226 PMCID: PMC3730340 DOI: 10.1093/gbe/evt077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gene context determines gene expression, with local chromosomal environment most influential. Comparative genomic analysis is often limited in scope to conserved or divergent gene and protein families, and fungi are well suited to this approach with low functional redundancy and relatively streamlined genomes. We show here that one aspect of gene context, the amount of potential upstream regulatory sequence maintained through evolution, is highly predictive of both molecular function and biological process in diverse fungi. Orthologs with large upstream intergenic regions (UIRs) are strongly enriched in information processing functions, such as signal transduction and sequence-specific DNA binding, and, in the genus Aspergillus, include the majority of experimentally studied, high-level developmental and metabolic transcriptional regulators. Many uncharacterized genes are also present in this class and, by implication, may be of similar importance. Large intergenic regions also share two novel sequence characteristics, currently of unknown significance: they are enriched for plus-strand polypyrimidine tracts and an information-rich, putative regulatory motif that was present in the last common ancestor of the Pezizomycotina. Systematic consideration of gene UIR in comparative genomics, particularly for poorly characterized species, could help reveal organisms’ regulatory priorities.
Collapse
Affiliation(s)
- Luke M Noble
- Department of Genetics, University of Melbourne, Victoria, Australia
| | | |
Collapse
|
21
|
Sillo F, Gissi C, Chignoli D, Ragni E, Popolo L, Balestrini R. Expression and phylogenetic analyses of the Gel/Gas proteins of Tuber melanosporum provide insights into the function and evolution of glucan remodeling enzymes in fungi. Fungal Genet Biol 2013; 53:10-21. [PMID: 23454547 DOI: 10.1016/j.fgb.2013.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/08/2013] [Accepted: 01/31/2013] [Indexed: 11/29/2022]
Abstract
The β(1,3)-glucanosyltransferases of the GH72 family are redundant enzymes that are essential for the formation and dynamic remodeling of the fungal wall during different stages of the life cycle. Four putative genes encoding glycosylphosphatidylinositol (GPI)-anchored β(1,3)-glucanosyltransferases, designated TmelGEL1, TmelGEL2, TmelGEL4 and TmelGAS4, have been annotated in the genome of Tuber melanosporum, an ectomycorrhizal fungus that also produces a hypogeous fruiting body (FB) of great commercial value (black truffle). This work focuses on the characterization and expression of this multigene family by taking advantage of a laser microdissection (LMD) technology that has been used to separate two distinct compartments in the FB, the hyphae and the asci containing the ascospores. Of the four genes, TmelGEL1 was the most up-regulated in the FB compared to the free-living mycelium. Inside the FB, the expression of TmelGEL1 was restricted to the hyphal compartment. A phylogenetic analysis of the Gel/Gas protein family of T. melanosporum was also carried out. A total of 237 GH72 proteins from 51 Ascomycotina and 3 Basidiomycota (outgroup) species were analyzed. The resulting tree provides insight into the evolution of the T. melanosporum proteins and identifies new GH72 paralogs/subfamilies. Moreover, it represents a starting point to formulate new hypotheses on the significance of the striking GH72 gene redundancy in fungal biology.
Collapse
Affiliation(s)
- Fabiano Sillo
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale Mattioli 25, 10125 Torino, Italy.
| | | | | | | | | | | |
Collapse
|
22
|
Röhrig J, Kastner C, Fischer R. Light inhibits spore germination through phytochrome in Aspergillus nidulans. Curr Genet 2013; 59:55-62. [PMID: 23385948 DOI: 10.1007/s00294-013-0387-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/02/2013] [Accepted: 01/04/2013] [Indexed: 11/30/2022]
Abstract
Aspergillus nidulans responds to light in several aspects. The balance between sexual and asexual development as well as the amount of secondary metabolites produced is controlled by light. Here, we show that germination is largely delayed by blue (450 nm), red (700 nm), and far-red light (740 nm). The largest effect was observed with far-red light. Whereas 60 % of the conidia produced a germ tube after 20 h in the dark, less than 5 % of the conidia germinated under far-red light conditions. Because swelling of conidia was not affected, light appears to act at the stage of germ-tube formation. In the absence of nutrients, far-red light even inhibited swelling of conidia, whereas in the dark, conidia did swell and germinated after prolonged incubation. The blue-light signaling components, LreA (WC-1) and LreB (WC-2), and also the cryptochrome/photolyase CryA were not required for germination inhibition. However, in the phytochrome mutant, ∆fphA, the germination delay was released, but germination was delayed in the dark in comparison to wild type. This suggests a novel function of phytochrome as far-red light sensor and as activator of polarized growth in the dark.
Collapse
Affiliation(s)
- Julian Röhrig
- Department of Microbiology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (KIT), Hertzstrasse 16, 76187 Karlsruhe, Germany
| | | | | |
Collapse
|
23
|
Stuck in time – a new Chaenothecopsis species with proliferating ascomata from Cunninghamia resin and its fossil ancestors in European amber. FUNGAL DIVERS 2012. [DOI: 10.1007/s13225-012-0210-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Cabrera-Ponce JL, León-Ramírez CG, Verver-Vargas A, Palma-Tirado L, Ruiz-Herrera J. Metamorphosis of the Basidiomycota Ustilago maydis: transformation of yeast-like cells into basidiocarps. Fungal Genet Biol 2012; 49:765-71. [PMID: 22921263 DOI: 10.1016/j.fgb.2012.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 11/17/2022]
Abstract
Ustilago maydis (DC) Cda., a phytopathogenic Basidiomycota, is the causal agent of corn smut. During its life cycle U. maydis alternates between a yeast-like, haploid nonpathogenic stage, and a filamentous, dikaryotic pathogenic form that invades the plant and induces tumor formation. As all the members of the Subphylum Ustilaginomycotina, U. maydis is unable to form basidiocarps, instead it produces teliospores within the tumors that germinate forming a septate basidium (phragmobasidium). We have now established conditions allowing a completely different developmental program of U. maydis when grown on solid medium containing auxins in dual cultures with maize embryogenic calli. Under these conditions U. maydis forms large hemi-spheroidal structures with all the morphological and structural characteristics of gastroid-type basidiocarps. These basidiocarps are made of three distinct hyphal layers, the most internal of which (hymenium) contains non-septate basidia (holobasidia) from which four basidiospores develop. In basidiocarps meiosis and genetic recombination occur, and meiotic products (basidiospores) segregate in a Mendelian fashion. These results are evidence of sexual cycle completion of an Ustilaginomycotina in vitro, and the demonstration that, besides its quasi-obligate biotrophic pathogenic mode of life, U. maydis possesses the genetic program to form basidiocarps as occurs in saprophytic Basidiomycota species.
Collapse
MESH Headings
- Cytokinins/pharmacology
- DNA, Fungal/genetics
- Diploidy
- Fruiting Bodies, Fungal/cytology
- Fruiting Bodies, Fungal/genetics
- Fruiting Bodies, Fungal/growth & development
- Gibberellins/pharmacology
- Haploidy
- Hyphae/cytology
- Hyphae/drug effects
- Hyphae/genetics
- Hyphae/growth & development
- Indoleacetic Acids/pharmacology
- Meiosis
- Metamorphosis, Biological
- Plant Diseases/microbiology
- Plant Growth Regulators/pharmacology
- Recombination, Genetic
- Spores, Fungal/cytology
- Spores, Fungal/drug effects
- Spores, Fungal/genetics
- Spores, Fungal/growth & development
- Ustilago/cytology
- Ustilago/drug effects
- Ustilago/genetics
- Ustilago/growth & development
- Virulence
- Yeasts/cytology
- Yeasts/drug effects
- Yeasts/genetics
- Yeasts/growth & development
- Zea mays/cytology
- Zea mays/embryology
- Zea mays/microbiology
Collapse
Affiliation(s)
- José L Cabrera-Ponce
- Departamento de Ingeniería Genética de Plantas, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del IPN, 36500 Irapuato, Guanajuato, Mexico
| | | | | | | | | |
Collapse
|
25
|
Yang X, Luedeling E, Chen G, Hyde KD, Yang Y, Zhou D, Xu J, Yang Y. Climate change effects fruiting of the prize matsutake mushroom in China. FUNGAL DIVERS 2012. [DOI: 10.1007/s13225-012-0163-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Bayram O, Braus GH. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 2011; 36:1-24. [PMID: 21658084 DOI: 10.1111/j.1574-6976.2011.00285.x] [Citation(s) in RCA: 389] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Filamentous fungi produce a number of small bioactive molecules as part of their secondary metabolism ranging from benign antibiotics such as penicillin to threatening mycotoxins such as aflatoxin. Secondary metabolism can be linked to fungal developmental programs in response to various abiotic or biotic external triggers. The velvet family of regulatory proteins plays a key role in coordinating secondary metabolism and differentiation processes such as asexual or sexual sporulation and sclerotia or fruiting body formation. The velvet family shares a protein domain that is present in most parts of the fungal kingdom from chytrids to basidiomycetes. Most of the current knowledge derives from the model Aspergillus nidulans where VeA, the founding member of the protein family, was discovered almost half a century ago. Different members of the velvet protein family interact with each other and the nonvelvet protein LaeA, primarily in the nucleus. LaeA is a methyltransferase-domain protein that functions as a regulator of secondary metabolism and development. A comprehensive picture of the molecular interplay between the velvet domain protein family, LaeA and other nuclear regulatory proteins in response to various signal transduction pathway starts to emerge from a jigsaw puzzle of several recent studies.
Collapse
Affiliation(s)
- Ozgür Bayram
- Institut für Mikrobiologie und Genetik, Abteilung Molekulare Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | | |
Collapse
|
27
|
On the role of microtubules, cell end markers, and septal microtubule organizing centres on site selection for polar growth in Aspergillus nidulans. Fungal Biol 2011; 115:506-17. [PMID: 21640315 DOI: 10.1016/j.funbio.2011.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 02/04/2011] [Accepted: 02/09/2011] [Indexed: 02/01/2023]
|
28
|
Lord KM, Read ND. Perithecium morphogenesis in Sordaria macrospora. Fungal Genet Biol 2010; 48:388-99. [PMID: 21134480 DOI: 10.1016/j.fgb.2010.11.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 10/28/2010] [Accepted: 11/23/2010] [Indexed: 01/14/2023]
Abstract
The perithecium of the self-fertile ascomycete Sordaria macrospora provides an excellent model in which to analyse fungal multicellular development. This study provides a detailed analysis of perithecium morphogenesis in the wild type and eight developmental mutants of S. macrospora, using a range of correlative microscopical techniques. Fundamentally, perithecia and other complex multicellular structures produced by fungi arise by hyphal aggregation and adhesion, and these processes are followed by specialization and septation of hyphal compartments within the aggregates. Perithecial morphogenesis can be divided into the ascogonial, protoperithecial, and perithecial stages of development. At least 13 specialized, morphologically distinct cell-types are involved in perithecium morphogenesis, and these fall into three basic classes: hyphae, conglutinate cells and spores. Conglutinate cells arise from hyphal adhesion and certain perithecial hyphae develop from conglutinate cells. Various hypha-conglutinate cell transitions play important roles during the development of the perithecial wall and neck.
Collapse
Affiliation(s)
- Kathryn M Lord
- Fungal Cell Biology Group, Institute of Cell Biology, University of Edinburgh, Rutherford Building, Edinburgh EH93JH, UK
| | | |
Collapse
|
29
|
Spotlight on Aspergillus nidulans photosensory systems. Fungal Genet Biol 2010; 47:900-8. [DOI: 10.1016/j.fgb.2010.05.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/09/2010] [Accepted: 05/19/2010] [Indexed: 12/14/2022]
|
30
|
Braus GH, Irniger S, Bayram O. Fungal development and the COP9 signalosome. Curr Opin Microbiol 2010; 13:672-6. [PMID: 20934903 DOI: 10.1016/j.mib.2010.09.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Revised: 09/13/2010] [Accepted: 09/15/2010] [Indexed: 12/26/2022]
Abstract
The conserved COP9 signalosome (CSN) multiprotein complex is located at the interface between cellular signaling, protein modification, life span and the development of multicellular organisms. CSN is required for light-controlled responses in filamentous fungi. This includes the circadian rhythm of Neurospora crassa or the repression of sexual development by light in Aspergillus nidulans. In contrast to plants and animals, CSN is not essential for fungal viability. Therefore fungi are suitable models to study CSN composition, activity and cellular functions and its role in light controlled development.
Collapse
Affiliation(s)
- Gerhard H Braus
- Institut für Mikrobiologie und Genetik, Abteilung Molekulare Mikrobiologie und Genetik, Georg-August-Universität, Grisebachstr. 8, D-37077 Göttingen, Germany.
| | | | | |
Collapse
|
31
|
Pires ABL, Gramacho KP, Silva DC, Góes-Neto A, Silva MM, Muniz-Sobrinho JS, Porto RF, Villela-Dias C, Brendel M, Cascardo JCM, Pereira GAG. Early development of Moniliophthora perniciosa basidiomata and developmentally regulated genes. BMC Microbiol 2009; 9:158. [PMID: 19653910 PMCID: PMC2782264 DOI: 10.1186/1471-2180-9-158] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 08/04/2009] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The hemibiotrophic fungus Moniliophthora perniciosa is the causal agent of Witches' broom, a disease of Theobroma cacao. The pathogen life cycle ends with the production of basidiocarps in dead tissues of the infected host. This structure generates millions of basidiospores that reinfect young tissues of the same or other plants. A deeper understanding of the mechanisms underlying the sexual phase of this fungus may help develop chemical, biological or genetic strategies to control the disease. RESULTS Mycelium was morphologically analyzed prior to emergence of basidiomata by stereomicroscopy, light microscopy and scanning electron microscopy. The morphological changes in the mycelium before fructification show a pattern similar to other members of the order Agaricales. Changes and appearance of hyphae forming a surface layer by fusion were correlated with primordia emergence. The stages of hyphal nodules, aggregation, initial primordium and differentiated primordium were detected. The morphological analysis also allowed conclusions on morphogenetic aspects. To analyze the genes involved in basidiomata development, the expression of some selected EST genes from a non-normalized cDNA library, representative of the fruiting stage of M. perniciosa, was evaluated. A macroarray analysis was performed with 192 selected clones and hybridized with two distinct RNA pools extracted from mycelium in different phases of basidiomata formation. This analysis showed two groups of up and down-regulated genes in primordial phases of mycelia. Hydrophobin coding, glucose transporter, Rho-GEF, Rheb, extensin precursor and cytochrome p450 monooxygenase genes were grouped among the up-regulated. In the down-regulated group relevant genes clustered coding calmodulin, lanosterol 14 alpha demethylase and PIM1. In addition, 12 genes with more detailed expression profiles were analyzed by RT-qPCR. One aegerolysin gene had a peak of expression in mycelium with primordia and a second in basidiomata, confirming their distinctiveness. The number of transcripts of the gene for plerototolysin B increased in reddish-pink mycelium and indicated an activation of the initial basidiomata production even at this culturing stage. Expression of the glucose transporter gene increased in mycelium after the stress, coinciding with a decrease of adenylate cyclase gene transcription. This indicated that nutrient uptake can be an important signal to trigger fruiting in this fungus. CONCLUSION The identification of genes with increased expression in this phase of the life cycle of M. perniciosa opens up new possibilities of controlling fungus spread as well as of genetic studies of biological processes that lead to basidiomycete fruiting. This is the first comparative morphologic study of the early development both in vivo and in vitro of M. perniciosa basidiomata and the first description of genes expressed at this stage of the fungal life cycle.
Collapse
Affiliation(s)
- Acássia B L Pires
- Centro de Biotecnologia e Genética, Laboratório de Genômica e Expressão Gênica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, 45662-000, Ilhéus-Bahia, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bayram Ö, Sari F, Braus GH, Irniger S. The protein kinase ImeB is required for light-mediated inhibition of sexual development and for mycotoxin production inAspergillus nidulans. Mol Microbiol 2009; 71:1278-95. [DOI: 10.1111/j.1365-2958.2009.06606.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Purschwitz J, Müller S, Fischer R. Mapping the interaction sites of Aspergillus nidulans phytochrome FphA with the global regulator VeA and the White Collar protein LreB. Mol Genet Genomics 2008; 281:35-42. [PMID: 18936976 DOI: 10.1007/s00438-008-0390-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 09/23/2008] [Indexed: 12/22/2022]
Abstract
Aspergillus nidulans senses red and blue-light and employs a phytochrome and a Neurospora crassa White Collar (WC) homologous system for light perception and transmits this information into developmental decisions. Under light conditions it undergoes asexual development and in the dark it develops sexually. The phytochrome FphA consists of a light sensory domain and a signal output domain, consisting of a histidine kinase and a response regulator domain. Previously it was shown that the phytochrome FphA directly interacts with the WC-2 homologue, LreB and another regulator, VeA. In this paper we mapped the interaction of FphA with LreB to the histidine kinase and the response regulator domain at the C-terminus in vivo using the bimolecular fluorescence complementation assay and in vitro by co-immunoprecipitation. In comparison, VeA interacted with FphA only at the histidine kinase domain. We present evidence that VeA occurs as a phosphorylated and a non-phosphorylated form in the cell. The phosphorylation status of the protein was independent of the light receptors FphA, LreB and the WC-1 homologue LreA.
Collapse
Affiliation(s)
- Janina Purschwitz
- Institute of Applied Biosciences, Applied Microbiology, University of Karlsruhe, Karlsruhe Institute of Technology (KIT), Hertzstrasse 16, 76187, Karlsruhe, Germany
| | | | | |
Collapse
|
34
|
Affiliation(s)
- Reinhard Fischer
- Applied Microbiology, University of Karlsruhe, 76228 Karlsruhe, Germany.
| |
Collapse
|