1
|
Liu Y, Shen N, Wu Z, Yang Y, Dong X, Jin Z, Jin Q. Effects of S-adenosylmethionine on AfsKRS regulation in pristinamycin biosynthesis in Streptomyces pristinaespiralis. J GEN APPL MICROBIOL 2024; 70:n/a. [PMID: 38583984 DOI: 10.2323/jgam.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
In Streptomyces pristinaespiralis, AfsKRS system has differential regulation for PI and PII component biosynthesis of pristinamycin, but it is unknown whether S-adenosylmethionine (SAM) plays an important role in the AfsK-AfsR-AfsS signal transduction cascade during pristinamycin production. The possible target of exogenous SAM in the AfsKRS system and the biological role of SAM during the production of PI and PII were investigated using three mutantsΔafsK,ΔafsR andΔafsS defective in signal cascade pathway of AfsKRS. It was found that external SAM had a significant activation of PI production (1.85-fold increase) but had no obvious effect on PII production in the original strain F618 with the normal response of AfsKRS regulation. Addition of SAM resulted in a similar increase in pristinamycin yield in the mutant with defective afsK or afsR, but induced more crucial activation of PI biosynthesis than PII biosynthesis both in ΔafsK (1.65-fold and 1.15-fold increase respectively) and ΔafsR (1.27-fold and 1.09-fold increase respectively). Exogenous SAM only significantly enhanced PII production in ΔafsS (1.1-fold increase). These results could provide valuable insights into the regulatory function of the AfsKRS system in S. pristinaespiralis.
Collapse
Affiliation(s)
- Yan Liu
- School of Biological and chemical Engineering, NingboTech University
| | - Na Shen
- School of Biological and chemical Engineering, NingboTech University
| | - Zhige Wu
- School of Biological and chemical Engineering, NingboTech University
| | - Yu Yang
- School of Biological and chemical Engineering, NingboTech University
| | - Xinyan Dong
- School of Biological and chemical Engineering, NingboTech University
| | - Zhihua Jin
- School of Biological and chemical Engineering, NingboTech University
| | - Qingchao Jin
- School of Biological and chemical Engineering, NingboTech University
| |
Collapse
|
2
|
Krysenko S, Wohlleben W. Role of Carbon, Nitrogen, Phosphate and Sulfur Metabolism in Secondary Metabolism Precursor Supply in Streptomyces spp. Microorganisms 2024; 12:1571. [PMID: 39203413 PMCID: PMC11356490 DOI: 10.3390/microorganisms12081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
The natural soil environment of Streptomyces is characterized by variations in the availability of nitrogen, carbon, phosphate and sulfur, leading to complex primary and secondary metabolisms. Their remarkable ability to adapt to fluctuating nutrient conditions is possible through the utilization of a large amount of substrates by diverse intracellular and extracellular enzymes. Thus, Streptomyces fulfill an important ecological role in soil environments, metabolizing the remains of other organisms. In order to survive under changing conditions in their natural habitats, they have the possibility to fall back on specialized enzymes to utilize diverse nutrients and supply compounds from primary metabolism as precursors for secondary metabolite production. We aimed to summarize the knowledge on the C-, N-, P- and S-metabolisms in the genus Streptomyces as a source of building blocks for the production of antibiotics and other relevant compounds.
Collapse
Affiliation(s)
- Sergii Krysenko
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
| | - Wolfgang Wohlleben
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
3
|
H, Elliot MA. Multifactorial genetic control and magnesium levels govern the production of a Streptomyces antibiotic with unusual cell density dependence. mSystems 2024; 9:e0136823. [PMID: 38493407 PMCID: PMC11019849 DOI: 10.1128/msystems.01368-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/15/2024] [Indexed: 03/18/2024] Open
Abstract
Streptomyces bacteria are renowned both for their antibiotic production capabilities and for their cryptic metabolic potential. Their metabolic repertoire is subject to stringent genetic control, with many of the associated biosynthetic gene clusters being repressed by the conserved nucleoid-associated protein Lsr2. In an effort to stimulate new antibiotic production in wild Streptomyces isolates, we leveraged the activity of an Lsr2 knockdown construct and successfully enhanced antibiotic production in the wild Streptomyces isolate WAC07094. We determined that this new activity stemmed from increased levels of the angucycline-like family member saquayamycin. Saquayamycin has both antibiotic and anti-cancer activities, and intriguingly, beyond Lsr2-mediated repression, we found saquayamycin production was also suppressed at high density on solid or in liquid growth media; its levels were greatest in low-density cultures. This density-dependent control was exerted at the level of the cluster-situated regulatory gene sqnR and was mediated in part through the activity of the PhoRP two-component regulatory system, where deleting phoRP led to both constitutive antibiotic production and sqnR expression. This suggests that PhoP functions to repress the expression of sqnR at high cell density. We further discovered that magnesium supplementation could alleviate this density dependence, although its action was independent of PhoP. Finally, we revealed that the nitrogen-responsive regulators GlnR and AfsQ1 could relieve the repression exerted by Lsr2 and PhoP. Intriguingly, we found that this low density-dependent production of saquayamycin was not unique to WAC07094; saquayamycin production by another wild isolate also exhibited low-density activation, suggesting that this spatial control may serve an important ecological function in their native environments.IMPORTANCEStreptomyces specialized metabolic gene clusters are subject to complex regulation, and their products are frequently not observed under standard laboratory growth conditions. For the wild Streptomyces isolate WAC07094, production of the angucycline-family compound saquayamycin is subject to a unique constellation of control factors. Notably, it is produced primarily at low cell density, in contrast to the high cell density production typical of most antibiotics. This unusual density dependence is conserved in other saquayamycin producers and is driven by the pathway-specific regulator SqnR, whose expression is influenced by both nutritional and genetic elements. Collectively, this work provides new insights into an intricate regulatory system governing antibiotic production and indicates there may be benefits to including low-density cultures in antibiotic screening platforms.
Collapse
Affiliation(s)
- Hindra
- Institute of Infectious Disease Research and Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Marie A. Elliot
- Institute of Infectious Disease Research and Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Santos‐Beneit F. What is the role of microbial biotechnology and genetic engineering in medicine? Microbiologyopen 2024; 13:e1406. [PMID: 38556942 PMCID: PMC10982607 DOI: 10.1002/mbo3.1406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
Microbial products are essential for developing various therapeutic agents, including antibiotics, anticancer drugs, vaccines, and therapeutic enzymes. Genetic engineering techniques, functional genomics, and synthetic biology unlock previously uncharacterized natural products. This review highlights major advances in microbial biotechnology, focusing on gene-based technologies for medical applications.
Collapse
Affiliation(s)
- Fernando Santos‐Beneit
- Institute of Sustainable ProcessesValladolidSpain
- Department of Chemical Engineering and Environmental Technology, School of Industrial EngineeringUniversity of ValladolidValladolidSpain
| |
Collapse
|
5
|
Wang Y, Yang X, Yu F, Deng Z, Lin S, Zheng J. Structural and functional characterization of AfsR, an SARP family transcriptional activator of antibiotic biosynthesis in Streptomyces. PLoS Biol 2024; 22:e3002528. [PMID: 38427710 PMCID: PMC10936776 DOI: 10.1371/journal.pbio.3002528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/13/2024] [Accepted: 01/29/2024] [Indexed: 03/03/2024] Open
Abstract
Streptomyces antibiotic regulatory proteins (SARPs) are widely distributed activators of antibiotic biosynthesis. Streptomyces coelicolor AfsR is an SARP regulator with an additional nucleotide-binding oligomerization domain (NOD) and a tetratricopeptide repeat (TPR) domain. Here, we present cryo-electron microscopy (cryo-EM) structures and in vitro assays to demonstrate how the SARP domain activates transcription and how it is modulated by NOD and TPR domains. The structures of transcription initiation complexes (TICs) show that the SARP domain forms a side-by-side dimer to simultaneously engage the afs box overlapping the -35 element and the σHrdB region 4 (R4), resembling a sigma adaptation mechanism. The SARP extensively interacts with the subunits of the RNA polymerase (RNAP) core enzyme including the β-flap tip helix (FTH), the β' zinc-binding domain (ZBD), and the highly flexible C-terminal domain of the α subunit (αCTD). Transcription assays of full-length AfsR and truncated proteins reveal the inhibitory effect of NOD and TPR on SARP transcription activation, which can be eliminated by ATP binding. In vitro phosphorylation hardly affects transcription activation of AfsR, but counteracts the disinhibition of ATP binding. Overall, our results present a detailed molecular view of how AfsR serves to activate transcription.
Collapse
Affiliation(s)
- Yiqun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Yu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianting Zheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Augustijn HE, Roseboom AM, Medema MH, van Wezel GP. Harnessing regulatory networks in Actinobacteria for natural product discovery. J Ind Microbiol Biotechnol 2024; 51:kuae011. [PMID: 38569653 PMCID: PMC10996143 DOI: 10.1093/jimb/kuae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/02/2024] [Indexed: 04/05/2024]
Abstract
Microbes typically live in complex habitats where they need to rapidly adapt to continuously changing growth conditions. To do so, they produce an astonishing array of natural products with diverse structures and functions. Actinobacteria stand out for their prolific production of bioactive molecules, including antibiotics, anticancer agents, antifungals, and immunosuppressants. Attention has been directed especially towards the identification of the compounds they produce and the mining of the large diversity of biosynthetic gene clusters (BGCs) in their genomes. However, the current return on investment in random screening for bioactive compounds is low, while it is hard to predict which of the millions of BGCs should be prioritized. Moreover, many of the BGCs for yet undiscovered natural products are silent or cryptic under laboratory growth conditions. To identify ways to prioritize and activate these BGCs, knowledge regarding the way their expression is controlled is crucial. Intricate regulatory networks control global gene expression in Actinobacteria, governed by a staggering number of up to 1000 transcription factors per strain. This review highlights recent advances in experimental and computational methods for characterizing and predicting transcription factor binding sites and their applications to guide natural product discovery. We propose that regulation-guided genome mining approaches will open new avenues toward eliciting the expression of BGCs, as well as prioritizing subsets of BGCs for expression using synthetic biology approaches. ONE-SENTENCE SUMMARY This review provides insights into advances in experimental and computational methods aimed at predicting transcription factor binding sites and their applications to guide natural product discovery.
Collapse
Affiliation(s)
- Hannah E Augustijn
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Anna M Roseboom
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
- Netherlands Institute for Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
7
|
Hao Y, Liu W, Li X, Wen Y. Streptomyces global regulators AfsR and AfsS interact to co-regulate antibiotic production and morphological development. Microb Biotechnol 2024; 17:e14319. [PMID: 37986689 PMCID: PMC10832544 DOI: 10.1111/1751-7915.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 11/22/2023] Open
Abstract
Streptomyces species have a complex life cycle and are the producers of ~70% of commercial antibiotics. Global regulators AfsR and AfsS are widespread among Streptomyces and have been identified as key activators of antibiotic production in several species. However, their roles as repressors of antibiotic production are unclear; in particular, nothing is known regarding the regulatory mechanism of AfsS, despite many decades of research, because it has no DNA-binding domain. Here, we demonstrate that AfsR and AfsS negatively regulate avermectin production and morphological development in the industrially important species S. avermitilis. AfsR directly represses ave structural genes (aveA1, aveA4), cluster-situated activator gene aveR, and eight key developmental genes, whereas it directly activates afsS, aco (for autoregulator avenolide biosynthesis), and avaR1 (encoding avenolide receptor). GST pull-down, microscale thermophoresis, co-immunoprecipitation, and chromatin immunoprecipitation-quantitative PCR assays demonstrated that AfsS interacts with AfsR to co-regulate target genes involved in avermectin production and development and that this interaction requires intact AfsS repeated sequences and enhances the binding affinity of AfsR to target promoters. AfsR/AfsS interaction also occurs in model species S. coelicolor and S. roseosporus (producer of daptomycin, a cyclic lipopeptide antibiotic widely used for the treatment of human infections), suggesting that such interaction is conserved in Streptomyces species. The master developmental repressor BldD acts as a direct activator of both afsR and afsS. Deletion of afsR or afsS strongly enhances avermectin production in wild-type and industrial S. avermitilis strains. Our findings demonstrate novel regulatory roles and mechanisms of AfsR and AfsS in Streptomyces and facilitate methods for antibiotic overproduction.
Collapse
Affiliation(s)
- Yi Hao
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Wenshuai Liu
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Xingwang Li
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Ying Wen
- State Key Laboratory of Animal Biotech Breeding and College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
8
|
Cruz-Bautista R, Ruíz-Villafán B, Romero-Rodríguez A, Rodríguez-Sanoja R, Sánchez S. Trends in the two-component system's role in the synthesis of antibiotics by Streptomyces. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12623-z. [PMID: 37341754 DOI: 10.1007/s00253-023-12623-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
Despite the advances in understanding the regulatory networks for secondary metabolite production in Streptomyces, the participation of the two-component systems (TCS) in this process still requires better characterization. These sensing systems and their responses to environmental stimuli have been described by evaluating mutant strains with techniques that allow in-depth regulatory responses. However, defining the stimulus that triggers their activation is still a task. The transmembrane nature of the sensor kinases and the high content of GC in the streptomycetes represent significant challenges in their study. In some examples, adding elements to the assay medium has determined the respective ligand. However, a complete TCS description and characterization requires specific amounts of the involved proteins that are most difficult to obtain. The availability of enough sensor histidine kinase concentrations could facilitate the identification of the ligand-protein interaction, and besides would allow the establishment of its phosphorylation mechanisms and determine their tridimensional structure. Similarly, the advances in the development of bioinformatics tools and novel experimental techniques also promise to accelerate the TCSs description and provide knowledge on their participation in the regulation processes of secondary metabolite formation. This review aims to summarize the recent advances in the study of TCSs involved in antibiotic biosynthesis and to discuss alternatives to continue their characterization. KEY POINTS: • TCSs are the environmental signal transducers more abundant in nature. • The Streptomyces have some of the highest number of TCSs found in bacteria. • The study of signal transduction between SHKs and RRs domains is a big challenge.
Collapse
Affiliation(s)
- Rodrigo Cruz-Bautista
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico.
| | - Beatriz Ruíz-Villafán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico
| | - Alba Romero-Rodríguez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CdMx, 04510, Mexico City, Mexico.
| |
Collapse
|
9
|
Jin S, Hui M, Lu Y, Zhao Y. An overview on the two-component systems of Streptomyces coelicolor. World J Microbiol Biotechnol 2023; 39:78. [PMID: 36645528 DOI: 10.1007/s11274-023-03522-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023]
Abstract
The two-component system (TCS) found in various organisms is a regulatory system, which is involved in the response by the organism to stimuli, thereby regulating the internal behavior of the cell. It is commonly found in prokaryotes and is an important signaling system in bacteria. TCSs are involved in the regulation of physiological and morphological differentiation of the industrially important microbes from the genus Streptomyces, which produce a vast array of bioactive secondary metabolites (SMs). Genetic engineering of TCSs can substantially increase the yield of target SMs, which is valuable for industrial-scale production. Research on TCS has mainly been completed in the model strain Streptomyces coelicolor. In this review, we summarize the recent advances in the functional identification and elucidation of the regulatory mechanisms of various TCSs in S. coelicolor, with a focus on their roles in the biosynthesis of important SMs.
Collapse
Affiliation(s)
- Shangping Jin
- College of Bioengineering, Henan University of Technology, 100 Lianhua Street, 450001, Zhengzhou, China
| | - Ming Hui
- College of Bioengineering, Henan University of Technology, 100 Lianhua Street, 450001, Zhengzhou, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, 100 Guilin Road, 200234, Shanghai, China.
| | - Yawei Zhao
- College of Bioengineering, Henan University of Technology, 100 Lianhua Street, 450001, Zhengzhou, China.
| |
Collapse
|
10
|
Sánchez de la Nieta R, Santamaría RI, Díaz M. Two-Component Systems of Streptomyces coelicolor: An Intricate Network to Be Unraveled. Int J Mol Sci 2022; 23:ijms232315085. [PMID: 36499414 PMCID: PMC9739842 DOI: 10.3390/ijms232315085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Bacteria of the Streptomyces genus constitute an authentic biotech gold mine thanks to their ability to produce a myriad of compounds and enzymes of great interest at various clinical, agricultural, and industrial levels. Understanding the physiology of these organisms and revealing their regulatory mechanisms is essential for their manipulation and application. Two-component systems (TCSs) constitute the predominant signal transduction mechanism in prokaryotes, and can detect a multitude of external and internal stimuli and trigger the appropriate cellular responses for adapting to diverse environmental conditions. These global regulatory systems usually coordinate various biological processes for the maintenance of homeostasis and proper cell function. Here, we review the multiple TCSs described and characterized in Streptomyces coelicolor, one of the most studied and important model species within this bacterial group. TCSs are involved in all cellular processes; hence, unravelling the complex regulatory network they form is essential for their potential biotechnological application.
Collapse
|
11
|
Modulation of Multiple Gene Clusters’ Expression by the PAS-LuxR Transcriptional Regulator PteF. Antibiotics (Basel) 2022; 11:antibiotics11080994. [PMID: 35892384 PMCID: PMC9394381 DOI: 10.3390/antibiotics11080994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
PAS-LuxR transcriptional regulators are conserved proteins governing polyene antifungal biosynthesis. PteF is the regulator of filipin biosynthesis from Streptomyces avermitilis. Its mutation drastically abates filipin, but also oligomycin production, a macrolide ATP-synthase inhibitor, and delays sporulation; thus, it has been considered a transcriptional activator. Transcriptomic analyses were performed in S. avermitilis DpteF and its parental strain. Both strains were grown in a YEME medium without sucrose, and the samples were taken at exponential and stationary growth phases. A total of 257 genes showed an altered expression in the mutant, most of them at the exponential growth phase. Surprisingly, despite PteF being considered an activator, most of the genes affected showed overexpression, thereby suggesting a negative modulation. The affected genes were related to various metabolic processes, including genetic information processing; DNA, energy, carbohydrate, and lipid metabolism; morphological differentiation; and transcriptional regulation, among others, but were particularly related to secondary metabolite biosynthesis. Notably, 10 secondary metabolite gene clusters out of the 38 encoded by the genome showed altered expression profiles in the mutant, suggesting a regulatory role for PteF that is wider than expected. The transcriptomic results were validated by quantitative reverse-transcription polymerase chain reaction. These findings provide important clues to understanding the intertwined regulatory machinery that modulates antibiotic biosynthesis in Streptomyces.
Collapse
|
12
|
Zhu Y, Zhang P, Lu T, Wang X, Li A, Lu Y, Tao M, Pang X. Impact of MtrA on phosphate metabolism genes and the response to altered phosphate conditions in Streptomyces. Environ Microbiol 2021; 23:6907-6923. [PMID: 34390613 DOI: 10.1111/1462-2920.15719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 01/21/2023]
Abstract
Phosphate metabolism is known to be regulated by the PhoPR regulatory system in Streptomyces and some other bacteria. In this study, we report that MtrA also regulates phosphate metabolism in Streptomyces. Our data showed that, in Streptomyces coelicolor, MtrA regulates not only phosphate metabolism genes such as phoA but also phoP under different phosphate conditions, including growth on rich complex media without added inorganic phosphate and on defined media with low or high concentrations of inorganic phosphate. Cross-regulation was also observed among mtrA, phoP and glnR under these conditions. We demonstrated both in vitro and in vivo binding of MtrA to the promoter regions of genes associated with phosphate metabolism and to the intergenic region between phoR and phoU, indicating that these phosphate metabolism genes are targets of MtrA. We further showed that MtrA in S. lividans and S. venezuelae has detectable regulatory effects on expression of phosphate metabolism genes. Additionally, the MtrA homologue from Corynebacterium glutamicum bound predicted MtrA sites of multiple phosphate metabolism genes, implying its potential for regulating phosphate metabolism in this species. Overall, our findings support MtrA as a major regulator for phosphate metabolism in Streptomyces and also potentially in other actinobacteria.
Collapse
Affiliation(s)
- Yanping Zhu
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Peipei Zhang
- College of Biomedical Sciences, Shandong First Medical University, Jinan, China
| | - Ting Lu
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xinyuan Wang
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Aiying Li
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Meifeng Tao
- The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuhua Pang
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
13
|
Heat Shock Repressor HspR Directly Controls Avermectin Production, Morphological Development, and H 2O 2 Stress Response in Streptomyces avermitilis. Appl Environ Microbiol 2021; 87:e0047321. [PMID: 34160269 DOI: 10.1128/aem.00473-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heat shock response (HSR) is a universal cellular response that promotes survival following temperature increase. In filamentous Streptomyces, which accounts for ∼70% of commercial antibiotic production, HSR is regulated by transcriptional repressors; in particular, the widespread MerR-family regulator HspR has been identified as a key repressor. However, functions of HspR in other biological processes are unknown. The present study demonstrates that HspR pleiotropically controls avermectin production, morphological development, and heat shock and H2O2 stress responses in the industrially important species Streptomyces avermitilis. HspR directly activated ave structural genes (aveA1 and aveA2) and H2O2 stress-related genes (katA1, catR, katA3, oxyR, ahpC, and ahpD), whereas it directly repressed heat shock genes (HSGs) (the dnaK1-grpE1-dnaJ1-hspR operon, clpB1p, clpB2p, and lonAp) and developmental genes (wblB, ssgY, and ftsH). HspR interacted with PhoP (response regulator of the widespread PhoPR two-component system) at dnaK1p to corepress the important dnaK1-grpE1-dnaJ1-hspR operon. PhoP exclusively repressed target HSGs (htpG, hsp18_1, and hsp18_2) different from those of HspR (clpB1p, clpB2p, and lonAp). A consensus HspR-binding site, 5'-TTGANBBNNHNNNDSTSHN-3', was identified within HspR target promoter regions, allowing prediction of the HspR regulon involved in broad cellular functions. Taken together, our findings demonstrate a key role of HspR in the coordination of a variety of important biological processes in Streptomyces species. IMPORTANCE Our findings are significant to clarify the molecular mechanisms underlying HspR function in Streptomyces antibiotic production, development, and H2O2 stress responses through direct control of its target genes associated with these biological processes. HspR homologs described to date function as transcriptional repressors but not as activators. The results of the present study demonstrate that HspR acts as a dual repressor/activator. PhoP cross talks with HspR at dnaK1p to coregulate the heat shock response (HSR), but it also has its own specific target heat shock genes (HSGs). The novel role of PhoP in the HSR further demonstrates the importance of this regulator in Streptomyces. Overexpression of hspR strongly enhanced avermectin production in Streptomyces avermitilis wild-type and industrial strains. These findings provide new insights into the regulatory roles and mechanisms of HspR and PhoP and facilitate methods for antibiotic overproduction in Streptomyces species.
Collapse
|
14
|
McRose DL, Newman DK. Redox-active antibiotics enhance phosphorus bioavailability. Science 2021; 371:1033-1037. [PMID: 33674490 DOI: 10.1126/science.abd1515] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
Microbial production of antibiotics is common, but our understanding of their roles in the environment is limited. In this study, we explore long-standing observations that microbes increase the production of redox-active antibiotics under phosphorus limitation. The availability of phosphorus, a nutrient required by all life on Earth and essential for agriculture, can be controlled by adsorption to and release from iron minerals by means of redox cycling. Using phenazine antibiotic production by pseudomonads as a case study, we show that phenazines are regulated by phosphorus, solubilize phosphorus through reductive dissolution of iron oxides in the lab and field, and increase phosphorus-limited microbial growth. Phenazines are just one of many examples of phosphorus-regulated antibiotics. Our work suggests a widespread but previously unappreciated role for redox-active antibiotics in phosphorus acquisition and cycling.
Collapse
Affiliation(s)
- Darcy L McRose
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA. .,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
15
|
Martín JF, Liras P, Sánchez S. Modulation of Gene Expression in Actinobacteria by Translational Modification of Transcriptional Factors and Secondary Metabolite Biosynthetic Enzymes. Front Microbiol 2021; 12:630694. [PMID: 33796086 PMCID: PMC8007912 DOI: 10.3389/fmicb.2021.630694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Different types of post-translational modifications are present in bacteria that play essential roles in bacterial metabolism modulation. Nevertheless, limited information is available on these types of modifications in actinobacteria, particularly on their effects on secondary metabolite biosynthesis. Recently, phosphorylation, acetylation, or phosphopantetheneylation of transcriptional factors and key enzymes involved in secondary metabolite biosynthesis have been reported. There are two types of phosphorylations involved in the control of transcriptional factors: (1) phosphorylation of sensor kinases and transfer of the phosphate group to the receiver domain of response regulators, which alters the expression of regulator target genes. (2) Phosphorylation systems involving promiscuous serine/threonine/tyrosine kinases that modify proteins at several amino acid residues, e.g., the phosphorylation of the global nitrogen regulator GlnR. Another post-translational modification is the acetylation at the epsilon amino group of lysine residues. The protein acetylation/deacetylation controls the activity of many short and long-chain acyl-CoA synthetases, transcriptional factors, key proteins of bacterial metabolism, and enzymes for the biosynthesis of non-ribosomal peptides, desferrioxamine, streptomycin, or phosphinic acid-derived antibiotics. Acetyltransferases catalyze acetylation reactions showing different specificity for the acyl-CoA donor. Although it functions as acetyltransferase, there are examples of malonylation, crotonylation, succinylation, or in a few cases acylation activities using bulky acyl-CoA derivatives. Substrates activation by nucleoside triphosphates is one of the central reactions inhibited by lysine acetyltransferases. Phosphorylation/dephosphorylation or acylation/deacylation reactions on global regulators like PhoP, GlnR, AfsR, and the carbon catabolite regulator glucokinase strongly affects the expression of genes controlled by these regulators. Finally, a different type of post-translational protein modification is the phosphopantetheinylation, catalized by phosphopantetheinyl transferases (PPTases). This reaction is essential to modify those enzymes requiring phosphopantetheine groups like non-ribosomal peptide synthetases, polyketide synthases, and fatty acid synthases. Up to five PPTases are present in S. tsukubaensis and S. avermitilis. Different PPTases modify substrate proteins in the PCP or ACP domains of tacrolimus biosynthetic enzymes. Directed mutations of genes encoding enzymes involved in the post-translational modification is a promising tool to enhance the production of bioactive metabolites.
Collapse
Affiliation(s)
- Juan F Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Paloma Liras
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Mexico
| |
Collapse
|
16
|
Sánchez de la Nieta R, Antoraz S, Alzate JF, Santamaría RI, Díaz M. Antibiotic Production and Antibiotic Resistance: The Two Sides of AbrB1/B2, a Two-Component System of Streptomyces coelicolor. Front Microbiol 2020; 11:587750. [PMID: 33162964 PMCID: PMC7581861 DOI: 10.3389/fmicb.2020.587750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Antibiotic resistance currently presents one of the biggest threats to humans. The development and implementation of strategies against the spread of superbugs is a priority for public health. In addition to raising social awareness, approaches such as the discovery of new antibiotic molecules and the elucidation of resistance mechanisms are common measures. Accordingly, the two-component system (TCS) of Streptomyces coelicolor AbrB1/B2, offer amenable ways to study both antibiotic production and resistance. Global transcriptomic comparisons between the wild-type strain S. coelicolor M145 and the mutant ΔabrB, using RNA-Seq, showed that the AbrB1/B2 TCS is implicated in the regulation of different biological processes associated with stress responses, primary and secondary metabolism, and development and differentiation. The ΔabrB mutant showed the up-regulation of antibiotic biosynthetic gene clusters and the down-regulation of the vancomycin resistance gene cluster, according to the phenotypic observations of increased antibiotic production of actinorhodin and undecylprodigiosin, and greater susceptibility to vancomycin. The role of AbrB1/B2 in vancomycin resistance has also been shown by an in silico analysis, which strongly indicates that AbrB1/B2 is a homolog of VraR/S from Staphylococcus aureus and LiaR/S from Enterococcus faecium/Enterococcus faecalis, both of which are implied in vancomycin resistance in these pathogenic organisms that present a serious threat to public health. The results obtained are interesting from a biotechnological perspective since, on one hand, this TCS is a negative regulator of antibiotic production and its high degree of conservation throughout Streptomyces spp. makes it a valuable tool for improving antibiotic production and the discovery of cryptic metabolites with antibiotic action. On the other hand, AbrB1/B2 contributes to vancomycin resistance and is a homolog of VraR/S and LiaR/S, important regulators in clinically relevant antibiotic-resistant bacteria. Therefore, the study of AbrB1/B2 could provide new insight into the mechanism of this type of resistance.
Collapse
Affiliation(s)
- Ricardo Sánchez de la Nieta
- Instituto de Biología Funcional y Genómica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain
| | - Sergio Antoraz
- Instituto de Biología Funcional y Genómica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain
| | - Juan F Alzate
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Centro Nacional de Secuenciación Genómica, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | - Ramón I Santamaría
- Instituto de Biología Funcional y Genómica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain
| | - Margarita Díaz
- Instituto de Biología Funcional y Genómica/Departamento de Microbiología y Genética, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
17
|
McLean TC, Lo R, Tschowri N, Hoskisson PA, Al Bassam MM, Hutchings MI, Som NF. Sensing and responding to diverse extracellular signals: an updated analysis of the sensor kinases and response regulators of Streptomyces species. MICROBIOLOGY-SGM 2020; 165:929-952. [PMID: 31334697 DOI: 10.1099/mic.0.000817] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Streptomyces venezuelae is a Gram-positive, filamentous actinomycete with a complex developmental life cycle. Genomic analysis revealed that S. venezuelae encodes a large number of two-component systems (TCSs): these consist of a membrane-bound sensor kinase (SK) and a cognate response regulator (RR). These proteins act together to detect and respond to diverse extracellular signals. Some of these systems have been shown to regulate antimicrobial biosynthesis in Streptomyces species, making them very attractive to researchers. The ability of S. venezuelae to sporulate in both liquid and solid cultures has made it an increasingly popular model organism in which to study these industrially and medically important bacteria. Bioinformatic analysis identified 58 TCS operons in S. venezuelae with an additional 27 orphan SK and 18 orphan RR genes. A broader approach identified 15 of the 58 encoded TCSs to be highly conserved in 93 Streptomyces species for which high-quality and complete genome sequences are available. This review attempts to unify the current work on TCS in the streptomycetes, with an emphasis on S. venezuelae.
Collapse
Affiliation(s)
- Thomas C McLean
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Rebecca Lo
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Natalia Tschowri
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Mahmoud M Al Bassam
- Department of Paediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Nicolle F Som
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|
18
|
A Hierarchical Network of Four Regulatory Genes Controlling Production of the Polyene Antibiotic Candicidin in Streptomyces sp. Strain FR-008. Appl Environ Microbiol 2020; 86:AEM.00055-20. [PMID: 32086301 DOI: 10.1128/aem.00055-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/18/2020] [Indexed: 11/20/2022] Open
Abstract
The four regulatory genes fscR1 to fscR4 in Streptomyces sp. strain FR-008 form a genetic arrangement that is widely distributed in macrolide-producing bacteria. Our previous work has demonstrated that fscR1 and fscR4 are critical for production of the polyene antibiotic candicidin. In this study, we further characterized the roles of the other two regulatory genes, fscR2 and fscR3, focusing on the relationship between these four regulatory genes. Disruption of a single or multiple regulatory genes did not affect bacterial growth, but transcription of genes in the candicidin biosynthetic gene cluster decreased, and candicidin production was abolished, indicating a critical role for each of the four regulatory genes, including fscR2 and fscR3, in candicidin biosynthesis. We found that fscR1 to fscR4, although differentially expressed throughout the growth phase, displayed similar temporal expression patterns, with an abrupt increase in the early exponential phase, coincident with initial detection of antibiotic production in the same phase. Our data suggest that the four regulatory genes fscR1 to fscR4 have various degrees of control over structural genes in the biosynthetic cluster under the conditions examined. Extensive transcriptional analysis indicated that complex regulation exists between these four regulatory genes, forming a regulatory network, with fscR1 and fscR4 functioning at a lower level. Comprehensive cross-complementation analysis indicates that functional complementation is restricted among the four regulators and unidirectional, with fscR1 complementing the loss of fscR3 or -4 and fscR4 complementing loss of fscR2 Our study provides more insights into the roles of, and the regulatory network formed by, these four regulatory genes controlling production of an important pharmaceutical compound.IMPORTANCE The regulation of antibiotic biosynthesis by Streptomyces species is complex, especially for biosynthetic gene clusters with multiple regulatory genes. The biosynthetic gene cluster for the polyene antibiotic candicidin contains four consecutive regulatory genes, which encode regulatory proteins from different families and which form a subcluster within the larger biosynthetic gene cluster in Streptomyces sp. FR-008. Syntenic arrangements of these regulatory genes are widely distributed in polyene gene clusters, such as the amphotericin and nystatin gene clusters, suggesting a conserved regulatory mechanism controlling production of these clinically important medicines. However, the relationships between these multiple regulatory genes are unknown. In this study, we determined that each of these four regulatory genes is critical for candicidin production. Additionally, using transcriptional analyses, bioassays, high-performance liquid chromatography (HPLC) analysis, and genetic cross-complementation, we showed that FscR1 to FscR4 comprise a hierarchical regulatory network that controls candicidin production and is likely representative of how expression of other polyene biosynthetic gene clusters is controlled.
Collapse
|
19
|
Martín JF, Liras P. The Balance Metabolism Safety Net: Integration of Stress Signals by Interacting Transcriptional Factors in Streptomyces and Related Actinobacteria. Front Microbiol 2020; 10:3120. [PMID: 32038560 PMCID: PMC6988585 DOI: 10.3389/fmicb.2019.03120] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
Soil dwelling Streptomyces species are faced with large variations in carbon or nitrogen sources, phosphate, oxygen, iron, sulfur, and other nutrients. These drastic changes in key nutrients result in an unbalanced metabolism that have undesirable consequences for growth, cell differentiation, reproduction, and secondary metabolites biosynthesis. In the last decades evidence has accumulated indicating that mechanisms to correct metabolic unbalances in Streptomyces species take place at the transcriptional level, mediated by different transcriptional factors. For example, the master regulator PhoP and the large SARP-type regulator AfsR bind to overlapping sequences in the afsS promoter and, therefore, compete in the integration of signals of phosphate starvation and S-adenosylmethionine (SAM) concentrations. The cross-talk between phosphate control of metabolism, mediated by the PhoR-PhoP system, and the pleiotropic orphan nitrogen regulator GlnR, is very interesting; PhoP represses GlnR and other nitrogen metabolism genes. The mechanisms of control by GlnR of several promoters of ATP binding cassettes (ABC) sugar transporters and carbon metabolism are highly elaborated. Another important cross-talk that governs nitrogen metabolism involves the competition between GlnR and the transcriptional factor MtrA. GlnR and MtrA exert opposite effects on expression of nitrogen metabolism genes. MtrA, under nitrogen rich conditions, represses expression of nitrogen assimilation and regulatory genes, including GlnR, and competes with GlnR for the GlnR binding sites. Strikingly, these sites also bind to PhoP. Novel examples of interacting transcriptional factors, discovered recently, are discussed to provide a broad view of this interactions. Altogether, these findings indicate that cross-talks between the major transcriptional factors protect the cell metabolic balance. A detailed analysis of the transcriptional factors binding sequences suggests that the transcriptional factors interact with specific regions, either by overlapping the recognition sequence of other factors or by binding to adjacent sites in those regions. Additional interactions on the regulatory backbone are provided by sigma factors, highly phosphorylated nucleotides, cyclic dinucleotides, and small ligands that interact with cognate receptor proteins and with TetR-type transcriptional regulators. We propose to define the signal integration DNA regions (so called integrator sites) that assemble responses to different stress, nutritional or environmental signals. These integrator sites constitute nodes recognized by two, three, or more transcriptional factors to compensate the unbalances produced by metabolic stresses. This interplay mechanism acts as a safety net to prevent major damage to the metabolism under extreme nutritional and environmental conditions.
Collapse
Affiliation(s)
- Juan F Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Paloma Liras
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| |
Collapse
|
20
|
Ni H, Xiong Z, Mohsin A, Guo M, Petkovic H, Chu J, Zhuang Y. Study on a two-component signal transduction system RimA1A2 that negatively regulates oxytetracycline biosynthesis in Streptomyces rimosus M4018. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
Yan H, Lu X, Sun D, Zhuang S, Chen Q, Chen Z, Li J, Wen Y. BldD, a master developmental repressor, activates antibiotic production in two Streptomyces species. Mol Microbiol 2019; 113:123-142. [PMID: 31628680 DOI: 10.1111/mmi.14405] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
BldD generally functions as a repressor controlling morphological development of Streptomyces. In this work, evidences that BldD also activates antibiotic production are provided. In Streptomyces roseosporus (which produces daptomycin widely used for treatment of human infections), deletion of bldD notably reduced daptomycin production, but enhanced sporulation. BldD stimulated daptomycin production by directly activating transcription of dpt structural genes and dptR3 (which encodes an indirect activator of daptomycin production), and repressed its own gene. BldD-binding sites on promoter regions of dptE, dptR3, and bldD were all found to contain BldD box-like sequences, facilitating prediction of new BldD targets. Two Streptomyces global regulatory genes, adpA and afsR, were confirmed to be directly activated by BldD. The protein AfsR was shown to act as an activator of daptomycin production, but a repressor of development. BldD directly represses nine key developmental genes. In Streptomyces avermitilis (which produces effective anthelmintic agents avermectins), BldD homolog (BldDsav) directly activates avermectin production through ave structural genes and cluster-situated activator gene aveR. This is the first report that BldD activates antibiotic biosynthesis both directly and via a cascade mechanism. BldD homologs are widely distributed among Streptomyces, our findings suggest that BldD may activate antibiotic production in other Streptomyces species.
Collapse
Affiliation(s)
- Hao Yan
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaorui Lu
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Di Sun
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Shuai Zhuang
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiong Chen
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhi Chen
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jilun Li
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Wen
- State Key Laboratory of Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
22
|
Ni H, Mohsin A, Guo M, Chu J, Zhuang Y. Two-component system AfrQ1Q2 involved in oxytetracycline biosynthesis of Streptomyces rimosus M4018 in a medium-dependent manner. J Biosci Bioeng 2019; 129:140-145. [PMID: 31564502 DOI: 10.1016/j.jbiosc.2019.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/04/2019] [Accepted: 08/13/2019] [Indexed: 11/25/2022]
Abstract
Regulation of secondary metabolism involves complex interactions of both pathway-specific regulators and global regulators, which may trigger or repress the expression of genes involved in antibiotic biosynthesis. Similarly, many of these global regulatory proteins belong to two-component systems. In this study, a new two-component system (TCS) AfrQ1Q2 homologous to AfsQ1Q2 of Streptomyces coelicolor was acquired from the genome sequence of Streptomyces rimosus M4018 by using bioinformatics analysis. RT-PCR results showed co-transcription of afrQ1 (RR) and afrQ2 (HK) in S. rimosus. Consequently, the significant enhancement in oxytetracycline (OTC) yield in afrQ1-disrupted mutant was observed when cultivated in the defined minimal medium (MM) with glycine as the sole nitrogen source. In order to further investigate the regulation mechanism of AfrQ1Q2 in OTC production, the transcriptional levels of five biosynthesis and regulation related genes such as oxyB, otrB, otcG, otcR and otrC were tested by qRT-PCR, which indicated a significantly up-regulatory trend in the afrQ1-disrupted mutant. Meanwhile, a down-regulatory trend of each gene was tested in the complementary mutant as compared to wild type M4018. Moreover, these selected five genes were positively correlated with OTC production. Conclusively, these findings suggested that the TCS AfrQ1Q2 could be one of the global regulators, which negatively regulates OTC production via activating pathway specific regulators in S. rimosus M4018.
Collapse
Affiliation(s)
- Hui Ni
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Shanghai Biological Manufacturing Technology Innovation Center, Shanghai 200237, People's Republic of China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; Shanghai Biological Manufacturing Technology Innovation Center, Shanghai 200237, People's Republic of China.
| |
Collapse
|
23
|
Li L, Gong L, He H, Liu Z, Rang J, Tang J, Peng S, Yuan S, Ding X, Yu Z, Xia L, Sun Y. AfsR is an important regulatory factor for growth and butenyl-spinosyn biosynthesis of Saccharopolyspora pogona. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01473-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
24
|
van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep 2019; 35:575-604. [PMID: 29721572 DOI: 10.1039/c8np00012c] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2000 to 2018 The antimicrobial activity of many of their natural products has brought prominence to the Streptomycetaceae, a family of Gram-positive bacteria that inhabit both soil and aquatic sediments. In the natural environment, antimicrobial compounds are likely to limit the growth of competitors, thereby offering a selective advantage to the producer, in particular when nutrients become limited and the developmental programme leading to spores commences. The study of the control of this secondary metabolism continues to offer insights into its integration with a complex lifecycle that takes multiple cues from the environment and primary metabolism. Such information can then be harnessed to devise laboratory screening conditions to discover compounds with new or improved clinical value. Here we provide an update of the review we published in NPR in 2011. Besides providing the essential background, we focus on recent developments in our understanding of the underlying regulatory networks, ecological triggers of natural product biosynthesis, contributions from comparative genomics and approaches to awaken the biosynthesis of otherwise silent or cryptic natural products. In addition, we highlight recent discoveries on the control of antibiotic production in other Actinobacteria, which have gained considerable attention since the start of the genomics revolution. New technologies that have the potential to produce a step change in our understanding of the regulation of secondary metabolism are also described.
Collapse
|
25
|
Zheng Y, Sun CF, Fu Y, Chen XA, Li YQ, Mao XM. Dual regulation between the two-component system PhoRP and AdpA regulates antibiotic production in Streptomyces. J Ind Microbiol Biotechnol 2019; 46:725-737. [PMID: 30712141 DOI: 10.1007/s10295-018-02127-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/19/2018] [Indexed: 01/03/2023]
Abstract
Antibiotic production during secondary metabolism in Streptomyces spp. is elaborately controlled by multiple environmental signals and intracellular cascades. These include the two-component system PhoRP responding to phosphate starvation and a conserved signaling pathway mediated by the pleiotropic regulator AdpA. However, little information exists about how these two pathways work together for secondary metabolite production of Streptomyces. Herein, we report the dual regulation from the phosphate starvation-responsive regulator PhoP and AdpA on atrA promoter (atrAp) for the production of daptomycin, an antibiotic produced by Streptomyces roseosporus. We found that PhoP directly binds to atrAp, positively regulates atrA expression and thus daptomycin production. We also observed positive auto-regulation of phoRP expression during fermentation for daptomycin production. Moreover, partial overlap between PhoP- and AdpA-binding sites on atrAp was observed, which results in partial competitive binding between these two regulators. This partial overlapping and competition between PhoP and AdpA was further confirmed by mutations and binding assays. In summary, our findings have revealed dual regulation of PhoP and AdpA on the same promoter for antibiotic production in Streptomyces. This mechanism would be beneficial to further environment-responsive fermentation optimization for antibiotic production.
Collapse
Affiliation(s)
- Yang Zheng
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Chen-Fan Sun
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Yu Fu
- School of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xin-Ai Chen
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, 310058, China. .,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China.
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, 310058, China. .,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, 310058, China.
| |
Collapse
|
26
|
Barreiro C, Martínez-Castro M. Regulation of the phosphate metabolism in Streptomyces genus: impact on the secondary metabolites. Appl Microbiol Biotechnol 2019; 103:1643-1658. [DOI: 10.1007/s00253-018-09600-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022]
|
27
|
Barreales EG, Payero TD, de Pedro A, Aparicio JF. Phosphate effect on filipin production and morphological differentiation in Streptomyces filipinensis and the role of the PhoP transcription factor. PLoS One 2018; 13:e0208278. [PMID: 30521601 PMCID: PMC6283541 DOI: 10.1371/journal.pone.0208278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022] Open
Abstract
The biosynthesis of the antifungal filipin in Streptomyces filipinensis is very sensitive to phosphate regulation. Concentrations as low as 2.5 mM block filipin production. This effect is, at least in part, produced by repression of the transcription of most filipin biosynthetic genes. The role of the two-component PhoRP system in this process was investigated. The phoRP system of S. filipinensis was cloned and transcriptionally characterised. PhoP binds to two PHO boxes present in one of its two promoters. Filipin production was greatly increased in ΔphoP and ΔphoRP mutants, in agreement with a higher transcription of the fil genes, and the effect of phosphate repression on the antibiotic production of these strains was significantly reduced. No PhoP binding was observed by electrophoretic mobility gel shift assays (EMSAs) with the promoter regions of the fil gene cluster thus suggesting an indirect effect of mutations. Binding assays with cell-free extracts from the wild-type and mutant strains on fil genes promoters revealed retardation bands in the parental strain that were absent in the mutants, thus suggesting that binding of the putative transcriptional regulator or regulators controlled by PhoP was PhoP dependent. Noteworthy, PhoP or PhoRP deletion also produced a dramatic decrease in sporulation ability, thus indicating a clear relationship between the phosphate starvation response mediated by PhoP and the sporulation process in S. filipinensis. This effect was overcome upon gene complementation, but also by phosphate addition, thus suggesting that alternative pathways take control in the absence of PhoRP.
Collapse
Affiliation(s)
- Eva G. Barreales
- Area de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Tamara D. Payero
- Area de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Antonio de Pedro
- Area de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Jesús F. Aparicio
- Area de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
- * E-mail:
| |
Collapse
|
28
|
Xu Y, Li YX, Ye BC. Lysine propionylation modulates the transcriptional activity of phosphate regulator PhoP in Saccharopolyspora erythraea. Mol Microbiol 2018; 110:648-661. [PMID: 30303579 DOI: 10.1111/mmi.14122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2018] [Indexed: 11/28/2022]
Abstract
Phosphate concentration extensively modulates the central physiological processes mediated by the two-component system PhoR-PhoP in actinobacteria. The system serves a role beyond phosphate metabolism, mediating crucial functions in nitrogen and carbon metabolism, and secondary metabolism in response to the nutritional states. Here, we found that the phosphate-sensing regulator PhoP was propionylated, and thus lost its DNA-binding activity in vivo and in vitro in Saccharopolyspora erythraea. Two key conserved lysine residues 198 and 203 (K198 and K203) in winged HTH motif at the C-terminal domain of PhoP are propionylated by protein acyltransferase AcuA (encoding by sace_5148). Single amino acid mutation of these two lysine residues resulted in severely impaired binding of PhoP to PHO box. The addition of propionate (to supply precursors for erythromycin biosynthesis) increases the intracellular propionylation level of PhoP, resulting in the loss of response to phosphate availability. Furthermore, simultaneous mutation of K198 and K203 of PhoP to arginine, mimicking the non-propionylated form, promotes the expression of the PhoP regulon under the condition of propionate addition. Together, these findings present a common regulatory mechanism of genes' expression mediated by posttranslational regulation of OmpR family transcriptional regulator PhoP and provide new insights into the multifaceted regulation of metabolism in response to nutritional signals.
Collapse
Affiliation(s)
- Ya Xu
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yu-Xin Li
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
29
|
Baral B, Akhgari A, Metsä-Ketelä M. Activation of microbial secondary metabolic pathways: Avenues and challenges. Synth Syst Biotechnol 2018; 3:163-178. [PMID: 30345402 PMCID: PMC6190515 DOI: 10.1016/j.synbio.2018.09.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 12/21/2022] Open
Abstract
Microbial natural products are a tremendous source of new bioactive chemical entities for drug discovery. Next generation sequencing has revealed an unprecedented genomic potential for production of secondary metabolites by diverse micro-organisms found in the environment and in the microbiota. Genome mining has further led to the discovery of numerous uncharacterized 'cryptic' metabolic pathways in the classical producers of natural products such as Actinobacteria and fungi. These biosynthetic gene clusters may code for improved biologically active metabolites, but harnessing the full genetic potential has been hindered by the observation that many of the pathways are 'silent' under laboratory conditions. Here we provide an overview of the various biotechnological methodologies, which can be divided to pleiotropic, biosynthetic gene cluster specific, and targeted genome-wide approaches that have been developed for the awakening of microbial secondary metabolic pathways.
Collapse
Affiliation(s)
| | | | - Mikko Metsä-Ketelä
- Department of Biochemistry, University of Turku, FIN-20014, Turku, Finland
| |
Collapse
|
30
|
Zhang Y, Zhang Y, Li P, Wang Y, Wang J, Shao Z, Zhao G. GlnR positive transcriptional regulation of the phosphate-specific transport system pstSCAB in Amycolatopsis mediterranei U32. Acta Biochim Biophys Sin (Shanghai) 2018; 50:757-765. [PMID: 30007316 DOI: 10.1093/abbs/gmy073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Indexed: 11/14/2022] Open
Abstract
Amycolatopsis mediterranei U32 is an important industrial strain for the production of rifamycin SV. Rifampicin, a derivative of rifamycin SV, is commonly used to treat mycobacterial infections. Although phosphate has long been known to affect rifamycin biosynthesis, phosphate transport, metabolism, and regulation are poorly understood in A. mediterranei. In this study, the functional phosphate transport system pstSCAB was isolated by RNA sequencing and inactivated by insertion mutation in A. mediterranei U32. The mycelium morphology changed from a filamentous shape in the wild-type and pstS1+ strains to irregular swollen shape at the end of filamentous in the ΔpstS1 strain. RT-PCR assay revealed that pstSCAB genes are co-transcribed as a polycistronic messenger. The pstSCAB transcription was significantly activated by nitrate supplementation and positively regulated by GlnR which is a global regulator of nitrogen metabolism in actinomycetes. At the same time, the yield of rifamycin SV decreased after mutation (ΔpstS1) compared with wild-type U32, which indicated a strong connection among phosphate metabolism, nitrogen metabolism, and rifamycin production in actinomycetes.
Collapse
Affiliation(s)
- Yuhui Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Department of Life Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Yixuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Peng Li
- Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jin Wang
- Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhihui Shao
- Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guoping Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
31
|
Analysis and validation of the pho regulon in the tacrolimus-producer strain Streptomyces tsukubaensis: differences with the model organism Streptomyces coelicolor. Appl Microbiol Biotechnol 2018; 102:7029-7045. [PMID: 29948118 DOI: 10.1007/s00253-018-9140-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/20/2018] [Accepted: 05/23/2018] [Indexed: 10/14/2022]
Abstract
Inorganic and organic phosphate controls both primary and secondary metabolism in Streptomyces genus. Metabolism regulation by phosphate in Streptomyces species is mediated by the PhoR-PhoP two-component system. Response regulator PhoP binds to conserved sequences of 11 nucleotides called direct repeat units (DRus), whose organization and conservation determine the binding of PhoP to distinct promoters. Streptomyces tsukubaensis is the industrial producer of the clinical immunosuppressant tacrolimus (FK506). A bioinformatic genome analysis detected several genes with conserved PHO boxes involved in phosphate scavenging and transport, nitrogen regulation, and secondary metabolite production. In this article, the PhoP regulation has been confirmed by electrophoretic mobility shift assays (EMSA) of the most relevant members of the traditional pho regulon such as the two-component system PhoR-P or genes involved in high-affinity phosphate transport (pstSCAB) and low-affinity phosphate transport (pit). However, the PhoP control over phosphatase genes in S. tsukubaensis is significantly different from the pattern reported in the model bacteria Streptomyces coelicolor. Thus, neither the alkaline phosphatase PhoA nor PhoD is regulated by PhoP. On the contrary, the binding of PhoP to the promoter of a novel putative phosphatase PhoX was confirmed. A crosstalk of the PhoP and GlnR regulators, which balances phosphate and nitrogen utilization, also occurs in S. tsukubaensis but slightly modified. Finally, PhoP regulates genes, like afsS, that link phosphate control and secondary metabolite production in S. tsukubaensis. In summary, there are notable differences between the regulation of specific genes of the pho regulon in S. tsukubaensis and the model organism S. coelicolor.
Collapse
|
32
|
Transposon-based identification of a negative regulator for the antibiotic hyper-production in Streptomyces. Appl Microbiol Biotechnol 2018; 102:6581-6592. [DOI: 10.1007/s00253-018-9103-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 11/29/2022]
|
33
|
Hoskisson PA, Fernández‐Martínez LT. Regulation of specialised metabolites in Actinobacteria - expanding the paradigms. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:231-238. [PMID: 29457705 PMCID: PMC6001450 DOI: 10.1111/1758-2229.12629] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 06/01/2023]
Abstract
The increase in availability of actinobacterial whole genome sequences has revealed huge numbers of specialised metabolite biosynthetic gene clusters, encoding a range of bioactive molecules such as antibiotics, antifungals, immunosuppressives and anticancer agents. Yet the majority of these clusters are not expressed under standard laboratory conditions in rich media. Emerging data from studies of specialised metabolite biosynthesis suggest that the diversity of regulatory mechanisms is greater than previously thought and these act at multiple levels, through a range of signals such as nutrient limitation, intercellular signalling and competition with other organisms. Understanding the regulation and environmental cues that lead to the production of these compounds allows us to identify the role that these compounds play in their natural habitat as well as provide tools to exploit this untapped source of specialised metabolites for therapeutic uses. Here, we provide an overview of novel regulatory mechanisms that act in physiological, global and cluster-specific regulatory manners on biosynthetic pathways in Actinobacteria and consider these alongside their ecological and evolutionary implications.
Collapse
Affiliation(s)
- Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of Strathclyde, 161 Cathedral StreetGlasgow G4 0REUK
| | | |
Collapse
|
34
|
Daniel-Ivad M, Pimentel-Elardo S, Nodwell JR. Control of Specialized Metabolism by Signaling and Transcriptional Regulation: Opportunities for New Platforms for Drug Discovery? Annu Rev Microbiol 2018; 72:25-48. [PMID: 29799791 DOI: 10.1146/annurev-micro-022618-042458] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Specialized metabolites are bacterially produced small molecules that have an extraordinary diversity of important biological activities. They are useful as biochemical probes of living systems, and they have been adapted for use as drugs for human afflictions ranging from infectious diseases to cancer. The biosynthetic genes for these molecules are controlled by a dense network of regulatory mechanisms: Cell-cell signaling and nutrient sensing are conspicuous features of this network. While many components of these mechanisms have been identified, important questions about their biological roles remain shrouded in mystery. In addition to identifying new molecules and solving their mechanisms of action (a central preoccupation in this field), we suggest that addressing questions of quorum sensing versus diffusion sensing and identifying the dominant nutritional and environmental cues for specialized metabolism are important directions for research.
Collapse
Affiliation(s)
- M Daniel-Ivad
- Department of Biochemistry, University of Toronto, Ontario M5G 1M1, Canada;
| | - S Pimentel-Elardo
- Department of Biochemistry, University of Toronto, Ontario M5G 1M1, Canada;
| | - J R Nodwell
- Department of Biochemistry, University of Toronto, Ontario M5G 1M1, Canada;
| |
Collapse
|
35
|
Romero-Rodríguez A, Maldonado-Carmona N, Ruiz-Villafán B, Koirala N, Rocha D, Sánchez S. Interplay between carbon, nitrogen and phosphate utilization in the control of secondary metabolite production in Streptomyces. Antonie van Leeuwenhoek 2018; 111:761-781. [PMID: 29605896 DOI: 10.1007/s10482-018-1073-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/21/2018] [Indexed: 12/21/2022]
Abstract
Streptomyces species are a wide and diverse source of many therapeutic agents (antimicrobials, antineoplastic and antioxidants, to name a few) and represent an important source of compounds with potential applications in medicine. The effect of nitrogen, phosphate and carbon on the production of secondary metabolites has long been observed, but it was not until recently that the molecular mechanisms on which these effects rely were ascertained. In addition to the specific macronutrient regulatory mechanisms, there is a complex network of interactions between these mechanisms influencing secondary metabolism. In this article, we review the recent advances in our understanding of the molecular mechanisms of regulation exerted by nitrogen, phosphate and carbon sources, as well as the effects of their interconnections, on the synthesis of secondary metabolites by members of the genus Streptomyces.
Collapse
Affiliation(s)
- Alba Romero-Rodríguez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer circuito Exterior de Ciudad Universitaria, 04510, Mexico City, Mexico.
| | - Nidia Maldonado-Carmona
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer circuito Exterior de Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Beatriz Ruiz-Villafán
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer circuito Exterior de Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Niranjan Koirala
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer circuito Exterior de Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Diana Rocha
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer circuito Exterior de Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer circuito Exterior de Ciudad Universitaria, 04510, Mexico City, Mexico
| |
Collapse
|
36
|
Yu P, Bu QT, Tang YL, Mao XM, Li YQ. Bidirectional Regulation of AdpA ch in Controlling the Expression of scnRI and scnRII in the Natamycin Biosynthesis of Streptomyces chattanoogensis L10. Front Microbiol 2018; 9:316. [PMID: 29551998 PMCID: PMC5840217 DOI: 10.3389/fmicb.2018.00316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/09/2018] [Indexed: 11/13/2022] Open
Abstract
AdpA, an AraC/XylS family protein, had been proved as a key regulator for secondary metabolism and morphological differentiation in Streptomyces griseus. Here, we identify AdpAch, an ortholog of AdpA, as a "higher level" pleiotropic regulator of natamycin biosynthesis with bidirectional regulatory ability in Streptomyces chattanoogensis L10. DNase I footprinting revealed six AdpAch-binding sites in the scnRI-scnRII intergenic region. Further analysis using the xylE reporter gene fused to the scnRI-scnRII intergenic region of mutated binding sites demonstrated that the expression of scnRI and scnRII was under the control of AdpAch. AdpAch showed a bi-stable regulatory ability where it firstly binds to the Site C and Site D to activate the transcription of the two pathway-specific genes, scnRI and scnRII, and then binds to other sites where it acts as an inhibitor. When Site A and Site F were mutated in vivo, the production of natamycin was increased by 21% and 25%, respectively. These findings indicated an autoregulatory mechanism where AdpAch serves as a master switch with bidirectional regulation for natamycin biosynthesis.
Collapse
Affiliation(s)
- Pin Yu
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China.,College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qing-Ting Bu
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Yi-Li Tang
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| |
Collapse
|
37
|
Transcriptome analysis of wild-type and afsS deletion mutant strains identifies synergistic transcriptional regulator of afsS for a high antibiotic-producing strain of Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol 2018; 102:3243-3253. [DOI: 10.1007/s00253-018-8838-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 12/11/2022]
|
38
|
Santos-Beneit F, Gu JY, Stimming U, Errington J. ylmD and ylmE genes are dispensable for growth, cross-wall formation and sporulation in Streptomyces venezuelae. Heliyon 2017; 3:e00459. [PMID: 29202109 PMCID: PMC5701809 DOI: 10.1016/j.heliyon.2017.e00459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/23/2017] [Accepted: 11/15/2017] [Indexed: 11/16/2022] Open
Abstract
Streptomycetes are Gram-positive filamentous soil bacteria that grow by tip extension and branching, forming a network of multinucleoid hyphae. These bacteria also have an elaborate process of morphological differentiation, which involves the formation of an aerial mycelium that eventually undergoes extensive septation into chains of uninucleoid cells that further metamorphose into spores. The tubulin-like FtsZ protein is essential for this septation process. Most of the conserved cell division genes (including ftsZ) have been inactivated in Streptomyces without the anticipated lethality, based on studies of many other bacteria. However, there are still some genes of the Streptomyces division and cell wall (dcw) cluster that remain uncharacterized, the most notable example being the two conserved genes immediately adjacent to ftsZ (i.e. ylmDE). Here, for the first time, we made a ylmDE mutant in Streptomyces venezuelae and analysed it using epifluorescence microscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The mutant showed no significant effects on growth, cross-wall formation and sporulation in comparison to the wild type strain, which suggests that the ylmDE genes do not have an essential role in the Streptomyces cell division cycle (at least under the conditions of this study).
Collapse
Affiliation(s)
- Fernando Santos-Beneit
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| | - Jing-Ying Gu
- School of Chemistry, Newcastle University, Newcastle Upon Tyne, UK
| | - Ulrich Stimming
- School of Chemistry, Newcastle University, Newcastle Upon Tyne, UK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
39
|
Martín-Martín S, Rodríguez-García A, Santos-Beneit F, Franco-Domínguez E, Sola-Landa A, Martín JF. Self-control of the PHO regulon: the PhoP-dependent protein PhoU controls negatively expression of genes of PHO regulon in Streptomyces coelicolor. J Antibiot (Tokyo) 2017; 71:ja2017130. [PMID: 29089595 DOI: 10.1038/ja.2017.130] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/17/2017] [Accepted: 09/26/2017] [Indexed: 11/09/2022]
Abstract
Phosphate control of the biosynthesis of secondary metabolites in Streptomyces is mediated by the two component system PhoR-PhoP. Linked to the phoR-phoP cluster, and expressed in the opposite orientation, is a phoU-like encoding gene with low identity to the phoU gene of Escherichia coli. Expression of this phoU-like gene is strictly dependent on PhoP activation. We have isolated a PhoU-null mutant and used transcriptomic and RNA-sequencing (RNA-seq) procedures to identify its transcription start site and regulation. RNA-seq studies identified two transcription start sites, one upstream of phoU and the second upstream of the mptA gene. Whereas transcription of PhoU is entirely dependent on PhoP, expression of the downstream mtpA gene is only partially dependent on PhoP activation. The phoU mutant grows more slowly than the parental strain, sporulates poorly and the spores lack pigmentation. Production of actinorhodin and undecylprodigiosin decreased in the phoU mutant, indicating that PhoU has a positive modulating effect on production of these antibiotics. Indeed, transcriptional studies of expression of the actII-ORF4 and redD genes indicated that the PhoU protein activates expression of these antibiotic regulators. Using the glpQ1 promoter as in vivo reporter of the activity of the PHO regulon genes, we observed that expression of glpQ1 is negatively modulated by PhoU. These results were confirmed by reverse transcription-PCR studies of three genes of the PHO regulon; that is, glpQ1, pstS and phoR. In conclusion, PhoU acts as a negative modulator of expression of the PHO regulon genes and as phoU expression is strictly dependent on PhoP activation, this mechanism appears to work as a feed-back control mechanism (self-regulation).The Journal of Antibiotics advance online publication, 1 November 2017; doi:10.1038/ja.2017.130.
Collapse
Affiliation(s)
| | | | - Fernando Santos-Beneit
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Juan Francisco Martín
- Área de Microbiología, Departamento de Biología Molecular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, León, Spain
| |
Collapse
|
40
|
Ordóñez-Robles M, Santos-Beneit F, Rodríguez-García A, Martín JF. Analysis of the Pho regulon in Streptomyces tsukubaensis. Microbiol Res 2017; 205:80-87. [PMID: 28942849 DOI: 10.1016/j.micres.2017.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 01/15/2023]
Abstract
Phosphate regulation of antibiotic biosynthesis in Streptomyces has been studied due to the importance of this genus as a source of secondary metabolites with biological activity. Streptomyces tsukubaensis is the main producer of tacrolimus (or FK506), an immunosuppressant macrolide that generates important benefits for the pharmaceutical market. However, the production of tacrolimus is under a negative control by phosphate and, therefore, is important to know the molecular mechanism of this regulation. Despite its important role, there are no reports about the Pho regulon in S. tsukubaensis. In this work we combined transcriptional studies on the response to phosphate starvation with the search for PHO boxes in the whole genome sequence of S. tsukubaensis. As a result, we identified a set of genes responding to phosphate starvation and containing PHO boxes that include common Pho regulon members but also new species-specific candidates. In addition, we demonstrate for the first time the functional activity of PhoP from S. tsukubaensis through complementation studies in a Streptomyces coelicolor ΔphoP strain. For this purpose, we developed an anhydrotetracycline inducible system that can be applied to the controlled expression of target genes.
Collapse
Affiliation(s)
- María Ordóñez-Robles
- Área de Microbiología, Departamento de Biología Molecular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain; Instituto de Biotecnología de León, INBIOTEC, Avda. Real n°1, 24006 León, Spain
| | | | - Antonio Rodríguez-García
- Área de Microbiología, Departamento de Biología Molecular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain; Instituto de Biotecnología de León, INBIOTEC, Avda. Real n°1, 24006 León, Spain
| | - Juan F Martín
- Área de Microbiología, Departamento de Biología Molecular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain.
| |
Collapse
|
41
|
Jiang M, Yin M, Wu S, Han X, Ji K, Wen M, Lu T. GdmRIII, a TetR Family Transcriptional Regulator, Controls Geldanamycin and Elaiophylin Biosynthesis in Streptomyces autolyticus CGMCC0516. Sci Rep 2017; 7:4803. [PMID: 28684749 PMCID: PMC5500506 DOI: 10.1038/s41598-017-05073-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/24/2017] [Indexed: 11/13/2022] Open
Abstract
Geldanamycin and elaiophylin are co-produced in several Streptomyces strains. However, the regulation of their biosynthesis is not fully understood yet. Herein the function of a TetR family regulator GdmRIII, which is located in the biosynthetic gene cluster of geldanamycin, was studied to understand the regulatory mechanism of geldanamycin biosynthesis in Streptomyces autolyticus CGMCC0516. The production of geldanamycin decreased substantially in a ΔgdmRIII mutant and the yield of three compounds which were thought to be geldanamycin congeners greatly increased. Surprisingly, the structural elucidation of these compounds showed that they were elaiophylin and its analogues, which implied that GdmRIII not only played a positive regulatory role in the biosynthesis of geldanamycin, but also played a negative role in elaiophylin biosynthesis. GdmRIII affected the expression of multiple genes in both gene clusters, and directly regulated the expression of gdmM, gdmN, and elaF by binding to the promoter regions of these three genes. A conserved non-palindromic sequence was found among the binding sites of elaF. Our findings suggested that the biosynthetic pathways of geldanamycin and elaiophylin were connected through GdmRIII, which might provide a way for Streptomyces to coordinate the biosynthesis of these compounds for better adapting to environment changes.
Collapse
Affiliation(s)
- MingXing Jiang
- Yunnan Institute of Microbiology, Yunnan University, 2 North Cui Hu Road, Kunming, Yunnan, 650091, China
| | - Min Yin
- Yunnan Institute of Microbiology, Yunnan University, 2 North Cui Hu Road, Kunming, Yunnan, 650091, China
| | - ShaoHua Wu
- Yunnan Institute of Microbiology, Yunnan University, 2 North Cui Hu Road, Kunming, Yunnan, 650091, China
| | - XiuLin Han
- Yunnan Institute of Microbiology, Yunnan University, 2 North Cui Hu Road, Kunming, Yunnan, 650091, China
| | - KaiYan Ji
- Yunnan Institute of Microbiology, Yunnan University, 2 North Cui Hu Road, Kunming, Yunnan, 650091, China
| | - MengLiang Wen
- Yunnan Institute of Microbiology, Yunnan University, 2 North Cui Hu Road, Kunming, Yunnan, 650091, China.
| | - Tao Lu
- Yunnan Institute of Microbiology, Yunnan University, 2 North Cui Hu Road, Kunming, Yunnan, 650091, China.
| |
Collapse
|
42
|
Green fluorescent protein as a reporter for the spatial and temporal expression of actIII in Streptomyces coelicolor. Arch Microbiol 2017; 199:875-880. [PMID: 28331973 PMCID: PMC5504251 DOI: 10.1007/s00203-017-1358-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/01/2017] [Accepted: 03/07/2017] [Indexed: 10/27/2022]
Abstract
Polyketides constitute a large group of structurally diverse natural products with useful biological activities. Insights into their biosynthetic mechanisms are crucial for developing new structures. One of the most studied model polyketide is the blue-pigmented antibiotic actinorhodin, produced by Streptomyces coelicolor. This aromatic polyketide is synthesized by minimal type II polyketide synthases and tailoring enzymes. The ActIII actinorhodin ketoreductase is a key tailoring enzyme in actinorhodin biosynthesis. Previous papers have reported contradictory findings for localization of the protein in the cytoplasmic fraction or associated with the cell wall. We have now used green fluorescent protein as a reporter to analyse the spatial and temporal expression of actIII (SCO5086) in S. coelicolor under actinorhodin producing and non-producing conditions. We provide evidence in support of ActIII being a cytosolic protein, with limited if any association with the membrane or cell wall.
Collapse
|
43
|
The master regulator PhoP coordinates phosphate and nitrogen metabolism, respiration, cell differentiation and antibiotic biosynthesis: comparison in Streptomyces coelicolor and Streptomyces avermitilis. J Antibiot (Tokyo) 2017; 70:534-541. [PMID: 28293039 DOI: 10.1038/ja.2017.19] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/16/2017] [Accepted: 01/26/2017] [Indexed: 11/08/2022]
Abstract
Phosphate limitation is important for production of antibiotics and other secondary metabolites in Streptomyces. Phosphate control is mediated by the two-component system PhoR-PhoP. Following phosphate depletion, PhoP stimulates expression of genes involved in scavenging, transport and mobilization of phosphate, and represses the utilization of nitrogen sources. PhoP reduces expression of genes for aerobic respiration and activates nitrate respiration genes. PhoP activates genes for teichuronic acid formation and reduces expression of genes for phosphate-rich teichoic acid biosynthesis. In Streptomyces coelicolor, PhoP repressed several differentiation and pleiotropic regulatory genes, which affects development and indirectly antibiotic biosynthesis. A new bioinformatics analysis of the putative PhoP-binding sequences in Streptomyces avermitilis was made. Many sequences in S. avermitilis genome showed high weight values and were classified according to the available genetic information. These genes encode phosphate scavenging proteins, phosphate transporters and nitrogen metabolism genes. Among of the genes highlighted in the new studies was aveR, located in the avermectin gene cluster, encoding a LAL-type regulator, and afsS, which is regulated by PhoP and AfsR. The sequence logo for S. avermitilis PHO boxes is similar to that of S. coelicolor, with differences in the weight value for specific nucleotides in the sequence.
Collapse
|
44
|
Urem M, Świątek-Połatyńska MA, Rigali S, van Wezel GP. Intertwining nutrient-sensory networks and the control of antibiotic production inStreptomyces. Mol Microbiol 2016; 102:183-195. [DOI: 10.1111/mmi.13464] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Mia Urem
- Molecular Biotechnology, Institute of Biology, Leiden University; Sylviusweg 72 Leiden 2333BE The Netherlands
| | - Magdalena A. Świątek-Połatyńska
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology; Karl-von-Frisch-Strasse 10 Marburg 35043 Germany
| | - Sébastien Rigali
- InBioS, Centre for Protein Engineering; University of Liège; Liège B-4000 Belgium
| | - Gilles P. van Wezel
- Molecular Biotechnology, Institute of Biology, Leiden University; Sylviusweg 72 Leiden 2333BE The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW); Droevendaalsesteeg 10 Wageningen 6708 PB The Netherlands
| |
Collapse
|
45
|
Agrawal R, Sahoo BK, Saini DK. Cross-talk and specificity in two-component signal transduction pathways. Future Microbiol 2016; 11:685-97. [PMID: 27159035 DOI: 10.2217/fmb-2016-0001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two-component signaling systems (TCSs) are composed of two proteins, sensor kinases and response regulators, which can cross-talk and integrate information between them by virtue of high-sequence conservation and modular nature, to generate concerted and diversified responses. However, TCSs have been shown to be insulated, to facilitate linear signal transmission and response generation. Here, we discuss various mechanisms that confer specificity or cross-talk among TCSs. The presented models are supported with evidence that indicate the physiological significance of the observed TCS signaling architecture. Overall, we propose that the signaling topology of any TCSs cannot be predicted using obvious sequence or structural rules, as TCS signaling is regulated by multiple factors, including spatial and temporal distribution of the participating proteins.
Collapse
Affiliation(s)
- Ruchi Agrawal
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Bikash Kumar Sahoo
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, India.,Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
46
|
Ferguson NL, Peña-Castillo L, Moore MA, Bignell DRD, Tahlan K. Proteomics analysis of global regulatory cascades involved in clavulanic acid production and morphological development in Streptomyces clavuligerus. ACTA ACUST UNITED AC 2016; 43:537-55. [DOI: 10.1007/s10295-016-1733-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/02/2016] [Indexed: 12/11/2022]
Abstract
Abstract
The genus Streptomyces comprises bacteria that undergo a complex developmental life cycle and produce many metabolites of importance to industry and medicine. Streptomyces clavuligerus produces the β-lactamase inhibitor clavulanic acid, which is used in combination with β-lactam antibiotics to treat certain β-lactam resistant bacterial infections. Many aspects of how clavulanic acid production is globally regulated in S. clavuligerus still remains unknown. We conducted comparative proteomics analysis using the wild type strain of S. clavuligerus and two mutants (ΔbldA and ΔbldG), which are defective in global regulators and vary in their ability to produce clavulanic acid. Approximately 33.5 % of the predicted S. clavuligerus proteome was detected and 192 known or putative regulatory proteins showed statistically differential expression levels in pairwise comparisons. Interestingly, the expression of many proteins whose corresponding genes contain TTA codons (predicted to require the bldA tRNA for translation) was unaffected in the bldA mutant.
Collapse
Affiliation(s)
- Nicole L Ferguson
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
| | - Lourdes Peña-Castillo
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
- grid.25055.37 0000000091306822 Department of Computer Science Memorial University of Newfoundland A1B 3X5 St. John’s NL Canada
| | - Marcus A Moore
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
| | - Dawn R D Bignell
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
| | - Kapil Tahlan
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
| |
Collapse
|
47
|
Sandoval-Calderón M, Nguyen DD, Kapono CA, Herron P, Dorrestein PC, Sohlenkamp C. Plasticity of Streptomyces coelicolor Membrane Composition Under Different Growth Conditions and During Development. Front Microbiol 2015; 6:1465. [PMID: 26733994 PMCID: PMC4686642 DOI: 10.3389/fmicb.2015.01465] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023] Open
Abstract
Streptomyces coelicolor is a model actinomycete that is well known for the diversity of its secondary metabolism and its complex life cycle. As a soil inhabitant, it is exposed to heterogeneous and frequently changing environmental circumstances. In the present work, we studied the effect of diverse growth conditions and phosphate depletion on its lipid profile and the relationship between membrane lipid composition and development in S. coelicolor. The lipid profile from cultures grown on solid media, which is closer to the natural habitat of this microorganism, does not resemble the previously reported lipid composition from liquid grown cultures of S. coelicolor. Wide variations were also observed across different media, growth phases, and developmental stages indicating active membrane remodeling. Ornithine lipids (OL) are phosphorus-free polar lipids that were accumulated mainly during sporulation stages, but were also major components of the membrane under phosphorus limitation. In contrast, phosphatidylethanolamine, which had been reported as one of the major polar lipids in the genus Streptomyces, is almost absent under these conditions. We identified one of the genes responsible for the synthesis of OL (SCO0921) and found that its inactivation causes the absence of OL, precocious morphological development and actinorhodin production. Our observations indicate a remarkable plasticity of the membrane composition in this bacterial species, reveal a higher metabolic complexity than expected, and suggest a relationship between cytoplasmic membrane components and the differentiation programs in S. coelicolor.
Collapse
Affiliation(s)
| | - Don D Nguyen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla CA, USA
| | - Clifford A Kapono
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla CA, USA
| | - Paul Herron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde Glasgow, UK
| | - Pieter C Dorrestein
- Department of Chemistry and Biochemistry, University of California, San Diego, La JollaCA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La JollaCA, USA
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| |
Collapse
|
48
|
Zhu C, Kang Q, Bai L, Cheng L, Deng Z. Identification and engineering of regulation-related genes toward improved kasugamycin production. Appl Microbiol Biotechnol 2015; 100:1811-1821. [PMID: 26521251 DOI: 10.1007/s00253-015-7082-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/06/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Kasugamycin, produced by Streptomyces kasugaensis and Streptomyces microaureus, is an important amino-glycoside family antibiotic and widely used for veterinary and agricultural applications. In the left flanking region of the previously reported kasugamycin gene cluster, four additional genes (two-component system kasW and kasX, MerR-family kasV, and isoprenylcysteine carboxyl methyltransferase kasS) were identified both in the low-yielding S. kasugaensis BCRC12349 and high-yielding S. microaureus XM301. Deletion of regulatory gene kasT abolished kasugamycin production, and its overexpression in BCRC12349 resulted in an increased titer by 186 %. Deletion of kasW, kasX, kasV, and kasS improved kasugamycin production by 12, 19, 194, and 22 %, respectively. qRT-PCR analysis demonstrated that the transcription of kas genes was significantly increased in all the four mutants. Similar gene inactivation was performed in the high-yielding strain S. microaureus XM301. As expected, the deletion of kasW/X resulted in a 58 % increase of the yield from 6 to 9.5 g/L. However, the deletion of kasV and over-expression of kasT had no obvious effect, and the disruption of kasS surprisingly decreased kasugamycin production. In addition, trans-complementation of the kasS mutant with a TTA codon-mutated kasS increased the kasugamycin yield by 20 %. A much higher transcription of kas genes was detected in the high-yielding XM301 than in the low-yielding BCRC12349, which may partially account for the discrepancy of gene inactivation effects between them. Our work not only generated engineered strains with improved kasugamycin yield, but also pointed out that different strategies on manipulating regulatory-related genes should be considered for low-yielding or high-yielding strains.
Collapse
Affiliation(s)
- Chenchen Zhu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Lin Cheng
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| |
Collapse
|
49
|
Reciprocal Regulation of GlnR and PhoP in Response to Nitrogen and Phosphate Limitations in Saccharopolyspora erythraea. Appl Environ Microbiol 2015; 82:409-20. [PMID: 26519391 DOI: 10.1128/aem.02960-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/22/2015] [Indexed: 11/20/2022] Open
Abstract
Nitrogen and phosphate source sensing, uptake, and assimilation are essential for the growth and development of microorganisms. In this study, we demonstrated that SACE_6965 encodes the phosphate regulator PhoP, which controls the transcription of genes involved in phosphate metabolism in the erythromycin-producing Saccharopolyspora erythraea. We found that PhoP and the nitrogen regulator GlnR both regulate the transcription of glnR as well as other nitrogen metabolism-related genes. Interestingly, both GlnR- and PhoP-binding sites were identified in the phoP promoter region. Unlike the nonreciprocal regulation of GlnR and PhoP observed in Streptomyces coelicolor and Streptomyces lividans, GlnR negatively controls the transcription of the phoP gene in S. erythraea. This suggests that GlnR directly affects phosphate metabolism and demonstrates that the cross talk between GlnR and PhoP is reciprocal. Although GlnR and PhoP sites in the glnR and phoP promoter regions are located in close proximity to one another (separated by only 2 to 4 bp), the binding of both regulators to their respective region was independent and noninterfering. These results indicate that two regulators could separately bind to their respective binding sites and control nitrogen and phosphate metabolism in response to environmental changes. The reciprocal cross talk observed between GlnR and PhoP serves as a foundation for understanding the regulation of complex primary and secondary metabolism in antibiotic-producing actinomycetes.
Collapse
|
50
|
Li X, Wang J, Li S, Ji J, Wang W, Yang K. ScbR- and ScbR2-mediated signal transduction networks coordinate complex physiological responses in Streptomyces coelicolor. Sci Rep 2015; 5:14831. [PMID: 26442964 PMCID: PMC4595836 DOI: 10.1038/srep14831] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/07/2015] [Indexed: 12/21/2022] Open
Abstract
In model organism Streptomyces coelicolor, γ-butyrolactones (GBLs) and antibiotics were recognized as signalling molecules playing fundamental roles in intra- and interspecies communications. To dissect the GBL and antibiotic signalling networks systematically, the in vivo targets of their respective receptors ScbR and ScbR2 were identified on a genome scale by ChIP-seq. These identified targets encompass many that are known to play important roles in diverse cellular processes (e.g. gap1, pyk2, afsK, nagE2, cdaR, cprA, cprB, absA1, actII-orf4, redZ, atrA, rpsL and sigR), and they formed regulatory cascades, sub-networks and feedforward loops to elaborately control key metabolite processes, including primary and secondary metabolism, morphological differentiation and stress response. Moreover, interplay among ScbR, ScbR2 and other regulators revealed intricate cross talks between signalling pathways triggered by GBLs, antibiotics, nutrient availability and stress. Our work provides a global view on the specific responses that could be triggered by GBL and antibiotic signals in S. coelicolor, among which the main echo was the change of production profile of endogenous antibiotics and antibiotic signals manifested a role to enhance bacterial stress tolerance as well, shedding new light on GBL and antibiotic signalling networks widespread among streptomycetes.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Juan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Shanshan Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Junjie Ji
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Keqian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| |
Collapse
|