1
|
Guo M, Tan S, Wu Y, Zheng C, Du P, Zhu J, Sun A, Liu X. BrfA functions as a bacterial enhancer-binding protein to regulate functional amyloid Fap-dependent biofilm formation in Pseudomonas fluorescens by sensing cyclic diguanosine monophosphate. Microbiol Res 2024; 287:127864. [PMID: 39116779 DOI: 10.1016/j.micres.2024.127864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 07/07/2024] [Indexed: 08/10/2024]
Abstract
The functional amyloid of Pseudomonas (Fap) is essential for the formation of macrocolony biofilms, pellicles, and solid surface-associated (SSA) biofilms of Pseudomonas fluorescens PF07, an isolate from refrigerated marine fish. However, limited information on the expression regulation of fap genes is available. Herein, we found that a novel bacterial enhancer-binding protein (bEBP), BrfA, regulated Fap-dependent biofilm formation by directly sensing cyclic diguanosine monophosphate (c-di-GMP). Our in vivo data showed that the REC domain deletion of BrfA promoted fap gene expression and biofilm formation, and c-di-GMP positively regulated the transcription of fapA in a BrfA-dependent manner. In in vitro experiments, we found that the ATPase activity of BrfA was inhibited by the REC domain and was activated by c-di-GMP. BrfA and the sigma factor RpoN bound to the upstream region of fapA, and the binding ability of BrfA was not affected by either deletion of the REC domain or c-di-GMP. BrfA specifically bound to the three enhancer sites upstream of the fapA promoter, which contain the consensus sequence CA-(N4)-TGA(A/T)ACACC. In vivo experiments using a lacZ fusion reporter indicated that all three BrfA enhancer sites were essential for the activation of fapA transcription. Overall, these findings reveal that BrfA is a new type of c-di-GMP-responsive transcription factor that directly controls the transcription of Fap biosynthesis genes in P. fluorescens. Fap functional amyloids and BrfA-type transcription factors are widespread in Pseudomonas species. The novel insights into the c-di-GMP- and BrfA-dependent expression regulation of fap provided by this work will contribute to the development of antibiofilm strategies.
Collapse
Affiliation(s)
- Miao Guo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China; School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China; Zouping Center for Disease Control and Prevention, Zouping, Shandong, 256200, China
| | - Siqi Tan
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China; School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China
| | - Yinying Wu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China; School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China
| | - Chongni Zheng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China; School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China
| | - Peng Du
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China
| | - Junli Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Aihua Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China.
| | - Xiaoxiang Liu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China.
| |
Collapse
|
2
|
Chen G, Fanouraki G, Anandhi Rangarajan A, Winkelman BT, Winkelman JT, Waters CM, Mukherjee S. Combinatorial control of Pseudomonas aeruginosa biofilm development by quorum-sensing and nutrient-sensing regulators. mSystems 2024; 9:e0037224. [PMID: 39140783 PMCID: PMC11406991 DOI: 10.1128/msystems.00372-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/23/2024] [Indexed: 08/15/2024] Open
Abstract
The human pathogen Pseudomonas aeruginosa, a leading cause of hospital-acquired infections, inhabits and forms sessile antibiotic-resistant communities called biofilms in a wide range of biotic and abiotic environments. In this study, we examined how two global sensory signaling pathways-the RhlR quorum-sensing system and the CbrA/CbrB nutritional adaptation system-intersect to control biofilm development. Previous work has shown that individually these two systems repress biofilm formation. Here, we used biofilm analyses, RNA-seq, and reporter assays to explore the combined effect of information flow through RhlR and CbrA on biofilm development. We find that the ΔrhlRΔcbrA double mutant exhibits a biofilm morphology and an associated transcriptional response distinct from wildtype and the parent ΔrhlR and ΔcbrA mutants indicating codominance of each signaling pathway. The ΔrhlRΔcbrA mutant gains suppressor mutations that allow biofilm expansion; these mutations map to the crc gene resulting in loss of function of the carbon catabolite repression protein Crc. Furthermore, the combined absence of RhlR and CbrA leads to a drastic reduction in the abundance of the Crc antagonist small RNA CrcZ. Thus, CrcZ acts as the molecular convergence point for quorum- and nutrient-sensing cues. We find that in the absence of antagonism by CrcZ, Crc promotes the expression of biofilm matrix components-Pel exopolysaccharide, and CupB and CupC fimbriae. Therefore, this study uncovers a regulatory link between nutritional adaption and quorum sensing with potential implications for anti-biofilm targeting strategies.IMPORTANCEBacteria often form multicellular communities encased in an extracytoplasmic matrix called biofilms. Biofilm development is controlled by various environmental stimuli that are decoded and converted into appropriate cellular responses. To understand how information from two distinct stimuli is integrated, we used biofilm formation in the human pathogen Pseudomonas aeruginosa as a model and studied the intersection of two global sensory signaling pathways-quorum sensing and nutritional adaptation. Global transcriptomics on biofilm cells and reporter assays suggest parallel regulation of biofilms by each pathway that converges on the abundance of a small RNA antagonist of the carbon catabolite repression protein, Crc. We find a new role of Crc as it modulates the expression of biofilm matrix components in response to the environment. These results expand our understanding of the genetic regulatory strategies that allow P. aeruginosa to successfully develop biofilm communities.
Collapse
Affiliation(s)
- Gong Chen
- Department of Molecular Genetics & Cell Biology, The University of Chicago, Chicago, Illinois, USA
| | - Georgia Fanouraki
- Department of Molecular Genetics & Cell Biology, The University of Chicago, Chicago, Illinois, USA
| | | | | | - Jared T Winkelman
- Department of Molecular Genetics & Cell Biology, The University of Chicago, Chicago, Illinois, USA
| | - Christopher M Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Sampriti Mukherjee
- Department of Molecular Genetics & Cell Biology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Cometta S, Hutmacher DW, Chai L. In vitro models for studying implant-associated biofilms - A review from the perspective of bioengineering 3D microenvironments. Biomaterials 2024; 309:122578. [PMID: 38692146 DOI: 10.1016/j.biomaterials.2024.122578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
Biofilm research has grown exponentially over the last decades, arguably due to their contribution to hospital acquired infections when they form on foreign body surfaces such as catheters and implants. Yet, translation of the knowledge acquired in the laboratory to the clinic has been slow and/or often it is not attempted by research teams to walk the talk of what is defined as 'bench to bedside'. We therefore reviewed the biofilm literature to better understand this gap. Our search revealed substantial development with respect to adapting surfaces and media used in models to mimic the clinical settings, however many of the in vitro models were too simplistic, often discounting the composition and properties of the host microenvironment and overlooking the biofilm-implant-host interactions. Failure to capture the physiological growth conditions of biofilms in vivo results in major differences between lab-grown- and clinically-relevant biofilms, particularly with respect to phenotypic profiles, virulence, and antimicrobial resistance, and they essentially impede bench-to-bedside translatability. In this review, we describe the complexity of the biological processes at the biofilm-implant-host interfaces, discuss the prerequisite for the development and characterization of biofilm models that better mimic the clinical scenario, and propose an interdisciplinary outlook of how to bioengineer biofilms in vitro by converging tissue engineering concepts and tools.
Collapse
Affiliation(s)
- Silvia Cometta
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Dietmar W Hutmacher
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia.
| | - Liraz Chai
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; The Hebrew University of Jerusalem, Institute of Chemistry, Jerusalem, 91904, Israel; The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
4
|
Bényei ÉB, Nazeer RR, Askenasy I, Mancini L, Ho PM, Sivarajan GAC, Swain JEV, Welch M. The past, present and future of polymicrobial infection research: Modelling, eavesdropping, terraforming and other stories. Adv Microb Physiol 2024; 85:259-323. [PMID: 39059822 DOI: 10.1016/bs.ampbs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Over the last two centuries, great advances have been made in microbiology as a discipline. Much of this progress has come about as a consequence of studying the growth and physiology of individual microbial species in well-defined laboratory media; so-called "axenic growth". However, in the real world, microbes rarely live in such "splendid isolation" (to paraphrase Foster) and more often-than-not, share the niche with a plethora of co-habitants. The resulting interactions between species (and even between kingdoms) are only very poorly understood, both on a theoretical and experimental level. Nevertheless, the last few years have seen significant progress, and in this review, we assess the importance of polymicrobial infections, and show how improved experimental traction is advancing our understanding of these. A particular focus is on developments that are allowing us to capture the key features of polymicrobial infection scenarios, especially as those associated with the human airways (both healthy and diseased).
Collapse
Affiliation(s)
| | | | - Isabel Askenasy
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Leonardo Mancini
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Pok-Man Ho
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | | | - Jemima E V Swain
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom.
| |
Collapse
|
5
|
Peña-Díaz S, Olsen WP, Wang H, Otzen DE. Functional Amyloids: The Biomaterials of Tomorrow? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312823. [PMID: 38308110 DOI: 10.1002/adma.202312823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Functional amyloid (FAs), particularly the bacterial proteins CsgA and FapC, have many useful properties as biomaterials: high stability, efficient, and controllable formation of a single type of amyloid, easy availability as extracellular material in bacterial biofilm and flexible engineering to introduce new properties. CsgA in particular has already demonstrated its worth in hydrogels for stable gastrointestinal colonization and regenerative tissue engineering, cell-specific drug release, water-purification filters, and different biosensors. It also holds promise as catalytic amyloid; existing weak and unspecific activity can undoubtedly be improved by targeted engineering and benefit from the repetitive display of active sites on a surface. Unfortunately, FapC remains largely unexplored and no application is described so far. Since FapC shares many common features with CsgA, this opens the window to its development as a functional scaffold. The multiple imperfect repeats in CsgA and FapC form a platform to introduce novel properties, e.g., in connecting linkers of variable lengths. While exploitation of this potential is still at an early stage, particularly for FapC, a thorough understanding of their molecular properties will pave the way for multifunctional fibrils which can contribute toward solving many different societal challenges, ranging from CO2 fixation to hydrolysis of plastic nanoparticles.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
| | - William Pallisgaard Olsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
| | - Huabing Wang
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Clinical Laboratory Center, Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, DK - 8000, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, Aarhus C, 8000, Denmark
| |
Collapse
|
6
|
Kumari S, Das S. Functional amyloid fibrils of biofilm-forming marine bacterium Pseudomonas aeruginosa PFL-P1 interact spontaneously with pyrene and augment the biodegradation. Int J Biol Macromol 2024; 266:131266. [PMID: 38556224 DOI: 10.1016/j.ijbiomac.2024.131266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Bacteria thrive in biofilms embedding in the three-dimensional extracellular polymeric substances (EPS). Functional Amyloid in Pseudomonas (Fap), a protein in EPS, efficiently sequesters polycyclic aromatic hydrocarbons (PAHs). Present study reports the characterization of Fap fibrils from Pseudomonas aeruginosa PFL-P1 and describes the interaction with pyrene to assess the impact on pyrene degradation. Overexpression of fap in E. coli BL21(DE3) cells significantly enhances biofilm formation (p < 0.0001) and amyloid production (p = 0.0002), particularly with pyrene. Defibrillated Fap analysis reveals FapC monomers and increased fibrillation with pyrene. Circular Dichroism (CD), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Diffraction (XRD) unveil characteristic amyloid peaks and structural changes in Fap fibrils upon pyrene exposure. 3D-EEM analysis identifies a protein-like fluorophore in Fap fibrils, exhibiting pyrene-induced fluorescence quenching. Binding constants range from 5.23 to 7.78 M-1, with ΔG of -5.10 kJ mol-1 at 298 K, indicating spontaneous and exothermic interaction driven by hydrophobic forces. Exogenous Fap fibrils substantially increased the biofilm growth and pyrene degradation by P. aeruginosa PFL-P1 from 46 % to 64 % within 7 days (p = 0.0236). GC-MS identifies diverse metabolites, implying phthalic acid pathway in pyrene degradation. This study deepens insights into structural dynamics of Fap fibrils when exposed to pyrene, offering potential application in environmental bioremediation.
Collapse
Affiliation(s)
- Swetambari Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
7
|
Byeon CH, Hansen KH, Jeffrey J, Saricayir H, Andreasen M, Akbey Ü. Intrinsically disordered Pseudomonas chaperone FapA slows down the fibrillation of major biofilm-forming functional amyloid FapC. FEBS J 2024; 291:1925-1943. [PMID: 38349812 DOI: 10.1111/febs.17084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 02/15/2024]
Abstract
Functional bacterial amyloids play a crucial role in the formation of biofilms, which mediate chronic infections and contribute to antimicrobial resistance. This study focuses on the FapC amyloid fibrillar protein from Pseudomonas, a major contributor to biofilm formation. We investigate the initial steps of FapC amyloid formation and the impact of the chaperone-like protein FapA on this process. Using solution nuclear magnetic resonance (NMR), we recently showed that both FapC and FapA are intrinsically disordered proteins (IDPs). Here, the secondary structure propensities (SSPs) are compared to alphafold (DeepMind, protein structure prediction tool/algorithm: https://alphafold.ebi.ac.uk/) models. We further demonstrate that the FapA chaperone interacts with FapC and significantly slows down the formation of FapC fibrils. Our NMR titrations reveal ~ 18% of the resonances show FapA-induced chemical shift perturbations (CSPs), which has not been previously observed, the largest being for A82, N201, C237, C240, A241, and G245. These sites may suggest a specific interaction site and/or hotspots of fibrillation inhibition/control interface at the repeat-1 (R1)/loop-2 (L2) and L2/R3 transition areas and at the C-terminus of FapC. Remarkably, ~ 90% of FapA NMR signals exhibit substantial CSPs upon titration with FapC, the largest being for S63, A69, A80, and I92. A temperature-dependent effect of FapA was observed on FapC by thioflavin T (ThT) and NMR experiments. This study provides a detailed understanding of the interaction between the FapA and FapC, shedding light on the regulation and slowing down of amyloid formation, and has important implications for the development of therapeutic strategies targeting biofilms and associated infections.
Collapse
Affiliation(s)
- Chang-Hyeock Byeon
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kasper Holst Hansen
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Jasper Jeffrey
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hakan Saricayir
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Andreasen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Peña-Díaz S, Ferreira P, Ramos MJ, Otzen DE. Mining and engineering activity in catalytic amyloids. Methods Enzymol 2024; 697:345-422. [PMID: 38816129 DOI: 10.1016/bs.mie.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
This chapter describes how to test different amyloid preparations for catalytic properties. We describe how to express, purify, prepare and test two types of pathological amyloid (tau and α-synuclein) and two functional amyloid proteins, namely CsgA from Escherichia coli and FapC from Pseudomonas. We therefore preface the methods section with an introduction to these two examples of functional amyloid and their remarkable structural and kinetic properties and high physical stability, which renders them very attractive for a range of nanotechnological designs, both for structural, medical and catalytic purposes. The simplicity and high surface exposure of the CsgA amyloid is particularly useful for the introduction of new functional properties and we therefore provide a computational protocol to graft active sites from an enzyme of interest into the amyloid structure. We hope that the methods described will inspire other researchers to explore the remarkable opportunities provided by bacterial functional amyloid in biotechnology.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Pedro Ferreira
- Faculdade de Ciencias, Universidad do Porto, Porto, Portugal
| | | | - Daniel E Otzen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
9
|
Mirza Agha M, Tavili E, Dabirmanesh B. Functional amyloids. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:389-434. [PMID: 38811086 DOI: 10.1016/bs.pmbts.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
While amyloid has traditionally been viewed as a harmful formation, emerging evidence suggests that amyloids may also play a functional role in cell biology, contributing to normal physiological processes that have been conserved throughout evolution. Functional amyloids have been discovered in several creatures, spanning from bacteria to mammals. These amyloids serve a multitude of purposes, including but not limited to, forming biofilms, melanin synthesis, storage, information transfer, and memory. The functional role of amyloids has been consistently validated by the discovery of more functional amyloids, indicating a conceptual convergence. The biology of amyloids is well-represented by non-pathogenic amyloids, given the numerous ones already identified and the ongoing rate of new discoveries. In this chapter, functional amyloids in microorganisms, animals, and plants are described.
Collapse
Affiliation(s)
- Mansoureh Mirza Agha
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elaheh Tavili
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
10
|
Meisl G. The thermodynamics of neurodegenerative disease. BIOPHYSICS REVIEWS 2024; 5:011303. [PMID: 38525484 PMCID: PMC10957229 DOI: 10.1063/5.0180899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024]
Abstract
The formation of protein aggregates in the brain is a central aspect of the pathology of many neurodegenerative diseases. This self-assembly of specific proteins into filamentous aggregates, or fibrils, is a fundamental biophysical process that can easily be reproduced in the test tube. However, it has been difficult to obtain a clear picture of how the biophysical insights thus obtained can be applied to the complex, multi-factorial diseases and what this means for therapeutic strategies. While new, disease-modifying therapies are now emerging, for the most devastating disorders, such as Alzheimer's and Parkinson's disease, they still fall well short of offering a cure, and few drug design approaches fully exploit the wealth of mechanistic insights that has been obtained in biophysical studies. Here, I attempt to provide a new perspective on the role of protein aggregation in disease, by phrasing the problem in terms of a system that, under constant energy consumption, attempts to maintain a healthy, aggregate-free state against the thermodynamic driving forces that inexorably push it toward pathological aggregation.
Collapse
Affiliation(s)
- Georg Meisl
- WaveBreak Therapeutics Ltd., Chemistry of Health, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
11
|
Surekha S, Lamiyan AK, Gupta V. Antibiotic Resistant Biofilms and the Quest for Novel Therapeutic Strategies. Indian J Microbiol 2024; 64:20-35. [PMID: 38468748 PMCID: PMC10924852 DOI: 10.1007/s12088-023-01138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/03/2023] [Indexed: 03/13/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the major leading causes of death around the globe. Present treatment pipelines are insufficient to overcome the critical situation. Prominent biofilm forming human pathogens which can thrive in infection sites using adaptive features results in biofilm persistence. Considering the present scenario, prudential investigations into the mechanisms of resistance target them to improve antibiotic efficacy is required. Regarding this, developing newer and effective treatment options using edge cutting technologies in medical research is the need of time. The reasons underlying the adaptive features in biofilm persistence have been centred on different metabolic and physiological aspects. The high tolerance levels against antibiotics direct researchers to search for novel bioactive molecules that can help combat the problem. In view of this, the present review outlines the focuses on an opportunity of different strategies which are in testing pipeline can thus be developed into products ready to use.
Collapse
Affiliation(s)
- Saumya Surekha
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | | - Varsha Gupta
- GMCH: Government Medical College and Hospital, Chandigarh, India
| |
Collapse
|
12
|
Böhning J, Tarafder AK, Bharat TA. The role of filamentous matrix molecules in shaping the architecture and emergent properties of bacterial biofilms. Biochem J 2024; 481:245-263. [PMID: 38358118 PMCID: PMC10903470 DOI: 10.1042/bcj20210301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Numerous bacteria naturally occur within spatially organised, multicellular communities called biofilms. Moreover, most bacterial infections proceed with biofilm formation, posing major challenges to human health. Within biofilms, bacterial cells are embedded in a primarily self-produced extracellular matrix, which is a defining feature of all biofilms. The biofilm matrix is a complex, viscous mixture primarily composed of polymeric substances such as polysaccharides, filamentous protein fibres, and extracellular DNA. The structured arrangement of the matrix bestows bacteria with beneficial emergent properties that are not displayed by planktonic cells, conferring protection against physical and chemical stresses, including antibiotic treatment. However, a lack of multi-scale information at the molecular level has prevented a better understanding of this matrix and its properties. Here, we review recent progress on the molecular characterisation of filamentous biofilm matrix components and their three-dimensional spatial organisation within biofilms.
Collapse
Affiliation(s)
- Jan Böhning
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Abul K. Tarafder
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| | - Tanmay A.M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K
| |
Collapse
|
13
|
Blanco-Romero E, Garrido-Sanz D, Durán D, Rybtke M, Tolker-Nielsen T, Redondo-Nieto M, Rivilla R, Martín M. Role of extracellular matrix components in biofilm formation and adaptation of Pseudomonas ogarae F113 to the rhizosphere environment. Front Microbiol 2024; 15:1341728. [PMID: 38333580 PMCID: PMC10850567 DOI: 10.3389/fmicb.2024.1341728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Regulating the transition of bacteria from motile to sessile lifestyles is crucial for their ability to compete effectively in the rhizosphere environment. Pseudomonas are known to rely on extracellular matrix (ECM) components for microcolony and biofilm formation, allowing them to adapt to a sessile lifestyle. Pseudomonas ogarae F113 possesses eight gene clusters responsible for the production of ECM components. These gene clusters are tightly regulated by AmrZ, a major transcriptional regulator that influences the cellular levels of c-di-GMP. The AmrZ-mediated transcriptional regulation of ECM components is primarily mediated by the signaling molecule c-di-GMP and the flagella master regulator FleQ. To investigate the functional role of these ECM components in P. ogarae F113, we performed phenotypic analyses using mutants in genes encoding these ECM components. These analyses included assessments of colony morphology, dye-staining, static attachment to abiotic surfaces, dynamic biofilm formation on abiotic surfaces, swimming motility, and competitive colonization assays of the rhizosphere. Our results revealed that alginate and PNAG polysaccharides, along with PsmE and the fimbrial low molecular weight protein/tight adherence (Flp/Tad) pilus, are the major ECM components contributing to biofilm formation. Additionally, we found that the majority of these components and MapA are needed for a competitive colonization of the rhizosphere in P. ogarae F113.
Collapse
Affiliation(s)
- Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - David Durán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Morten Rybtke
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
14
|
Li T, Kambanis J, Sorenson TL, Sunde M, Shen Y. From Fundamental Amyloid Protein Self-Assembly to Development of Bioplastics. Biomacromolecules 2024; 25:5-23. [PMID: 38147506 PMCID: PMC10777412 DOI: 10.1021/acs.biomac.3c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
Proteins can self-assemble into a range of nanostructures as a result of molecular interactions. Amyloid nanofibrils, as one of them, were first discovered with regard to the relevance of neurodegenerative diseases but now have been exploited as building blocks to generate multiscale materials with designed functions for versatile applications. This review interconnects the mechanism of amyloid fibrillation, the current approaches to synthesizing amyloid protein-based materials, and the application in bioplastic development. We focus on the fundamental structures of self-assembled amyloid fibrils and how external factors can affect protein aggregation to optimize the process. Protein self-assembly is essentially the autonomous congregation of smaller protein units into larger, organized structures. Since the properties of the self-assembly can be manipulated by changing intrinsic factors and external conditions, protein self-assembly serves as an excellent building block for bioplastic development. Building on these principles, general processing methods and pathways from raw protein sources to mature state materials are proposed, providing a guide for the development of large-scale production. Additionally, this review discusses the diverse properties of protein-based amyloid nanofibrils and how they can be utilized as bioplastics. The economic feasibility of the protein bioplastics is also compared to conventional plastics in large-scale production scenarios, supporting their potential as sustainable bioplastics for future applications.
Collapse
Affiliation(s)
- Tianchen Li
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Jordan Kambanis
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Timothy L. Sorenson
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Margaret Sunde
- School
of Medical Sciences and Sydney Nano, The
University of Sydney, Sydney NSW 2006, Australia
| | - Yi Shen
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| |
Collapse
|
15
|
Chowdhury S, Sarkar N. Exploring the potential of amyloids in biomedical applications: A review. Biotechnol Bioeng 2024; 121:26-38. [PMID: 37822225 DOI: 10.1002/bit.28569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/31/2023] [Accepted: 09/24/2023] [Indexed: 10/13/2023]
Abstract
Amyloid is defined as a fibrous quaternary structure formed by assembling protein or peptide monomers into intermolecularly hydrogen linked β-sheets. There is a prevalent issue with protein aggregation and the buildup of amyloid molecules, which results in human neurological illnesses including Alzheimer's and Parkinson's. But it is now evident that many organisms, like bacteria, fungi as well as humans, use the same fibrillar structure to carry out a variety of biological functions, such as structure and protection supporting interface transitions and cell-cell recognition, protein control and storage, epigenetic inheritance, and memory. Recent discoveries of self-assembling amyloidogenic peptides and proteins, based on the amyloid core structure, give rise to interesting biomaterials with potential uses in numerous industries. These functions dramatically diverge from the initial conception of amyloid fibrils as intrinsically diseased entities. Apart from the natural ability of amyloids to spontaneously arrange themselves and their exceptional material characteristics, this aspect has prompted extensive research into engineering artificial amyloids for generating various nanostructures, molecular substances, and combined materials. Here, we discuss significant developments in the artificial design of useful amyloids as well as how amyloid materials serve as examples of how function emerges from protein self-assembly at various length scales.
Collapse
Affiliation(s)
- Srijita Chowdhury
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
16
|
Wang J, Zhang G, Lai H, Li Z, Shen M, Li C, Kwan P, O'Brien TJ, Wu T, Yang S, Zhang X, Zhang L. Characterizing Gut Microbiota in Older Chinese Adults with Cognitive Impairment: A Cross-Sectional Study. J Alzheimers Dis 2024; 101:761-771. [PMID: 39213074 DOI: 10.3233/jad-240597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Cognitive impairment is a clinical manifestation that occurs in the course of dementia like Alzheimer's disease. The association between cognitive impairment and gut microbiota is unclear. Objective We aimed to identify gut microbiota characteristics and key gut microbiota biomarkers associated with cognitive impairment in a relatively large cohort of older adults in China. Methods A total of 229 adults aged ≥60 years from Shenzhen, China were recruited into this cross-sectional study. Participants were divided into cognitive impairment (CI) and no cognitive impairment (NCI) groups according to the results of the Mini-Mental State Examination. Diversity analysis and network analysis were used to characterize the gut microbiota between the two groups. The linear discriminant analysis effect size method and machine learning approaches were sequentially performed to identify gut microbiota biomarkers. The relationship between biomarkers and lifestyle factors was explored using Transformation-based redundancy analysis (tb-RDA). Results A total of 74 CI participants and 131 NCI participants were included in the analysis. The CI group demonstrated lower α-diversity compared to the NCI group (Shannon: 2.798 versus 3.152, p < 0.001). The density of the gut microbiota interaction network was lower in the CI group (0.074) compared to the NCI group (0.081). Megamonas, Blautia, Pseudomonas, Stenotrophomonas, and Veillonella were key biomarkers for CI. The tb-RDA revealed that increased fruit intake and exercise contribute to a higher abundance of Megamonas, Blautia, and Veillonella. Conclusions We identified a significantly reduced abundance of certain beneficial gut microbiota in older Chinese adults with cognitive impairment.
Collapse
Affiliation(s)
- Jing Wang
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
| | - Gong Zhang
- MOE Key Laboratory of Tumour Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Hao Lai
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
| | - Zengbin Li
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
| | - Mingwang Shen
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China
| | - Chao Li
- Department of Epidemiology and Health Statistics, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, China
| | - Patrick Kwan
- The Department of Neuroscience, The School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University & Alfred Health, Melbourne, Australia
| | - Terence J O'Brien
- The Department of Neuroscience, The School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University & Alfred Health, Melbourne, Australia
| | - Ting Wu
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siyu Yang
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xueli Zhang
- Department of Ophthalmology, Guangdong Eye Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lei Zhang
- China-Australia Joint Research Centre for Infectious Diseases, School of Public Health, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, PR China
- The Department of Neuroscience, The School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University & Alfred Health, Melbourne, Australia
- Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia
| |
Collapse
|
17
|
Arad E, Pedersen KB, Malka O, Mambram Kunnath S, Golan N, Aibinder P, Schiøtt B, Rapaport H, Landau M, Jelinek R. Staphylococcus aureus functional amyloids catalyze degradation of β-lactam antibiotics. Nat Commun 2023; 14:8198. [PMID: 38081813 PMCID: PMC10713593 DOI: 10.1038/s41467-023-43624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Antibiotic resistance of bacteria is considered one of the most alarming developments in modern medicine. While varied pathways for bacteria acquiring antibiotic resistance have been identified, there still are open questions concerning the mechanisms underlying resistance. Here, we show that alpha phenol-soluble modulins (PSMαs), functional bacterial amyloids secreted by Staphylococcus aureus, catalyze hydrolysis of β-lactams, a prominent class of antibiotic compounds. Specifically, we show that PSMα2 and, particularly, PSMα3 catalyze hydrolysis of the amide-like bond of the four membered β-lactam ring of nitrocefin, an antibiotic β-lactam surrogate. Examination of the catalytic activities of several PSMα3 variants allowed mapping of the active sites on the amyloid fibrils' surface, specifically underscoring the key roles of the cross-α fibril organization, and the combined electrostatic and nucleophilic functions of the lysine arrays. Molecular dynamics simulations further illuminate the structural features of β-lactam association upon the fibril surface. Complementary experimental data underscore the generality of the functional amyloid-mediated catalytic phenomenon, demonstrating hydrolysis of clinically employed β-lactams by PSMα3 fibrils, and illustrating antibiotic degradation in actual S. aureus biofilms and live bacteria environments. Overall, this study unveils functional amyloids as catalytic agents inducing degradation of β-lactam antibiotics, underlying possible antibiotic resistance mechanisms associated with bacterial biofilms.
Collapse
Affiliation(s)
- Elad Arad
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Kasper B Pedersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Orit Malka
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Sisira Mambram Kunnath
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Nimrod Golan
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Polina Aibinder
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Hanna Rapaport
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
- Centre for Structural Systems Biology (CSSB), and European Molecular Biology Laboratory (EMBL), Hamburg, 22607, Germany
| | - Raz Jelinek
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel.
- Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, 8410501, Israel.
| |
Collapse
|
18
|
Katsipis G, Avgoulas DI, Geromichalos GD, Petala M, Pantazaki AA. In vitro and in silico evaluation of the serrapeptase effect on biofilm and amyloids of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2023; 107:7269-7285. [PMID: 37741938 PMCID: PMC10638192 DOI: 10.1007/s00253-023-12772-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/17/2023] [Accepted: 09/02/2023] [Indexed: 09/25/2023]
Abstract
Pseudomonas aeruginosa is an emerging threat for hospitalized and cystic fibrosis patients. Biofilm, a microbial community embedded in extracellular polymeric substance, fortifies bacteria against the immune system. In biofilms, the expression of functional amyloids is linked with highly aggregative, multi-resistant strains, and chronic infections. Serrapeptase (SPT), a protease possessing similar or superior anti-microbial properties with many antibiotics, presents anti-amyloid potential. However, studies on the employment of SPT against Pseudomonas biofilms and Fap amyloid, or the possible mechanisms of action are scarce. Here, SPT inhibited biofilm formation of P. aeruginosa ATCC 27853 on both plastic and glass surfaces, with an IC50 of 11.26 µg/mL and 0.27 µg/mL, respectively. The inhibitory effect of SPT on biofilm was also verified with optical microscopy of crystal violet-stained biofilms and with confocal microscopy. Additionally, SPT caused a dose-dependent decrease of bacterial viability (IC50 of 3.07 µg/mL) as demonstrated by MTT assay. Reduction of bacterial functional amyloids was also demonstrated, employing both fluorescence microscopy with thioflavin T and photometrical determination of Congo-red-positive compounds. Both viability and functional amyloids correlated significantly with biofilm inhibition. Finally, in silico molecular docking studies provided a mechanistic insight into the interaction of SPT with FapC or FapD, proving that both peptides are possible targets of SPT. These results offer new insights into the biofilm formation of P. aeruginosa and potentiate the involvement of SPT in the prevention and eradication of Pseudomonas biofilms. KEY POINTS: • Serrapeptase inhibits biofilm formation of P. aeruginosa on plastic and glass. • Biofilm inhibition correlated with reduced viability and functional amyloid levels. • In silico studies indicated that serrapeptase may target FapC and FapD peptides.
Collapse
Affiliation(s)
- Georgios Katsipis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001, Thessaloniki, Greece
| | - Dimitrios I Avgoulas
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001, Thessaloniki, Greece
- Laboratory of Chemical and Environmental Technology, Deparment of Chemistry, Aristotle University of Thessaloniki, 54 124, 54124, Thessaloniki, Greece
| | - George D Geromichalos
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001, Thessaloniki, Greece
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Petala
- Laboratory of Environmental Engineering & Planning, Department of Civil Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
- Center for Interdisciplinary Research and Innovation, Laboratory of Neurodegenerative Diseases (LND), Thermi, 57001, Thessaloniki, Greece.
| |
Collapse
|
19
|
Galkin AP, Sysoev EI, Valina AA. Amyloids and prions in the light of evolution. Curr Genet 2023; 69:189-202. [PMID: 37165144 DOI: 10.1007/s00294-023-01270-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
Functional amyloids have been identified in a wide variety of organisms including bacteria, fungi, plants, and vertebrates. Intracellular and extracellular amyloid fibrils of different proteins perform storage, protective, structural, and regulatory functions. The structural organization of amyloid fibrils determines their unique physical and biochemical properties. The formation of these fibrillar structures can provide adaptive advantages that are picked up by natural selection. Despite the great interest in functional and pathological amyloids, questions about the conservatism of the amyloid properties of proteins and the regularities in the appearance of these fibrillar structures in evolution remain almost unexplored. Using bioinformatics approaches and summarizing the data published previously, we have shown that amyloid fibrils performing similar functions in different organisms have been arising repeatedly and independently in the course of evolution. On the other hand, we show that the amyloid properties of a number of bacterial and eukaryotic proteins are evolutionarily conserved. We also discuss the role of protein-based inheritance in the evolution of microorganisms. Considering that missense mutations and the emergence of prions cause the same consequences, we propose the concept that the formation of prions, similarly to mutations, generally causes a negative effect, although it can also lead to adaptations in rare cases. In general, our analysis revealed certain patterns in the emergence and spread of amyloid fibrillar structures in the course of evolution.
Collapse
Affiliation(s)
- Alexey P Galkin
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, St. Petersburg, Russian Federation, 199034.
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russian Federation, 199034.
| | - Evgeniy I Sysoev
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, St. Petersburg, Russian Federation, 199034
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russian Federation, 199034
| | - Anna A Valina
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russian Federation, 199034
| |
Collapse
|
20
|
Aguilera P, Berríos-Pastén C, Veloso M, Gálvez-Silva M, Turbant F, Lagos R, Wien F, Arluison V, Marcoleta AE. The Green Tea Polyphenol Epigallocatechin-Gallate (EGCG) Interferes with Microcin E492 Amyloid Formation. Molecules 2023; 28:7262. [PMID: 37959682 PMCID: PMC10648153 DOI: 10.3390/molecules28217262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/09/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Microcin E492 (MccE492) is an antimicrobial peptide and proposed virulence factor produced by some Klebsiella pneumoniae strains, which, under certain conditions, form amyloid fibers, leading to the loss of its antibacterial activity. Although this protein has been characterized as a model functional amyloid, the secondary structure transitions behind its formation, and the possible effect of molecules that inhibit this process, have not been investigated. In this study, we examined the ability of the green tea flavonoid epigallocatechin gallate (EGCG) to interfere with MccE492 amyloid formation. Aggregation kinetics followed by thioflavin T binding were used to monitor amyloid formation in the presence or absence of EGCG. Additionally, synchrotron radiation circular dichroism (SRCD) and transmission electron microscopy (TEM) were used to study the secondary structure, thermal stability, and morphology of microcin E492 fibers. Our results showed that EGCG significantly inhibited the formation of the MccE492 amyloid, resulting in mainly amorphous aggregates and small oligomers. However, these aggregates retained part of the β-sheet SRCD signal and a high resistance to heat denaturation, suggesting that the aggregation process is sequestered or deviated at some stage but not completely prevented. Thus, EGCG is an interesting inhibitor of the amyloid formation of MccE492 and other bacterial amyloids.
Collapse
Affiliation(s)
- Paulina Aguilera
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago 7800003, Chile; (P.A.); (C.B.-P.); (M.V.); (M.G.-S.); (R.L.)
| | - Camilo Berríos-Pastén
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago 7800003, Chile; (P.A.); (C.B.-P.); (M.V.); (M.G.-S.); (R.L.)
| | - Marcelo Veloso
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago 7800003, Chile; (P.A.); (C.B.-P.); (M.V.); (M.G.-S.); (R.L.)
| | - Matías Gálvez-Silva
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago 7800003, Chile; (P.A.); (C.B.-P.); (M.V.); (M.G.-S.); (R.L.)
| | - Florian Turbant
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France; (F.T.); (F.W.)
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Rosalba Lagos
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago 7800003, Chile; (P.A.); (C.B.-P.); (M.V.); (M.G.-S.); (R.L.)
| | - Frank Wien
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France; (F.T.); (F.W.)
| | - Veronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
- UFR Sciences du Vivant, Université Paris Cité, 75006 Paris, France
| | - Andrés E. Marcoleta
- Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago 7800003, Chile; (P.A.); (C.B.-P.); (M.V.); (M.G.-S.); (R.L.)
| |
Collapse
|
21
|
Zhang X, Li J, Ma C, Zhang H, Liu K. Biomimetic Structural Proteins: Modular Assembly and High Mechanical Performance. Acc Chem Res 2023; 56:2664-2675. [PMID: 37738227 DOI: 10.1021/acs.accounts.3c00372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Protein-based biomaterials attract growing interests due to their encoded and programmable robust mechanical properties, superelasticity, plasticity, shape adaptability, excellent interfacial behavior, etc., derived from sequence-guided backbone structures, particularly compared to chemically synthetic counterparts in materials science and biomedical engineering. For example, protein materials have been successfully fabricated as (1) artificial implants (man-made tendons, cartilages, or dental tissues), due to programmable chemistry and biocompatibility; (2) smart biodevices with temperature/light-response and self-healing effects; and (3) impact resistance materials having great mechanical performance due to biomimetics. However, the existing method of regenerating protein materials from natural sources has two critical issues, low yield and structural damage, making it unable to meet demands. Therefore, it is crucial to develop an alternative strategy for fabricating protein materials. Heterologous expression of natural proteins with a modular assembly approach is an effective strategy for material preparation. Standardized, easy-to-assemble protein modules with specific structures and functions are developed through experimental and computational tools based on natural functional protein sequences. Through recombination and heterologous expression, these artificial protein modules become keys to material fabrication. Undergoing an assembly process similar to supramolecular self-assembly of proteins in cells, biomimetic modules can be fabricated for formation of macroscopic materials such as fibers and adhesives. This strategy inspired by synthetic biology and supramolecular chemistry is important for improving target protein yields and assembly integrity. It also preserves and optimizes the mechanical functions of structural proteins, accelerating the design and fabrication of artificial protein materials.In this Account, we overview recent studies on fabricating biomimetic protein materials to elucidate the concept of modular assembly. We discuss the design of biomimetic structural proteins at the molecular level, providing a wealth of details determining the bulk properties of materials. Additinally, we describe the modular self-assembly and assembly driven by inducing molecules, and mechanical properties and applications of resulting fibers. We used these strategies to develop fiber materials with high tensile strength, high toughness, and properties such as anti-icing and high-temperature resistance. We also extended this approach to design protein-based adhesives with ultra-strong adhesion, biocompatibility, and biodegradability for surgical applications such as wound sealing and healing. Other protein materials, including films and hydrogels, have been developed through chemical assembly routes. Finally, we describe exploiting synthetic biology and chemistry to overcome bottlenecks in structural protein modular design, biosynthesis, and material assembly and our perspectives for future development in structural biomaterials.
Collapse
Affiliation(s)
- Xin Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| |
Collapse
|
22
|
Master NG, Markande AR. Importance of microbial amphiphiles: interaction potential of biosurfactants, amyloids, and other exo-polymeric-substances. World J Microbiol Biotechnol 2023; 39:320. [PMID: 37747579 DOI: 10.1007/s11274-023-03751-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Microorganisms produce a diverse group of biomolecules having amphipathic nature (amphiphiles). Microbial amphiphiles, including amyloids, bio-surfactants, and other exo-polymeric substances, play a crucial role in various biological processes and have gained significant attention recently. Although diverse in biochemical composition, these amphiphiles have been reported for common microbial traits like biofilm formation and pathogenicity due to their ability to act as surface active agents with active interfacial properties essential for microbes to grow in various niches. This enables microbes to reduce surface tension, emulsification, dispersion, and attachment at the interface. In this report, the ecological importance and biotechnological usage of important amphiphiles have been discussed. The low molecular weight amphiphiles like biosurfactants, siderophores, and peptides showing helical and antimicrobial activities have been extensively reported for their ability to work as quorum-sensing mediators. While high molecular weight amphiphiles make up amyloid fibers, exopolysaccharides, liposomes, or magnetosomes have been shown to have a significant influence in deciding microbial physiology and survival. In this report, we have discussed the functional similarities and biochemical variations of several amphipathic biomolecules produced by microbes, and the present report shows these amphiphiles showing polyphyletic and ecophysiological groups of microorganisms and hence can `be replaced in biotechnological applications depending on the compatibility of the processes.
Collapse
Affiliation(s)
- Nishita G Master
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India
| | - Anoop R Markande
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India.
| |
Collapse
|
23
|
Moshynets OV, Pokholenko I, Iungin O, Potters G, Spiers AJ. eDNA, Amyloid Fibers and Membrane Vesicles Identified in Pseudomonas fluorescens SBW25 Biofilms. Int J Mol Sci 2022; 23:ijms232315096. [PMID: 36499433 PMCID: PMC9738004 DOI: 10.3390/ijms232315096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Pseudomonas fluorescens SBW25 is a model soil- and plant-associated bacterium capable of forming a variety of air-liquid interface biofilms in experimental microcosms and on plant surfaces. Previous investigations have shown that cellulose is the primary structural matrix component in the robust and well-attached Wrinkly Spreader biofilm, as well as in the fragile Viscous Mass biofilm. Here, we demonstrate that both biofilms include extracellular DNA (eDNA) which can be visualized using confocal laser scanning microscopy (CLSM), quantified by absorbance measurements, and degraded by DNase I treatment. This eDNA plays an important role in cell attachment and biofilm development. However, exogenous high-molecular-weight DNA appears to decrease the strength and attachment levels of mature Wrinkly Spreader biofilms, whereas low-molecular-weight DNA appears to have little effect. Further investigation with CLSM using an amyloid-specific fluorophore suggests that the Wrinkly Spreader biofilm might also include Fap fibers, which might be involved in attachment and contribute to biofilm strength. The robust nature of the Wrinkly Spreader biofilm also allowed us, using MALDI-TOF mass spectrometry, to identify matrix-associated proteins unable to diffuse out of the structure, as well as membrane vesicles which had a different protein profile compared to the matrix-associated proteins. CLSM and DNase I treatment suggest that some vesicles were also associated with eDNA. These findings add to our understanding of the matrix components in this model pseudomonad, and, as found in other biofilms, biofilm-specific products and material from lysed cells contribute to these structures through a range of complex interactions.
Collapse
Affiliation(s)
- Olena V. Moshynets
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Ianina Pokholenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Olga Iungin
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
- Department of Biotechnology, Leather and Fur, Kyiv National University of Technologies and Design, 01011 Kyiv, Ukraine
| | - Geert Potters
- Antwerp Maritime Academy, 2030 Antwerp, Belgium
- Department of Bioscience Engineering, University of Antwerp, 2000 Antwerp, Belgium
- Correspondence:
| | - Andrew J. Spiers
- School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK
| |
Collapse
|
24
|
Sønderby TV, Najarzadeh Z, Otzen DE. Functional Bacterial Amyloids: Understanding Fibrillation, Regulating Biofilm Fibril Formation and Organizing Surface Assemblies. Molecules 2022; 27:4080. [PMID: 35807329 PMCID: PMC9268375 DOI: 10.3390/molecules27134080] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
Functional amyloid is produced by many organisms but is particularly well understood in bacteria, where proteins such as CsgA (E. coli) and FapC (Pseudomonas) are assembled as functional bacterial amyloid (FuBA) on the cell surface in a carefully optimized process. Besides a host of helper proteins, FuBA formation is aided by multiple imperfect repeats which stabilize amyloid and streamline the aggregation mechanism to a fast-track assembly dominated by primary nucleation. These repeats, which are found in variable numbers in Pseudomonas, are most likely the structural core of the fibrils, though we still lack experimental data to determine whether the repeats give rise to β-helix structures via stacked β-hairpins (highly likely for CsgA) or more complicated arrangements (possibly the case for FapC). The response of FuBA fibrillation to denaturants suggests that nucleation and elongation involve equal amounts of folding, but protein chaperones preferentially target nucleation for effective inhibition. Smart peptides can be designed based on these imperfect repeats and modified with various flanking sequences to divert aggregation to less stable structures, leading to a reduction in biofilm formation. Small molecules such as EGCG can also divert FuBA to less organized structures, such as partially-folded oligomeric species, with the same detrimental effect on biofilm. Finally, the strong tendency of FuBA to self-assemble can lead to the formation of very regular two-dimensional amyloid films on structured surfaces such as graphite, which strongly implies future use in biosensors or other nanobiomaterials. In summary, the properties of functional amyloid are a much-needed corrective to the unfortunate association of amyloid with neurodegenerative disease and a testimony to nature's ability to get the best out of a protein fold.
Collapse
Affiliation(s)
- Thorbjørn Vincent Sønderby
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; (T.V.S.); (Z.N.)
- Sino-Danish Center (SDC), Eastern Yanqihu Campus, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101400, China
| | - Zahra Najarzadeh
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; (T.V.S.); (Z.N.)
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark; (T.V.S.); (Z.N.)
| |
Collapse
|
25
|
Häring M, Amann V, Kissmann AK, Herberger T, Synatschke C, Kirsch-Pietz N, Perez-Erviti JA, Otero-Gonzalez AJ, Morales-Vicente F, Andersson J, Weil T, Stenger S, Rodríguez A, Ständker L, Rosenau F. Combination of Six Individual Derivatives of the Pom-1 Antibiofilm Peptide Doubles Their Efficacy against Invasive and Multi-Resistant Clinical Isolates of the Pathogenic Yeast Candida albicans. Pharmaceutics 2022; 14:pharmaceutics14071332. [PMID: 35890228 PMCID: PMC9319270 DOI: 10.3390/pharmaceutics14071332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
In previous studies, derivatives of the peptide Pom-1, which was originally extracted from the freshwater mollusk Pomacea poeyana, showed an exceptional ability to specifically inhibit biofilm formation of the laboratory strain ATCC 90028 as a model strain of the pathogenic yeast Candida albicans. In follow-up, here, we demonstrate that the derivatives Pom-1A to Pom-1F are also active against biofilms of invasive clinical C. albicans isolates, including strains resistant against fluconazole and/or amphotericin B. However, efficacy varied strongly between the isolates, as indicated by large deviations in the experiments. This lack of robustness could be efficiently bypassed by using mixtures of all peptides. These mixed peptide preparations were active against biofilm formation of all the isolates with uniform efficacies, and the total peptide concentration could be halved compared to the original MIC of the individual peptides (2.5 µg/mL). Moreover, mixing the individual peptides restored the antifungal effect of fluconazole against fluconazole-resistant isolates even at 50% of the standard therapeutic concentration. Without having elucidated the reason for these synergistic effects of the peptides yet, both the gain of efficacy and the considerable increase in efficiency by combining the peptides indicate that Pom-1 and its derivatives in suitable formulations may play an important role as new antibiofilm antimycotics in the fight against invasive clinical infections with (multi-) resistant C. albicans.
Collapse
Affiliation(s)
- Michelle Häring
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (M.H.); (V.A.)
| | - Valerie Amann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (M.H.); (V.A.)
| | - Ann-Kathrin Kissmann
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (M.H.); (V.A.)
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany; (T.H.); (C.S.); (N.K.-P.); (T.W.)
- Correspondence: (A.-K.K.); (F.R.)
| | - Tilmann Herberger
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany; (T.H.); (C.S.); (N.K.-P.); (T.W.)
| | - Christopher Synatschke
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany; (T.H.); (C.S.); (N.K.-P.); (T.W.)
| | - Nicole Kirsch-Pietz
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany; (T.H.); (C.S.); (N.K.-P.); (T.W.)
| | - Julio A. Perez-Erviti
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 Street, Havana 10400, Cuba; (J.A.P.-E.); (A.J.O.-G.)
| | - Anselmo J. Otero-Gonzalez
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 Street, Havana 10400, Cuba; (J.A.P.-E.); (A.J.O.-G.)
| | - Fidel Morales-Vicente
- Synthetic Peptides Group, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba;
| | - Jakob Andersson
- AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria;
| | - Tanja Weil
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany; (T.H.); (C.S.); (N.K.-P.); (T.W.)
| | - Steffen Stenger
- Institute for Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany;
| | - Armando Rodríguez
- Core Facility for Functional Peptidomics, Ulm Peptide Pharmaceuticals (U-PEP), Faculty of Medicine, Ulm University, 89081 Ulm, Germany; (A.R.); (L.S.)
- Core Unit of Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany
| | - Ludger Ständker
- Core Facility for Functional Peptidomics, Ulm Peptide Pharmaceuticals (U-PEP), Faculty of Medicine, Ulm University, 89081 Ulm, Germany; (A.R.); (L.S.)
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (M.H.); (V.A.)
- Max Planck Institute for Polymer Research Mainz, Ackermannweg 10, 55128 Mainz, Germany; (T.H.); (C.S.); (N.K.-P.); (T.W.)
- Correspondence: (A.-K.K.); (F.R.)
| |
Collapse
|
26
|
Seira Curto J, Surroca Lopez A, Casals Sanchez M, Tic I, Fernandez Gallegos MR, Sanchez de Groot N. Microbiome Impact on Amyloidogenesis. Front Mol Biosci 2022; 9:926702. [PMID: 35782871 PMCID: PMC9245625 DOI: 10.3389/fmolb.2022.926702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Our life is closely linked to microorganisms, either through a parasitic or symbiotic relationship. The microbiome contains more than 1,000 different bacterial species and outnumbers human genes by 150 times. Worryingly, during the last 10 years, it has been observed a relationship between alterations in microbiota and neurodegeneration. Several publications support the hypothesis that amyloid structures formed by microorganisms may trigger host proteins aggregation. In this review, we collect pieces of evidence supporting that the crosstalk between human and microbiota amyloid proteins could be feasible and, probably, a more common event than expected before. The combination of their outnumbers, the long periods of time that stay in our bodies, and the widespread presence of amyloid proteins in the bacteria Domain outline a worrying scenario. However, the identification of the exact microorganisms and the mechanisms through with they can influence human disease also opens the door to developing a new and diverse set of therapeutic strategies.
Collapse
|
27
|
Akbey Ü, Andreasen M. Functional amyloids from bacterial biofilms - structural properties and interaction partners. Chem Sci 2022; 13:6457-6477. [PMID: 35756505 PMCID: PMC9172111 DOI: 10.1039/d2sc00645f] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/05/2022] [Indexed: 12/26/2022] Open
Abstract
Protein aggregation and amyloid formation have historically been linked with various diseases such as Alzheimer's and Parkinson's disease, but recently functional amyloids have gained a great deal of interest in not causing a disease and having a distinct function in vivo. Functional bacterial amyloids form the structural scaffold in bacterial biofilms and provide a survival strategy for the bacteria along with antibiotic resistance. The formation of functional amyloids happens extracellularly which differs from most disease related amyloids. Studies of functional amyloids have revealed several distinctions compared to disease related amyloids including primary structures designed to optimize amyloid formation while still retaining a controlled assembly of the individual subunits into classical cross-β-sheet structures, along with a unique cross-α-sheet amyloid fold. Studies have revealed that functional amyloids interact with components found in the extracellular matrix space such as lipids from membranes and polymers from the biofilm. Intriguingly, a level of complexity is added as functional amyloids also interact with several disease related amyloids and a causative link has even been established between functional amyloids and neurodegenerative diseases. It is hence becoming increasingly clear that functional amyloids are not inert protein structures found in bacterial biofilms but interact with many different components including human proteins related to pathology. Gaining a clear understanding of the factors governing the interactions will lead to improved strategies to combat biofilm associated infections and the correlated antibiotic resistance. In the current review we summarize the current state of the art knowledge on this exciting and fast growing research field of biofilm forming bacterial functional amyloids, their structural features and interaction partners.
Collapse
Affiliation(s)
- Ümit Akbey
- Department of Structural Biology, School of Medicine, University of Pittsburgh Pittsburgh PA 15261 USA
| | - Maria Andreasen
- Department of Biomedicine, Aarhus University Wilhelm Meyers Allé 3 8000 Aarhus Denmark
| |
Collapse
|
28
|
Puławski W, Dzwolak W. Virtual Quasi-2D Intermediates as Building Blocks for Plausible Structural Models of Amyloid Fibrils from Proteins with Complex Topologies: A Case Study of Insulin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7024-7034. [PMID: 35617668 PMCID: PMC9178918 DOI: 10.1021/acs.langmuir.2c00699] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Conformational transitions of globular proteins into amyloid fibrils are complex multistage processes exceedingly challenging to simulate using molecular dynamics (MD). Slow monomer diffusion rates and rugged free energy landscapes disfavor swift self-assembly of orderly amyloid architectures within timescales accessible to all-atom MD. Here, we conduct a multiscale MD study of the amyloidogenic self-assembly of insulin: a small protein with a complex topology defined by two polypeptide chains interlinked by three disulfide bonds. To avoid kinetic traps, unconventional preplanarized insulin conformations are used as amyloid building blocks. These starting conformers generated through uniaxial compression of the native monomer in various spatial directions represent 6 distinct (out of 16 conceivable) two-dimensional (2D) topological classes varying in N-/C-terminal segments of insulin's A- and B-chains being placed inside or outside of the central loop constituted by the middle sections of both chains and Cys7A-Cys7B/Cys19B-Cys20A disulfide bonds. Simulations of the fibrillar self-assembly are initiated through a biased in-register alignment of two, three, or four layers of flat conformers belonging to a single topological class. The various starting topologies are conserved throughout the self-assembly process resulting in polymorphic amyloid fibrils varying in structural features such as helical twist, presence of cavities, and overall stability. Some of the protofilament structures obtained in this work are highly compatible with the earlier biophysical studies on insulin amyloid and high-resolution studies on insulin-derived amyloidogenic peptide models postulating the presence of steric zippers. Our approach provides in silico means to study amyloidogenic tendencies and viable amyloid architectures of larger disulfide-constrained proteins with complex topologies.
Collapse
Affiliation(s)
- Wojciech Puławski
- Institute
of High Pressure Physics, Polish Academy
of Sciences, 29/37 Sokołowska
Str., 01-142 Warsaw, Poland
| | - Wojciech Dzwolak
- Institute
of High Pressure Physics, Polish Academy
of Sciences, 29/37 Sokołowska
Str., 01-142 Warsaw, Poland
- Faculty
of Chemistry, Biological and Chemical Research Centre, University of Warsaw, 1 Pasteur Str., 02-093 Warsaw, Poland
| |
Collapse
|
29
|
Corsini PM, Wang S, Rehman S, Fenn K, Sagar A, Sirovica S, Cleaver L, Edwards-Gayle CJC, Mastroianni G, Dorgan B, Sewell LM, Lynham S, Iuga D, Franks WT, Jarvis J, Carpenter GH, Curtis MA, Bernadó P, Darbari VC, Garnett JA. Molecular and cellular insight into Escherichia coli SslE and its role during biofilm maturation. NPJ Biofilms Microbiomes 2022; 8:9. [PMID: 35217675 PMCID: PMC8881592 DOI: 10.1038/s41522-022-00272-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
Escherichia coli is a Gram-negative bacterium that colonises the human intestine and virulent strains can cause severe diarrhoeal and extraintestinal diseases. The protein SslE is secreted by a range of pathogenic and commensal E. coli strains. It can degrade mucins in the intestine, promotes biofilm maturation and it is a major determinant of infection in virulent strains, although how it carries out these functions is not well understood. Here, we examine SslE from the commensal E. coli Waksman and BL21 (DE3) strains and the enterotoxigenic H10407 and enteropathogenic E2348/69 strains. We reveal that SslE has a unique and dynamic structure in solution and in response to acidification within mature biofilms it can form a unique aggregate with amyloid-like properties. Furthermore, we show that both SslE monomers and aggregates bind DNA in vitro and co-localise with extracellular DNA (eDNA) in mature biofilms, and SslE aggregates may also associate with cellulose under certain conditions. Our results suggest that interactions between SslE and eDNA are important for biofilm maturation in many E. coli strains and SslE may also be a factor that drives biofilm formation in other SslE-secreting bacteria.
Collapse
Affiliation(s)
- Paula M Corsini
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Sunjun Wang
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Saima Rehman
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Katherine Fenn
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Amin Sagar
- Centre de Biologie Structurale, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Slobodan Sirovica
- Centre for Oral Bioengineering, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Leanne Cleaver
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | | | - Giulia Mastroianni
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ben Dorgan
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Lee M Sewell
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Steven Lynham
- Proteomics Facility, Centre of Excellence for Mass Spectrometry, King's College London, London, UK
| | - Dinu Iuga
- Department of Physics, University of Warwick, Coventry, UK
| | - W Trent Franks
- Department of Physics, University of Warwick, Coventry, UK
| | - James Jarvis
- Randall Division of Cell and Molecular Biophysics and Centre for Biomolecular Spectroscopy, King's College London, London, UK
| | - Guy H Carpenter
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Michael A Curtis
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Pau Bernadó
- Centre de Biologie Structurale, Université de Montpellier, INSERM, CNRS, Montpellier, France
| | - Vidya C Darbari
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| | - James A Garnett
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral & Craniofacial Sciences, King's College London, London, UK.
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
30
|
Cutuli D, Giacovazzo G, Decandia D, Coccurello R. Alzheimer's disease and depression in the elderly: A trajectory linking gut microbiota and serotonin signaling. Front Psychiatry 2022; 13:1010169. [PMID: 36532180 PMCID: PMC9750201 DOI: 10.3389/fpsyt.2022.1010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/28/2022] [Indexed: 12/05/2022] Open
Abstract
The occurrence of neuropsychiatric symptoms in the elderly is viewed as an early sign of subsequent cognitive deterioration and conversion from mild cognitive impairment to Alzheimer's disease. The prognosis in terms of both the severity and progression of clinical dementia is generally aggravated by the comorbidity of neuropsychiatric symptoms and decline in cognitive function. Undeniably, aging and in particular unhealthy aging, is a silent "engine of neuropathology" over which multiple changes take place, including drastic alterations of the gut microbial ecosystem. This narrative review evaluates the role of gut microbiota changes as a possible unifying concept through which the comorbidity of neuropsychiatric symptoms and Alzheimer's disease can be considered. However, since the heterogeneity of neuropsychiatric symptoms, it is improbable to describe the same type of alterations in the bacteria population observed in patients with Alzheimer's disease, as well as it is improbable that the variety of drugs used to treat neuropsychiatric symptoms might produce changes in gut bacterial diversity similar to that observed in the pathophysiology of Alzheimer's disease. Depression seems to be another very intriguing exception, as it is one of the most frequent neuropsychiatric symptoms in dementia and a mood disorder frequently associated with brain aging. Antidepressants (i.e., serotonin reuptake inhibitors) or tryptophan dietary supplementation have been shown to reduce Amyloid β-loading, reinstate microbial diversity and reduce the abundance of bacterial taxa dominant in depression and Alzheimer's disease. This review briefly examines this trajectory by discussing the dysfunction of gut microbiota composition, selected bacterial taxa, and alteration of tryptophan and serotonin metabolism/neurotransmission as overlapping in-common mechanisms involved with depression, Alzheimer's disease, and unhealthy aging.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, University of Rome La Sapienza, Rome, Italy.,European Center for Brain Research, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Giacomo Giacovazzo
- European Center for Brain Research, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Davide Decandia
- Department of Psychology, University of Rome La Sapienza, Rome, Italy.,European Center for Brain Research, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Roberto Coccurello
- European Center for Brain Research, Santa Lucia Foundation IRCCS, Rome, Italy.,Institute for Complex Systems (ISC), National Council of Research (CNR), Rome, Italy
| |
Collapse
|
31
|
Kim HS, Kim S, Shin SJ, Park YH, Nam Y, Kim CW, Lee KW, Kim SM, Jung ID, Yang HD, Park YM, Moon M. Gram-negative bacteria and their lipopolysaccharides in Alzheimer's disease: pathologic roles and therapeutic implications. Transl Neurodegener 2021; 10:49. [PMID: 34876226 PMCID: PMC8650380 DOI: 10.1186/s40035-021-00273-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most serious age-related neurodegenerative disease and causes destructive and irreversible cognitive decline. Failures in the development of therapeutics targeting amyloid-β (Aβ) and tau, principal proteins inducing pathology in AD, suggest a paradigm shift towards the development of new therapeutic targets. The gram-negative bacteria and lipopolysaccharides (LPS) are attractive new targets for AD treatment. Surprisingly, an altered distribution of gram-negative bacteria and their LPS has been reported in AD patients. Moreover, gram-negative bacteria and their LPS have been shown to affect a variety of AD-related pathologies, such as Aβ homeostasis, tau pathology, neuroinflammation, and neurodegeneration. Moreover, therapeutic approaches targeting gram-negative bacteria or gram-negative bacterial molecules have significantly alleviated AD-related pathology and cognitive dysfunction. Despite multiple evidence showing that the gram-negative bacteria and their LPS play a crucial role in AD pathogenesis, the pathogenic mechanisms of gram-negative bacteria and their LPS have not been clarified. Here, we summarize the roles and pathomechanisms of gram-negative bacteria and LPS in AD. Furthermore, we discuss the possibility of using gram-negative bacteria and gram-negative bacterial molecules as novel therapeutic targets and new pathological characteristics for AD.
Collapse
Affiliation(s)
- Hyeon Soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
- Research Institute for Dementia Science, Konyang University, Daejeon, 35365, Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Chae Won Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Kang Won Lee
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Sung-Min Kim
- Dandi Bioscience Inc, 6th Floor of Real Company Building, 66, Achasan-ro, Sungdong-gu, Seoul, Republic of Korea
| | - In Duk Jung
- Dandi Bioscience Inc, 6th Floor of Real Company Building, 66, Achasan-ro, Sungdong-gu, Seoul, Republic of Korea
| | - Hyun Duk Yang
- Harvard Neurology Clinic, 294 Gwanggyojungang-ro, Suji-gu, Yongin, 16943, Republic of Korea.
| | - Yeong-Min Park
- Dandi Bioscience Inc, 6th Floor of Real Company Building, 66, Achasan-ro, Sungdong-gu, Seoul, Republic of Korea.
- Department of Immunology, School of Medicine, Konkuk University, 268, Chungwondaero, Chungju-si, Chungcheongbuk-do, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea.
- Research Institute for Dementia Science, Konyang University, Daejeon, 35365, Republic of Korea.
| |
Collapse
|
32
|
Amyloids as Building Blocks for Macroscopic Functional Materials: Designs, Applications and Challenges. Int J Mol Sci 2021; 22:ijms221910698. [PMID: 34639037 PMCID: PMC8508955 DOI: 10.3390/ijms221910698] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
Amyloids are self-assembled protein aggregates that take cross-β fibrillar morphology. Although some amyloid proteins are best known for their association with Alzheimer’s and Parkinson’s disease, many other amyloids are found across diverse organisms, from bacteria to humans, and they play vital functional roles. The rigidity, chemical stability, high aspect ratio, and sequence programmability of amyloid fibrils have made them attractive candidates for functional materials with applications in environmental sciences, material engineering, and translational medicines. This review focuses on recent advances in fabricating various types of macroscopic functional amyloid materials. We discuss different design strategies for the fabrication of amyloid hydrogels, high-strength materials, composite materials, responsive materials, extracellular matrix mimics, conductive materials, and catalytic materials.
Collapse
|
33
|
Lipke PN, Mathelié-Guinlet M, Viljoen A, Dufrêne YF. A New Function for Amyloid-Like Interactions: Cross-Beta Aggregates of Adhesins form Cell-to-Cell Bonds. Pathogens 2021; 10:pathogens10081013. [PMID: 34451476 PMCID: PMC8398270 DOI: 10.3390/pathogens10081013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 12/30/2022] Open
Abstract
Amyloid structures assemble through a repeating type of bonding called "cross-β", in which identical sequences in many protein molecules form β-sheets that interdigitate through side chain interactions. We review the structural characteristics of such bonds. Single cell force microscopy (SCFM) shows that yeast expressing Als5 adhesin from Candida albicans demonstrate the empirical characteristics of cross-β interactions. These properties include affinity for amyloid-binding dyes, birefringence, critical concentration dependence, repeating structure, and inhibition by anti-amyloid agents. We present a model for how cross-β bonds form in trans between two adhering cells. These characteristics also apply to other fungal adhesins, so the mechanism appears to be an example of a new type of cell-cell adhesion.
Collapse
Affiliation(s)
- Peter N. Lipke
- Biology Department, Brooklyn College of City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Correspondence: ; Tel.: +1-(917)-696-4862
| | - Marion Mathelié-Guinlet
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium; (M.M.-G.); (A.V.); (Y.F.D.)
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium; (M.M.-G.); (A.V.); (Y.F.D.)
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium; (M.M.-G.); (A.V.); (Y.F.D.)
| |
Collapse
|
34
|
Daskalov A, El Mammeri N, Lends A, Shenoy J, Lamon G, Fichou Y, Saad A, Martinez D, Morvan E, Berbon M, Grélard A, Kauffmann B, Ferber M, Bardiaux B, Habenstein B, Saupe SJ, Loquet A. Structures of Pathological and Functional Amyloids and Prions, a Solid-State NMR Perspective. Front Mol Neurosci 2021; 14:670513. [PMID: 34276304 PMCID: PMC8280340 DOI: 10.3389/fnmol.2021.670513] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
Infectious proteins or prions are a remarkable class of pathogens, where pathogenicity and infectious state correspond to conformational transition of a protein fold. The conformational change translates into the formation by the protein of insoluble amyloid aggregates, associated in humans with various neurodegenerative disorders and systemic protein-deposition diseases. The prion principle, however, is not limited to pathogenicity. While pathological amyloids (and prions) emerge from protein misfolding, a class of functional amyloids has been defined, consisting of amyloid-forming domains under natural selection and with diverse biological roles. Although of great importance, prion amyloid structures remain challenging for conventional structural biology techniques. Solid-state nuclear magnetic resonance (SSNMR) has been preferentially used to investigate these insoluble, morphologically heterogeneous aggregates with poor crystallinity. SSNMR methods have yielded a wealth of knowledge regarding the fundamentals of prion biology and have helped to solve the structures of several prion and prion-like fibrils. Here, we will review pathological and functional amyloid structures and will discuss some of the obtained structural models. We will finish the review with a perspective on integrative approaches combining solid-state NMR, electron paramagnetic resonance and cryo-electron microscopy, which can complement and extend our toolkit to structurally explore various facets of prion biology.
Collapse
Affiliation(s)
- Asen Daskalov
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Nadia El Mammeri
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Alons Lends
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | | | - Gaelle Lamon
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Yann Fichou
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Ahmad Saad
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Denis Martinez
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Estelle Morvan
- CNRS, INSERM, IECB, UMS 3033, University of Bordeaux, Pessac, France
| | - Melanie Berbon
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Axelle Grélard
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| | - Brice Kauffmann
- CNRS, INSERM, IECB, UMS 3033, University of Bordeaux, Pessac, France
| | | | | | | | - Sven J. Saupe
- CNRS, IBGC UMR 5095, University of Bordeaux, Bordeaux, France
| | - Antoine Loquet
- CNRS, CBMN UMR 5348, IECB, University of Bordeaux, Pessac, France
| |
Collapse
|
35
|
Matilla-Cuenca L, Toledo-Arana A, Valle J. Anti-Biofilm Molecules Targeting Functional Amyloids. Antibiotics (Basel) 2021; 10:antibiotics10070795. [PMID: 34210036 PMCID: PMC8300730 DOI: 10.3390/antibiotics10070795] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
The choice of an effective therapeutic strategy in the treatment of biofilm-related infections is a significant issue. Amyloids, which have been historically related to human diseases, are now considered to be prevailing structural components of the biofilm matrix in a wide range of bacteria. This assumption creates the potential for an exciting research area, in which functional amyloids are considered to be attractive targets for drug development to dissemble biofilm structures. The present review describes the best-characterized bacterial functional amyloids and focuses on anti-biofilm agents that target intrinsic and facultative amyloids. This study provides a better understanding of the different modes of actions of the anti-amyloid molecules to inhibit biofilm formation. This information can be further exploited to improve the therapeutic strategies to combat biofilm-related infections.
Collapse
|
36
|
Christensen LFB, Alijanvand SH, Burdukiewicz M, Herbst FA, Kjeldal H, Dueholm MS, Otzen DE. Identification of amyloidogenic proteins in the microbiomes of a rat Parkinson's disease model and wild-type rats. Protein Sci 2021; 30:1854-1870. [PMID: 34075639 DOI: 10.1002/pro.4137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022]
Abstract
Cross seeding between amyloidogenic proteins in the gut is receiving increasing attention as a possible mechanism for initiation or acceleration of amyloid formation by aggregation-prone proteins such as αSN, which is central in the development of Parkinson's disease (PD). This is particularly pertinent in view of the growing number of functional (i.e., benign and useful) amyloid proteins discovered in bacteria. Here we identify two amyloidogenic proteins, Pr12 and Pr17, in fecal matter from PD transgenic rats and their wild type counterparts, based on their stability against dissolution by formic acid (FA). Both proteins show robust aggregation into ThT-positive aggregates that contain higher-order β-sheets and have a fibrillar morphology, indicative of amyloid proteins. In addition, Pr17 aggregates formed in vitro showed significant resistance against FA, suggesting an ability to form highly stable amyloid. Treatment with proteinase K revealed a protected core of approx. 9 kDa. Neither Pr12 nor Pr17, however, affected αSN aggregation in vitro. Thus, amyloidogenicity does not per se lead to an ability to cross-seed fibrillation of αSN. Our results support the use of proteomics and FA to identify amyloidogenic protein in complex mixtures and suggests that there may be numerous functional amyloid proteins in microbiomes.
Collapse
Affiliation(s)
- Line Friis Bakmann Christensen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Saeid Hadi Alijanvand
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.,Institute of Biochemistry and Biophysics (IBB), Department of Biophysics, University of Tehran, Tehran, Iran
| | - Michał Burdukiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Centre for Clinical Research, Medical University of Białystok, Białystok, Poland
| | - Florian-Alexander Herbst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Henrik Kjeldal
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten Simonsen Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
37
|
Gómez-Pérez D, Chaudhry V, Kemen A, Kemen E. Amyloid Proteins in Plant-Associated Microbial Communities. Microb Physiol 2021; 31:88-98. [PMID: 34107493 DOI: 10.1159/000516014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/17/2021] [Indexed: 11/19/2022]
Abstract
Amyloids have proven to be a widespread phenomenon rather than an exception. Many proteins presenting the hallmarks of this characteristic beta sheet-rich folding have been described to date. Particularly common are functional amyloids that play an important role in the promotion of survival and pathogenicity in prokaryotes. Here, we describe important developments in amyloid protein research that relate to microbe-microbe and microbe-host interactions in the plant microbiome. Starting with biofilms, which are a broad strategy for bacterial persistence that is extremely important for plant colonization. Microbes rely on amyloid-based mechanisms to adhere and create a protective coating that shelters them from external stresses and promotes cooperation. Another strategy generally carried out by amyloids is the formation of hydrophobic surface layers. Known as hydrophobins, these proteins coat the aerial hyphae and spores of plant pathogenic fungi, as well as certain bacterial biofilms. They contribute to plant virulence through promoting dissemination and infectivity. Furthermore, antimicrobial activity is an interesting outcome of the amyloid structure that has potential application in medicine and agriculture. There are many known antimicrobial amyloids released by animals and plants; however, those produced by bacteria or fungi remain still largely unknown. Finally, we discuss amyloid proteins with a more indirect mode of action in their host interactions. These include virulence-promoting harpins, signaling transduction that functions through amyloid templating, and root nodule bacteria proteins that promote plant-microbe symbiosis. In summary, amyloids are an interesting paradigm for their many functional mechanisms linked to bacterial survival in plant-associated microbial communities.
Collapse
Affiliation(s)
| | | | - Ariane Kemen
- ZMBP/IMIT, University of Tübingen, Tübingen, Germany
| | - Eric Kemen
- ZMBP/IMIT, University of Tübingen, Tübingen, Germany
| |
Collapse
|
38
|
Generic nature of the condensed states of proteins. Nat Cell Biol 2021; 23:587-594. [PMID: 34108660 DOI: 10.1038/s41556-021-00697-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/07/2021] [Indexed: 02/05/2023]
Abstract
Proteins undergoing liquid-liquid phase separation are being discovered at an increasing rate. Since at the high concentrations present in the cell most proteins would be expected to form a liquid condensed state, this state should be considered to be a fundamental state of proteins along with the native state and the amyloid state. Here we discuss the generic nature of the liquid-like and solid-like condensed states, and describe a wide variety of biological functions conferred by these condensed states.
Collapse
|
39
|
Otzen DE, Dueholm MS, Najarzadeh Z, Knowles TPJ, Ruggeri FS. In situ Sub-Cellular Identification of Functional Amyloids in Bacteria and Archaea by Infrared Nanospectroscopy. SMALL METHODS 2021; 5:e2001002. [PMID: 34927901 DOI: 10.1002/smtd.202001002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/16/2021] [Indexed: 06/14/2023]
Abstract
Formation of amyloid structures is originally linked to human disease. However, amyloid materials are found extensively in the animal and bacterial world where they stabilize intra- and extra-cellular environments like biofilms or cell envelopes. To date, functional amyloids have largely been studied using optical microscopy techniques in vivo, or after removal from their biological context for higher-resolution studies in vitro. Furthermore, conventional microscopies only indirectly identify amyloids based on morphology or unspecific amyloid dyes. Here, the high chemical and spatial (≈20 nm) resolution of Infrared Nanospectroscopy (AFM-IR) to investigate functional amyloid from Escherichia coli (curli), Pseudomonas (Fap), and the Archaea Methanosaeta (MspA) in situ is exploited. It is demonstrated that AFM-IR identifies amyloid protein within single intact cells through their cross β-sheet secondary structure, which has a unique spectroscopic signature in the amide I band of protein. Using this approach, nanoscale-resolved chemical images and spectra of purified curli and Methanosaeta cell wall sheaths are provided. The results highlight significant differences in secondary structure between E. coli cells with and without curli. Taken together, these results suggest that AFM-IR is a new and powerful label-free tool for in situ investigations of the biophysical state of functional amyloid and biomolecules in general.
Collapse
Affiliation(s)
- Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, Aarhus, 8000, Denmark
| | - Morten S Dueholm
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, 9220, Denmark
| | - Zahra Najarzadeh
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, Aarhus, 8000, Denmark
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB30HE, UK
| | - Francesco Simone Ruggeri
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Laboratory of Organic Chemistry, Wageningen University, Wageningen, WE 6703, the Netherlands
- Laboratory of Physical Chemistry, Wageningen University, Wageningen, WE 6703, the Netherlands
| |
Collapse
|
40
|
Liu X, Ye Y, Zhu Y, Wang L, Yuan L, Zhu J, Sun A. Involvement of RpoN in Regulating Motility, Biofilm, Resistance, and Spoilage Potential of Pseudomonas fluorescens. Front Microbiol 2021; 12:641844. [PMID: 34135871 PMCID: PMC8202526 DOI: 10.3389/fmicb.2021.641844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas fluorescens is a typical spoiler of proteinaceous foods, and it is characterized by high spoilage activity. The sigma factor RpoN is a well-known regulator controlling nitrogen assimilation and virulence in many pathogens. However, its exact role in regulating the spoilage caused by P. fluorescens is unknown. Here, an in-frame deletion mutation of rpoN was constructed to investigate its global regulatory function through phenotypic and RNA-seq analysis. The results of phenotypic assays showed that the rpoN mutant was deficient in swimming motility, biofilm formation, and resistance to heat and nine antibiotics, while the mutant increased the resistance to H2O2. Moreover, the rpoN mutant markedly reduced extracellular protease and total volatile basic nitrogen (TVB-N) production in sterilized fish juice at 4°C; meanwhile, the juice with the rpoN mutant showed significantly higher sensory scores than that with the wild-type strain. To identify RpoN-controlled genes, RNA-seq-dependent transcriptomics analysis of the wild-type strain and the rpoN mutant was performed. A total of 1224 genes were significantly downregulated, and 474 genes were significantly upregulated by at least two folds at the RNA level in the rpoN mutant compared with the wild-type strain, revealing the involvement of RpoN in several cellular processes, mainly flagellar mobility, adhesion, polysaccharide metabolism, resistance, and amino acid transport and metabolism; this may contribute to the swimming motility, biofilm formation, stress and antibiotic resistance, and spoilage activities of P. fluorescens. Our results provide insights into the regulatory role of RpoN of P. fluorescens in food spoilage, which can be valuable to ensure food quality and safety.
Collapse
Affiliation(s)
- Xiaoxiang Liu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yifan Ye
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yin Zhu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Lifang Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Leyang Yuan
- Zhejiang Museum of Natural History, Hangzhou, China
| | - Junli Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Aihua Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
41
|
Yakupova EI, Bobyleva LG, Shumeyko SA, Vikhlyantsev IM, Bobylev AG. Amyloids: The History of Toxicity and Functionality. BIOLOGY 2021; 10:biology10050394. [PMID: 34062910 PMCID: PMC8147320 DOI: 10.3390/biology10050394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Proteins can perform their specific function due to their molecular structure. Partial or complete unfolding of the polypeptide chain may lead to the misfolding and aggregation of proteins in turn, resulting in the formation of different structures such as amyloid aggregates. Amyloids are rigid protein aggregates with the cross-β structure, resistant to most solvents and proteases. Because of their resistance to proteolysis, amyloid aggregates formed in the organism accumulate in tissues, promoting the development of various diseases called amyloidosis, for instance Alzheimer's diseases (AD). According to the main hypothesis, it is considered that the cause of AD is the formation and accumulation of amyloid plaques of Aβ. That is why Aβ-amyloid is the most studied representative of amyloids. Therefore, in this review, special attention is paid to the history of Aβ-amyloid toxicity. We note the main problems with anti-amyloid therapy and write about new views on amyloids that can play positive roles in the different organisms including humans.
Collapse
Affiliation(s)
- Elmira I. Yakupova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +7-(985)687-77-27
| | - Liya G. Bobyleva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| | - Sergey A. Shumeyko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| | - Ivan M. Vikhlyantsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| | - Alexander G. Bobylev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (L.G.B.); (S.A.S.); (I.M.V.); (A.G.B.)
| |
Collapse
|
42
|
Khambhati K, Patel J, Saxena V, A P, Jain N. Gene Regulation of Biofilm-Associated Functional Amyloids. Pathogens 2021; 10:490. [PMID: 33921583 PMCID: PMC8072697 DOI: 10.3390/pathogens10040490] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 01/01/2023] Open
Abstract
Biofilms are bacterial communities encased in a rigid yet dynamic extracellular matrix. The sociobiology of bacterial communities within a biofilm is astonishing, with environmental factors playing a crucial role in determining the switch from planktonic to a sessile form of life. The mechanism of biofilm biogenesis is an intriguingly complex phenomenon governed by the tight regulation of expression of various biofilm-matrix components. One of the major constituents of the biofilm matrix is proteinaceous polymers called amyloids. Since the discovery, the significance of biofilm-associated amyloids in adhesion, aggregation, protection, and infection development has been much appreciated. The amyloid expression and assembly is regulated spatio-temporarily within the bacterial cells to perform a diverse function. This review provides a comprehensive account of the genetic regulation associated with the expression of amyloids in bacteria. The stringent control ensures optimal utilization of amyloid scaffold during biofilm biogenesis. We conclude the review by summarizing environmental factors influencing the expression and regulation of amyloids.
Collapse
Affiliation(s)
- Khushal Khambhati
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Jaykumar Patel
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Vijaylaxmi Saxena
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Parvathy A
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| | - Neha Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur NH 65, Nagaur Road, Karwar, Rajasthan 342037, India
| |
Collapse
|
43
|
A multimethod approach for analyzing FapC fibrillation and determining mass per length. Biophys J 2021; 120:2262-2275. [PMID: 33812849 DOI: 10.1016/j.bpj.2021.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/12/2021] [Accepted: 03/25/2021] [Indexed: 02/05/2023] Open
Abstract
Amyloid proteins are found in a wide range of organisms owing to the high stability of the β-sheet core of the amyloid fibrils. There are both pathological amyloids involved in various diseases and functional amyloids that play a beneficial role for the organism. The aggregation process is complex and often involves many different species. Full understanding of this process requires parallel acquisition of data by complementary techniques monitoring the time course of aggregation. This is not an easy task, given the often-stochastic nature of aggregation, which can lead to significant variations in lag time. Here, we investigate the aggregation process of the functional amyloid FapC by simultaneous use of four different techniques, namely dynamic light scattering, small-angle x-ray scattering (SAXS), circular dichroism, and Thioflavin T fluorescence. All these approaches are applied to the same FapC sample just after desalting. Our data allow us to construct a master time-course graph showing the same time-course of aggregation by all techniques. This allows us to integrate insights from approaches that report on different structural and length scales. During the lag phase, loosely aggregated oligomers with random-coil structure are formed, which subsequently transform to fibrils without accumulation of additional significant species. Subsequently, the loosely associated protofilaments/subfilaments, which form side by side, mature to more compact fibrils. Furthermore, we determine the mass per length of the mature fibrils, obtaining very similar results by SAXS (33 kDa/nm) and tilted-beam transmission electron microscopy (31 kDa/nm). Transmission electron microscopy showed that the fibrils consist of primarily two protofilaments and similar dimensions of the cross section of the fibrils as revealed by SAXS modeling when the number of protofilaments per fibril was taken into account. Mass per length information underscores the general usefulness of SAXS in fibrillation analysis and provides an important constraint for further modeling the fibril structures.
Collapse
|
44
|
Fibrilar Polymorphism of the Bacterial Extracellular Matrix Protein TasA. Microorganisms 2021; 9:microorganisms9030529. [PMID: 33806534 PMCID: PMC8000256 DOI: 10.3390/microorganisms9030529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/23/2021] [Accepted: 03/01/2021] [Indexed: 12/25/2022] Open
Abstract
Functional amyloid proteins often appear as fibers in extracellular matrices of microbial soft colonies. In contrast to disease-related amyloid structures, they serve a functional goal that benefits the organism that secretes them, which is the reason for the title “functional”. Biofilms are a specific example of a microbial community in which functional amyloid fibers play a role. Functional amyloid proteins contribute to the mechanical stability of biofilms and mediate the adhesion of the cells to themselves as well as to surfaces. Recently, it has been shown that functional amyloid proteins also play a regulatory role in biofilm development. TasA is the major proteinaceous fibrilar component of the extracellular matrix of biofilms made of the soil bacterium and Gram-positive Bacillus subtilis. We have previously shown, as later corroborated by others, that in acidic solutions, TasA forms compact aggregates that are composed of tangled fibers. Here, we show that in a neutral pH and above a certain TasA concentration, the fibers of TasA are elongated and straight and that they bundle up in highly concentrated salt solutions. TasA fibers resemble the canonic amyloid morphology; however, these fibers also bear an interesting nm-scale periodicity along the fiber axis. At the molecular level, TasA fibers contain a twisted β-sheet structure, as indicated by circular dichroism measurements. Our study shows that the morphology of TasA fibers depends on the environmental conditions. Different fibrilar morphologies may be related with different functional roles in biofilms, ranging from granting biofilms with a mechanical support to acting as antibiotic agents.
Collapse
|
45
|
Miller AL, Bessho S, Grando K, Tükel Ç. Microbiome or Infections: Amyloid-Containing Biofilms as a Trigger for Complex Human Diseases. Front Immunol 2021; 12:638867. [PMID: 33717189 PMCID: PMC7952436 DOI: 10.3389/fimmu.2021.638867] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
The human microbiota is the community of microorganisms that live upon or within their human host. The microbiota consists of various microorganisms including bacteria, fungi, viruses, and archaea; the gut microbiota is comprised mostly of bacteria. Many bacterial species within the gut microbiome grow as biofilms, which are multicellular communities embedded in an extracellular matrix. Studies have shown that the relative abundances of bacterial species, and therefore biofilms and bacterial byproducts, change during progression of a variety of human diseases including gastrointestinal, autoimmune, neurodegenerative, and cancer. Studies have shown the location and proximity of the biofilms within the gastrointestinal tract might impact disease outcome. Gram-negative enteric bacteria secrete the amyloid curli, which makes up as much as 85% of the extracellular matrix of enteric biofilms. Curli mediates cell-cell attachment and attachment to various surfaces including extracellular matrix components such as fibronectin and laminin. Structurally, curli is strikingly similar to pathological and immunomodulatory human amyloids such as amyloid-β, which has been implicated in Alzheimer's disease, α-synuclein, which is involved in Parkinson's disease, and serum amyloid A, which is secreted during the acute phase of inflammation. The immune system recognizes both bacterial amyloid curli and human amyloids utilizing the same receptors, so curli also induces inflammation. Moreover, recent work indicates that curli can participate in the self-assembly process of pathological human amyloids. Curli is found within biofilms of commensal enteric bacteria as well as invasive pathogens; therefore, evidence suggests that curli contributes to complex human diseases. In this review, we summarize the recent findings on how bacterial biofilms containing curli participate in the pathological and immunological processes in gastrointestinal diseases, systemic autoimmune diseases, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Amanda L Miller
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Shingo Bessho
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Kaitlyn Grando
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Çagla Tükel
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
46
|
Zaman M, Andreasen M. Modulating Kinetics of the Amyloid-Like Aggregation of S. aureus Phenol-Soluble Modulins by Changes in pH. Microorganisms 2021; 9:microorganisms9010117. [PMID: 33430169 PMCID: PMC7825627 DOI: 10.3390/microorganisms9010117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022] Open
Abstract
The pathogen Staphylococcus aureus is recognized as one of the most frequent causes of biofilm-associated infections. The recently identified phenol-soluble modulin (PSM) peptides act as the key molecular effectors of staphylococcal biofilm maturation and promote the formation of an aggregated fibril structure. The aim of this study was to evaluate the effect of various pH values on the formation of functional amyloids of individual PSM peptides. Here, we combined a range of biophysical, chemical kinetics and microscopic techniques to address the structure and aggregation mechanism of individual PSMs under different conditions. We established that there is a pH-induced switch in PSM aggregation kinetics. Different lag times and growth of fibrils were observed, which indicates that there was no clear correlation between the rates of fibril elongation among different PSMs. This finding confirms that pH can modulate the aggregation properties of these peptides and suggest a deeper understanding of the formation of aggregates, which represents an important basis for strategies to interfere and might help in reducing the risk of biofilm-related infections.
Collapse
|
47
|
Heredia-Ponce Z, Gutiérrez-Barranquero JA, Purtschert-Montenegro G, Eberl L, de Vicente A, Cazorla FM. Role of extracellular matrix components in the formation of biofilms and their contribution to the biocontrol activity of Pseudomonas chlororaphis PCL1606. Environ Microbiol 2020; 23:2086-2101. [PMID: 33314481 DOI: 10.1111/1462-2920.15355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022]
Abstract
Pseudomonas chlororaphis PCL1606 (PcPCL1606) displays plant-colonizing features and exhibits antagonistic traits against soil-borne phytopathogenic fungi. Biofilm formation could be relevant for the PcPCL1606 lifestyle, and in this study the role of some putative extracellular matrix components (EMC; Fap-like fibre, alginate and Psl-like polysaccharides) in the biofilm architecture and biocontrol activity of this bacterium were determined. EMC such as the Fap-like fibre and alginate polysaccharide play secondary roles in biofilm formation in PcPCL1606, because they are not fundamental to its biofilm architecture in flow cell chamber, but synergistically they have shown to favour bacterial competition during biofilm formation. Conversely, studies on Psl-like polysaccharide have revealed that it may contain mannose, and that it is strongly involved in the PcPCL1606 biofilm architecture and niche competition. Furthermore, the Fap-like fibre and Psl-like exopolysaccharide play roles in early surface attachment and contribute to biocontrol activity against the white root rot disease caused by Rosellinia necatrix in avocado plants. These results constitute the first report regarding the study of the extracellular matrix of the PcPCL1606 strain and highlight the importance of a putative Fap-like fibre and Psl-like exopolysaccharide produced by PcPCL1606 in the biofilm formation process and interactions with the host plant root.
Collapse
Affiliation(s)
- Zaira Heredia-Ponce
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC) - Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur, 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| | - José Antonio Gutiérrez-Barranquero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC) - Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur, 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| | | | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, CH-8008, Switzerland
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC) - Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur, 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| | - Francisco M Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC) - Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur, 31 (Campus Universitario de Teatinos), Málaga, 29071, Spain
| |
Collapse
|
48
|
Multifunctional Amyloids in the Biology of Gram-Positive Bacteria. Microorganisms 2020; 8:microorganisms8122020. [PMID: 33348645 PMCID: PMC7766987 DOI: 10.3390/microorganisms8122020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/18/2023] Open
Abstract
Since they were discovered, amyloids have proven to be versatile proteins able to participate in a variety of cellular functions across all kingdoms of life. This multitask trait seems to reside in their ability to coexist as monomers, aggregates or fibrillar entities, with morphological and biochemical peculiarities. It is precisely this common molecular behaviour that allows amyloids to cross react with one another, triggering heterologous aggregation. In bacteria, many of these functional amyloids are devoted to the assembly of biofilms by organizing the matrix scaffold that keeps cells together. However, consistent with their notion of multifunctional proteins, functional amyloids participate in other biological roles within the same organisms, and emerging unprecedented functions are being discovered. In this review, we focus on functional amyloids reported in gram-positive bacteria, which are diverse in their assembly mechanisms and remarkably specific in their biological functions that they perform. Finally, we consider cross-seeding between functional amyloids as an emerging theme in interspecies interactions that contributes to the diversification of bacterial biology.
Collapse
|
49
|
Functional Amyloids Are the Rule Rather Than the Exception in Cellular Biology. Microorganisms 2020; 8:microorganisms8121951. [PMID: 33316961 PMCID: PMC7764130 DOI: 10.3390/microorganisms8121951] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Amyloids are a class of protein aggregates that have been historically characterized by their relationship with human disease. Indeed, amyloids can be the result of misfolded proteins that self-associate to form insoluble, extracellular plaques in diseased tissue. For the first 150 years of their study, the pathogen-first definition of amyloids was sufficient. However, new observations of amyloids foster an appreciation for non-pathological roles for amyloids in cellular systems. There is now evidence from all domains of life that amyloids can be non-pathogenic and functional, and that their formation can be the result of purposeful and controlled cellular processes. So-called functional amyloids fulfill an assortment of biological functions including acting as structural scaffolds, regulatory mechanisms, and storage mechanisms. The conceptual convergence of amyloids serving a functional role has been repeatedly confirmed by discoveries of additional functional amyloids. With dozens already known, and with the vigorous rate of discovery, the biology of amyloids is robustly represented by non-pathogenic amyloids.
Collapse
|
50
|
Zaman M, Andreasen M. Cross-talk between individual phenol-soluble modulins in Staphylococcus aureus biofilm enables rapid and efficient amyloid formation. eLife 2020; 9:59776. [PMID: 33259287 PMCID: PMC7732344 DOI: 10.7554/elife.59776] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
The infective ability of the opportunistic pathogen Staphylococcus aureus, recognized as the most frequent cause of biofilm-associated infections, is associated with biofilm-mediated resistance to host immune response. Phenol-soluble modulins (PSM) comprise the structural scaffold of S. aureus biofilms through self-assembly into functional amyloids, but the role of individual PSMs during biofilm formation remains poorly understood and the molecular pathways of PSM self-assembly are yet to be identified. Here we demonstrate high degree of cooperation between individual PSMs during functional amyloid formation. PSMα3 initiates the aggregation, forming unstable aggregates capable of seeding other PSMs resulting in stable amyloid structures. Using chemical kinetics we dissect the molecular mechanism of aggregation of individual PSMs showing that PSMα1, PSMα3 and PSMβ1 display secondary nucleation whereas PSMβ2 aggregates through primary nucleation and elongation. Our findings suggest that various PSMs have evolved to ensure fast and efficient biofilm formation through cooperation between individual peptides.
Collapse
Affiliation(s)
- Masihuz Zaman
- Aarhus University, Department of Biomedicine, Aarhus, Denmark
| | - Maria Andreasen
- Aarhus University, Department of Biomedicine, Aarhus, Denmark
| |
Collapse
|