1
|
Braun V. Substrate Uptake by TonB-Dependent Outer Membrane Transporters. Mol Microbiol 2024; 122:929-947. [PMID: 39626085 DOI: 10.1111/mmi.15332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 12/21/2024]
Abstract
TonB is an essential component of an energy-generating system that powers active transport across the outer membrane (OM) of compounds that are too large or too scarce to diffuse through porins. The TonB-dependent OM transport proteins (TBDTs) consist of β barrels forming pores that are closed by plugs. The binding of TonB to TBDTs elicits plug movement, which opens the pores and enables nutrient translocation from the cell surface into the periplasm. TonB is also involved in the uptake of certain proteins, particularly toxins, through OM proteins that differ structurally from TBDTs. TonB binds to a sequence of five residues, designated as the TonB box, which is conserved in all TBDTs. Energy from the proton motive force (pmf) of the cytoplasmic membrane is transmitted to TonB by two proteins, ExbB and ExbD. These proteins form an energy-transmitting protein complex consisting of five ExbB proteins, forming a pore that encloses the ExbD dimer. This review discusses the structural changes that occur in TBDTs upon interaction with TonB, as well as the interaction of ExbB-ExbD with TonB, which is required to transmit the energy of the pmf and thereby open TBDT pores. TonB facilitates import of a wide range of substrates.
Collapse
|
2
|
Postle K, Kopp D, Jana B. In vivo tests of the E. coli TonB system working model-interaction of ExbB with unknown proteins, identification of TonB-ExbD transmembrane heterodimers and PMF-dependent ExbD structures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602958. [PMID: 39554141 PMCID: PMC11566014 DOI: 10.1101/2024.07.10.602958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The TonB system of Escherichia coli resolves the dilemma posed by its outer membrane that protects it from a variety of external threats, but also constitutes a diffusion barrier to nutrient uptake. Our working model involves interactions among a set of cytoplasmic membrane-bound proteins: tetrameric ExbB that serves as a scaffold for a dimeric TonB complex (ExbB 4 -TonB 2 ), and also engages dimeric ExbD (ExbB 4 -ExbD 2 ). Through a set of synchronized conformational changes and movements these complexes are proposed to cyclically transduce cytoplasmic membrane protonmotive force to energize active transport of nutrients through TonB-dependent transporters in the outer membrane (described in Gresock et al. , J. Bacteriol. 197:3433). In this work, we provide experimental validation of three important aspects of the model. The majority of ExbB is exposed to the cytoplasm, with an ∼90-residue cytoplasmic loop and an ∼50 residue carboxy terminal tail. Here we found for the first time, that the cytoplasmic regions of ExbB served as in vivo contacts for three heretofore undiscovered proteins, candidates to move ExbB complexes within the membrane. Support for the model also came from visualization of in vivo PMF-dependent conformational transitions in ExbD. Finally, we also show that TonB forms homodimers and heterodimers with ExbD through its transmembrane domain in vivo . This trio of in vivo observations suggest how and why solved in vitro structures of ExbB and ExbD differ significantly from the in vivo results and submit that future inclusion of the unknown ExbB-binding proteins may bring solved structures into congruence with proposed in vivo energy transduction cycle intermediates.
Collapse
|
3
|
Braun V, Ratliff AC, Celia H, Buchanan SK. Energization of Outer Membrane Transport by the ExbB ExbD Molecular Motor. J Bacteriol 2023; 205:e0003523. [PMID: 37219427 PMCID: PMC10294619 DOI: 10.1128/jb.00035-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
The outer membranes (OM) of Gram-negative bacteria contain a class of proteins (TBDTs) that require energy for the import of nutrients and to serve as receptors for phages and protein toxins. Energy is derived from the proton motif force (pmf) of the cytoplasmic membrane (CM) through the action of three proteins, namely, TonB, ExbB, and ExbD, which are located in the CM and extend into the periplasm. The leaky phenotype of exbB exbD mutants is caused by partial complementation by homologous tolQ tolR. TonB, ExbB, and ExbD are genuine components of an energy transmission system from the CM into the OM. Mutant analyses, cross-linking experiments, and most recently X-ray and cryo-EM determinations were undertaken to arrive at a model that describes the energy transfer from the CM into the OM. These results are discussed in this paper. ExbB forms a pentamer with a pore inside, in which an ExbD dimer resides. This complex harvests the energy of the pmf and transmits it to TonB. TonB interacts with the TBDT at the TonB box, which triggers a conformational change in the TBDT that releases bound nutrients and opens the pore, through which nutrients pass into the periplasm. The structurally altered TBDT also changes the interactions of its periplasmic signaling domain with anti-sigma factors, with the consequence being that the sigma factors initiate transcription.
Collapse
Affiliation(s)
- Volkmar Braun
- Max-Planck-Institute for Biology, Department of Protein Evolution, Tübingen, Germany
| | - Anna C. Ratliff
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| | - Herve Celia
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| | - Susan K. Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| |
Collapse
|
4
|
Biou V, Adaixo RJD, Chami M, Coureux PD, Laurent B, Enguéné VYN, de Amorim GC, Izadi-Pruneyre N, Malosse C, Chamot-Rooke J, Stahlberg H, Delepelaire P. Structural and molecular determinants for the interaction of ExbB from Serratia marcescens and HasB, a TonB paralog. Commun Biol 2022; 5:355. [PMID: 35418619 PMCID: PMC9008036 DOI: 10.1038/s42003-022-03306-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/22/2022] [Indexed: 01/20/2023] Open
Abstract
ExbB and ExbD are cytoplasmic membrane proteins that associate with TonB to convey the energy of the proton-motive force to outer membrane receptors in Gram-negative bacteria for iron uptake. The opportunistic pathogen Serratia marcescens (Sm) possesses both TonB and a heme-specific TonB paralog, HasB. ExbBSm has a long periplasmic extension absent in other bacteria such as E. coli (Ec). Long ExbB's are found in several genera of Alphaproteobacteria, most often in correlation with a hasB gene. We investigated specificity determinants of ExbBSm and HasB. We determined the cryo-EM structures of ExbBSm and of the ExbB-ExbDSm complex from S. marcescens. ExbBSm alone is a stable pentamer, and its complex includes two ExbD monomers. We showed that ExbBSm extension interacts with HasB and is involved in heme acquisition and we identified key residues in the membrane domain of ExbBSm and ExbBEc, essential for function and likely involved in the interaction with TonB/HasB. Our results shed light on the class of inner membrane energy machinery formed by ExbB, ExbD and HasB.
Collapse
Affiliation(s)
- Valérie Biou
- grid.508487.60000 0004 7885 7602Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, UMR 7099 CNRS, F-75005 Paris, France ,grid.450875.b0000 0004 0643 538XInstitut de Biologie Physico-Chimique, F-75005 Paris, France
| | - Ricardo Jorge Diogo Adaixo
- grid.6612.30000 0004 1937 0642Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Mohamed Chami
- grid.6612.30000 0004 1937 0642Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Pierre-Damien Coureux
- grid.10877.390000000121581279Laboratoire de Biologie Structurale de la Cellule, BIOC, UMR7654 CNRS/Ecole polytechnique, Palaiseau, France
| | - Benoist Laurent
- grid.450875.b0000 0004 0643 538XInstitut de Biologie Physico-Chimique, F-75005 Paris, France ,grid.508487.60000 0004 7885 7602Plateforme de Bioinformatique, Université de Paris, FRC 550 CNRS, F-75005 Paris, France
| | - Véronique Yvette Ntsogo Enguéné
- grid.508487.60000 0004 7885 7602Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, UMR 7099 CNRS, F-75005 Paris, France ,grid.450875.b0000 0004 0643 538XInstitut de Biologie Physico-Chimique, F-75005 Paris, France ,grid.5335.00000000121885934Present Address: Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA UK
| | - Gisele Cardoso de Amorim
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS, USR3756 Paris, France ,grid.8536.80000 0001 2294 473XPresent Address: Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ Brasil
| | - Nadia Izadi-Pruneyre
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur, CNRS UMR3528, CNRS, USR3756 Paris, France
| | - Christian Malosse
- grid.428999.70000 0001 2353 6535Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut Pasteur, 75015 Paris, France
| | - Julia Chamot-Rooke
- grid.428999.70000 0001 2353 6535Mass Spectrometry for Biology Unit, CNRS USR 2000, Institut Pasteur, 75015 Paris, France
| | - Henning Stahlberg
- grid.6612.30000 0004 1937 0642Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland ,grid.9851.50000 0001 2165 4204Present Address: Centre d’imagerie Dubochet UNIL-EPFL-UNIGE & Laboratoire de microscopie électronique biologique UNIL-EPFL, Lausanne, Switzerland
| | - Philippe Delepelaire
- grid.508487.60000 0004 7885 7602Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, UMR 7099 CNRS, F-75005 Paris, France ,grid.450875.b0000 0004 0643 538XInstitut de Biologie Physico-Chimique, F-75005 Paris, France
| |
Collapse
|
5
|
Functional Diversity of TonB-Like Proteins in the Heterocyst-Forming Cyanobacterium Anabaena sp. PCC 7120. mSphere 2021; 6:e0021421. [PMID: 34787445 PMCID: PMC8597729 DOI: 10.1128/msphere.00214-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The TonB-dependent transport of scarcely available substrates across the outer membrane is a conserved feature in Gram-negative bacteria. The plasma membrane-embedded TonB-ExbB-ExbD accomplishes complex functions as an energy transducer by physically interacting with TonB-dependent outer membrane transporters (TBDTs). TonB mediates structural rearrangements in the substrate-loaded TBDTs that are required for substrate translocation into the periplasm. In the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, four TonB-like proteins have been identified. Out of these TonB3 accomplishes the transport of ferric schizokinen, the siderophore which is secreted by Anabaena to scavenge iron. In contrast, TonB1 (SjdR) is exceptionally short and not involved in schizokinen transport. The proposed function of SjdR in peptidoglycan structuring eliminates the protein from the list of TonB proteins in Anabaena. Compared with the well-characterized properties of SjdR and TonB3, the functions of TonB2 and TonB4 are yet unknown. Here, we examined tonB2 and tonB4 mutants for siderophore transport capacities and other specific phenotypic features. Both mutants were not or only slightly affected in schizokinen transport, whereas they showed decreased nitrogenase activity in apparently normal heterocysts. Moreover, the cellular metal concentrations and pigment contents were altered in the mutants, most pronouncedly in the tonB2 mutant. This strain showed an altered susceptibility toward antibiotics and SDS and formed cell aggregates when grown in liquid culture, a phenotype associated with an elevated lipopolysaccharide (LPS) production. Thus, the TonB-like proteins in Anabaena appear to take over distinct functions, and the mutation of TonB2 strongly influences outer membrane integrity. IMPORTANCE The genomes of many organisms encode more than one TonB protein, and their number does not necessarily correlate with that of TonB-dependent outer membrane transporters. Consequently, specific as well as redundant functions of the different TonB proteins have been identified. In addition to a role in uptake of scarcely available nutrients, including iron complexes, TonB proteins are related to virulence, flagellum assembly, pilus localization, or envelope integrity, including antibiotic resistance. The knowledge about the function of TonB proteins in cyanobacteria is limited. Here, we compare the four TonB proteins of Anabaena sp. strain PCC 7120, providing evidence that their functions are in part distinct, since mutants of these proteins exhibit specific features but also show some common impairments.
Collapse
|
6
|
Genome-Wide Screening of Oxidizing Agent Resistance Genes in Escherichia coli. Antioxidants (Basel) 2021; 10:antiox10060861. [PMID: 34072091 PMCID: PMC8228696 DOI: 10.3390/antiox10060861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/31/2023] Open
Abstract
The use of oxidizing agents is one of the most favorable approaches to kill bacteria in daily life. However, bacteria have been evolving to survive in the presence of different oxidizing agents. In this study, we aimed to obtain a comprehensive list of genes whose expression can make Escherichiacoli cells resistant to different oxidizing agents. For this purpose, we utilized the ASKA library and performed a genome-wide screening of ~4200 E. coli genes. Hydrogen peroxide (H2O2) and hypochlorite (HOCl) were tested as representative oxidizing agents in this study. To further validate our screening results, we used different E. coli strains as host cells to express or inactivate selected resistance genes individually. More than 100 genes obtained in this screening were not known to associate with oxidative stress responses before. Thus, this study is expected to facilitate both basic studies on oxidative stress and the development of antibacterial agents.
Collapse
|
7
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
8
|
Pieńko T, Czarnecki J, Równicki M, Wojciechowska M, Wierzba AJ, Gryko D, Bartosik D, Trylska J. Vitamin B 12-peptide nucleic acids use the BtuB receptor to pass through the Escherichia coli outer membrane. Biophys J 2021; 120:725-737. [PMID: 33453274 DOI: 10.1016/j.bpj.2021.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Short modified oligonucleotides that bind in a sequence-specific way to messenger RNA essential for bacterial growth could be useful to fight bacterial infections. One such promising oligonucleotide is peptide nucleic acid (PNA), a synthetic DNA analog with a peptide-like backbone. However, the limitation precluding the use of oligonucleotides, including PNA, is that bacteria do not import them from the environment. We have shown that vitamin B12, which most bacteria need to take up for growth, delivers PNAs to Escherichia coli cells when covalently linked with PNAs. Vitamin B12 enters E. coli via a TonB-dependent transport system and is recognized by the outer-membrane vitamin B12-specific BtuB receptor. We engineered the E. coli ΔbtuB mutant and found that transport of the vitamin B12-PNA conjugate requires BtuB. Thus, the conjugate follows the same route through the outer membrane as taken by free vitamin B12. From enhanced sampling all-atom molecular dynamics simulations, we determined the mechanism of conjugate permeation through BtuB. BtuB is a β-barrel occluded by its luminal domain. The potential of mean force shows that conjugate passage is unidirectional and its movement into the BtuB β-barrel is energetically favorable upon luminal domain unfolding. Inside BtuB, PNA extends making its permeation mechanically feasible. BtuB extracellular loops are actively involved in transport through an induced-fit mechanism. We prove that the vitamin B12 transport system can be hijacked to enable PNA delivery to E. coli cells.
Collapse
Affiliation(s)
- Tomasz Pieńko
- Centre of New Technologies, University of Warsaw, Warsaw, Poland; Department of Drug Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland.
| | - Jakub Czarnecki
- Faculty of Biology, University of Warsaw, Warsaw, Poland; Bacterial Genome Plasticity, Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Marcin Równicki
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | | | | | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | | | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
9
|
Extracellular loops of BtuB facilitate transport of vitamin B12 through the outer membrane of E. coli. PLoS Comput Biol 2020; 16:e1008024. [PMID: 32609716 PMCID: PMC7360065 DOI: 10.1371/journal.pcbi.1008024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/14/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin B12 (or cobalamin) is an enzymatic cofactor essential both for mammals and bacteria. However, cobalamin can be synthesized only by few microorganisms so most bacteria need to take it up from the environment through the TonB-dependent transport system. The first stage of cobalamin import to E. coli cells occurs through the outer-membrane receptor called BtuB. Vitamin B12 binds with high affinity to the extracellular side of the BtuB protein. BtuB forms a β-barrel with inner luminal domain and extracellular loops. To mechanically allow for cobalamin passage, the luminal domain needs to partially unfold with the help of the inner-membrane TonB protein. However, the mechanism of cobalamin permeation is unknown. Using all-atom molecular dynamics, we simulated the transport of cobalamin through the BtuB receptor embedded in an asymmetric and heterogeneous E. coli outer-membrane. To enhance conformational sampling of the BtuB loops, we developed the Gaussian force-simulated annealing method (GF-SA) and coupled it with umbrella sampling. We found that cobalamin needs to rotate in order to permeate through BtuB. We showed that the mobility of BtuB extracellular loops is crucial for cobalamin binding and transport and resembles an induced-fit mechanism. Loop mobility depends not only on the position of cobalamin but also on the extension of luminal domain. We provided atomistic details of cobalamin transport through the BtuB receptor showing the essential role of the mobility of BtuB extracellular loops. A similar TonB-dependent transport system is used also by many other compounds, such as haem and siderophores, and importantly, can be hijacked by natural antibiotics. Our work could have implications for future delivery of antibiotics to bacteria using this transport system.
Collapse
|
10
|
Kopp DR, Postle K. The Intrinsically Disordered Region of ExbD Is Required for Signal Transduction. J Bacteriol 2020; 202:e00687-19. [PMID: 31932309 PMCID: PMC7167468 DOI: 10.1128/jb.00687-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/03/2020] [Indexed: 12/26/2022] Open
Abstract
The TonB system actively transports vital nutrients across the unenergized outer membranes of the majority of Gram-negative bacteria. In this system, integral membrane proteins ExbB, ExbD, and TonB work together to transduce the proton motive force (PMF) of the inner membrane to customized active transporters in the outer membrane by direct and cyclic binding of TonB to the transporters. A PMF-dependent TonB-ExbD interaction is prevented by 10-residue deletions within a periplasmic disordered domain of ExbD adjacent to the cytoplasmic membrane. Here, we explored the function of the ExbD disordered domain in more detail. In vivo photo-cross-linking through sequential pBpa substitutions in the ExbD disordered domain captured five different ExbD complexes, some of which had been previously detected using in vivo formaldehyde cross-linking, a technique that lacks the residue-specific information that can be achieved through photo-cross-linking: two ExbB-ExbD heterodimers (one of which had not been detected previously), previously detected ExbD homodimers, previously detected PMF-dependent ExbD-TonB heterodimers, and for the first time, a predicted, ExbD-TonB PMF-independent interaction. The fact that multiple complexes were captured by the same pBpa substitution indicated the dynamic nature of ExbD interactions as the energy transduction cycle proceeded in vivo In this study, we also discovered that a conserved motif-V45, V47, L49, and P50-within the disordered domain was required for signal transduction to TonB and to the C-terminal domain of ExbD and was the source of motif essentiality.IMPORTANCE The TonB system is a virulence factor for Gram-negative pathogens. The mechanism by which cytoplasmic membrane proteins of the TonB system transduce an electrochemical gradient into mechanical energy is a long-standing mystery. TonB, ExbB, and ExbD primary amino acid sequences are characterized by regions of predicted intrinsic disorder, consistent with a proposed multiplicity of protein-protein contacts as TonB proceeds through an energy transduction cycle, a complex process that has yet to be recapitulated in vitro This study validates a region of intrinsic disorder near the ExbD transmembrane domain and identifies an essential conserved motif embedded within it that transduces signals to distal regions of ExbD suggested to configure TonB for productive interaction with outer membrane transporters.
Collapse
Affiliation(s)
- Dale R Kopp
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kathleen Postle
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
11
|
Abstract
The bacterial flagellar motor is driven by an ion flux that is converted to torque by motor-attendant complexes known as stators. The dynamics of stator assembly around the motor in response to external stimuli have been the subject of much recent research, but less is known about the evolutionary origins of stator complexes and how they select for specific ions. Here, we review the latest structural and biochemical data for the stator complexes and compare these with other ion transporters and microbial motors to examine possible evolutionary origins of the stator complex.
Collapse
|
12
|
Barnes AD, Pfeifer HJ, Zbylicki BR, Roberts EK, Rudd JC, Manzo MA, Phillips EA, Berry MM, Kenton RJ. Two novel proteins, TtpB2 and TtpD2, are essential for iron transport in the TonB2 system of Vibrio vulnificus. Microbiologyopen 2019; 9:e00947. [PMID: 31595707 PMCID: PMC6957404 DOI: 10.1002/mbo3.947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/08/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022] Open
Abstract
In gram-negative bacteria, energy-dependent active transport of iron-bound substrates across the outer membrane is achieved through the TonB systems of proteins. Three TonB systems have been identified in the human pathogen Vibrio vulnificus. The TonB1 system contains three proteins: TonB1, ExbB1, and ExbD1. Both the TonB2 and TonB3 systems have been shown to also contain a fourth protein, TtpC2 and TtpC3, respectively. Here, we report and begin to characterize two additional proteins in the TonB2 and TonB3 systems: TtpB and TtpD. Both TtpB2 and TtpD2 are absolutely required for the function of the TonB2 system in V. vulnificus. However, although both TtpB3 and TtpD3 in the TonB3 system are related to the proteins in the TonB2 system, neither are active in iron transport. All six protein components of the TonB2 system-TonB2, ExbB2, ExbD2, TtpB2, TtpC2, and TtpD2-are essential for the uptake of both endogenously produced iron-bound siderophores and exogenous siderophores produced from other organisms. Through complementation, we have shown that V. vulnificus is capable of using different TtpD2 proteins from other Vibrio species to bring in multiple siderophores. In contrast, we also demonstrate that TtpB2 must come from V. vulnificus, and not other species within the genus, to complement mutations in the TonB2 system.
Collapse
Affiliation(s)
- Adel D Barnes
- Department of Biology, University of Portland, Portland, OR, USA
| | - Hailey J Pfeifer
- Department of Biology, University of Portland, Portland, OR, USA
| | | | - Elena K Roberts
- Department of Biology, University of Portland, Portland, OR, USA
| | - Justin C Rudd
- Department of Biology, University of Portland, Portland, OR, USA
| | - Mario A Manzo
- Department of Biology, University of Portland, Portland, OR, USA
| | | | - Michael M Berry
- Department of Biology, University of Portland, Portland, OR, USA
| | - Ryan J Kenton
- Department of Biology, University of Portland, Portland, OR, USA
| |
Collapse
|
13
|
Kirchweger P, Weiler S, Egerer‐Sieber C, Blasl A, Hoffmann S, Schmidt C, Sander N, Merker D, Gerlach RG, Hensel M, Muller YA. Structural and functional characterization of SiiA, an auxiliary protein from the SPI4‐encoded type 1 secretion system from
Salmonella enterica. Mol Microbiol 2019; 112:1403-1422. [DOI: 10.1111/mmi.14368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Peter Kirchweger
- Division of Biotechnology, Department of Biology Friedrich‐Alexander‐University Erlangen‐Nürnberg Henkestr. 91D‐91052Erlangen Germany
| | - Sigrid Weiler
- Division of Biotechnology, Department of Biology Friedrich‐Alexander‐University Erlangen‐Nürnberg Henkestr. 91D‐91052Erlangen Germany
| | - Claudia Egerer‐Sieber
- Division of Biotechnology, Department of Biology Friedrich‐Alexander‐University Erlangen‐Nürnberg Henkestr. 91D‐91052Erlangen Germany
| | - Anna‐Theresa Blasl
- Division of Biotechnology, Department of Biology Friedrich‐Alexander‐University Erlangen‐Nürnberg Henkestr. 91D‐91052Erlangen Germany
| | | | | | - Nathalie Sander
- Abt. Mikrobiologie and CellNanOs Universität Osnabrück Osnabrück Germany
| | - Dorothee Merker
- Abt. Mikrobiologie and CellNanOs Universität Osnabrück Osnabrück Germany
| | | | - Michael Hensel
- Abt. Mikrobiologie and CellNanOs Universität Osnabrück Osnabrück Germany
| | - Yves A. Muller
- Division of Biotechnology, Department of Biology Friedrich‐Alexander‐University Erlangen‐Nürnberg Henkestr. 91D‐91052Erlangen Germany
| |
Collapse
|
14
|
Dong Y, Geng J, Liu J, Pang M, Awan F, Lu C, Liu Y. Roles of three TonB systems in the iron utilization and virulence of the Aeromonas hydrophila Chinese epidemic strain NJ-35. Appl Microbiol Biotechnol 2019; 103:4203-4215. [PMID: 30972460 DOI: 10.1007/s00253-019-09757-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
The TonB system functions in iron transport and has been identified in certain Gram-negative bacteria. Recently, we reported three TonB systems in the Aeromonas hydrophila Chinese epidemic strain NJ-35, but the functions of these systems have not been thoroughly elucidated to date. In this study, we investigated the role of these TonB systems in A. hydrophila iron utilization and virulence. We found that tonB1 and tonB2 were preferentially transcribed in iron-chelated conditions, where gene expression levels were approximately 8- and 68-fold higher compared with iron-rich conditions, respectively; tonB3 was consistently transcribed at a low level under iron-repleted and iron-depleted conditions. Only the TonB2 system was required to utilize iron-binding proteins. The tonB123 mutant showed increased susceptibility to erythromycin and roxithromycin. In addition, all three tonB genes were involved in A. hydrophila virulence in zebrafish, and various phenotypes associated with environmental survival were changed with varying degrees in each tonB mutant. TonB2 plays a relatively major role in adhesion, motility, and biofilm formation, while TonB3 is more involved in the anti-phagocytosis of A. hydrophila. In each observed phenotype, no significant difference was found between the single- and double-deletion mutants, whereas the triple-deletion mutant exhibited the most serious defects, indicating that all three TonB systems of A. hydrophila coordinately complement one another. In conclusion, this study elucidates the importance of TonB in iron acquisition and virulence of A. hydrophila, which lays the foundation for future studies regarding the survival mechanisms of this bacterium in iron-restricted environments.
Collapse
Affiliation(s)
- Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jinzhu Geng
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jin Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Maoda Pang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Furqan Awan
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
15
|
Fagoonee S, Pellicano R. Helicobacter pylori: molecular basis for colonization and survival in gastric environment and resistance to antibiotics. A short review. Infect Dis (Lond) 2019; 51:399-408. [PMID: 30907202 DOI: 10.1080/23744235.2019.1588472] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori is a human-specific pathogen with a strict tropism for the gastric mucosa. This bacterium infects around half of the world population and is the main responsible for gastritis, peptic ulcer and, in some cases, for the pathogenesis of gastric cancer. Nevertheless, disease development in infected subjects depends not only on the bacterium, but also on the host genetic predisposition and on environmental factors. The fascinating question of how the bacterium can survive in the gastric environment has stimulated research in this field. It is now clear that H. pylori is able to colonize and adhere to the gastric epithelium through several mechanisms, including the breakdown of urea with production of the cell-toxic ammonia. The resulting raise in pH neutralizes acidity of the stomach, thereby allowing the bacterium to safely cross the mucus layer to the epithelial surface. Current challenges regard understanding the mechanisms of antibiotic resistance and how to overcome it. Lately, an increasing H. pylori resistance rate to antibiotics has been reported and several molecular bases for this phenomenon described. In this review, we highlight the current knowledge on mechanisms supporting H. pylori resistance to gastric environment and to therapy.
Collapse
Affiliation(s)
- Sharmila Fagoonee
- a Institute for Biostructure and Bioimaging (CNR) c/o Molecular Biotechnology Center , Turin , Italy
| | - Rinaldo Pellicano
- b Unit of Gastroenterology , Molinette-SGAS Hospital , Turin , Italy
| |
Collapse
|
16
|
Gudla R, Konduru GV, Nagarajaram HA, Siddavattam D. Organophosphate hydrolase interacts with Ton components and is targeted to the membrane only in the presence of the ExbB/ExbD complex. FEBS Lett 2019; 593:581-593. [DOI: 10.1002/1873-3468.13345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Ramurthy Gudla
- Department of Animal Biology School of Life Sciences University of Hyderabad India
| | | | | | | |
Collapse
|
17
|
Maki-Yonekura S, Matsuoka R, Yamashita Y, Shimizu H, Tanaka M, Iwabuki F, Yonekura K. Hexameric and pentameric complexes of the ExbBD energizer in the Ton system. eLife 2018; 7:35419. [PMID: 29661272 PMCID: PMC5903867 DOI: 10.7554/elife.35419] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/18/2018] [Indexed: 01/18/2023] Open
Abstract
Gram-negative bacteria import essential nutrients such as iron and vitamin B12 through outer membrane receptors. This process utilizes proton motive force harvested by the Ton system made up of three inner membrane proteins, ExbB, ExbD and TonB. ExbB and ExbD form the proton channel that energizes uptake through TonB. Recently, crystal structures suggest that the ExbB pentamer is the scaffold. Here, we present structures of hexameric complexes of ExbB and ExbD revealed by X-ray crystallography and single particle cryo-EM. Image analysis shows that hexameric and pentameric complexes coexist, with the proportion of hexamer increasing with pH. Channel current measurement and 2D crystallography support the existence and transition of the two oligomeric states in membranes. The hexameric complex consists of six ExbB subunits and three ExbD transmembrane helices enclosed within the central channel. We propose models for activation/inactivation associated with hexamer and pentamer formation and utilization of proton motive force. Many biological processes that are essential for life are powered by the flow of ions across the membranes of cells. Similar to how energy is stored in the water behind a dam, energy is also stored when the concentration of ions on one side of a biological membrane is higher than it is on the other. When these ions then flow down this concentration gradient, the energy can be harnessed to power other processes. In many bacteria, the concentration of hydrogen ions, or protons, is higher on the outside of the cell. When the protons flow down the concentration gradient, a protein complex called the Ton system in the bacteria’s inner membrane harnesses the energy to transport various compounds, including essential nutrients, across the outer membrane, which is about 20 nanometres away. Toxins, and viruses that infect bacteria, can also hijack the Ton system to gain entry into these cells. This means that the Ton system could perhaps be targeted via drugs to treat bacterial infections. Though the Ton system is important, structural information on this protein family is limited. The Ton complex is composed of three proteins – ExbB, ExbD and TonB – located in the bacteria’s inner membrane. ExbB and ExbD together form a channel for the protons and the complex made from these two proteins can be thought of as the system’s engine. Maki-Yonekura et al. wanted to understand how the ExbB / ExbD complex works, which was challenging because the complex was not well suited to any single structural biology technique. To get around this issue, a combination of two techniques called X-ray crystallography and single particle cryo-EM were used. This approached revealed that the two proteins form complexes made up of either five or six ExbB subunits with one or three ExbD subunits, respectively. It also showed that the proteins transition between the two forms in a cell’s membrane. More of the larger six-unit complex (also called a “hexamer”) formed at higher pH. This is consistent with the increased flow of protons through the channel when the local conditions inside the cell become less acidic. Based on these results, Maki-Yonekura et al. propose that some subunits in the core of the complex rotate to harness the energy from the flow of protons, and the number of subunits in the complex changes when it switches to become active or inactive. The discoveries may provide a new vision of dynamic membrane biology. Further studies are now needed to see how general this mechanism is in biology, and the new structural information could also be used to help develop more anti-bacterial drugs.
Collapse
Affiliation(s)
| | - Rei Matsuoka
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| | - Yoshiki Yamashita
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| | - Hirofumi Shimizu
- Department of Molecular Physiology and Biophysics, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Maiko Tanaka
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| | - Fumie Iwabuki
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Japan
| |
Collapse
|
18
|
Polyviou D, Baylay AJ, Hitchcock A, Robidart J, Moore CM, Bibby TS. Desert Dust as a Source of Iron to the Globally Important Diazotroph Trichodesmium. Front Microbiol 2018; 8:2683. [PMID: 29387046 PMCID: PMC5776111 DOI: 10.3389/fmicb.2017.02683] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/22/2017] [Indexed: 12/22/2022] Open
Abstract
The marine cyanobacterium Trichodesmium sp. accounts for approximately half of the annual ‘new’ nitrogen introduced to the global ocean but its biogeography and activity is often limited by the availability of iron (Fe). A major source of Fe to the open ocean is Aeolian dust deposition in which Fe is largely comprised of particles with reduced bioavailability over soluble forms of Fe. We report that Trichodesmium erythraeum IMS101 has improved growth rate and photosynthetic physiology and down-regulates Fe-stress biomarker genes when cells are grown in the direct vicinity of, rather than physically separated from, Saharan dust particles as the sole source of Fe. These findings suggest that availability of non-soluble forms of dust-associated Fe may depend on cell contact. Transcriptomic analysis further reveals unique profiles of gene expression in all tested conditions, implying that Trichodesmium has distinct molecular signatures related to acquisition of Fe from different sources. Trichodesmium thus appears to be capable of employing specific mechanisms to access Fe from complex sources in oceanic systems, helping to explain its role as a key microbe in global biogeochemical cycles.
Collapse
Affiliation(s)
- Despo Polyviou
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom
| | - Alison J Baylay
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Sheffield, United Kingdom
| | - Julie Robidart
- Ocean Technology and Engineering Group, National Oceanography Centre, Southampton, United Kingdom
| | - C M Moore
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom
| | - Thomas S Bibby
- Ocean and Earth Science, University of Southampton, Waterfront Campus, Southampton, United Kingdom
| |
Collapse
|
19
|
Nas MY, Cianciotto NP. Stenotrophomonas maltophilia produces an EntC-dependent catecholate siderophore that is distinct from enterobactin. MICROBIOLOGY-SGM 2017; 163:1590-1603. [PMID: 28984234 DOI: 10.1099/mic.0.000545] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stenotrophomonas maltophilia, a Gram-negative, multi-drug-resistant bacterium, is increasingly recognized as a key opportunistic pathogen. Thus, we embarked upon an investigation of S. maltophilia iron acquisition. To begin, we determined that the genome of strain K279a is predicted to encode a complete siderophore system, including a biosynthesis pathway, an outer-membrane receptor for ferrisiderophore, and other import and export machinery. Compatible with these data, K279a and other clinical isolates of S. maltophilia secreted a siderophore-like activity when grown at 25-37 °C in low-iron media, as demonstrated by a chrome azurol S assay, which detects iron chelation, and Arnow and Rioux assays, which detect catecholate structures. Importantly, these supernatants rescued the growth of iron-starved S. maltophilia, documenting the presence of a biologically active siderophore. A mutation in one of the predicted biosynthesis genes (entC) abolished production of the siderophore and impaired bacterial growth in low-iron conditions. Inactivation of the putative receptor gene (fepA) prevented the utilization of siderophore-containing supernatants for growth in low-iron conditions. Although the biosynthesis and import loci showed some similarity to those of enterobactin, a well-known catecholate made by enteric bacteria, the siderophore of K279a was unable to rescue the growth of an enterobactin-utilizing indicator strain, and conversely iron-starved S. maltophilia could not use purified enterobactin. Furthermore, the S. maltophilia siderophore displayed patterns of solubility in organic compounds and mobility upon thin-layer chromatography that were distinct from those of enterobactin and its derivative, salmochelin. Together, these data demonstrate that S. maltophilia secretes a novel catecholate siderophore.
Collapse
Affiliation(s)
- Megan Y Nas
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
20
|
Abstract
BACKGROUND Helicobacter pylori is well adapted to colonize the epithelial surface of the human gastric mucosa and can cause persistent infections. In order to infect the gastric mucosa, it has to survive in the gastric acidic pH. This organism has well developed mechanisms to neutralize the effects of acidic pH. OBJECTIVE This review article was designed to summarize the various functional and molecular aspects by which the bacterium can combat and survive the gastric acidic pH in order to establish the persistent infections. METHODS We used the keywords (acid acclimation, gastric acidic environment, H. pylori and survival) in combination or alone for pubmed search of recent scientific literatures. One hundred and forty one papers published between 1989 and 2016 were sorted out. The articles published with only abstracts, other than in English language, case reports and reviews were excluded. RESULTS Many literatures describing the role of several factors in acid survival were found. Recently, the role of several other factors has been claimed to participate in acid survival. CONCLUSION In conclusion, this organism has well characterized mechanisms for acid survival.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan,Department of Medicine-Gastroenterology, Baylor College of Medicine, Houston, Texas, USA,Corresponding author: Yoshio Yamaoka, MD, PhD, Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita 879-5593, Japan, Tel: +81-97-586-5740; Fax: +81-97-586-5749,
| |
Collapse
|
21
|
Going Outside the TonB Box: Identification of Novel FepA-TonB Interactions In Vivo. J Bacteriol 2017; 199:JB.00649-16. [PMID: 28264993 DOI: 10.1128/jb.00649-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 02/15/2017] [Indexed: 01/30/2023] Open
Abstract
In Gram-negative bacteria, the cytoplasmic membrane protein TonB transmits energy derived from proton motive force to energize transport of important nutrients through TonB-dependent transporters in the outer membrane. Each transporter consists of a beta barrel domain and a lumen-occluding cork domain containing an essential sequence called the TonB box. To date, the only identified site of transporter-TonB interaction is between the TonB box and residues ∼158 to 162 of TonB. While the mechanism of ligand transport is a mystery, a current model based on site-directed spin labeling and molecular dynamics simulations is that, following ligand binding, the otherwise-sequestered TonB box extends into the periplasm for recognition by TonB, which mediates transport by pulling or twisting the cork. In this study, we tested that hypothesis with the outer membrane transporter FepA using in vivo photo-cross-linking to explore interactions of its TonB box and determine whether additional FepA-TonB interaction sites exist. We found numerous specific sites of FepA interaction with TonB on the periplasmic face of the FepA cork in addition to the TonB box. Two residues, T32 and A33, might constitute a ligand-sensitive conformational switch. The facts that some interactions were enhanced in the absence of ligand and that other interactions did not require the TonB box argued against the current model and suggested that the transport process is more complex than originally conceived, with subtleties that might provide a mechanism for discrimination among ligand-loaded transporters. These results constitute the first study on the dynamics of TonB-gated transporter interaction with TonB in vivoIMPORTANCE The TonB system of Gram-negative bacteria has a noncanonical active transport mechanism involving signal transduction and proteins integral to both membranes. To achieve transport, the cytoplasmic membrane protein TonB physically contacts outer membrane transporters such as FepA. Only one contact between TonB and outer membrane transporters has been identified to date: the TonB box at the transporter amino terminus. The TonB box has low information content, raising the question of how TonB can discriminate among multiple different TonB-dependent transporters present in the bacterium if it is the only means of contact. Here we identified several additional sites through which FepA contacts TonB in vivo, including two neighboring residues that may explain how FepA signals to TonB that ligand has bound.
Collapse
|
22
|
Lill Y, Jordan LD, Smallwood CR, Newton SM, Lill MA, Klebba PE, Ritchie K. Confined Mobility of TonB and FepA in Escherichia coli Membranes. PLoS One 2016; 11:e0160862. [PMID: 27935943 PMCID: PMC5147803 DOI: 10.1371/journal.pone.0160862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/26/2016] [Indexed: 01/21/2023] Open
Abstract
The important process of nutrient uptake in Escherichia coli, in many cases, involves transit of the nutrient through a class of beta-barrel proteins in the outer membrane known as TonB-dependent transporters (TBDTs) and requires interaction with the inner membrane protein TonB. Here we have imaged the mobility of the ferric enterobactin transporter FepA and TonB by tracking them in the membranes of live E. coli with single-molecule resolution at time-scales ranging from milliseconds to seconds. We employed simple simulations to model/analyze the lateral diffusion in the membranes of E.coli, to take into account both the highly curved geometry of the cell and artifactual effects expected due to finite exposure time imaging. We find that both molecules perform confined lateral diffusion in their respective membranes in the absence of ligand with FepA confined to a region 0.180−0.007+0.006 μm in radius in the outer membrane and TonB confined to a region 0.266−0.009+0.007 μm in radius in the inner membrane. The diffusion coefficient of these molecules on millisecond time-scales was estimated to be 21−5+9 μm2/s and 5.4−0.8+1.5 μm2/s for FepA and TonB, respectively, implying that each molecule is free to diffuse within its domain. Disruption of the inner membrane potential, deletion of ExbB/D from the inner membrane, presence of ligand or antibody to FepA and disruption of the MreB cytoskeleton was all found to further restrict the mobility of both molecules. Results are analyzed in terms of changes in confinement size and interactions between the two proteins.
Collapse
Affiliation(s)
- Yoriko Lill
- Department of Physics, Purdue University, West Lafayette, Indiana, United States of America
| | - Lorne D. Jordan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Chuck R. Smallwood
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Salete M. Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
| | - Markus A. Lill
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, United States of America
| | - Phillip E. Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail: (PEK); (KR)
| | - Ken Ritchie
- Department of Physics, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail: (PEK); (KR)
| |
Collapse
|
23
|
TonB-dependent ligand trapping in the BtuB transporter. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3105-3112. [DOI: 10.1016/j.bbamem.2016.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 11/22/2022]
|
24
|
Celia H, Noinaj N, Zakharov SD, Bordignon E, Botos I, Santamaria M, Barnard TJ, Cramer WA, Lloubes R, Buchanan SK. Structural insight into the role of the Ton complex in energy transduction. Nature 2016; 538:60-65. [PMID: 27654919 PMCID: PMC5161667 DOI: 10.1038/nature19757] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 08/15/2016] [Indexed: 01/07/2023]
Abstract
In Gram-negative bacteria, outer membrane transporters import nutrients by coupling to an inner membrane protein complex called the Ton complex. The Ton complex consists of TonB, ExbB, and ExbD, and uses the proton motive force at the inner membrane to transduce energy to the outer membrane via TonB. Here, we structurally characterize the Ton complex from Escherichia coli using X-ray crystallography, electron microscopy, double electron-electron resonance (DEER) spectroscopy, and crosslinking. Our results reveal a stoichiometry consisting of a pentamer of ExbB, a dimer of ExbD, and at least one TonB. Electrophysiology studies show that the Ton subcomplex forms pH-sensitive cation-selective channels and provide insight into the mechanism by which it may harness the proton motive force to produce energy.
Collapse
Affiliation(s)
- Hervé Celia
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR7255 CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 13402 Marseille Cedex 20, France,National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana, 47907,Correspondence and requests for materials should be addressed to N.N. (), R.L. () or S.K.B. ()
| | - Stanislav D. Zakharov
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana, 47907
| | - Enrica Bordignon
- Fachbereich Physik, Freie Universität, 14195 Berlin, Germany,Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 45810 Bochum, Germany
| | - Istvan Botos
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892
| | - Monica Santamaria
- Departamento de Cirugia Experimental, Instituto de Investigacion Hospital La Paz (IdiPAZ), Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Travis J. Barnard
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892
| | - William A. Cramer
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana, 47907
| | - Roland Lloubes
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR7255 CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 13402 Marseille Cedex 20, France,Correspondence and requests for materials should be addressed to N.N. (), R.L. () or S.K.B. ()
| | - Susan K. Buchanan
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892,Correspondence and requests for materials should be addressed to N.N. (), R.L. () or S.K.B. ()
| |
Collapse
|
25
|
From Homodimer to Heterodimer and Back: Elucidating the TonB Energy Transduction Cycle. J Bacteriol 2015; 197:3433-45. [PMID: 26283773 DOI: 10.1128/jb.00484-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/12/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The TonB system actively transports large, scarce, and important nutrients through outer membrane (OM) transporters of Gram-negative bacteria using the proton gradient of the cytoplasmic membrane (CM). In Escherichia coli, the CM proteins ExbB and ExbD harness and transfer proton motive force energy to the CM protein TonB, which spans the periplasmic space and cyclically binds OM transporters. TonB has two activity domains: the amino-terminal transmembrane domain with residue H20 and the periplasmic carboxy terminus, through which it binds to OM transporters. TonB is inactivated by all substitutions at residue H20 except H20N. Here, we show that while TonB trapped as a homodimer through its amino-terminal domain retained full activity, trapping TonB through its carboxy terminus inactivated it by preventing conformational changes needed for interaction with OM transporters. Surprisingly, inactive TonB H20A had little effect on homodimerization through the amino terminus and instead decreased TonB carboxy-terminal homodimer formation prior to reinitiation of an energy transduction cycle. That result suggested that the TonB carboxy terminus ultimately interacts with OM transporters as a monomer. Our findings also suggested the existence of a separate equimolar pool of ExbD homodimers that are not in contact with TonB. A model is proposed where interaction of TonB homodimers with ExbD homodimers initiates the energy transduction cycle, and, ultimately, the ExbD carboxy terminus modulates interactions of a monomeric TonB carboxy terminus with OM transporters. After TonB exchanges its interaction with ExbD for interaction with a transporter, ExbD homodimers undergo a separate cycle needed to re-energize them. IMPORTANCE Canonical mechanisms of active transport across cytoplasmic membranes employ ion gradients or hydrolysis of ATP for energy. Gram-negative bacterial outer membranes lack these resources. The TonB system embodies a novel means of active transport across the outer membrane for nutrients that are too large, too scarce, or too important for diffusion-limited transport. A proton gradient across the cytoplasmic membrane is converted by a multiprotein complex into mechanical energy that drives high-affinity active transport across the outer membrane. This system is also of interest since one of its uses in pathogenic bacteria is for competition with the host for the essential element iron. Understanding the mechanism of the TonB system will allow design of antibiotics targeting iron acquisition.
Collapse
|
26
|
Sverzhinsky A, Chung JW, Deme JC, Fabre L, Levey KT, Plesa M, Carter DM, Lypaczewski P, Coulton JW. Membrane Protein Complex ExbB4-ExbD1-TonB1 from Escherichia coli Demonstrates Conformational Plasticity. J Bacteriol 2015; 197:1873-85. [PMID: 25802296 PMCID: PMC4420915 DOI: 10.1128/jb.00069-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/13/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Iron acquisition at the outer membrane (OM) of Gram-negative bacteria is powered by the proton motive force (PMF) of the cytoplasmic membrane (CM), harnessed by the CM-embedded complex of ExbB, ExbD, and TonB. Its stoichiometry, ensemble structural features, and mechanism of action are unknown. By panning combinatorial phage libraries, periplasmic regions of dimerization between ExbD and TonB were predicted. Using overexpression of full-length His6-tagged exbB-exbD and S-tagged tonB, we purified detergent-solubilized complexes of ExbB-ExbD-TonB from Escherichia coli. Protein-detergent complexes of ∼230 kDa with a hydrodynamic radius of ∼6.0 nm were similar to previously purified ExbB₄-ExbD₂ complexes. Significantly, they differed in electronegativity by native agarose gel electrophoresis. The stoichiometry was determined to be ExbB₄-ExbD₁-TonB₁. Single-particle electron microscopy agrees with this stoichiometry. Two-dimensional averaging supported the phage display predictions, showing two forms of ExbD-TonB periplasmic heterodimerization: extensive and distal. Three-dimensional (3D) particle classification showed three representative conformations of ExbB₄-ExbD₁-TonB₁. Based on our structural data, we propose a model in which ExbD shuttles a proton across the CM via an ExbB interprotein rearrangement. Proton translocation would be coupled to ExbD-mediated collapse of extended TonB in complex with ligand-loaded receptors in the OM, followed by repositioning of TonB through extensive dimerization with ExbD. Here we present the first report for purification of the ExbB-ExbD-TonB complex, molar ratios within the complex (4:1:1), and structural biology that provides insights into 3D organization. IMPORTANCE Receptors in the OM of Gram-negative bacteria allow entry of iron-bound siderophores that are necessary for pathogenicity. Numerous iron-acquisition strategies rely upon a ubiquitous and unique protein for energization: TonB. Complexed with ExbB and ExbD, the Ton system links the PMF to OM transport. Blocking iron uptake by targeting a vital nanomachine holds promise in therapeutics. Despite much research, the stoichiometry, structural arrangement, and molecular mechanism of the CM-embedded ExbB-ExbD-TonB complex remain unreported. Here we demonstrate in vitro evidence of ExbB₄-ExbD₁-TonB₁ complexes. Using 3D EM, we reconstructed the complex in three conformational states that show variable ExbD-TonB heterodimerization. Our structural observations form the basis of a model for TonB-mediated iron acquisition.
Collapse
Affiliation(s)
| | - Jacqueline W Chung
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Justin C Deme
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Lucien Fabre
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Kristian T Levey
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Maria Plesa
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - David M Carter
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Patrick Lypaczewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - James W Coulton
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada Microbiome and Disease Tolerance Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
27
|
Sverzhinsky A, Fabre L, Cottreau AL, Biot-Pelletier DMP, Khalil S, Bostina M, Rouiller I, Coulton JW. Coordinated rearrangements between cytoplasmic and periplasmic domains of the membrane protein complex ExbB-ExbD of Escherichia coli. Structure 2014; 22:791-7. [PMID: 24657092 DOI: 10.1016/j.str.2014.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/05/2014] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
Abstract
Gram-negative bacteria rely on the ExbB-ExbD-TonB system for the import of essential nutrients. Despite decades of research, the stoichiometry, subunit organization, and mechanism of action of the membrane proteins of the Ton system remain unclear. We copurified ExbB with ExbD as an ∼240 kDa protein-detergent complex, measured by light scattering and by native gels. Quantitative Coomassie staining revealed a stoichiometry of ExbB4-ExbD2. Negative stain electron microscopy and 2D analysis showed particles of ∼10 nm diameter in multiple structural states. Nanogold labeling identified the position of the ExbD periplasmic domain. Random conical tilt was used to reconstruct the particles in three structural states followed by sorting of the single particles and refinement of each state. The different states are interpreted by coordinated structural rearrangements between the cytoplasmic domain and the periplasmic domain, concordant with in vivo predictions.
Collapse
Affiliation(s)
- Aleksandr Sverzhinsky
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Lucien Fabre
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Andrew L Cottreau
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | | | - Sofia Khalil
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Mihnea Bostina
- Facility for Electron Microscope Research, McGill University, Montreal, QC H3A 2B4, Canada
| | - Isabelle Rouiller
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B4, Canada
| | - James W Coulton
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; Microbiome and Disease Tolerance Centre, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
28
|
Wille T, Wagner C, Mittelstädt W, Blank K, Sommer E, Malengo G, Döhler D, Lange A, Sourjik V, Hensel M, Gerlach RG. SiiA and SiiB are novel type I secretion system subunits controlling SPI4-mediated adhesion ofSalmonella enterica. Cell Microbiol 2013; 16:161-78. [DOI: 10.1111/cmi.12222] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 09/25/2013] [Accepted: 09/27/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Thorsten Wille
- Nachwuchsgruppe 3; RKI Bereich Wernigerode; Wernigerode Germany
| | - Carolin Wagner
- Mikrobiologisches Institut; Universitätsklinikum Erlangen; Erlangen Germany
- Abt. Mikrobiologie; Universität Osnabrück; Osnabrück Germany
| | | | - Kathrin Blank
- Nachwuchsgruppe 3; RKI Bereich Wernigerode; Wernigerode Germany
| | - Erik Sommer
- Zentrum für Molekulare Biologie der Universität Heidelberg; DKFZ-ZMBH-Alliance; Heidelberg Germany
| | - Gabriele Malengo
- Zentrum für Molekulare Biologie der Universität Heidelberg; DKFZ-ZMBH-Alliance; Heidelberg Germany
| | - Daniela Döhler
- Mikrobiologisches Institut; Universitätsklinikum Erlangen; Erlangen Germany
| | - Anna Lange
- Nachwuchsgruppe 3; RKI Bereich Wernigerode; Wernigerode Germany
| | - Viktor Sourjik
- Zentrum für Molekulare Biologie der Universität Heidelberg; DKFZ-ZMBH-Alliance; Heidelberg Germany
| | - Michael Hensel
- Abt. Mikrobiologie; Universität Osnabrück; Osnabrück Germany
| | | |
Collapse
|
29
|
Guillon L, Altenburger S, Graumann PL, Schalk IJ. Deciphering protein dynamics of the siderophore pyoverdine pathway in Pseudomonas aeruginosa. PLoS One 2013; 8:e79111. [PMID: 24205369 PMCID: PMC3813593 DOI: 10.1371/journal.pone.0079111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/26/2013] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa produces the siderophore, pyoverdine (PVD), to obtain iron. Siderophore pathways involve complex mechanisms, and the machineries responsible for biosynthesis, secretion and uptake of the ferri-siderophore span both membranes of Gram-negative bacteria. Most proteins involved in the PVD pathway have been identified and characterized but the way the system functions as a whole remains unknown. By generating strains expressing fluorescent fusion proteins, we show that most of the proteins are homogeneously distributed throughout the bacterial cell. We also studied the dynamics of these proteins using fluorescence recovery after photobleaching (FRAP). This led to the first diffusion coefficients ever determined in P. aeruginosa. Cytoplasmic and periplamic diffusion appeared to be slower than in Escherichia coli but membrane proteins seemed to behave similarly in the two species. The diffusion of cytoplasmic and periplasmic tagged proteins involved in the PVD pathway was dependent on the interaction network to which they belong. Importantly, the TonB protein, motor of the PVD-Fe uptake process, was mostly immobile but its mobility increased substantially in the presence of PVD-Fe.
Collapse
Affiliation(s)
| | - Stephan Altenburger
- SYMMIKRO, LOEWE Center for Synthetic Microbiology, and Department of Chemistry, University of Marburg, Marburg, Germany
| | - Peter L. Graumann
- SYMMIKRO, LOEWE Center for Synthetic Microbiology, and Department of Chemistry, University of Marburg, Marburg, Germany
| | | |
Collapse
|
30
|
Cowles KN, Moser TS, Siryaporn A, Nyakudarika N, Dixon W, Turner JJ, Gitai Z. The putative Poc complex controls two distinct Pseudomonas aeruginosa polar motility mechanisms. Mol Microbiol 2013; 90:923-38. [PMID: 24102920 DOI: 10.1111/mmi.12403] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2013] [Indexed: 11/27/2022]
Abstract
Each Pseudomonas aeruginosa cell localizes two types of motility structures, a single flagellum and one or two clusters of type IV pili, to the cell poles. Previous studies suggested that these motility structures arrive at the pole through distinct mechanisms. Here we performed a swimming motility screen to identify polar flagellum localization factors and discovered three genes homologous to the TonB/ExbB/ExbD complex that have defects in both flagella-mediated swimming and pilus-mediated twitching motility. We found that deletion of tonB3, PA2983 or PA2982 led to non-polar localization of the flagellum and FlhF, which was thought to sit at the top of the flagellar localization hierarchy. Surprisingly, these mutants also exhibited pronounced changes in pilus formation or localization, indicating that these proteins may co-ordinate both the pilus and flagellum motility systems. Thus, we have renamed PA2983 and PA2982, pocA and pocB, respectively, for polar organelle co-ordinator to reflect this function. Our results suggest that TonB3, PocA and PocB may form a membrane-associated complex, which we term the Poc complex. These proteins do not exhibit polar localization themselves, but are required for increased expression of pilus genes upon surface association, indicating that they regulate motility structures through either localization or transcriptional mechanisms.
Collapse
Affiliation(s)
- Kimberly N Cowles
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
BACKGROUND Helicobacter pylori, a neutralophile, colonizes the acidic environment of the human stomach by employing acid acclimation mechanisms that regulate periplasmic and cytoplasmic pH. The regulation of urease activity is central to acid acclimation. Inactive urease apoenzyme, UreA/B, requires nickel for activation. Accessory proteins UreE, F, G, and H are required for nickel insertion into apoenzyme. The ExbB/ExbD/TonB complex transfers energy from the inner to outer membrane, providing the driving force for nickel uptake. Therefore, the aim of this study was to determine the contribution of ExbD to pH homeostasis. MATERIALS AND METHODS A nonpolar exbD knockout was constructed and survival, growth, urease activity, and membrane potential were determined in comparison with wildtype. RESULTS Survival of the ΔexbD strain was significantly reduced at pH 3.0. Urease activity as a function of pH and UreI activation was similar to the wildtype strain, showing normal function of the proton-gated urea channel, UreI. The increase in total urease activity over time in acid seen in the wildtype strain was abolished in the ΔexbD strain, but recovered in the presence of supraphysiologic nickel concentrations, demonstrating that the effect of the ΔexbD mutant is due to loss of a necessary constant supply of nickel. In acid, ΔexbD also decreased its ability to maintain membrane potential and periplasmic buffering in the presence of urea. CONCLUSIONS ExbD is essential for maintenance of periplasmic buffering and membrane potential by transferring energy required for nickel uptake, making it a potential nonantibiotic target for H. pylori eradication.
Collapse
Affiliation(s)
- Elizabeth A. Marcus
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA,VA GLAHS, Los Angeles, CA
| | - George Sachs
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA,Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA,VA GLAHS, Los Angeles, CA
| | - David R. Scott
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA,VA GLAHS, Los Angeles, CA,Corresponding author: VA GLAHS, 11301 Wilshire Blvd, Bldg 113, Rm 324, Los Angeles, CA 90073, Phone: 310-478-3711 x42046, Fax: 310-312-9478,
| |
Collapse
|
32
|
ExbB cytoplasmic loop deletions cause immediate, proton motive force-independent growth arrest. J Bacteriol 2013; 195:4580-91. [PMID: 23913327 DOI: 10.1128/jb.00334-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Escherichia coli TonB system consists of the cytoplasmic membrane proteins TonB, ExbB, and ExbD and multiple outer membrane active transporters for diverse iron siderophores and vitamin B12. The cytoplasmic membrane proteins harvest and transmit the proton motive force (PMF) to outer membrane transporters. This system, which spans the cell envelope, has only one component with a significant cytoplasmic presence, ExbB. Characterization of sequential 10-residue deletions in the ExbB cytoplasmic loop (residues 40 to 129; referred to as Δ10 proteins) revealed that it was required for all TonB-dependent activities, including interaction between the periplasmic domains of TonB and ExbD. Expression of eight out of nine of the Δ10 proteins at chromosomal levels led to immediate, but reversible, growth arrest. Arrest was not due to collapse of the PMF and did not require the presence of ExbD or TonB. All Δ10 proteins that caused growth arrest were dominant for that phenotype. However, several were not dominant for iron transport, indicating that growth arrest was an intrinsic property of the Δ10 variants, whether or not they could associate with wild-type ExbB proteins. The lack of dominance in iron transport also ruled out trivial explanations for growth arrest, such as high-level induction. Taken together, the data suggest that growth arrest reflected a changed interaction between the ExbB cytoplasmic loop and one or more unknown growth-regulatory proteins. Consistent with that, a large proportion of the ExbB cytoplasmic loop between transmembrane domain 1 (TMD1) and TMD2 is predicted to be disordered, suggesting the need for interaction with one or more cytoplasmic proteins to induce a final structure.
Collapse
|
33
|
Elucidating the origin of the ExbBD components of the TonB system through Bayesian inference and maximum-likelihood phylogenies. Mol Phylogenet Evol 2013; 69:674-86. [PMID: 23891663 DOI: 10.1016/j.ympev.2013.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 06/28/2013] [Accepted: 07/12/2013] [Indexed: 01/03/2023]
Abstract
Uptake of ferric siderophores, vitamin B12, and other molecules in gram-negative bacteria is mediated by a multi-protein complex known as the TonB system. The ExbB and ExbD protein components of the TonB system play key energizing roles and are homologous with the flagellar motor proteins MotA and MotB. Here, the phylogenetic relationships of ExbBD and MotAB were investigated using Bayesian inference and the maximum-likelihood method. Phylogenetic trees of these proteins suggest that they are separated into distinct monophyletic groups and have originated from a common ancestral system. Several horizontal gene transfer events for ExbB-ExbD are also inferred, and a model for the evolution of the TonB system is proposed.
Collapse
|
34
|
Simou OM, Pantazaki AA. Evidence for lytic transglycosylase and β-N-acetylglucosaminidase activities located at the polyhydroxyalkanoates (PHAs) granules of Thermus thermophilus HB8. Appl Microbiol Biotechnol 2013; 98:1205-21. [PMID: 23685478 DOI: 10.1007/s00253-013-4980-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/01/2013] [Accepted: 05/02/2013] [Indexed: 11/30/2022]
Abstract
The thermophilic bacterium Thermus thermophilus HB8 accumulates polyhydroxyalkanoates (PHAs) as intracellular granules used by cells as carbon and energy storage compounds. PHAs granules were isolated from cells grown in sodium gluconate (1.5 % w/v) as carbon source. Lytic activities are strongly associated and act to the PHAs granules proved with various methods. Specialized lytic trasglycosylases (LTGs) are muramidases capable of locally degrading the peptidoglycan (PG) meshwork of Gram negative bacteria. These enzymes cleave the β-1,4-glycosidic linkages between the N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) residues of PG. Lysozyme-like activity/-ies were detected using lysoplate assay. Chitinolytic activity/-ies, were detected as N-acetyl glucosaminidases (NAG) (E.C.3.2.1.5.52) hydrolyzing the synthetic substrate p-nitrophenyl-N-acetyl-β-D-glucosaminide (pNP-GlcNAc) releasing pNP and GlcNAc. Using zymogram analysis two abundant LTGs were revealed hydrolyzing cell wall of Micrococcus lysodeikticus or purified PG incorporated as natural substrates, in SDS-PAGE and then renaturation. These proteins corresponded in a SDS-PAGE and Coomassie-stained gel in molecular mass of 110 and 32 kDa respectively, were analyzed by MALDI-MS (Matrix-assisted laser desorption/ionization-Mass Spectrometry). The 110 kDa protein was identified as an S-layer domain-containing protein [gi|336233805], while the 32 kDa similar to the hypothetical protein VDG1235_2196 (gi/254443957). Overall, the localization of PG hydrolases in PHAs granules appears to be involved to their biogenesis from membranes, and probably promoting septal PG splitting and daughter cell separation.
Collapse
Affiliation(s)
- Olga M Simou
- Laboratory of Biochemistry, Dept. of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | | |
Collapse
|
35
|
Mutations in Escherichia coli ExbB transmembrane domains identify scaffolding and signal transduction functions and exclude participation in a proton pathway. J Bacteriol 2013; 195:2898-911. [PMID: 23603742 DOI: 10.1128/jb.00017-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The TonB system couples cytoplasmic membrane proton motive force (pmf) to active transport of diverse nutrients across the outer membrane. Current data suggest that cytoplasmic membrane proteins ExbB and ExbD harness pmf energy. Transmembrane domain (TMD) interactions between TonB and ExbD allow the ExbD C terminus to modulate conformational rearrangements of the periplasmic TonB C terminus in vivo. These conformational changes somehow allow energization of high-affinity TonB-gated transporters by direct interaction with TonB. While ExbB is essential for energy transduction, its role is not well understood. ExbB has N-terminus-out, C-terminus-in topology with three TMDs. TMDs 1 and 2 are punctuated by a cytoplasmic loop, with the C-terminal tail also occupying the cytoplasm. We tested the hypothesis that ExbB TMD residues play roles in proton translocation. Reassessment of TMD boundaries based on hydrophobic character and residue conservation among distantly related ExbB proteins brought earlier widely divergent predictions into congruence. All TMD residues with potentially function-specific side chains (Lys, Cys, Ser, Thr, Tyr, Glu, and Asn) and residues with probable structure-specific side chains (Trp, Gly, and Pro) were substituted with Ala and evaluated in multiple assays. While all three TMDs were essential, they had different roles: TMD1 was a region through which ExbB interacted with the TonB TMD. TMD2 and TMD3, the most conserved among the ExbB/TolQ/MotA/PomA family, played roles in signal transduction between cytoplasm and periplasm and the transition from ExbB homodimers to homotetramers. Consideration of combined data excludes ExbB TMD residues from direct participation in a proton pathway.
Collapse
|
36
|
Freed DM, Lukasik SM, Sikora A, Mokdad A, Cafiso DS. Monomeric TonB and the Ton box are required for the formation of a high-affinity transporter-TonB complex. Biochemistry 2013; 52:2638-48. [PMID: 23517233 DOI: 10.1021/bi3016108] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The energy-dependent uptake of trace nutrients by Gram-negative bacteria involves the coupling of an outer membrane transport protein to the transperiplasmic protein TonB. In this study, a soluble construct of Escherichia coli TonB (residues 33-239) was used to determine the affinity of TonB for outer membrane transporters BtuB, FecA, and FhuA. Using fluorescence anisotropy, TonB(33-239) was found to bind with high affinity (tens of nanomolar) to both BtuB and FhuA; however, no high-affinity binding to FecA was observed. In BtuB, the high-affinity binding of TonB(33-239) was eliminated by mutations in the Ton box, which yield transport-defective protein, or by the addition of a Colicin E3 fragment, which stabilizes the Ton box in a folded state. These results indicate that transport requires a high-affinity transporter-TonB interaction that is mediated by the Ton box. Characterization of TonB(33-239) using double electron-electron resonance (DEER) demonstrates that a significant population of TonB(33-239) exists as a dimer; moreover, interspin distances are in approximate agreement with interlocked dimers observed previously by crystallography for shorter TonB fragments. When the TonB(33-239) dimer is bound to the outer membrane transporter, DEER shows that the TonB(33-239) dimer is converted to a monomeric form, suggesting that a dimer-monomer conversion takes place at the outer membrane during the TonB-dependent transport cycle.
Collapse
Affiliation(s)
- Daniel M Freed
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia 22904-4319, USA
| | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Karen S. Jakes
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461;
| | - William A. Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907;
| |
Collapse
|
38
|
The ttpC gene is contained in two of three TonB systems in the human pathogen Vibrio vulnificus, but only one is active in iron transport and virulence. J Bacteriol 2012; 194:3250-9. [PMID: 22505675 DOI: 10.1128/jb.00155-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TonB system of proteins is required for the energy-dependent active transport of iron-bound substrates across the outer membrane of gram-negative bacteria. We have identified three TonB systems within the human pathogen Vibrio vulnificus. The TonB1 system contains the TonB1, ExbD1, and ExbB1 proteins, whereas both the TtpC2-TonB2 and TtpC3-TonB3 systems contain an additional fourth protein, TtpC. Here we report that TtpC3, although highly related to TtpC2, is inactive in iron transport, whereas TtpC2 is essential for the function of the TtpC2-TonB2 system in V. vulnificus. This protein, together with TonB2, is absolutely required for both the uptake of endogenously produced iron-bound siderophores as well as siderophores produced from other organisms. Through complementation we show that V. vulnificus is capable of using different TtpC2 proteins from other Vibrio species to drive the uptake of multiple siderophores. We have also determined that aerobactin, a common bacterial siderophore involved in virulence of enteric bacteria, can only be brought into the cell using the TtpC2-TonB2 system, indicating an important evolutionary adaptation of TtpC2 and TonB2. Furthermore, in the absence of TonB1, TtpC2 is essential for a fully virulent phenotype as demonstrated using 50% lethal dose (LD(50)) experiments in mice.
Collapse
|
39
|
Identification of functionally important TonB-ExbD periplasmic domain interactions in vivo. J Bacteriol 2012; 194:3078-87. [PMID: 22493017 DOI: 10.1128/jb.00018-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In gram-negative bacteria, the cytoplasmic membrane proton-motive force energizes the active transport of TonB-dependent ligands through outer membrane TonB-gated transporters. In Escherichia coli, cytoplasmic membrane proteins ExbB and ExbD couple the proton-motive force to conformational changes in TonB, which are hypothesized to form the basis of energy transduction through direct contact with the transporters. While the role of ExbB is not well understood, contact between periplasmic domains of TonB and ExbD is required, with the conformational response of TonB to presence or absence of proton motive force being modulated through ExbD. A region (residues 92 to 121) within the ExbD periplasmic domain was previously identified as being important for TonB interaction. Here, the specific sites of periplasmic domain interactions between that region and the TonB carboxy terminus were identified by examining 270 combinations of 45 TonB and 6 ExbD individual cysteine substitutions for disulfide-linked heterodimer formation. ExbD residues A92C, K97C, and T109C interacted with multiple TonB substitutions in four regions of the TonB carboxy terminus. Two regions were on each side of the TonB residues known to interact with the TonB box of TonB-gated transporters, suggesting that ExbD positions TonB for correct interaction at that site. A third region contained a functionally important glycine residue, and the fourth region involved a highly conserved predicted amphipathic helix. Three ExbD substitutions, F103C, L115C, and T121C, were nonreactive with any TonB cysteine substitutions. ExbD D25, a candidate to be on a proton translocation pathway, was important to support efficient TonB-ExbD heterodimerization at these specific regions.
Collapse
|
40
|
The ExbD periplasmic domain contains distinct functional regions for two stages in TonB energization. J Bacteriol 2012; 194:3069-77. [PMID: 22493019 DOI: 10.1128/jb.00015-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TonB system of gram-negative bacteria energizes the active transport of diverse nutrients through high-affinity TonB-gated outer membrane transporters using energy derived from the cytoplasmic membrane proton motive force. Cytoplasmic membrane proteins ExbB and ExbD harness the proton gradient to energize TonB, which directly contacts and transmits this energy to ligand-loaded transporters. In Escherichia coli, the periplasmic domain of ExbD appears to transition from proton motive force-independent to proton motive force-dependent interactions with TonB, catalyzing the conformational changes of TonB. A 10-residue deletion scanning analysis showed that while all regions except the extreme amino terminus of ExbD were indispensable for function, distinct roles for the amino- and carboxy-terminal regions of the ExbD periplasmic domain were evident. Like residue D25 in the ExbD transmembrane domain, periplasmic residues 42 to 61 facilitated the conformational response of ExbD to proton motive force. This region appears to be important for transmitting signals between the ExbD transmembrane domain and carboxy terminus. The carboxy terminus, encompassing periplasmic residues 62 to 141, was required for initial assembly with the periplasmic domain of TonB, a stage of interaction required for ExbD to transmit its conformational response to proton motive force to TonB. Residues 92 to 121 were important for all three interactions previously observed for formaldehyde-cross-linked ExbD: ExbD homodimers, TonB-ExbD heterodimers, and ExbD-ExbB heterodimers. The distinct requirement of this ExbD region for interaction with ExbB raised the possibility of direct interaction with the few residues of ExbB known to occupy the periplasm.
Collapse
|
41
|
Müller FD, Schink CW, Hoiczyk E, Cserti E, Higgs PI. Spore formation in Myxococcus xanthus is tied to cytoskeleton functions and polysaccharide spore coat deposition. Mol Microbiol 2011; 83:486-505. [PMID: 22188356 DOI: 10.1111/j.1365-2958.2011.07944.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Myxococcus xanthus is a Gram-negative bacterium that differentiates into environmentally resistant spores. Spore differentiation involves septation-independent remodelling of the rod-shaped vegetative cell into a spherical spore and deposition of a thick and compact spore coat outside of the outer membrane. Our analyses suggest that spore coat polysaccharides are exported to the cell surface by the Exo outer membrane polysaccharide export/polysaccharide co-polymerase 2a (OPX/PCP-2a) machinery. Conversion of the capsule-like polysaccharide layer into a compact spore coat layer requires the Nfs proteins which likely form a complex in the cell envelope. Mutants in either nfs, exo or two other genetic loci encoding homologues of polysaccharide synthesis enzymes fail to complete morphogenesis from rods to spherical spores and instead produce a transient state of deformed cell morphology before reversion into typical rods. We additionally provide evidence that the cell cytoskeletal protein, MreB, plays an important role in rod to spore morphogenesis and for spore outgrowth. These studies provide evidence that this novel Gram-negative differentiation process is tied to cytoskeleton functions and polysaccharide spore coat deposition.
Collapse
Affiliation(s)
- Frank D Müller
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | | | | | | |
Collapse
|
42
|
Ollis AA, Postle K. ExbD mutants define initial stages in TonB energization. J Mol Biol 2011; 415:237-47. [PMID: 22100395 DOI: 10.1016/j.jmb.2011.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 11/01/2011] [Accepted: 11/03/2011] [Indexed: 10/15/2022]
Abstract
Cytoplasmic membrane proteins ExbB and ExbD of the Escherichia coli TonB system couple cytoplasmic membrane protonmotive force (pmf) to TonB. TonB transmits this energy to high-affinity outer membrane active transporters. ExbD is proposed to catalyze TonB conformational changes during energy transduction. Here, the effect of ExbD mutants and changes in pmf on TonB proteinase K sensitivity in spheroplasts was examined. Spheroplasts supported the pmf-dependent formaldehyde cross-link between periplasmic domains of TonB and ExbD, indicating that they constituted a biologically relevant in vivo system to study changes in TonB proteinase K sensitivity. Three stages in TonB energization were identified. In Stage I, ExbD L123Q or TonB H20A prevented proper interaction between TonB and ExbD, rendering TonB sensitive to proteinase K. In Stage II, ExbD D25N supported conversion of TonB to a proteinase-K-resistant form, but not energization of TonB or formation of the pmf-dependent formaldehyde cross-link. Addition of protonophores had the same effect as ExbD D25N. This suggested the existence of a pmf-independent association between TonB and ExbD. TonB proceeded to Stage III when pmf was present, again becoming proteinase K sensitive, but now able to form the pmf-dependent cross-link to ExbD. Absence or presence of pmf toggled TonB between Stage II and Stage III conformations, which were also detected in wild-type cells. ExbD also underwent pmf-dependent conformational changes that were interdependent with TonB. These observations supported the hypothesis that ExbD couples TonB to the pmf, with concomitant transitions of ExbD and TonB periplasmic domains from unenergized to energized heterodimers.
Collapse
Affiliation(s)
- Anne A Ollis
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
43
|
Gresock MG, Savenkova MI, Larsen RA, Ollis AA, Postle K. Death of the TonB Shuttle Hypothesis. Front Microbiol 2011; 2:206. [PMID: 22016747 PMCID: PMC3191458 DOI: 10.3389/fmicb.2011.00206] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 09/15/2011] [Indexed: 11/23/2022] Open
Abstract
A complex of ExbB, ExbD, and TonB couples cytoplasmic membrane (CM) proton motive force (pmf) to the active transport of large, scarce, or important nutrients across the outer membrane (OM). TonB interacts with OM transporters to enable ligand transport. Several mechanical models and a shuttle model explain how TonB might work. In the mechanical models, TonB remains attached to the CM during energy transduction, while in the shuttle model the TonB N terminus leaves the CM to deliver conformationally stored potential energy to OM transporters. Previous studies suggested that TonB did not shuttle based on the activity of a GFP-TonB fusion that was anchored in the CM by the GFP moiety. When we recreated the GFP-TonB fusion to extend those studies, in our hands it was proteolytically unstable, giving rise to potentially shuttleable degradation products. Recently, we discovered that a fusion of the Vibrio cholerae ToxR cytoplasmic domain to the N terminus of TonB was proteolytically stable. ToxR-TonB was able to be completely converted into a proteinase K-resistant conformation in response to loss of pmf in spheroplasts and exhibited an ability to form a pmf-dependent formaldehyde crosslink to ExbD, both indicators of its location in the CM. Most importantly, ToxR-TonB had the same relative specific activity as wild-type TonB. Taken together, these results provide conclusive evidence that TonB does not shuttle during energy transduction. We had previously concluded that TonB shuttles based on the use of an Oregon Green(®) 488 maleimide probe to assess periplasmic accessibility of N-terminal TonB. Here we show that the probe was permeant to the CM, thus permitting the labeling of the TonB N-terminus. These former results are reinterpreted in the context that TonB does not shuttle, and suggest the existence of a signal transduction pathway from OM to cytoplasm.
Collapse
Affiliation(s)
- Michael G. Gresock
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, USA
| | - Marina I. Savenkova
- School of Molecular Biosciences, Washington State UniversityPullman, WA, USA
| | - Ray A. Larsen
- School of Molecular Biosciences, Washington State UniversityPullman, WA, USA
| | - Anne A. Ollis
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, USA
| | - Kathleen Postle
- Department of Biochemistry and Molecular Biology, The Pennsylvania State UniversityUniversity Park, PA, USA
- School of Molecular Biosciences, Washington State UniversityPullman, WA, USA
| |
Collapse
|
44
|
The same periplasmic ExbD residues mediate in vivo interactions between ExbD homodimers and ExbD-TonB heterodimers. J Bacteriol 2011; 193:6852-63. [PMID: 21984795 DOI: 10.1128/jb.06190-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TonB system couples cytoplasmic membrane proton motive force to TonB-gated outer membrane transporters for active transport of nutrients into the periplasm. In Escherichia coli, cytoplasmic membrane proteins ExbB and ExbD promote conformational changes in TonB, which transmits this energy to the transporters. The only known energy-dependent interaction occurs between the periplasmic domains of TonB and ExbD. This study identified sites of in vivo homodimeric interactions within ExbD periplasmic domain residues 92 to 121. ExbD was active as a homodimer (ExbD(2)) but not through all Cys substitution sites, suggesting the existence of conformationally dynamic regions in the ExbD periplasmic domain. A subset of homodimeric interactions could not be modeled on the nuclear magnetic resonance (NMR) structure without significant distortion. Most importantly, the majority of ExbD Cys substitutions that mediated homodimer formation also mediated ExbD-TonB heterodimer formation with TonB A150C. Consistent with the implied competition, ExbD homodimer formation increased in the absence of TonB. Although ExbD D25 was not required for their formation, ExbD dimers interacted in vivo with ExbB. ExbD-TonB interactions required ExbD transmembrane domain residue D25. These results suggested a model where ExbD(2) assembled with ExbB undergoes a transmembrane domain-dependent transition and exchanges partners in localized homodimeric interfaces to form an ExbD(2)-TonB heterotrimer. The findings here were also consistent with our previous hypothesis that ExbD guides the conformation of the TonB periplasmic domain, which itself is conformationally dynamic.
Collapse
|
45
|
Pramanik A, Hauf W, Hoffmann J, Cernescu M, Brutschy B, Braun V. Oligomeric Structure of ExbB and ExbB-ExbD Isolated from Escherichia coli As Revealed by LILBID Mass Spectrometry. Biochemistry 2011; 50:8950-6. [DOI: 10.1021/bi2008195] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Avijit Pramanik
- Max Planck Institute for Developmental Biology, D-72076 Tübingen,
Germany
| | - Waldemar Hauf
- Max Planck Institute for Developmental Biology, D-72076 Tübingen,
Germany
| | - Jan Hoffmann
- Institute of Physical
and Theoretical Chemistry, Johann Wolfgang Goethe University, D-60438 Frankfurt am Main, Germany
| | - Mihaela Cernescu
- Institute of Physical
and Theoretical Chemistry, Johann Wolfgang Goethe University, D-60438 Frankfurt am Main, Germany
| | - Bernhard Brutschy
- Institute of Physical
and Theoretical Chemistry, Johann Wolfgang Goethe University, D-60438 Frankfurt am Main, Germany
| | - Volkmar Braun
- Max Planck Institute for Developmental Biology, D-72076 Tübingen,
Germany
| |
Collapse
|
46
|
Hydrogen-stimulated carbon acquisition and conservation in Salmonella enterica serovar Typhimurium. J Bacteriol 2011; 193:5824-32. [PMID: 21856852 DOI: 10.1128/jb.05456-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Salmonella enterica serovar Typhimurium can utilize molecular hydrogen for growth and amino acid transport during anaerobic growth. Via microarray we identified H(2) gas-affected gene expression changes in Salmonella. The addition of H(2) caused altered expression of 597 genes, of which 176 genes were upregulated and 421 were downregulated. The significantly H(2)-upregulated genes include those that encode proteins involved in the transport of iron, manganese, amino acids, nucleosides, and sugars. Genes encoding isocitrate lyase (aceA) and malate synthase (aceB), both involved in the carbon conserving glyoxylate pathway, and genes encoding the enzymes of the d-glucarate and d-glycerate pathways (gudT, gudD, garR, garL, garK) are significantly upregulated by H(2). Cells grown with H(2) showed markedly increased AceA enzyme activity compared to cells without H(2). Mutant strains with deletion of either aceA or aceB had reduced H(2)-dependent growth rates. Genes encoding the glutamine-specific transporters (glnH, glnP, glnQ) were upregulated by H(2), and cells grown with H(2) showed increased [(14)C]glutamine uptake. Similarly, the mannose uptake system genes (manX, manY) were upregulated by H(2,) and cells grown with H(2) showed about 2.0-fold-increased [(14)C]d-mannose uptake compared to the cells grown without H(2). Hydrogen stimulates the expression of genes involved in nutrient and carbon acquisition and carbon-conserving pathways, linking carbon and energy metabolism to sustain H(2)-dependent growth.
Collapse
|
47
|
Mutations in the ExbB cytoplasmic carboxy terminus prevent energy-dependent interaction between the TonB and ExbD periplasmic domains. J Bacteriol 2011; 193:5649-57. [PMID: 21840979 DOI: 10.1128/jb.05674-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TonB system of Gram-negative bacteria provides passage across the outer membrane (OM) diffusion barrier that otherwise limits access to large, scarce, or important nutrients. In Escherichia coli, the integral cytoplasmic membrane (CM) proteins TonB, ExbB, and ExbD couple the CM proton motive force (PMF) to active transport of iron-siderophore complexes and vitamin B(12) across the OM through high-affinity transporters. ExbB is an integral CM protein with three transmembrane domains. The majority of ExbB occupies the cytoplasm. Here, the importance of the cytoplasmic ExbB carboxy terminus (residues 195 to 244) was evaluated by cysteine scanning mutagenesis. D211C and some of the substitutions nearest the carboxy terminus spontaneously formed disulfide cross-links, even though the cytoplasm is a reducing environment. ExbB N196C and D211C substitutions were converted to Ala substitutions to stabilize them. Only N196A, D211A, A228C, and G244C substitutions significantly decreased ExbB activity. With the exception of ExbB(G244C), all of the substituted forms were dominant. Like wild-type ExbB, they all formed a formaldehyde cross-linked tetramer, as well as a tetramer cross-linked to an unidentified protein(s). In addition, they could be formaldehyde cross-linked to ExbD and TonB. Taken together, the data suggested that they assembled normally. Three of four ExbB mutants were defective in supporting both the PMF-dependent formaldehyde cross-link between the periplasmic domains of TonB and ExbD and the proteinase K-resistant conformation of TonB. Thus, mutations in a cytoplasmic region of ExbB prevented a periplasmic event and constituted evidence for signal transduction from cytoplasm to periplasm in the TonB system.
Collapse
|
48
|
Taking the Escherichia coli TonB transmembrane domain "offline"? Nonprotonatable Asn substitutes fully for TonB His20. J Bacteriol 2011; 193:3693-701. [PMID: 21665976 DOI: 10.1128/jb.05219-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TonB system of Gram-negative bacteria uses the proton motive force (PMF) of the cytoplasmic membrane to energize active transport of nutrients across the outer membrane. The single transmembrane domain (TMD) anchor of TonB, the energy transducer, is essential. Within that TMD, His20 is the only TMD residue that is unable to withstand alanine replacement without a loss of activity. H20 is required for a PMF-dependent conformational change, suggesting that the importance of H20 lies in its ability to be reversibly protonated and deprotonated. Here all possible residues were substituted at position 20 (H20X substitutions). The His residue was also relocated throughout the TonB TMD. Surprisingly, Asn, a structurally similar but nonprotonatable residue, supported full activity at position 20; H20S was very weakly active. All the remaining substitutions, including H20K, H20R, H20E, and H20D, the obvious candidates to mimic a protonated state or support proton translocation, were inactive. A second-site suppressor, ExbB(A39E), indiscriminately reactivated the majority of H20 substitutions and relocations, including H20V, which cannot be made protonatable. These results suggested that the TonB TMD was not on a proton conductance pathway and thus only indirectly responds to PMF, probably via ExbD.
Collapse
|
49
|
Spector J, Zakharov S, Lill Y, Sharma O, Cramer WA, Ritchie K. Mobility of BtuB and OmpF in the Escherichia coli outer membrane: implications for dynamic formation of a translocon complex. Biophys J 2011; 99:3880-6. [PMID: 21156129 DOI: 10.1016/j.bpj.2010.10.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 11/18/2022] Open
Abstract
Diffusion of two Escherichia coli outer membrane proteins-the cobalamin (vitamin B12) receptor (BtuB) and the OmpF porin, which are implicated in the cellular import pathways of colicins and phages-was measured in vivo. The lateral mobility of these proteins is relevant to the mechanism of formation of the translocon for cellular import of colicins such as the rRNase colicin E3. The diffusion coefficient (D) of BtuB, the primary colicin receptor, complexed to fluorescent antibody or colicin, is 0.05±0.01 μm2/s and 0.10±0.02 μm2/s, respectively, over a timescale of 25-150 ms. Mutagenesis of the BtuB TonB box, which eliminates or significantly weakens the interaction between BtuB and the TonB energy-transducing protein that is anchored in the cytoplasmic membrane, resulted in a fivefold larger value of D, 0.27±0.06 μm2/s for antibody-labeled BtuB, indicating a cytoskeletal-like interaction of TonB with BtuB. OmpF has a diffusion coefficient of 0.006±0.002 μm2/s, ∼10-fold smaller than that of BtuB, and is restricted within a domain of diameter 100 nm, showing it to be relatively immobile compared to BtuB. Thus, formation of the outer membrane translocon for cellular import of the nuclease colicins is a demonstrably dynamic process, because it depends on lateral diffusion of BtuB and collisional interaction with relatively immobile OmpF.
Collapse
Affiliation(s)
- Jeff Spector
- Department of Physics, Purdue University, West Lafayette, Indiana, USA
| | | | | | | | | | | |
Collapse
|
50
|
Power plays: iron transport and energy transduction in pathogenic vibrios. Biometals 2011; 24:559-66. [PMID: 21399938 DOI: 10.1007/s10534-011-9437-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 03/02/2011] [Indexed: 12/19/2022]
Abstract
The Vibrios are a unique group of bacteria inhabiting a vast array of aquatic environments. Many Vibrio species are capable of infecting a wide assortment of hosts. Some of these species include V. parahaemolyticus, V. alginolyticus, V. vulnificus, V. anguillarum, and V. cholerae. The ability of these organisms to utilize iron is essential in establishing both an infection in their hosts as well as surviving in the environment. Bacteria are able to sequester iron through the secretion of low molecular weight iron chelators termed siderophores. The iron-siderophore complexes are bound by specific outer membrane receptors and are brought through both the outer and inner membranes of the cell. The energy needed to drive this active transport is achieved through the TonB energy transduction system. When first elucidated in E. coli, the TonB system was shown to be a three protein complex consisting of TonB, ExbB and ExbD. Most Vibrio species carry two TonB systems. The second TonB system includes a fourth protein; TtpC, which is essential for TonB2 mediated iron transport. Some Vibrio species have been shown to carry a third TonB system that also includes a TtpC protein.
Collapse
|