1
|
Vadakkan K, Ngangbam AK, Sathishkumar K, Rumjit NP, Cheruvathur MK. A review of chemical signaling pathways in the quorum sensing circuit of Pseudomonas aeruginosa. Int J Biol Macromol 2024; 254:127861. [PMID: 37939761 DOI: 10.1016/j.ijbiomac.2023.127861] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Pseudomonas aeruginosa, an increasingly common competitive and biofilm organism in healthcare infection with sophisticated, interlinked and hierarchic quorum systems (Las, Rhl, PQS, and IQS), creates the greatest threats to the medical industry and has rendered prevailing chemotherapy medications ineffective. The rise of multidrug resistance has evolved into a concerning and potentially fatal occurrence for human life. P. aeruginosa biofilm development is assisted by exopolysaccharides, extracellular DNA, proteins, macromolecules, cellular signaling and interaction. Quorum sensing is a communication process between cells that involves autonomous inducers and regulators. Quorum-induced infectious agent biofilms and the synthesis of virulence factors have increased disease transmission, medication resistance, infection episodes, hospitalizations and mortality. Hence, quorum sensing may be a potential therapeutical target for bacterial illness, and developing quorum inhibitors as an anti-virulent tool could be a promising treatment strategy for existing antibiotics. Quorum quenching is a prevalent technique for treating infections caused by microbes because it diminishes microbial pathogenesis and increases microbe biofilm sensitivity to antibiotics, making it a potential candidate for drug development. This paper examines P. aeruginosa quorum sensing, the hierarchy of quorum sensing mechanism, quorum sensing inhibition and quorum sensing inhibitory agents as a drug development strategy to supplement traditional antibiotic strategies.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biology, St. Mary's College, Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | | | - Kuppusamy Sathishkumar
- Rhizosphere Biology Laboratory, Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | | | | |
Collapse
|
2
|
Keegan NR, Colón Torres NJ, Stringer AM, Prager LI, Brockley MW, McManaman CL, Wade JT, Paczkowski JE. Promoter selectivity of the RhlR quorum-sensing transcription factor receptor in Pseudomonas aeruginosa is coordinated by distinct and overlapping dependencies on C4-homoserine lactone and PqsE. PLoS Genet 2023; 19:e1010900. [PMID: 38064526 PMCID: PMC10732425 DOI: 10.1371/journal.pgen.1010900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/20/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Quorum sensing is a mechanism of bacterial cell-cell communication that relies on the production and detection of small molecule autoinducers, which facilitate the synchronous expression of genes involved in group behaviors, such as virulence factor production and biofilm formation. The Pseudomonas aeruginosa quorum sensing network consists of multiple interconnected transcriptional regulators, with the transcription factor, RhlR, acting as one of the main drivers of quorum sensing behaviors. RhlR is a LuxR-type transcription factor that regulates its target genes when bound to its cognate autoinducer, C4-homoserine lactone, which is synthesized by RhlI. RhlR function is also regulated by the metallo-β-hydrolase enzyme, PqsE. We recently showed that PqsE binds RhlR to alter its affinity for promoter DNA, a new mechanism of quorum-sensing receptor activation. Here, we perform ChIP-seq analyses of RhlR to map the binding of RhlR across the P. aeruginosa genome, and to determine the impact of C4-homoserine lactone and PqsE on RhlR binding to different sites across the P. aeruginosa genome. We identify 40 RhlR binding sites, all but three of which are associated with genes known to be regulated by RhlR. C4-homoserine lactone is required for maximal binding of RhlR to many of its DNA sites. Moreover, C4-homoserine lactone is required for maximal RhlR-dependent transcription activation from all sites, regardless of whether it impacts RhlR binding to DNA. PqsE is required for maximal binding of RhlR to many DNA sites, with similar effects on RhlR-dependent transcription activation from those sites. However, the effects of PqsE on RhlR specificity are distinct from those of C4-homoserine lactone, and PqsE is sufficient for RhlR binding to some DNA sites in the absence of C4-homoserine lactone. Together, C4-homoserine lactone and PqsE are required for RhlR binding at the large majority of its DNA sites. Thus, our work reveals three distinct modes of activation by RhlR: i) when RhlR is unbound by autoinducer but bound by PqsE, ii) when RhlR is bound by autoinducer but not bound by PqsE, and iii) when RhlR is bound by both autoinducer and PqsE, establishing a stepwise mechanism for the progression of the RhlR-RhlI-PqsE quorum sensing pathway in P. aeruginosa.
Collapse
Affiliation(s)
- Nicholas R. Keegan
- Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, New York, United States of America
| | - Nathalie J. Colón Torres
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Anne M. Stringer
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Lia I. Prager
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biological Sciences, University at Albany, Albany, New York, United States of America
| | - Matthew W. Brockley
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biological Sciences, University at Albany, Albany, New York, United States of America
| | - Charity L. McManaman
- Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, New York, United States of America
| | - Joseph T. Wade
- Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, New York, United States of America
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Jon E. Paczkowski
- Department of Biomedical Sciences, University at Albany, School of Public Health, Albany, New York, United States of America
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| |
Collapse
|
3
|
Lima EMF, Winans SC, Pinto UM. Quorum sensing interference by phenolic compounds - A matter of bacterial misunderstanding. Heliyon 2023; 9:e17657. [PMID: 37449109 PMCID: PMC10336516 DOI: 10.1016/j.heliyon.2023.e17657] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 05/15/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
Over the past decade, numerous publications have emerged in the literature focusing on the inhibition of quorum sensing (QS) by plant extracts and phenolic compounds. However, there is still a scarcity of studies that delve into the specific mechanisms by which these compounds inhibit QS. Thus, our question is whether phenolic compounds can inhibit QS in a specific or indirect manner and to elucidate the underlying mechanisms involved. This study is focused on the most studied QS system, namely, autoinducer type 1 (AI-1), represented by N-acyl-homoserine lactone (AHL) signals and the AHL-mediated QS responses. Here, we analyzed the recent literature in order to understand how phenolic compounds act at the cellular level, at sub-inhibitory concentrations, and evaluated by which QS inhibition mechanisms they may act. The biotechnological application of QS inhibitors holds promising prospects for the pharmaceutical and food industries, serving as adjunct therapies and in the prevention of biofilms on various surfaces.
Collapse
Affiliation(s)
- Emília Maria França Lima
- Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Stephen C. Winans
- Department of Microbiology, 361A Wing Hall, Cornell University, Ithaca, NY, 14853, USA
| | - Uelinton Manoel Pinto
- Department of Food and Experimental Nutrition, Food Research Center, Faculty of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Kumar R, Barbhuiya RI, Bohra V, Wong JWC, Singh A, Kaur G. Sustainable rhamnolipids production in the next decade - Advancing with Burkholderia thailandensis as a potent biocatalytic strain. Microbiol Res 2023; 272:127386. [PMID: 37094547 DOI: 10.1016/j.micres.2023.127386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/26/2023]
Abstract
Rhamnolipids are one of the most promising eco-friendly green glycolipids for bio-replacements of commercially available fossil fuel-based surfactants. However, the current industrial biotechnology practices cannot meet the required standards due to the low production yields, expensive biomass feedstocks, complicated processing, and opportunistic pathogenic nature of the conventional rhamnolipid producer strains. To overcome these problems, it has become important to realize non-pathogenic producer substitutes and high-yielding strategies supporting biomass-based production. We hereby review the inherent characteristics of Burkholderia thailandensis E264 which favor its competence towards such sustainable rhamnolipid biosynthesis. The underlying biosynthetic networks of this species have unveiled unique substrate specificity, carbon flux control and rhamnolipid congener profile. Acknowledging such desirable traits, the present review provides critical insights towards metabolism, regulation, upscaling, and applications of B. thailandensis rhamnolipids. Identification of their unique and naturally inducible physiology has proved to be beneficial for achieving previously unmet redox balance and metabolic flux requirements in rhamnolipids production. These developments in part are targeted by the strategic optimization of B. thailandensis valorizing low-cost substrates ranging from agro-industrial byproducts to next generation (waste) fractions. Accordingly, safer bioconversions can propel the industrial rhamnolipids in advanced biorefinery domains to promote circular economy, reduce carbon footprint and increased applicability as both social and environment friendly bioproducts.
Collapse
Affiliation(s)
- Rajat Kumar
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | - Varsha Bohra
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Jonathan W C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Institute of Bioresources and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ashutosh Singh
- School of Engineering, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Guneet Kaur
- School of Engineering, University of Guelph, Guelph, ON N1G2W1, Canada.
| |
Collapse
|
5
|
Dominelli N, Regaiolo A, Willy L, Heermann R. Interkingdom Signaling of the Insect Pathogen Photorhabdus luminescens with Plants Via the LuxR solo SdiA. Microorganisms 2023; 11:microorganisms11040890. [PMID: 37110313 PMCID: PMC10143992 DOI: 10.3390/microorganisms11040890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
In bacteria, group-coordinated behavior such as biofilm formation or virulence are often mediated via cell–cell communication, a process referred to as quorum sensing (QS). The canonical QS system of Gram-negative bacteria uses N-acyl homoserine lactones (AHLs) as communication molecules, which are produced by LuxI-type synthases and sensed by cognate LuxR-type receptors. These receptors act as transcriptional regulators controlling the expression of specific genes. Some bacteria harbor LuxR-type receptors lacking a cognate LuxI-type synthases, designated as LuxR solos. Among many other LuxR solos, the entomopathogenic enteric bacterium Photorhabdus luminescens harbors a SdiA-like LuxR solo containing an AHL signal-binding domain, for which a respective signal molecule and target genes have not been identified yet. Here we performed SPR analysis to demonstrate that SdiA acts as a bidirectional regulator of transcription, tightly controlling its own expression and the adjacent PluDJC_01670 (aidA) gene in P. luminescens, a gene supposed to be involved in the colonization of eukaryotes. Via qPCR we could further determine that in sdiA deletion mutant strains, aidA is upregulated, indicating that SdiA negatively affects expression of aidA. Furthermore, the ΔsdiA deletion mutant exhibited differences in biofilm formation and motility compared with the wild-type. Finally, using nanoDSF analysis we could identify putative binding ability of SdiA towards diverse AHLs, but also to plant-derived signals, modulating the DNA-binding capacity of SdiA, suggesting that this LuxR solo acts as an important player in interkingdom signaling between P. luminescens and plants.
Collapse
|
6
|
Breijyeh Z, Karaman R. Design and Synthesis of Novel Antimicrobial Agents. Antibiotics (Basel) 2023; 12:628. [PMID: 36978495 PMCID: PMC10045396 DOI: 10.3390/antibiotics12030628] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The necessity for the discovery of innovative antimicrobials to treat life-threatening diseases has increased as multidrug-resistant bacteria has spread. Due to antibiotics' availability over the counter in many nations, antibiotic resistance is linked to overuse, abuse, and misuse of these drugs. The World Health Organization (WHO) recognized 12 families of bacteria that present the greatest harm to human health, where options of antibiotic therapy are extremely limited. Therefore, this paper reviews possible new ways for the development of novel classes of antibiotics for which there is no pre-existing resistance in human bacterial pathogens. By utilizing research and technology such as nanotechnology and computational methods (such as in silico and Fragment-based drug design (FBDD)), there has been an improvement in antimicrobial actions and selectivity with target sites. Moreover, there are antibiotic alternatives, such as antimicrobial peptides, essential oils, anti-Quorum sensing agents, darobactins, vitamin B6, bacteriophages, odilorhabdins, 18β-glycyrrhetinic acid, and cannabinoids. Additionally, drug repurposing (such as with ticagrelor, mitomycin C, auranofin, pentamidine, and zidovudine) and synthesis of novel antibacterial agents (including lactones, piperidinol, sugar-based bactericides, isoxazole, carbazole, pyrimidine, and pyrazole derivatives) represent novel approaches to treating infectious diseases. Nonetheless, prodrugs (e.g., siderophores) have recently shown to be an excellent platform to design a new generation of antimicrobial agents with better efficacy against multidrug-resistant bacteria. Ultimately, to combat resistant bacteria and to stop the spread of resistant illnesses, regulations and public education regarding the use of antibiotics in hospitals and the agricultural sector should be combined with research and technological advancements.
Collapse
Affiliation(s)
- Zeinab Breijyeh
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine
| | - Rafik Karaman
- Pharmaceutical Sciences Department, Faculty of Pharmacy, Al-Quds University, Jerusalem P.O. Box 20002, Palestine
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
7
|
Sakiyama A, Oinuma KI, Kaneko Y. Discovery of a LuxR-type regulator involved in isoniazid-dependent gene regulation in Mycobacterium smegmatis. J Infect Chemother 2023; 29:322-328. [PMID: 36565806 DOI: 10.1016/j.jiac.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/06/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Most non-tuberculous mycobacteria exhibit intrinsic resistance against the anti-tuberculosis drug isoniazid (INH). We previously found that a pyrazinamidase/nicotinamidase of Mycobacterium smegmatis, named PzaA, has an enzymatic activity to hydrolyze INH, which may contribute to intrinsic resistance. Furthermore, PzaA expression is strongly induced by INH under nitrogen-depleted conditions, although the precise mechanism of this phenomenon remains unclear. Here, we aimed to reveal the mechanism underlying the INH-dependent induction of PzaA using a transcriptomic approach. METHODS RNA sequencing was performed to identify INH-inducible genes other than pzaA. 5' rapid amplification of cDNA ends analysis was employed to identify the transcription start sites of INH-induced transcription units. The function of a LuxR-like regulator gene (MSMEI_1050) found within the gene cluster containing pzaA was confirmed by gene deletion and complementation experiments involving INH hydrolysis assay and quantitative reverse transcription PCR. RESULTS RNA sequencing revealed 23 genes that INH strongly induced under conditions of nitrogen depletion, 17 of which were in a gene cluster containing pzaA. This cluster comprised at least three transcription units, including a non-INH-inducible monocistronic unit containing MSMEI_1050. Deletion of this gene deprived M. smegmatis of the ability to respond to INH, and complementation restored this ability. CONCLUSIONS MSMEI_1050 plays a key role in INH-dependent gene regulation. The precise mechanism of action is to be determined in future studies.
Collapse
Affiliation(s)
- Arata Sakiyama
- Department of Bacteriology, Osaka City University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| | - Ken-Ichi Oinuma
- Department of Bacteriology, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka, Japan; Research Center for Infectious Disease Sciences, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka, Japan.
| | - Yukihiro Kaneko
- Department of Bacteriology, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka, Japan; Research Center for Infectious Disease Sciences, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka, Japan
| |
Collapse
|
8
|
Ragab A, Fouad SA, Ammar YA, Aboul-Magd DS, Abusaif MS. Antibiofilm and Anti-Quorum-Sensing Activities of Novel Pyrazole and Pyrazolo[1,5- a]pyrimidine Derivatives as Carbonic Anhydrase I and II Inhibitors: Design, Synthesis, Radiosterilization, and Molecular Docking Studies. Antibiotics (Basel) 2023; 12:128. [PMID: 36671329 PMCID: PMC9854762 DOI: 10.3390/antibiotics12010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
Nowadays, searching for new anti-infective agents with diverse mechanisms of action has become necessary. In this study, 16 pyrazole and pyrazolo[1,5-a]pyrimidine derivatives were synthesized and assessed for their preliminary antibacterial and antibiofilm activities. All these derivatives were initially screened for their antibacterial activity against six clinically isolated multidrug resistance by agar well-diffusion and broth microdilution methods. The initial screening presented significant antibacterial activity with a bactericidal effect for five compounds, namely 3a, 5a, 6, 9a, and 10a, compared with Erythromycin and Amikacin. These five derivatives were further evaluated for their antibiofilm activity against both S. aureus and P. aeruginosa, which showed strong biofilm-forming activity at their MICs by >60%. The SEM analysis confirmed the biofilm disruption in the presence of these derivatives. Furthermore, anti-QS activity was observed for the five hybrids at their sub-MICs, as indicated by the visible halo zone. In addition, the presence of the most active derivatives reduces the violacein production by CV026, confirming that these compounds yielded anti-QS activity. Furthermore, these compounds showed strong inhibitory action against human carbonic anhydrase (hCA-I and hCA-II) isoforms with IC50 values ranging between 92.34 and 168.84 nM and between 73.2 and 161.22 nM, respectively. Finally, radiosterilization, ADMET, and a docking simulation were performed.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Sawsan A. Fouad
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo 11754, Egypt
| | - Yousry A. Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Dina S. Aboul-Magd
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt
| | - Moustafa S. Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| |
Collapse
|
9
|
Borgert SR, Henke S, Witzgall F, Schmelz S, Zur Lage S, Hotop SK, Stephen S, Lübken D, Krüger J, Gomez NO, van Ham M, Jänsch L, Kalesse M, Pich A, Brönstrup M, Häussler S, Blankenfeldt W. Moonlighting chaperone activity of the enzyme PqsE contributes to RhlR-controlled virulence of Pseudomonas aeruginosa. Nat Commun 2022; 13:7402. [PMID: 36456567 PMCID: PMC9715718 DOI: 10.1038/s41467-022-35030-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Pseudomonas aeruginosa is a major cause of nosocomial infections and also leads to severe exacerbations in cystic fibrosis or chronic obstructive pulmonary disease. Three intertwined quorum sensing systems control virulence of P. aeruginosa, with the rhl circuit playing the leading role in late and chronic infections. The majority of traits controlled by rhl transcription factor RhlR depend on PqsE, a dispensable thioesterase in Pseudomonas Quinolone Signal (PQS) biosynthesis that interferes with RhlR through an enigmatic mechanism likely involving direct interaction of both proteins. Here we show that PqsE and RhlR form a 2:2 protein complex that, together with RhlR agonist N-butanoyl-L-homoserine lactone (C4-HSL), solubilizes RhlR and thereby renders the otherwise insoluble transcription factor active. We determine crystal structures of the complex and identify residues essential for the interaction. To corroborate the chaperone-like activity of PqsE, we design stability-optimized variants of RhlR that bypass the need for C4-HSL and PqsE in activating PqsE/RhlR-controlled processes of P. aeruginosa. Together, our data provide insight into the unique regulatory role of PqsE and lay groundwork for developing new P. aeruginosa-specific pharmaceuticals.
Collapse
Affiliation(s)
- Sebastian Roman Borgert
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Steffi Henke
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Florian Witzgall
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Stefan Schmelz
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Susanne Zur Lage
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Sven-Kevin Hotop
- Department Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Steffi Stephen
- Department Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Dennis Lübken
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Jonas Krüger
- Department Molecular Bacteriology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Nicolas Oswaldo Gomez
- Department Molecular Bacteriology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Marco van Ham
- Cellular Proteomics, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Lothar Jänsch
- Cellular Proteomics, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Markus Kalesse
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Andreas Pich
- Institute for Toxicology, Core Facility Proteomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Mark Brönstrup
- Department Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Susanne Häussler
- Department Molecular Bacteriology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Wulf Blankenfeldt
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany.
| |
Collapse
|
10
|
Silpe JE, Duddy OP, Papenfort K. Microbial Communication via Pyrazine Signaling: a New Class of Signaling Molecules Identified in
Vibrio cholerae. Isr J Chem 2022. [DOI: 10.1002/ijch.202200063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Justin E. Silpe
- Department of Molecular Biology Princeton University Princeton New Jersey USA
| | - Olivia P. Duddy
- Department of Molecular Biology Princeton University Princeton New Jersey USA
| | - Kai Papenfort
- Friedrich Schiller University Jena Institute of Microbiology, General Microbiology Winzerlaer Straße 2 07745 Jena Germany
- Microverse Cluster Friedrich Schiller University Jena Jena Germany
| |
Collapse
|
11
|
Kachhadia R, Kapadia C, Datta R, Jajda H, Danish S, Glick BR. Cloning and characterization of Aiia, an acylhomoserine lactonase from Bacillus cereus RC1 to control soft rot causing pathogen Lelliottia amnigena RCE. Arch Microbiol 2022; 204:665. [DOI: 10.1007/s00203-022-03271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022]
|
12
|
Bridges AA, Prentice JA, Wingreen NS, Bassler BL. Signal Transduction Network Principles Underlying Bacterial Collective Behaviors. Annu Rev Microbiol 2022; 76:235-257. [PMID: 35609948 PMCID: PMC9463083 DOI: 10.1146/annurev-micro-042922-122020] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria orchestrate collective behaviors and accomplish feats that would be unsuccessful if carried out by a lone bacterium. Processes undertaken by groups of bacteria include bioluminescence, biofilm formation, virulence factor production, and release of public goods that are shared by the community. Collective behaviors are controlled by signal transduction networks that integrate sensory information and transduce the information internally. Here, we discuss network features and mechanisms that, even in the face of dramatically changing environments, drive precise execution of bacterial group behaviors. We focus on representative quorum-sensing and second-messenger cyclic dimeric GMP (c-di-GMP) signal relays. We highlight ligand specificity versus sensitivity, how small-molecule ligands drive discrimination of kin versus nonkin, signal integration mechanisms, single-input sensory systems versus coincidence detectors, and tuning of input-output dynamics via feedback regulation. We summarize how different features of signal transduction systems allow groups of bacteria to successfully interpret and collectively react to dynamically changing environments.
Collapse
Affiliation(s)
- Andrew A Bridges
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , , ,
| | - Jojo A Prentice
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , , ,
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , , ,
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; , , ,
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
13
|
Merfa MV, Naranjo E, Shantharaj D, De La Fuente L. Growth of ' Candidatus Liberibacter asiaticus' in Commercial Grapefruit Juice-Based Media Formulations Reveals Common Cell Density-Dependent Transient Behaviors. PHYTOPATHOLOGY 2022; 112:131-144. [PMID: 34340531 DOI: 10.1094/phyto-06-21-0228-fi] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The phloem-restricted, insect-transmitted bacterium 'Candidatus Liberibacter asiaticus' (CLas) is associated with huanglongbing (HLB), the most devastating disease of citrus worldwide. The inability to culture CLas impairs the understanding of its virulence mechanisms and the development of effective management strategies to control this incurable disease. Previously, our research group used commercial grapefruit juice (GJ) to prolong the viability of CLas in vitro. In the present study, GJ was amended with a wide range of compounds and incubated under different conditions to optimize CLas growth. Remarkably, results showed that CLas growth ratios were inversely proportional to the initial inoculum concentration. This correlation is probably regulated by a cell density-dependent mechanism, because diluting samples between subcultures allowed CLas to resume growth. Moreover, strategies to reduce the cell density of CLas, such as subculturing at short intervals and incubating samples under flow conditions, allowed this bacterium to multiply and reach maximum growth as early as 3 days after inoculation, although no sustained exponential growth was observed under any tested condition. Unfortunately, cultures were only transient, because CLas lost viability over time; nevertheless, we obtained populations of about 105 genome equivalents/ml repeatedly. Finally, we established an ex vivo system to grow CLas within periwinkle calli that could be used to propagate bacterial inoculum in the lab. In this study we determined the influence of a comprehensive set of conditions and compounds on CLas growth in culture. We hope our results will help guide future efforts toward the long-sought goal of culturing CLas axenically.
Collapse
Affiliation(s)
- Marcus V Merfa
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Eber Naranjo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Deepak Shantharaj
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | | |
Collapse
|
14
|
Ruiz P, Sepulveda D, Vidal JM, Romero R, Contreras D, Barros J, Carrasco C, Ruiz-Tagle N, Romero A, Urrutia H, Oliver C. Piscirickettsia salmonis Produces a N-Acetyl-L-Homoserine Lactone as a Bacterial Quorum Sensing System-Related Molecule. Front Cell Infect Microbiol 2021; 11:755496. [PMID: 34760722 PMCID: PMC8573184 DOI: 10.3389/fcimb.2021.755496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022] Open
Abstract
Piscirickettsia salmonis is the etiological agent of piscirickettsiosis, the most prevalent disease in salmonid species in Chilean salmonids farms. Many bacteria produce N-acyl-homoserine lactones (AHLs) as a quorum-sensing signal molecule to regulate gene expression in a cell density-dependent manner, and thus modulate physiological characteristics and several bacterial mechanisms. In this study, a fluorescent biosensor system method and gas chromatography-tandem mass spectrometry (GC/MS) were combined to detect AHLs produced by P. salmonis. These analyses revealed an emitted fluorescence signal when the biosensor P. putida EL106 (RPL4cep) was co-cultured with both, P. salmonis LF-89 type strain and an EM-90-like strain Ps007, respectively. Furthermore, the production of an AHL-type molecule was confirmed by GC/MS by both P. salmonis strains, which identified the presence of a N-acetyl-L-homoserine Lactone in the supernatant extract. However, It is suggested that an alternate pathway could synthesizes AHLs, which should be address in future experiments in order to elucidate this important bacterial process. To the best of our knowledge, the present report is the first to describe the type of AHLs produced by P. salmonis.
Collapse
Affiliation(s)
- Pamela Ruiz
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Talcahuano, Chile
| | - Daniela Sepulveda
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - José Miguel Vidal
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile.,Departamento de Investigación y Desarrollo, Ecombio limitada, Concepción, Chile
| | - Romina Romero
- Laboratorio de Investigaciones Medioambientales de Zonas Áridas (LIMZA), Depto. Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Arica, Chile
| | - David Contreras
- Departamento de Química Analítica e Inorgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Javier Barros
- Departamento de Investigación y Desarrollo, Micbiotech Spa, Concepción, Chile
| | - Carlos Carrasco
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Nathaly Ruiz-Tagle
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile
| | - Alex Romero
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Instituto de Patología Animal, Valdivia, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), Concepción, Chile
| | - Homero Urrutia
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Concepción, Chile.,Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Cristian Oliver
- Laboratorio de Inmunología y Estrés de Organismos Acuáticos, Facultad de Ciencias Veterinarias, Instituto de Patología Animal, Valdivia, Chile
| |
Collapse
|
15
|
Joshi JR, Khazanov N, Charkowski A, Faigenboim A, Senderowitz H, Yedidia I. Interkingdom Signaling Interference: The Effect of Plant-Derived Small Molecules on Quorum Sensing in Plant-Pathogenic Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:153-190. [PMID: 33951403 DOI: 10.1146/annurev-phyto-020620-095740] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the battle between bacteria and plants, bacteria often use a population density-dependent regulatory system known as quorum sensing (QS) to coordinate virulence gene expression. In response, plants use innate and induced defense mechanisms that include low-molecular-weight compounds, some of which serve as antivirulence agents by interfering with the QS machinery. The best-characterized QS system is driven by the autoinducer N-acyl-homoserine lactone (AHL), which is produced by AHL synthases (LuxI homologs) and perceived by response regulators (LuxR homologs). Several plant compounds have been shown to directly inhibit LuxI or LuxR. Gaining atomic-level insight into their mode of action and how they interfere with QS enzymes supports the identification and design of novel QS inhibitors.Such information can be gained by combining experimental work with molecular modeling and docking simulations. The summary of these findings shows that plant-derived compounds act as interkingdom cues and that these allomones specifically target bacterial communication systems.
Collapse
Affiliation(s)
- Janak Raj Joshi
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Lezion, Israel 7528809;
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Netaly Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel 5290002;
| | - Amy Charkowski
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Adi Faigenboim
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Lezion, Israel 7528809;
| | - Hanoch Senderowitz
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel 5290002;
| | - Iris Yedidia
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Lezion, Israel 7528809;
| |
Collapse
|
16
|
Guan W, Wang T, Huang Q, Zhao M, Tian E, Liu Y, Liu B, Yang Y, Zhao T. Transcriptomic and Functional Analyses Reveal Roles of AclR, a luxR-type Global Regular, in Regulating Motility and Virulence of Acidovorax citrulli. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:952-961. [PMID: 33779205 DOI: 10.1094/mpmi-01-21-0020-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
LuxR-type transcriptional regulators are essential for many physiological processes in bacteria, including pathogenesis. Acidovorax citrulli is a seedborne bacterial pathogen responsible for bacterial fruit blotch, which causes great losses in melon and watermelon worldwide. However, the LuxR-type transcriptional factors in A. citrulli have not been well studied, except for the previously reported LuxR-type regulatory protein, AcrR, involved in regulating virulence and motility. Here, we characterized a second LuxR-type regulator, AclR, in the group II strain Aac-5 of A. citrulli by mutagenesis, virulence and motility assays, and transcriptomic analysis. Deletion of aclR resulted in impaired twitching and swimming motility and flagellar formation and diminished virulence but increased biofilm formation. Transcriptomic analysis revealed that 1,379 genes were differentially expressed in the aclR mutant strain, including 29 genes involved in flagellar assembly and 3 involved in pili formation, suggesting a regulatory role for AclR in multiple important biological functions of A. citrulli. Together, our results not only indicate that AclR plays a global role in transcriptional regulation in A. citrulli influencing motility, biofilm formation, and virulence but also provide perspective regarding the regulatory network of biological functions in A. citrulli.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Wei Guan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tielin Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Huang
- Floral and Nursery Plants Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD, U.S.A
| | - Mei Zhao
- Department of Plant Pathology, University of Georgia, Tifton, GA, U.S.A
| | - Eryuan Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanfeng Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuwen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tingchang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
LuxS-mediated quorum sensing system in Lactobacillus plantarum NMD-17 from koumiss: induction of plantaricin MX in co-cultivation with certain lactic acid bacteria. Folia Microbiol (Praha) 2021; 66:855-871. [PMID: 34191226 DOI: 10.1007/s12223-021-00890-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
A bacteriocin termed plantaricin MX with a broad antimicrobial spectrum was produced by Lactobacillus plantarum NMD-17, which was isolated from Inner Mongolia traditional koumiss of china. Among 300 strains of lactic acid bacteria (LAB) belonging to the genera Lactococcus, Lactobacillus, Streptococcus, Leuconostoc, and Enterococcus, five strains including Lactobacillus reuteri NMD-86, Lactobacillus helveticus NMD-137, Lactococcus lactis NMD-152, Enterococcus faecalis NMD-178, and Enterococcus faecium NMD-219 were revealed to significantly induce the bacteriocin synthesis and greatly increase the cell numbers of Lactobacillus plantarum NMD-17 and activity of AI-2 signaling molecule. Bacteriocin synthesis was not increased by cell-free supernatants and autoclaved cultures of inducing strains, demonstrating that intact cells of inducing strains were essential to the induction of bacteriocin synthesis. The existence of bacteriocin structural plnEF genes and the plnD and luxS genes involved in quorum sensing was confirmed by PCR, and the presence of plnB gene encoding histidine protein kinase was determined by single oligonucleotide nested PCR (Son-PCR). Quantitative real-time PCR demonstrated that plnB, plnD, luxS, plnE, and plnF genes of L. plantarum NMD-17 were upregulated significantly (P < 0.01) in co-cultivation with L. reuteri NMD-86. The results showed that the bacteriocin synthesis of L. plantarum NMD-17 in co-cultivation might have a close relationship with LuxS-mediated quorum sensing system.
Collapse
|
18
|
Lau YY, How KY, Yin WF, Chan KG. Functional characterization of quorum sensing LuxR-type transcriptional regulator, EasR in Enterobacter asburiae strain L1. PeerJ 2020; 8:e10068. [PMID: 33150063 PMCID: PMC7585371 DOI: 10.7717/peerj.10068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 09/08/2020] [Indexed: 01/17/2023] Open
Abstract
Over the past decades, Enterobacter spp. have been identified as challenging and important pathogens. The emergence of multidrug-resistant Enterobacteria especially those that produce Klebsiella pneumoniae carbapenemase has been a very worrying health crisis. Although efforts have been made to unravel the complex mechanisms that contribute to the pathogenicity of different Enterobacter spp., there is very little information associated with AHL-type QS mechanism in Enterobacter spp. Signaling via N-acyl homoserine lactone (AHL) is the most common quorum sensing (QS) mechanism utilized by Proteobacteria. A typical AHL-based QS system involves two key players: a luxI gene homolog to synthesize AHLs and a luxR gene homolog, an AHL-dependent transcriptional regulator. These signaling molecules enable inter-species and intra-species interaction in response to external stimuli according to population density. In our recent study, we reported the genome of AHL-producing bacterium, Enterobacter asburiae strain L1. Whole genome sequencing and in silico analysis revealed the presence of a pair of luxI/R genes responsible for AHL-type QS, designated as easI/R, in strain L1. In a QS system, a LuxR transcriptional protein detects and responds to the concentration of a specific AHL controlling gene expression. In E. asburiae strain L1, EasR protein binds to its cognate AHLs, N-butanoyl homoserine lactone (C4-HSL) and N–hexanoyl homoserine lactone (C6-HSL), modulating the expression of targeted genes. In this current work, we have cloned the 693 bp luxR homolog of strain L1 for further characterization. The functionality and specificity of EasR protein in response to different AHL signaling molecules to activate gene transcription were tested and validated with β-galactosidase assays. Higher β-galactosidase activities were detected for cells harboring EasR, indicating EasR is a functional transcriptional regulator. This is the first report documenting the cloning and characterization of transcriptional regulator, luxR homolog of E. asburiae.
Collapse
Affiliation(s)
- Yin Yin Lau
- International Genome Centre, Jiangsu University, Zhenjiang, China.,Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Malaysia
| | - Kah Yan How
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Malaysia
| | - Kok-Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China.,Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Malaysia
| |
Collapse
|
19
|
Molki B, Call DR, Ha PT, Omsland A, Gang DR, Lindemann SR, Killiny N, Beyenal H. Growth of 'Candidatus Liberibacter asiaticus' in a host-free microbial culture is associated with microbial community composition. Enzyme Microb Technol 2020; 142:109691. [PMID: 33220870 DOI: 10.1016/j.enzmictec.2020.109691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 11/19/2022]
Abstract
'Candidatus Liberibacter asiaticus' ('Ca. L. asiaticus'), the suspected causative agent of citrus greening disease, is one of many phloem-restricted plant pathogens that have not been isolated and grown in an axenic culture. In this study, infected Asian citrus psyllids were used to prepare a host-free source of 'Ca. L. asiaticus'. Host-free mixed microbial cultures of 'Ca. L. asiaticus' were grown in the presence of various antibiotic treatments to alter the composition of the microbial communities. Our hypothesis was that the presence of selected antibiotics would enhance or reduce the presence of 'Ca. L. asiaticus' in a host-free culture composed of a mixed bacterial population through changes in the microbial community structure. We determined how 'Ca. L. asiaticus' growth changed with the various treatments. Treatment with vancomycin (50 μg/mL), streptomycin (0.02 μg/mL), or polymyxin B (4 μg/mL) was associated with an increased abundance of 'Ca. L. asiaticus' of 7.35 ± 0.27, 5.56 ± 0.15, or 4.54 ± 0.83 fold, respectively, compared to untreated mixed microbial cultures, while treatment with 100 μg/mL vancomycin; 0.5, 1, or 2 μg/mL streptomycin; or 0.5 μg/mL of polymyxin B was associated with reduced growth. In addition, the growth of 'Ca. L. asiaticus' was associated with the microbial community composition of the mixed microbial cultures. A positive relationship between the presence of the Pseudomonadaceae family and 'Ca. L. asiaticus' growth was observed, while the presence of 'Ca. L. asiaticus' was below the detection limit in cultures that displayed high abundances of Bacillus cereus. Our findings offer strategies for developing effective axenic culture conditions and suggest that enrichment of the Bacillaceae family could serve as a paratransgenic approach to controlling citrus greening disease.
Collapse
Affiliation(s)
- Banafsheh Molki
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Douglas R Call
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - Phuc T Ha
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Anders Omsland
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA
| | - David R Gang
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | | | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Haluk Beyenal
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA.
| |
Collapse
|
20
|
Erwinia carotovora Quorum Sensing System Regulates Host-Specific Virulence Factors and Development Delay in Drosophila melanogaster. mBio 2020; 11:mBio.01292-20. [PMID: 32576677 PMCID: PMC7315124 DOI: 10.1128/mbio.01292-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Integration of genetic networks allows bacteria to rapidly adapt to changing environments. This is particularly important in bacteria that interact with multiple hosts. Erwinia carotovora is a plant pathogen that uses Drosophila melanogaster as a vector. To interact with these two hosts, Ecc15 uses different sets of virulence factors: plant cell wall-degrading enzymes to infect plants and the Erwinia virulence factor (evf) to infect Drosophila. Our work shows that, despite the virulence factors being specific for each host, both sets are coactivated by homoserine lactone quorum sensing and by the two-component GacS/A system in infected plants. This regulation is essential for Ecc15 loads in the gut of Drosophila and minimizes the developmental delay caused by the bacteria with respect to the insect vector. Our findings provide evidence that coactivation of the host-specific factors in the plant may function as a predictive mechanism to maximize the probability of transit of the bacteria between hosts. Multihost bacteria have to rapidly adapt to drastic environmental changes, relying on a fine integration of multiple stimuli for an optimal genetic response. Erwinia carotovora spp. are phytopathogens that cause soft-rot disease. Strain Ecc15 in particular is a model for bacterial oral-route infection in Drosophila melanogaster as it harbors a unique gene, evf, that encodes the Erwinia virulence factor (Evf), which is a major determinant for infection of the D. melanogaster gut. However, the factors involved in the regulation of evf expression are poorly understood. We investigated whether evf could be controlled by quorum sensing as, in the Erwinia genus, quorum sensing regulates pectolytic enzymes, the major virulence factors needed to infect plants. Here, we show that transcription of evf is positively regulated by quorum sensing in Ecc15 via acyl-homoserine lactone (AHL) signal synthase ExpI and AHL receptors ExpR1 and ExpR2. We also show that the load of Ecc15 in the gut depends upon the quorum sensing-mediated regulation of evf. Furthermore, we demonstrate that larvae infected with Ecc15 suffer a developmental delay as a direct consequence of the regulation of evf via quorum sensing. Finally, we demonstrate that evf is coexpressed with plant cell wall-degrading enzymes (PCWDE) during plant infection in a quorum sensing-dependent manner. Overall, our results show that Ecc15 relies on quorum sensing to control production of both pectolytic enzymes and Evf. This regulation influences the interaction of Ecc15 with its two known hosts, indicating that quorum sensing signaling may impact bacterial dissemination via insect vectors that feed on rotting plants.
Collapse
|
21
|
Lange MD, Farmer BD, Abernathy J. Vertebrate mucus stimulates biofilm development and upregulates iron acquisition genes in Flavobacterium columnare. JOURNAL OF FISH DISEASES 2020; 43:101-110. [PMID: 31709555 DOI: 10.1111/jfd.13103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Columnaris disease is responsible for substantial losses throughout the production of many freshwater fish species. One of the ways in which the bacterium Flavobacterium columnare is so effective in initiating disease is through the formation of biofilms on fish skin and gills. To further explore the interaction between host factors and bacterial cells, we assayed the ability of vertebrate mucus to enhance F. columnare biofilm development. Different concentrations of catfish, tilapia and pig mucus (5-60 µg/ml) increased biofilm growth at varying degrees among F. columnare isolates. Our data suggest that vertebrate mucus acts as a signalling molecule for the development of F. columnare biofilms; however, there are clear disparities in how individual isolates respond to different mucus fractions to stimulate biofilms. The expression of iron acquisition genes among two genomovar II isolates showed that ferroxidase, TonB receptor and the siderophore synthetase gene were all significantly upregulated among F. columnare biofilms. Interestingly, the siderophore acetyltransferase gene was only shown to be significantly upregulated in one of the genomovar II isolates. This work provides insight into our understanding of the interaction between F. columnare and vertebrate mucus, which likely contributes to the growth of planktonic cells and the transition into biofilms.
Collapse
Affiliation(s)
- Miles D Lange
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA
| | - Bradley D Farmer
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA
| | - Jason Abernathy
- United States Department of Agriculture, Agricultural Research Service, Harry K. Dupree Stuttgart National Aquaculture Research Center, Stuttgart, AR, USA
| |
Collapse
|
22
|
Götze S, Stallforth P. Structure, properties, and biological functions of nonribosomal lipopeptides from pseudomonads. Nat Prod Rep 2020; 37:29-54. [DOI: 10.1039/c9np00022d] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacteria of the genusPseudomonasdisplay a fascinating metabolic diversity. In this review, we focus our attention on the natural product class of nonribosomal lipopeptides, which help pseudomonads to colonize a wide range of ecological niches.
Collapse
Affiliation(s)
- Sebastian Götze
- Faculty 7: Natural and Environmental Sciences
- Institute for Environmental Sciences
- University Koblenz Landau
- 76829 Landau
- Germany
| | - Pierre Stallforth
- Junior Research Group Chemistry of Microbial Communication
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI)
- 07745 Jena
- Germany
| |
Collapse
|
23
|
Li X, Zhang G, Zhu Y, Bi J, Hao H, Hou H. Effect of the luxI/R gene on AHL-signaling molecules and QS regulatory mechanism in Hafnia alvei H4. AMB Express 2019; 9:197. [PMID: 31807954 PMCID: PMC6895348 DOI: 10.1186/s13568-019-0917-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 01/03/2023] Open
Abstract
Hafnia alvei H4 is a bacterium subject to regulation by a N-acyl-l-homoserine lactone (AHL)-mediated quorum sensing system and is closely related to the corruption of instant sea cucumber. Studying the effect of Hafnia alvei H4 quorum sensing regulatory genes on AHLs is necessary for the quality and preservation of instant sea cucumber. In this study, the draft genome of H. alvei H4, which comprises a single chromosome of 4,687,151 bp, was sequenced and analyzed and the types of AHLs were analyzed employing thin-layer chromatography (TLC) and high resolution triple quadrupole liquid chromatography/mass spectrometry (LC/MS). Then the wild-type strain of H. alvei H4 and the luxI/R double mutant (ΔluxIR) were compared by transcriptome sequencing (RNA-seq). The results indicate that the incomplete genome sequence revealed the presence of one quorum-sensing (QS) gene set, designated as lasI/expR. Three major AHLs, N-hexanoyl-l-homoserine lactone (C6-HSL), N-butyryl-l-homoserine lactone (C4-HSL), and N-(3-oxo-octanoyl)-l-homoserine lactone (3-oxo-C8-HSL) were found, with C6-HSL being the most abundant. C6-HSL was not detected in the culture of the luxI mutant (ΔluxI) and higher levels of C4-HSL was found in the culture of the luxR mutant (ΔluxR), which suggested that the luxR gene may have a positive effect on C4-HSL production. It was also found that AHL and QS genes are closely related in the absence of luxIR double deletion. The results of this study can further elucidate at the genetic level that luxI and luxR genes are involved in the regulation of AHL.
Collapse
|
24
|
Ling J, Zhou L, Wu G, Zhao Y, Jiang T, Liu F. The AHL Quorum-Sensing System Negatively Regulates Growth and Autolysis in Lysobacter brunescens. Front Microbiol 2019; 10:2748. [PMID: 31849892 PMCID: PMC6902743 DOI: 10.3389/fmicb.2019.02748] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/12/2019] [Indexed: 11/13/2022] Open
Abstract
Lysobacter species are emerging as novel sources of antibiotics, but the regulation of their physiological metabolism is still poorly understood. In this work, we extracted AHL (acyl-homoserine lactone) autoinducers, identified the structures of AHLs and described the AHL quorum-sensing system in Lysobacter brunescens OH23. AHLs were isolated from the supernatant of L. brunescens OH23, and ESI-MS/MS (electrospray ionization mass spectrometry) analysis revealed biosynthesis of three different AHL chemical structures by L. brunescens OH23: N-(3-oxohexanoyl)- homoserine lactone (HSL), 3-OH-C10-HSL and C8-HSL. The growth rate of AHL quorum-sensing knockout mutants was dramatically increased compared to that of wildtype. Sucrose consumptions were also twice as high in AHL quorum-sensing knockout mutants than that in wildtype in early-log phase. Additionally, expression of key genes related to sucrose metabolism α-glucosidase was enhanced in AHL quorum-sensing knockout mutants, which indicated that AHL quorum sensing negatively regulates sucrose uptake and metabolism which further affects the growth rate of L. brunescens. Furthermore, autolysis was strongly induced in AHL quorum-sensing knockout mutants compared to wildtype, suggesting that AHL quorum sensing plays a negative regulatory role in cell autolysis. Moreover, compared to wildtype, XSAC (Xanthomonas-specific antibiotic compound) production was significantly increased in AHL knockout mutants in the early-log and late-log phases, and surface motility capabilities are also enhanced also in AHL knockout mutants; the normalized data of XSAC production and surface motility and expressions of key genes related to these two phenotypes reveal that growth rare and autolysis strongly affects XSAC biosynthesis and surface motility rather than AHL quorum-sensing system. Our results show that the AHL quorum-sensing system negatively regulates cell growth and autolysis, and further maintain nutrition homeostasis and population stability in L. brunescens.
Collapse
Affiliation(s)
- Jun Ling
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lan Zhou
- Academy of Agricultural Sciences of Yanbian, Longjing, China
| | - Guichun Wu
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yancun Zhao
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianping Jiang
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fengquan Liu
- Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
25
|
Paczkowski JE, McCready AR, Cong JP, Li Z, Jeffrey PD, Smith CD, Henke BR, Hughson FM, Bassler BL. An Autoinducer Analogue Reveals an Alternative Mode of Ligand Binding for the LasR Quorum-Sensing Receptor. ACS Chem Biol 2019; 14:378-389. [PMID: 30763066 DOI: 10.1021/acschembio.8b00971] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacteria use a cell-cell communication process called quorum sensing to coordinate collective behaviors. Quorum sensing relies on production and group-wide detection of extracellular signal molecules called autoinducers. Here, we probe the activity of the Pseudomonas aeruginosa LasR quorum-sensing receptor using synthetic agonists based on the structure of the native homoserine lactone autoinducer. The synthetic compounds range from low to high potency, and agonist activity tracks with the ability of the agonist to stabilize the LasR protein. Structural analyses of the LasR ligand binding domain complexed with representative synthetic agonists reveal two modes of ligand binding, one mimicking the canonical autoinducer binding arrangement, and the other with the lactone head group rotated approximately 150°. Iterative mutagenesis combined with chemical synthesis reveals the amino acid residues and the chemical moieties, respectively, that are key to enabling each mode of binding. Simultaneous alteration of LasR residues Thr75, Tyr93, and Ala127 converts low-potency compounds into high-potency compounds and converts ligands that are nearly inactive into low-potency compounds. These results show that the LasR binding pocket displays significant flexibility in accommodating different ligands. The ability of LasR to bind ligands in different conformations, and in so doing, alter their potency as agonists, could explain the difficulties that have been encountered in the development of competitive LasR inhibitors.
Collapse
Affiliation(s)
- Jon E. Paczkowski
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Amelia R. McCready
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Jian-Ping Cong
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| | - Zhijie Li
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Philip D. Jeffrey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Chari D. Smith
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Brad R. Henke
- Opti-Mol Consulting, LLC, Cary, North Carolina 27513, United States
| | - Frederick M. Hughson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| |
Collapse
|
26
|
Okano C, Murota D, Nasuno E, Iimura KI, Kato N. Effective quorum quenching with a conformation-stable recombinant lactonase possessing a hydrophilic polymeric shell fabricated via electrospinning. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:437-444. [PMID: 30813045 DOI: 10.1016/j.msec.2019.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 11/29/2018] [Accepted: 01/02/2019] [Indexed: 11/29/2022]
Abstract
Quorum sensing (QS) in Gram-negative bacteria is frequently regulated by the diffusible signal N-acylhomoserine lactone (AHL) along with the production of virulence factors in pathogens. To inhibit QS, we fabricated heat-resistant, long-term-stable AHL-lactonase AiiM by electrospinning (ES) aqueous polyvinyl alcohol (PVA) solution containing genetically engineered AiiM with a maltose-binding protein (MBP) tag. MBP-AiiM was immobilized via its inclusion within a dense PVA shell formed during the drying process of ES, followed by cross-linking between hydroxyl groups on PVA. Secondary structure analysis via circular dichroism suggested no conformational change in the MBP-AiiM during ES. Even after pre-heating of MBP-AiiM/PVA fiber mats at 70 °C for 24 h, QS-dependent prodigiosin production in the model pathogen Serratia marcescens AS-1 was effectively inhibited to 0.13% that of the control. Additionally, relative prodigiosin production was reduced to ~20% that of the control after 5-month storage in buffer solution. These results suggest that a shear-thinning process using an entangled PVA aggregate during elongational changes to fibrous domains and a drying process during ES contributes not to enzymatic inactivation caused by conformational changes, but rather to the fabrication of a dense PVA shell around the MBP-AiiM molecules to protect them from disruptors including heating. The developed quorum-quenching enzyme has high potential to inhibit AHL-mediated QS frequently appearing in various Gram-negative bacteria.
Collapse
Affiliation(s)
- Chigusa Okano
- Creative Department for Innovation, Collaboration Center for Research and Development, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Japan
| | - Daichi Murota
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Japan
| | - Eri Nasuno
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Japan
| | - Ken-Ichi Iimura
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Japan
| | - Norihiro Kato
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Japan.
| |
Collapse
|
27
|
Fujiwara K, Iwanami T, Fujikawa T. Alterations of Candidatus Liberibacter asiaticus-Associated Microbiota Decrease Survival of Ca. L. asiaticus in in vitro Assays. Front Microbiol 2018; 9:3089. [PMID: 30622518 PMCID: PMC6308922 DOI: 10.3389/fmicb.2018.03089] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/29/2018] [Indexed: 11/28/2022] Open
Abstract
Phloem-inhabiting bacterial phytopathogens often have smaller genomes than other bacterial phytopathogens. It is thought that they depend on both other phloem microbiota and phloem nutrients for colonization of the host. However, the mechanism underlying associations between phloem-inhabiting phytopathogens and other phloem microbiota are poorly understood. Here, we demonstrate that the survival of Candidatus Liberibacter asiaticus (CLas), a cause of huanglongbing (citrus greening disease), depends on interplay with a specific subset of CLas-associated microbiota. CLas was not susceptible to oxytetracycline in vitro. However, oxytetracycline treatment eliminated a particular sub-community dominated by the Comamonadaceae, Flavobacteriaceae, Microbacteriaceae, and Pseudomonadaceae, decreasing CLas survival. We speculate that CLas uses ecological services derived from CLas-associated microbiota to colonize the host and to construct a pathogen-associated community that stimulates disease development.
Collapse
Affiliation(s)
- Kazuki Fujiwara
- Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Koshi, Japan
| | - Toru Iwanami
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Takashi Fujikawa
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
28
|
Xu J, Zhang Y, Zhang P, Trivedi P, Riera N, Wang Y, Liu X, Fan G, Tang J, Coletta-Filho HD, Cubero J, Deng X, Ancona V, Lu Z, Zhong B, Roper MC, Capote N, Catara V, Pietersen G, Vernière C, Al-Sadi AM, Li L, Yang F, Xu X, Wang J, Yang H, Jin T, Wang N. The structure and function of the global citrus rhizosphere microbiome. Nat Commun 2018; 9:4894. [PMID: 30459421 PMCID: PMC6244077 DOI: 10.1038/s41467-018-07343-2] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 10/25/2018] [Indexed: 11/23/2022] Open
Abstract
Citrus is a globally important, perennial fruit crop whose rhizosphere microbiome is thought to play an important role in promoting citrus growth and health. Here, we report a comprehensive analysis of the structural and functional composition of the citrus rhizosphere microbiome. We use both amplicon and deep shotgun metagenomic sequencing of bulk soil and rhizosphere samples collected across distinct biogeographical regions from six continents. Predominant taxa include Proteobacteria, Actinobacteria, Acidobacteria and Bacteroidetes. The core citrus rhizosphere microbiome comprises Pseudomonas, Agrobacterium, Cupriavidus, Bradyrhizobium, Rhizobium, Mesorhizobium, Burkholderia, Cellvibrio, Sphingomonas, Variovorax and Paraburkholderia, some of which are potential plant beneficial microbes. We also identify over-represented microbial functional traits mediating plant-microbe and microbe-microbe interactions, nutrition acquisition and plant growth promotion in citrus rhizosphere. The results provide valuable information to guide microbial isolation and culturing and, potentially, to harness the power of the microbiome to improve plant production and health.
Collapse
Affiliation(s)
- Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, 33885, FL, USA
- Citrus Research and Education Center, Department of Plant Pathology, IFAS, University of Florida, Lake Alfred, 33885, FL, USA
| | - Yunzeng Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, 33885, FL, USA
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Pengfan Zhang
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, Guangdong, China
| | - Pankaj Trivedi
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, 80523, CO, USA
| | - Nadia Riera
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, 33885, FL, USA
| | - Yayu Wang
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266510, Shangdong, China
| | - Guangyi Fan
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266510, Shangdong, China
| | - Jiliang Tang
- Guangxi University, Nanning, 530004, Guangxi, China
| | - Helvécio D Coletta-Filho
- Instituto Agronômico, IAC Centro de Citricultura Sylvio Moreira, CCSM, Cordeirópolis, 13490, São Paulo, Brazil
| | - Jaime Cubero
- Dept. Plant Protection, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, 28040, Spain
| | - Xiaoling Deng
- Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642, China
| | - Veronica Ancona
- Texas A&M University-Kingsville Citrus Center, Weslaco, 78599, TX, USA
| | - Zhanjun Lu
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Balian Zhong
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | | | | | - Vittoria Catara
- Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, Via Santa Sofia 100, 95123, Catania, Italy
| | - Gerhard Pietersen
- Department of Genetics, University of Stellenbosch, 7600, Stellenbsoch, South Africa
| | - Christian Vernière
- CIRAD, UMR BGPI, F-34398, Montpellier, Hérault, France
- CIRAD, UMR PVBMT, F-97410, St Pierre, La Réunion, France
| | - Abdullah M Al-Sadi
- Department of Crop Sciences, Sultan Qaboos University, Muscat, 123, Oman
| | - Lei Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, 33885, FL, USA
| | - Fan Yang
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266510, Shangdong, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China
| | - Tao Jin
- BGI-Shenzhen, Shenzhen, 518083, Guangdong, China.
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518083, Guangdong, China.
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266510, Shangdong, China.
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Lake Alfred, 33885, FL, USA.
- China-USA Citrus Huanglongbing Joint Laboratory (A joint laboratory of The University of Florida's Institute of Food and Agricultural Sciences and Gannan Normal University), National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
29
|
Abstract
Many bacteria use a cell-cell communication system called quorum sensing to coordinate population density-dependent changes in behavior. Quorum sensing involves production of and response to diffusible or secreted signals, which can vary substantially across different types of bacteria. In many species, quorum sensing modulates virulence functions and is important for pathogenesis. Over the past half-century, there has been a significant accumulation of knowledge of the molecular mechanisms, signal structures, gene regulons, and behavioral responses associated with quorum-sensing systems in diverse bacteria. More recent studies have focused on understanding quorum sensing in the context of bacterial sociality. Studies of the role of quorum sensing in cooperative and competitive microbial interactions have revealed how quorum sensing coordinates interactions both within a species and between species. Such studies of quorum sensing as a social behavior have relied on the development of "synthetic ecological" models that use nonclonal bacterial populations. In this review, we discuss some of these models and recent advances in understanding how microbes might interact with one another using quorum sensing. The knowledge gained from these lines of investigation has the potential to guide studies of microbial sociality in natural settings and the design of new medicines and therapies to treat bacterial infections.
Collapse
|
30
|
Shastry RP, Dolan SK, Abdelhamid Y, Vittal RR, Welch M. Purification and characterisation of a quorum quenching AHL-lactonase from the endophytic bacterium Enterobacter sp. CS66. FEMS Microbiol Lett 2018; 365:4923023. [PMID: 29518220 PMCID: PMC5905603 DOI: 10.1093/femsle/fny054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/05/2018] [Indexed: 12/11/2022] Open
Abstract
The quorum quenching (QQ) activity of endophytic bacteria associated with medicinal plants was explored. Extracts of the Gram-negative Enterobacter sp. CS66 possessed potent N-acylhomoserine lactone (AHL) hydrolytic activity in vitro. Using degenerate primers, we PCR-amplified an open reading frame (denoted aiiE) from CS66 that was 96% identical to the well-characterised AHL-lactonase AiiA from Bacillus thuringiensis, but only 30% was identical to AHL-lactonases from other Gram-negative species. This confirms that close AiiA homologs can be found in both Gram-positive and Gram-negative bacteria. Purified AiiE exhibited potent AHL-lactonase activity against a broad range of AHLs. Furthermore, aiiE was able to reduce the production of secreted plant cell wall-degrading hydrolytic enzymes when expressed in trans in the economically important plant pathogen, Pectobacterium atrosepticum. Our results indicate the presence of a novel AHL-lactonase in Enterobacter sp. CS66 with significant potential as a biocontrol agent.
Collapse
Affiliation(s)
- Rajesh Padumane Shastry
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore 570006, India
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Stephen K Dolan
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Yassmin Abdelhamid
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Ravishankar Rai Vittal
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
31
|
Millar AD, Tapia P, Gómez FA, Marshall SH, Fuentes DE, Valdes JH. Draft genomes and reference transcriptomes extend the coding potential of the fish pathogen Piscirickettsia salmonis. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
32
|
Curran CS, Bolig T, Torabi-Parizi P. Mechanisms and Targeted Therapies for Pseudomonas aeruginosa Lung Infection. Am J Respir Crit Care Med 2018; 197:708-727. [PMID: 29087211 PMCID: PMC5855068 DOI: 10.1164/rccm.201705-1043so] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a complex gram-negative facultative anaerobe replete with a variety of arsenals to activate, modify, and destroy host defense mechanisms. The microbe is a common cause of nosocomial infections and an antibiotic-resistant priority pathogen. In the lung, P. aeruginosa disrupts upper and lower airway homeostasis by damaging the epithelium and evading innate and adaptive immune responses. The biology of these interactions is essential to understand P. aeruginosa pathogenesis. P. aeruginosa interacts directly with host cells via flagella, pili, lipoproteins, lipopolysaccharides, and the type III secretion system localized in the outer membrane. P. aeruginosa quorum-sensing molecules regulate the release of soluble factors that enhance the spread of infection. These characteristics of P. aeruginosa differentially affect lung epithelial, innate, and adaptive immune cells involved in the production of mediators and the recruitment of additional immune cell subsets. Pathogen interactions with individual host cells and in the context of host acute lung infection are discussed to reveal pathways that may be targeted therapeutically.
Collapse
Affiliation(s)
- Colleen S Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Thomas Bolig
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Parizad Torabi-Parizi
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
33
|
张 晓. The Dynamical Modeling Studies of the Quorum Sensing Mechanism in Bacteria. Biophysics (Nagoya-shi) 2018. [DOI: 10.12677/biphy.2018.62002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
34
|
Enomoto S, Chari A, Clayton AL, Dale C. Quorum Sensing Attenuates Virulence in Sodalis praecaptivus. Cell Host Microbe 2017; 21:629-636.e5. [PMID: 28494244 DOI: 10.1016/j.chom.2017.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/15/2017] [Accepted: 04/19/2017] [Indexed: 10/19/2022]
Abstract
Sodalis praecaptivus is a close relative and putative environmental progenitor of the widely distributed, insect-associated, Sodalis-allied symbionts. Here we show that mutant strains of S. praecaptivus that lack genetic components of a quorum-sensing (QS) apparatus have a rapid and potent killing phenotype following microinjection into an insect host. Transcriptomic and genetic analyses indicate that insect killing occurs as a consequence of virulence factors, including insecticidal toxins and enzymes that degrade the insect integument, which are normally repressed by QS at high infection densities. This method of regulation suggests that virulence factors are only utilized in early infection to initiate the insect-bacterial association. Once bacteria reach sufficient density in host tissues, the QS circuit represses expression of these harmful genes, facilitating a long-lasting and benign association. We discuss the implications of the functionality of this QS system in the context of establishment and evolution of mutualistic relationships involving these bacteria.
Collapse
Affiliation(s)
- Shinichiro Enomoto
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Abhishek Chari
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Adam Larsen Clayton
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA
| | - Colin Dale
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
35
|
Kim Y, Chhor G, Tsai CS, Fox G, Chen CS, Winans NJ, Jedrzejczak R, Joachimiak A, Winans SC. X-ray crystal structures of the pheromone-binding domains of two quorum-hindered transcription factors, YenR of Yersinia enterocolitica and CepR2 of Burkholderia cenocepacia. Proteins 2017; 85:1831-1844. [PMID: 28614901 PMCID: PMC7001585 DOI: 10.1002/prot.25336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 12/17/2022]
Abstract
The ability of LuxR-type proteins to regulate transcription is controlled by bacterial pheromones, N-acylhomoserine lactones (AHLs). Most LuxR-family proteins require their cognate AHLs for activity, and some of them require AHLs for folding and stability, and for protease-resistance. However, a few members of this family are able to fold, dimerize, bind DNA, and regulate transcription in the absence of AHLs; moreover, these proteins are antagonized by their cognate AHLs. One such protein is YenR of Yersinia enterocolitica, which is antagonized by N-3-oxohexanoyl-l-homoserine lactone (OHHL). This pheromone is produced by the OHHL synthase, a product of the adjacent yenI gene. Another example is CepR2 of Burkholderia cenocepacia, which is antagonized by N-octanoyl-l-homoserine lactone (OHL), whose synthesis is directed by the cepI gene of the same bacterium. Here, we describe the high-resolution crystal structures of the AHL binding domains of YenR and CepR2. YenR was crystallized in the presence and absence of OHHL. While this ligand does not cause large scale changes in the YenR structure, it does alter the orientation of several highly conserved YenR residues within and near the pheromone-binding pocket, which in turn caused a significant movement of a surface-exposed loop.
Collapse
Affiliation(s)
- Youngchang Kim
- Midwest Center for Structural Genomics, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439
- Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439
| | - Gekleng Chhor
- Midwest Center for Structural Genomics, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439
| | - Ching-Sung Tsai
- Department of Microbiology, Cornell University, Ithaca, New York 14853
| | - Gabriel Fox
- Department of Microbiology, Cornell University, Ithaca, New York 14853
| | - Chia-Sui Chen
- Department of Microbiology, Cornell University, Ithaca, New York 14853
| | - Nathan J. Winans
- Department of Microbiology, Cornell University, Ithaca, New York 14853
| | - Robert Jedrzejczak
- Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439
- Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, Illinois 60439
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637
| | - Stephen C. Winans
- Department of Microbiology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
36
|
Niu K, Kuk M, Jung H, Chan K, Kim S. Leaf Extracts of Selected Gardening Trees Can Attenuate Quorum Sensing and Pathogenicity of Pseudomonas aeruginosa PAO1. Indian J Microbiol 2017; 57:329-338. [PMID: 28904418 DOI: 10.1007/s12088-017-0660-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/03/2017] [Indexed: 11/29/2022] Open
Abstract
An increasing concern on resistance to multiple-antibiotics has led to the discovery of novel agents and the establishment of new precaution strategy. Numerous plant sources have been widely studied to reduce virulence of pathogenic bacteria by interfering cell-to-cell based communication called quorum sensing (QS). Leaf extracts of 17 gardening trees were collected and investigated for their anti-QS effects using a sensor strain Chromobacterium violaceum CV026. Methanolic extracts of K4 (Acer palmatum), K9 (Acer pseudosieboldianum) and K13 (Cercis chinensis) leaves were selected for further experiments based on their antagonism effect on QS without inhibiting C. violaceum CV026 growth. Subsequently, the leaf extracts on QS-mediated virulence of Pseudomonas aeruginosa PAO1 involved in biofilm formation, motility, bioluminescence, pyocyanin production, QS molecules production, and Caenorhabditis elegans killing activity were evaluated. The biofilm formation ability and swarming motility of P. aeruginosa PAO1 were decreased approximately 50% in the presence of these leaf extracts at a concentration of 1 mg/mL. The expression level of lecA::lux of P. aeruginosa PAO1 and pyocyanin production were also reduced. The three leaf extracts also decreased autoinducer (AI) production in P. aeruginosa PAO1 without direct degradation, suggesting that AI synthesis might have been suppressed by these extracts. The three leaf extracts also showed anti-infection activity in C. elegans model. Taken together, these results suggest that methanolic leaf extracts of K4, K9 and K13 have the potential to attenuate the virulence of P. aeruginosa PAO1.
Collapse
Affiliation(s)
- Kaimin Niu
- Department of Animal Science and Technology, Konkuk University, Seoul, South Korea
| | - Min Kuk
- Department of Animal Science and Technology, Konkuk University, Seoul, South Korea
| | - Haein Jung
- Department of Animal Science and Technology, Konkuk University, Seoul, South Korea
| | - Kokgan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Sooki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul, South Korea
| |
Collapse
|
37
|
Gan HM, Dailey LK, Halliday N, Williams P, Hudson AO, Savka MA. Genome sequencing-assisted identification and the first functional validation of N-acyl-homoserine-lactone synthases from the Sphingomonadaceae family. PeerJ 2016; 4:e2332. [PMID: 27635318 PMCID: PMC5012321 DOI: 10.7717/peerj.2332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/15/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Members of the genus Novosphingobium have been isolated from a variety of environmental niches. Although genomics analyses have suggested the presence of genes associated with quorum sensing signal production e.g., the N-acyl-homoserine lactone (AHL) synthase (luxI) homologs in various Novosphingobium species, to date, no luxI homologs have been experimentally validated. METHODS In this study, we report the draft genome of the N-(AHL)-producing bacterium Novosphingobium subterraneum DSM 12447 and validate the functions of predicted luxI homologs from the bacterium through inducible heterologous expression in Agrobacterium tumefaciens strain NTL4. We developed a two-dimensional thin layer chromatography bioassay and used LC-ESI MS/MS analyses to separate, detect and identify the AHL signals produced by the N. subterraneum DSM 12447 strain. RESULTS Three predicted luxI homologs were annotated to the locus tags NJ75_2841 (NovINsub1), NJ75_2498 (NovINsub2), and NJ75_4146 (NovINsub3). Inducible heterologous expression of each luxI homologs followed by LC-ESI MS/MS and two-dimensional reverse phase thin layer chromatography bioassays followed by bioluminescent ccd camera imaging indicate that the three LuxI homologs are able to produce a variety of medium-length AHL compounds. New insights into the LuxI phylogeny was also gleemed as inferred by Bayesian inference. DISCUSSION This study significantly adds to our current understanding of quorum sensing in the genus Novosphingobium and provide the framework for future characterization of the phylogenetically interesting LuxI homologs from members of the genus Novosphingobium and more generally the family Sphingomonadaceae.
Collapse
Affiliation(s)
- Han Ming Gan
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia; Genomics Facility, Tropical Medicine Biology Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Lucas K Dailey
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology , Rochester , NY , USA
| | - Nigel Halliday
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham , Nottingham , UK
| | - Paul Williams
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham , Nottingham , UK
| | - André O Hudson
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology , Rochester , NY , USA
| | - Michael A Savka
- Thomas H. Gosnell School of School of Life Sciences, Rochester Institute of Technology , Rochester , NY , USA
| |
Collapse
|
38
|
RODRIGUES AC, OLIVEIRA BDD, SILVA ERD, SACRAMENTO NTB, BERTOLDI MC, PINTO UM. Anti-quorum sensing activity of phenolic extract from Eugenia brasiliensis (Brazilian cherry). FOOD SCIENCE AND TECHNOLOGY 2016. [DOI: 10.1590/1678-457x.0089] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Chan XY, How KY, Yin WF, Chan KG. N-Acyl Homoserine Lactone-Mediated Quorum Sensing in Aeromonas veronii biovar sobria Strain 159: Identification of LuxRI Homologs. Front Cell Infect Microbiol 2016; 6:7. [PMID: 26909339 PMCID: PMC4754395 DOI: 10.3389/fcimb.2016.00007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/14/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xin-Yue Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Kah-Yan How
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
40
|
Scott RA, Lindow SE. Transcriptional control of quorum sensing and associated metabolic interactions inPseudomonas syringaestrain B728a. Mol Microbiol 2016; 99:1080-98. [DOI: 10.1111/mmi.13289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/02/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Russell A. Scott
- Department of Plant and Microbial Biology; University of California; 111 Koshland Hall Berkeley CA 94720-3102 USA
| | - Steven E. Lindow
- Department of Plant and Microbial Biology; University of California; 111 Koshland Hall Berkeley CA 94720-3102 USA
| |
Collapse
|
41
|
Boutrin MC, Yu Y, Wang C, Aruni W, Dou Y, Shi L, Fletcher HM. A putative TetR regulator is involved in nitric oxide stress resistance in Porphyromonas gingivalis. Mol Oral Microbiol 2015; 31:340-53. [PMID: 26332057 DOI: 10.1111/omi.12128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2015] [Indexed: 02/02/2023]
Abstract
To survive in the periodontal pocket, Porphyromonas gingivalis, the main causative agent of periodontal disease, must overcome oxidative and nitric oxide (NO) stress. Previously, we reported that, in the presence of NO comparable to stress conditions, the transcriptome of P. gingivalis was differentially expressed, and genes belonging to the PG1178-81 cluster were significantly upregulated. To further evaluate their role(s) in NO stress resistance, these genes were inactivated by allelic exchange mutagenesis. Isogenic mutants P. gingivalis FLL460 (ΔPG1181::ermF) and FLL461 (ΔPG1178-81::ermF) were black-pigmented, with gingipain and hemolytic activities comparable to that of the wild-type strain. Whereas the recovery of these isogenic mutants from NO stress was comparable to the wild-type, there was increased sensitivity to hydrogen peroxide-induced stress. RNA-Seq analysis under conditions of NO stress showed that approximately 5 and 8% of the genome was modulated in P. gingivalis FLL460 and FLL461, respectively. The PG1178-81 gene cluster was shown to be part of the same transcriptional unit and is inducible in response to NO stress. In the presence of NO, PG1181, a putative transcriptional regulator, was shown to bind to its own promoter region and that of several other NO responsive genes including PG0214 an extracytoplasmic function σ factor, PG0893 and PG1236. Taken together, the data suggest that PG1181 is a NO responsive transcriptional regulator that may play an important role in the NO stress resistance regulatory network in P. gingivalis.
Collapse
Affiliation(s)
- M-C Boutrin
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Y Yu
- School of Pharmacy, Fudan University, Shanghai, China
| | - C Wang
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - W Aruni
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Y Dou
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - L Shi
- School of Pharmacy, Fudan University, Shanghai, China
| | - H M Fletcher
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA.,Institute of Oral Biology, Kyung Hee University, Seoul, Korea
| |
Collapse
|
42
|
Abstract
A wide variety of organisms communicate via the chemical channel using small molecules. A structural feature quite often found is the lactone motif. In the present paper, the current knowledge on such lactones will be described, concentrating on the structure, chemistry, function, biosynthesis and synthesis of these compounds. Lactone semiochemicals from insects, vertebrates and bacteria, which this article will focus on, are particularly well investigated. In addition, some ideas on the advantageous use of lactones as volatile signals, which promoted their evolutionary development, will be discussed.
Collapse
Affiliation(s)
- Stefan Schulz
- Institute of Organic Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany.
| | | |
Collapse
|
43
|
Abstract
SUMMARY Autoinduction (AI), the response to self-produced chemical signals, is widespread in the bacterial world. This process controls vastly different target functions, such as luminescence, nutrient acquisition, and biofilm formation, in different ways and integrates additional environmental and physiological cues. This diversity raises questions about unifying principles that underlie all AI systems. Here, we suggest that such core principles exist. We argue that the general purpose of AI systems is the homeostatic control of costly cooperative behaviors, including, but not limited to, secreted public goods. First, costly behaviors require preassessment of their efficiency by cheaper AI signals, which we encapsulate in a hybrid "push-pull" model. The "push" factors cell density, diffusion, and spatial clustering determine when a behavior becomes effective. The relative importance of each factor depends on each species' individual ecological context and life history. In turn, "pull" factors, often stress cues that reduce the activation threshold, determine the cellular demand for the target behavior. Second, control is homeostatic because AI systems, either themselves or through accessory mechanisms, not only initiate but also maintain the efficiency of target behaviors. Third, AI-controlled behaviors, even seemingly noncooperative ones, are generally cooperative in nature, when interpreted in the appropriate ecological context. The escape of individual cells from biofilms, for example, may be viewed as an altruistic behavior that increases the fitness of the resident population by reducing starvation stress. The framework proposed here helps appropriately categorize AI-controlled behaviors and allows for a deeper understanding of their ecological and evolutionary functions.
Collapse
Affiliation(s)
- Burkhard A Hense
- Institute for Computational Biology, Helmholtz Zentrum München, Neuherberg/Munich, Germany
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
44
|
Izzati Mohamad N, Tan WS, Chang CY, Keng Tee K, Yin WF, Chan KG. Analysis of Quorum-Sensing Pantoea stewartii Strain M073A through Whole-Genome Sequencing. GENOME ANNOUNCEMENTS 2015; 3:e00022-15. [PMID: 25700398 PMCID: PMC4335323 DOI: 10.1128/genomea.00022-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 11/20/2022]
Abstract
Pantoea stewartii strain M073a is a Gram-negative bacterium isolated from a tropical waterfall. This strain exhibits quorum-sensing activity. Here, the assembly and annotation of its genome are presented.
Collapse
Affiliation(s)
- Nur Izzati Mohamad
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Wen-Si Tan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Kok Keng Tee
- Department of Medicine, Faculty of Medicine, Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
45
|
Gan HM, Gan HY, Ahmad NH, Aziz NA, Hudson AO, Savka MA. Whole genome sequencing and analysis reveal insights into the genetic structure, diversity and evolutionary relatedness of luxI and luxR homologs in bacteria belonging to the Sphingomonadaceae family. Front Cell Infect Microbiol 2015; 4:188. [PMID: 25621282 PMCID: PMC4288048 DOI: 10.3389/fcimb.2014.00188] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022] Open
Abstract
Here we report the draft genomes and annotation of four N-acyl homoserine lactone (AHL)-producing members from the family Sphingomonadaceae. Comparative genomic analyses of 62 Sphingomonadaceae genomes were performed to gain insights into the distribution of the canonical luxI/R-type quorum sensing (QS) network within this family. Forty genomes contained at least one luxR homolog while the genome of Sphingobium yanoikuyae B1 contained seven Open Reading Frames (ORFs) that have significant homology to that of luxR. Thirty-three genomes contained at least one luxI homolog while the genomes of Sphingobium sp. SYK6, Sphingobium japonicum, and Sphingobium lactosutens contained four luxI. Using phylogenetic analysis, the sphingomonad LuxR homologs formed five distinct clades with two minor clades located near the plant associated bacteria (PAB) LuxR solo clade. This work for the first time shows that 13 Sphingobium and one Sphingomonas genome(s) contain three convergently oriented genes composed of two tandem luxR genes proximal to one luxI (luxR-luxR-luxI). Interestingly, luxI solos were identified in two Sphingobium species and may represent species that contribute to AHL-based QS system by contributing AHL molecules but are unable to perceive AHLs as signals. This work provides the most comprehensive description of the luxI/R circuitry and genome-based taxonomical description of the available sphingomonad genomes to date indicating that the presence of luxR solos and luxI solos are not an uncommon feature in members of the Sphingomonadaceae family.
Collapse
Affiliation(s)
- Han Ming Gan
- School of Science, Monash University Malaysia Petaling Jaya, Malaysia ; Genomics Facility, Monash University Malaysia Petaling Jaya, Malaysia
| | - Huan You Gan
- School of Science, Monash University Malaysia Petaling Jaya, Malaysia ; Genomics Facility, Monash University Malaysia Petaling Jaya, Malaysia
| | - Nurul H Ahmad
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| | - Nazrin A Aziz
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| | - André O Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| | - Michael A Savka
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology Rochester NY, USA
| |
Collapse
|
46
|
Acyl-homoserine lactone recognition and response hindering the quorum-sensing regulator EsaR. PLoS One 2014; 9:e107687. [PMID: 25238602 PMCID: PMC4169570 DOI: 10.1371/journal.pone.0107687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
During quorum sensing in the plant pathogen Pantoea stewartii subsp. stewartii, EsaI, an acyl-homoserine lactone (AHL) synthase, and the transcription factor EsaR coordinately control capsular polysaccharide production. The capsule is expressed only at high cell density when AHL levels are high, leading to inactivation of EsaR. In lieu of detailed structural information, the precise mechanism whereby EsaR recognizes AHL and is hindered by it, in a response opposite to that of most other LuxR homologues, remains unresolved. Hence, a random mutagenesis genetic approach was designed to isolate EsaR* variants that are immune to the effects of AHL. Error-prone PCR was used to generate the desired mutants, which were subsequently screened for their ability to repress transcription in the presence of AHL. Following sequencing, site-directed mutagenesis was used to generate all possible mutations of interest as single, rather than multiple amino acid substitutions. Eight individual amino acids playing a critical role in the AHL-insensitive phenotype have been identified. The ability of EsaR* variants to bind AHL and the effect of individual substitutions on the overall conformation of the protein were examined through in vitro assays. Six EsaR* variants had a decreased ability to bind AHL. Fluorescence anisotropy was used to examine the relative DNA binding affinity of the final two EsaR* variants, which retained some AHL binding capability but remained unresponsive to it, perhaps due to an inability of the N-terminal domain to transduce information to the C-terminal domain.
Collapse
|
47
|
Gogoleva NE, Shlykova LV, Gorshkov VY, Daminova AG, Gogolev YV. Effect of topology of quorum sensing-related genes in Pectobacterium atrosepticum on their expression. Mol Biol 2014. [DOI: 10.1134/s0026893314040049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Ferkinghoff-Borg J, Sams T. Size of quorum sensing communities. MOLECULAR BIOSYSTEMS 2014; 10:103-9. [PMID: 24162891 DOI: 10.1039/c3mb70230h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ensembles of bacteria are able to coordinate their phenotypic behavior in accordance with the size, density, and growth state of the ensemble. This is achieved through production and exchange of diffusible signal molecules in a cell-cell regulatory system termed quorum sensing. In the generic quorum sensor a positive feedback in the production of signal molecules defines the conditions at which the collective behavior switches on. In spite of its conceptual simplicity, a proper measure of biofilm colony "size" appears to be lacking. We establish that the cell density multiplied by a geometric factor which incorporates the boundary conditions constitutes an appropriate size measure. The geometric factor is the square of the radius for a spherical colony or a hemisphere attached to a reflecting surface. If surrounded by a rapidly exchanged medium, the geometric factor is divided by three. For a disk-shaped biofilm the geometric factor is the horizontal dimension multiplied by the height, and the square of the height of the biofilm if there is significant flow above the biofilm. A remarkably simple factorized expression for the size is obtained, which separates the all-or-none ignition caused by the positive feedback from the smoother activation outside the switching region.
Collapse
Affiliation(s)
- Jesper Ferkinghoff-Borg
- Center for Biological Sequence Analysis, Dept. of Systems Biology, Technical University of Denmark, DK-2800, Denmark.
| | | |
Collapse
|
49
|
Michalska K, Chhor G, Clancy S, Jedrzejczak R, Babnigg G, Winans SC, Joachimiak A. RsaM: a transcriptional regulator of Burkholderia spp. with novel fold. FEBS J 2014; 281:4293-306. [PMID: 24916958 DOI: 10.1111/febs.12868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 12/16/2022]
Abstract
UNLABELLED Burkholderia cepacia complex is a set of closely related bacterial species that are notorious pathogens of cystic fibrosis patients, responsible for life-threatening lung infections. Expression of several virulence factors of Burkholderia cepacia complex is controlled by a mechanism known as quorum sensing (QS). QS is a means of bacterial communication used to coordinate gene expression in a cell-density-dependent manner. The system involves the production of diffusible signaling molecules (N-acyl-l-homoserine lactones, AHLs), that bind to cognate transcriptional regulators and influence their ability to regulate gene expression. One such system that is highly conserved in Burkholderia cepacia complex consists of CepI and CepR. CepI is AHL synthase, whereas CepR is an AHL-dependent transcription factor. In most members of the Burkholderia cepacia complex group, the cepI and cepR genes are divergently transcribed and separated by additional genes. One of them, bcam1869, encodes the BcRsaM protein, which was recently postulated to modulate the abundance or activity of CepI or CepR. Here, we show the crystal structure of BcRsaM from B. cenocepacia J2315. It is a single-domain protein with unique topology and presents a novel fold. The protein is a dimer in the crystal and in solution. This regulator has no known DNA-binding motifs and direct binding of BcRsaM to the cepI promoter could not be detected in in vitro assays. Therefore, we propose that the modulatory action of RsaM might result from interactions with other components of the QS machinery rather than from direct association with the DNA promoter. DATABASE The atomic coordinates and structure factors have been deposited in the Protein Data Bank under entry 4O2H. STRUCTURED DIGITAL ABSTRACT BcRsaM and BcRsaM bind by x-ray crystallography (View interaction) BcRsaM and BcRsaM bind by molecular sieving (View interaction).
Collapse
Affiliation(s)
- Karolina Michalska
- Midwest Center for Structural Genomics, Argonne National Laboratory, IL, USA; Structural Biology Center, Biosciences Division, Argonne National Laboratory, IL, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Identification and characterization of a second quorum-sensing system in Agrobacterium tumefaciens A6. J Bacteriol 2014; 196:1403-11. [PMID: 24464459 DOI: 10.1128/jb.01351-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quorum sensing (QS) is a widespread mechanism of bacterial communication in which individual cells produce and respond to small chemical signals. In Agrobacterium tumefaciens, an acylhomoserine lactone-dependent QS mechanism is known to regulate the replication and conjugation of the tumor-inducing (Ti) plasmid. Most of the QS regulatory proteins are encoded within the Ti plasmid. Among them, TraI is the LuxI-type enzyme synthesizing the QS signal N-3-oxooctanoyl-L-homoserine lactone (3OC8HSL), TraR is the LuxR-type transcriptional factor that recognizes 3OC8HSL, and TraM is an antiactivator that antagonizes TraR. Recently, we identified a TraM homolog encoded by the traM2 gene in the chromosomal background of A. tumefaciens A6. In this study, we further identified additional homologs (TraI2 and TraR2) of TraI and TraR in this strain. We showed that similar to TraI, TraI2 could predominantly synthesize the QS signal 3OC8HSL. We also showed that TraR2 could recognize 3OC8HSL and activate the tra box-containing promoters as efficiently as TraR. Further analysis showed that traM2, traI2, and traR2 are physically linked on a mobile genetic element that is not related to the Ti plasmid. These findings indicate that A. tumefaciens A6 carries a second QS system that may play a redundant role in the regulation of the replication and conjugation of the Ti plasmid.
Collapse
|